ANNUAL PERFORMANCE REPORT

District Fisheries Management
Projects A \& B

Project Leader: Adam Martin, Western Fishery District Biologist Assistant Project Leader: Vacant, WFD Assistant Biologist

Project Leader: Robert Rold, Northwestern Fishery District Biologist
Assistant Project Leader: Jeremy Shiflet, NWFD Assistant Biologist
Project Leader: Eric Cummins, Southwestern Fishery District Biologist Assistant Project Leader: Kayla Gerber, SWFD Assistant Biologist

Project Leader: Jeff Crosby, Central Fishery District Biologist
Assistant Project Leader: David Baker, CFD Assistant Biologist
Project Leader: Tom Timmermann, Northeastern Fishery District Biologist Assistant Project Leader: Justin Heflin, NEFD Assistant Biologist

Project Leader: Marcy Anderson, Southeastern Fishery District Biologist Assistant Project Leader: Bradley Hartman, SEFD Assistant Biologist

Project Leader: Kevin Frey, Eastern Fishery District Biologist Assistant Project Leader: Jason Russell, EFD Assistant Biologist

TABLE OF CONTENTS

Project A - District Fisheries Management, Lake and Tailwater Sampling
WFD. 1
NWFD 93
SWFD 138
CFD. 180
NEFD 291
SEFD 372
EFD 470
Project B - Stream Surveys / Technical Guidance
WFD 549
NWFD 557
SWFD 558
CFD. 559
NEFD 567
SEFD 574
EFD 577
Habitat Summary 582
Fish Production for all Hatcheries 585

WESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Sampling conditions for each survey event are listed in Table 1.

Kentucky Lake

During the spring, 1,424 black bass were collected by diurnal electrofishing (120 PPS, DC current). During this sampling period, 1,363 largemouth bass (136.3 fish $/ \mathrm{hr}$) were collected from Blood River, Jonathan Creek, Big Bear, and Sugar Bay (Table 2). The catch rates (fish/hr) for largemouth bass between embayments varied (98.0 to 175.6 fish $/ \mathrm{hr}$). This variation could be due to changing weather conditions during the sampling period. The main similarity between embayments was that each one yielded a high catch rate of largemouth bass ($<$ 8.0 in).

The spring bass data was used to complete the lake specific assessment (Table 3). The lake specific assessment suggests that the largemouth bass population rated "Good". The growth rate parameter was determined with age data collected in the fall, but back-calculated to spring growth. Growth to age 3 declined by almost a half an inch since 2012 and may be best explained by the higher density of intermediate-size bass in the population during 2016. Growth will be reassessed in 2019. The catch rate of age-1 largemouth bass in the sample was very high, and received a rating of "excellent".

The size structure parameters used to assess the fishery by standards set in the Kentucky Lake Fish Management Plan (KLFMP) showed a major increase of smaller ($<8.0 \mathrm{in}$) bass (Table 4). The catch rate of intermediate-size bass (12.0-14.9 in) which was ($14.1 \mathrm{fish} / \mathrm{hr}$) was below the plan recommendation. The catch rate of harvestable-size bass ($\geq 15.0 \mathrm{in}$) was also down from previous years' data, and below the plan recommendation. The catch rate of trophy-size largemouth bass (≥ 20.0 in) improved over the previous year, but was below the KLFMP recommendation.

Proportional Size Distributions (PSD) values were calculated for black bass collected from each embayment sampled during the spring (Table 5). The average PSD and RSD_{15} values for largemouth bass were 43 and 23 , respectively. These average values were used in the KLFMP assessment. The PSD value was below the assessment preferred range (55-75; Table 4). The RSD_{15} value was 23 , which falls inside the targeted range (RSD_{15} of 20-40). Both of these values were influenced heavily by the unusually high catch of largemouth bass ($<8.0 \mathrm{in}$).

During October, 341 black bass were collected by diurnal electrofishing (120 PPS, DC current) from two embayments; Blood River and Big Bear. Largemouth bass comprised 80% ($50.2 \mathrm{fish} / \mathrm{hr}$) of this sample (Table 6). During the 2016 fall sample, the largemouth bass catch rate was 76.4 fish $/ \mathrm{hr}$. In the 2017 sample there was a below average catch (28.9 fish/hour) of the age 0 -year class (Table 7).

Length and weight data were recorded from all bass collected during the fall sample to calculate relative weight values. The mean relative weight for harvestable-size largemouth bass was 88 (Table 8). This value was down from the 2016 estimated relative weight value of 98 , though the 30 -year average is 96 . The relative weight of largemouth bass is one parameter that is being watched as an indicator of the increasing population of Asian carp in the lake. As Asian carp numbers continue to increase, they could impact the productivity of the lake and hence the food chain. The relative weight score of 88 is concerning, as it is the lowest score ever observed in Kentucky Lake.

Length-weight equations for black bass species at Kentucky Lake are:

Largemouth bass
Smallmouth bass
$\log _{10}($ weight $)=-3.36695+3.01733 \times \log _{10}($ length $)$
$\log _{10}($ weight $)=-3.38276+3.02400 \times \log _{10}($ length $)$

Otoliths were collected from largemouth bass during fall sampling in 2017. Otoliths were used to age bass so that the catch rates of age classes and growth could be evaluated. The catch rate of age-0 largemouth bass during the fall sample was 28.9 fish $/ \mathrm{hr}$ (Table 7). The 2017 year class appears to be slightly below average, with good growth. The mean length of the age- 0 largemouth bass was 5.9 in at time of capture in the fall. The high catch rate of age-1 largemouth bass observed in the spring was not evident in the fall sampling ($9.1 \mathrm{fish} / \mathrm{hr}$) (Table 9).

In response to questions about potential harvest restrictions, targeted electrofishing for bluegill and redear sunfish ($120 \mathrm{pps}, 6-8 \mathrm{amps}$) was conducted in Blood River and Ledbetter Creek during May 2017 (Table 10). Otoliths were removed from a subsample of fish to reveal growth patterns and age distributions. Bluegill were observed up to age-7, although growth slowed considerably after age-3 (Table 11). Redear sunfish were observed up to age-11 (Table 12). Growth up to age-3 is fast (8.5 in), but slows greatly after that point.

Otoliths were also removed from a subsample of bluegill and redear sunfish collected during fall trapnetting for crappie in October and November at Blood River, Jonathan Creek, and Ledbetter Bay. Although growth rates were very similar in both species, a wider range of age classes was observed from spring samples (Tables 11 and 12).

Trap nets were fished for crappie in Blood River and Jonathan Creek embayments for 78 net-nights (nn) during October and November. In addition, Ledbetter Bay was sampled for 40 nn . This is the second time Ledbetter Bay has been sampled for crappie. The combined sampling effort yielded 1,165 crappie (9.9 fish $/ \mathrm{nn}$), of which 2.7 fish $/ \mathrm{nn}(27 \%)$ were white crappie and 7.2 fish $/ \mathrm{nn}$ (73%) were black crappie (Table 13). The Blood River and Jonathan Creek data is listed as "sub-total" on this table. The total catch rate was lower this year as compared to previous years. The weak spawn of 2016 as predicted by larval surveys was supported by a very low catch of age 1 crappie in the trapnets (Table 14).

The number of crappie ≥ 8.0 in and ≥ 10.0 in collected in trap nets was 10.6 and 2.4 fish $/ \mathrm{nn}$, respectively (Table 14). The KLFMP objective for crappie is to maintain a catch rate of at least 10.0 fish $/ \mathrm{nn}$ for crappie ≥ 8.0 in, and $4.0 \mathrm{fish} / \mathrm{nn}$ for crappie $\geq 10.0 \mathrm{in}$. The first objective was met, but trapnets failed to collect $>4.0 \mathrm{fish} / \mathrm{nn}>10.0 \mathrm{in}$. Based on creel survey results we would have expected higher catch rates of keeper-size fish.

Crappie at Kentucky Lake had below average growth rates in 2017. The growth management objective in the KLFMP is for age- 2 crappie collected in the fall to reach 9.5 inches in length. The average length of the age- 2 crappie collected this year was 8.9 in (Table 14). This is likely due to high densities of intermediate-sized crappie, but could also be due to lower numbers of prey such as shad.

Another management objective in the KLFMP is to maintain a catch rate of age-1 crappie of at least 11.0 fish $/ \mathrm{nn}$ (Table 14). The catch rate for this age group of crappie was 1.5 fish $/ \mathrm{nn}$. This is the lowest catch rate ever recorded at Kentucky Lake and indicates a very poor spawn in 2016.

These parameters are also used as part of the calculation for ranking the crappie fishery at Kentucky Lake. Overall, the crappie population at Kentucky Lake rated "poor" this year (Table 15). This rating is assumed not to be an accurate portrayal of the crappie population since the catch rates observed in the creel survey were exceptional.

The fall trap netting data was used to calculate proportional size distributions and length-weight equations for crappie. PSD and RSD_{10} values are reported in Table 16. The PSD values are up considerably, and reflect a higher number of intermediate-size crappie in the population from a good year class in 2015. However, RSD_{10} values were down reflecting the poor catch of keeper size crappie in the trapnets. Length-weight equations for white and black crappie are listed below. Growth is similar to last year's growth.
$\begin{array}{ll}\text { White crappie } & \log _{10}(\text { weight })=-3.85398+3.51686 \times \log _{10} \text { (length) } \\ \text { Black crappie } & \log _{10}(\text { weight })=-3.47727+3.17408 \times \log _{10} \text { (length) }\end{array}$

Tables 17 and 18 list the back-calculated lengths at age for white and black crappie, respectively. The age frequencies for white and black crappie collected are listed in Tables 19 and 20, respectively.

During the spring of 2017, icthyoplankton sampling was conducted in the Jonathan Creek embayment of Kentucky Lake. Samples were conducted using a rectangular neuston net with a 100 -micron mesh size, towed 50 feet behind a boat, at a speed of 1.5 mph . Tow duration was either 5 or 3 minutes depending on an a priori assessment of the expected concentration of icthyoplankton and leptodora to prevent clogging. A General Oceanics flowmeter was attached inside the mouth of the net to record the volume of water sampled during each run. Sampling was begun just after dusk and always followed the same site order. Each sampling event started closest to the main lake site and then progressed farther into the embayment (Appendix A).

Samples were preserved immediately in 10% formalin or 95% ethanol and stored in mason jars. All larval fish were sorted and identified to the lowest practical taxon using "A Practical Key to Identify Families, Genera, and Species of Fish Larvae Commonly Collected in Tennessee Reservoirs" (Sammons, 1999); "Preliminary Guide to the Identification of Larval Fishes in the Tennessee River" (TVA, 1976); and "Early Development of Four Cyprinids Native to the Yangtze River, China" (Chapman, and Wang, 2006) (Bolu Yi, et al. 1988). Once identified, fish were counted and measured for total length. In cases of more than 100 individuals in a sample, a random subsample of at least 30 individuals was measured and used to extrapolate the lengths of the fish from the entire sample. Larval crappies were not identified to species due to overlapping myomere counts between both species and their hybrids (Spier and Ackerson, 2004).

The geometric mean and median of the 6 sample sites were used to evaluate overall densities during each week. The standard error and coefficients of variation of the mean and geometric mean were used to evaluate sample accuracy (Table 21). In 2015 the peak weekly density of crappie occurred on May $12^{\text {th }}$ and was 70.50 crappie $/ 1000 \mathrm{~m}^{3}$. In 2016 the peak weekly density of crappie occurred on May $19^{\text {th }}$ and was only 3.88 crappie $/ 1000 \mathrm{~m}^{3}$. In 2017 the peak weekly density of crappie occurred on May $19^{\text {th }}$ and was 31.99 crappie $/ 1000 \mathrm{~m}^{3}$. Based on these results, the spawn of crappie in Jonathan Creek in 2017 appears to have been somewhat better than 2016, but not as good as 2015. This will still need to be verified with trap netting in 2018.

In order to determine the hatch dates of crappies more precisely, based on growth rates, all crappie that were $8-11 \mathrm{~mm}$ in total length were assumed to represent a one-week cohort (Table 22). Just like last year, crappie in the $8-11 \mathrm{~mm}$ range appeared to be fully recruited to the gear, and were well represented in the sample. It is possible that crappie shorter than 8 mm were not located in the pelagic sample sites yet, and that crappie over 11 mm were more likely to avoid capture. This length range was also chosen because an 8 mm crappie would grow to 11.8 mm in one week (our sample interval), based on a growth rate of 0.65 mm per day after swim up. This was our estimated daily growth rate from daily otolith ring counts of Jonathan Creek crappie collected later in the year (next section)

In addition to weekly cohorts, we also estimated daily cohorts of hatched crappie. All crappie that were captured outside of the $8-11 \mathrm{~mm}$ length range were excluded from the hatch date analysis to minimize the effects of gear bias and the longer exposure to natural mortality of older fish (Table 21). A hatch date was then backcalculated for each individual fish using the assumed growth rate $(0.66 \mathrm{~mm} /$ day $)$ and the total length of each fish. A total length at hatch (4 mm) was factored into the regression for hatch date. This technique has been employed in other systems (Mitzner 1991). An incubation period of 95 hours (based on temperature) was also factored into the regression so that the day when fertilization occurred could be estimated.

The estimated hatching densities indicated that the spawn in Jonathan Creek lasted at least 44 days and extended at least until the end of May (Table 23). Because of our limited larval sampling window, we cannot be sure that crappie did not spawn before or after our sampling window. The literature reports most crappie spawns to be relatively short (1-2 months; Mitzner 1991 and Travnichek, et. al.1996). No strong peaks in successful spawning activity were observed. 2017 was a strange year with regard to elevation. The lake was up to summer pool (359.0) by 23-April and some spawning activity was occuring, but the lake was then rapidly lowered 2 feet in anticipation of a flood event. The highest numbers of crappie spawning occurred when the lake was rising rapidly (May-3) and during the flood event when the lake reached 363.1. A previous study evaluating the factors which affect crappie recruitment in Kentucky Lake found that higher discharge during the spawn and pre-spawn were correlated with good year classes of white crappie. However, black crappie were more likely to be successful during years with relatively low discharge during the spawn and pre-spawn (Martin, 2012). Unfortunately, we cannot tell from larval data which species had the stronger spawn, but it will be interesting to see whether the class of 2017 for each species
will be well represented in our trap net samples in 2018. Similar to last year's survey we found much higher densities of larval crappie farther into the embayment (Table 21; Appendix A).

The catfish population was sampled at Kentucky Lake during June by using low pulse (15 PPS) electrofishing along the main lake river channel. A chase boat was utilized to help collect catfish around the electrofishing boat. One dipper was used in each boat. A total of 137 catfish were collected during the 56 electrofishing runs made (Table 24). Each run lasted 300 seconds, for a total sample time of 4.6 hours over a fourday period. Of the samples, blue catfish had the highest catch rate at 23.9 fish $/ \mathrm{hr}$, and made up 81% of the catfish collected. The catch rate was much lower than observed in previous years. Relative weight values are listed in Table 25. The relative weight values are all high, suggesting the fish are healthy.

Otoliths were collected during sampling in 2014. That data was used to extrapolate with this year's data to calculate age frequencies. Age frequency data for blue catfish is presented in Table 26. A high catch rate of age-3 blue catfish collected in 2016 did equate to a higher catch rate of age 4 in 2017.

A new catfish surveying technique was also evaluated in 2017. The goal of the new technique was to use camera technology to increase the sample size while reducing the number of staff needed for the sample. On two of the sample dates, we recorded our electrofishing runs using an aerial drone equipped with a 4 K video camera. The video was then reviewed and the lengths of collected catfish were measured digitally using image analysis software (ImageJ) The digitally derived lengths were then compared with actual measured lengths to determine the efficacy of the method. Video observations were also analyzed to determine species ID as well as capture efficiency rates. Although we were able to determine fish length and determine sampling efficiency, we were unable to visually identify catfish to species using the video footage. This technique may be revisited as camera technology improves.

$\underline{\text { Literature Cited }}$

Chapman, D. C., ed., 2006, Early development of four cyprinids native to the Yangtze River, China: U. S. Geological Survey Data Series 239, 51 p.

Martin, A. D. 2012. Recruitment of black and white crappie populations in Kentucky Lake and Lake Barkley. Master's Thesis, Murray State University

Mitzner, L. 1991. Effect of environmental variables upon crappie young, year-class strength, and the sport fishery. North American Journal of Fisheries Management 11:534-542

Mcdonough, T. A., and J. P. Buchanan. 1991. Factors affecting abundance of white crappies in Chickamauga Reservoir, Tennessee, 1970-1989. North American Journal of Fisheries Management 11:513-524

Spier, T. W., and J. R. Ackerson. 2004. Effect of temperature on the identification of larval black crappies, white crappies, and F_{1} Hybrid Crappies. Transactions of the American Fisheries Society 133: 789-793

Sammons, S. 1999. A practical key to identify families, genera, and species of fish larvae commonly collected in Tennessee Reservoirs. U.S.G.S., Biological Resources Division. Tennessee Cooperative Fishery Research Unit.

Travnichek, V. H., M. J. Maceina, and R. A. Dunham. 1996. Hatching time and early growth of age-0 black crappies, white crappies, and their naturally produced F1 hybrids in Weiss Lake, Alabama. Transactions of the American Fisheries Society 125:334-337.

Tennessee Valley Authority. 1976. Preliminary guide to the identification of larval fishes in the Tennessee River. Technical Note B 19

Lake Barkley

Black bass were collected by diurnal electrofishing (120 PPS, DC current) during the spring at sampling sites historically used on Lake Barkley. A total of 663 black bass were collected at a rate of 69.8 fish $/ \mathrm{hr}$ (Table 27). Spotted and smallmouth bass accounted for about 4% of the total black bass sampled. The catch rates improved slightly over last year, but were still below the long term average. At best, it was felt that sampling yielded only fair results. Although sampling during some years $(2011,2012,2016)$ was believed to be affected by weather conditions, the lack of a strong spawn between 2009 and 2016 has likely reduced the overall numbers of bass in Lake Barkley. This might explain the drop in intermediate-size bass during the most recent study. The largemouth bass catch rate was 67.2 fish $/ \mathrm{hr}$ which falls below the ten-year average of $92.1 \mathrm{fish} / \mathrm{hr}$ (Table 28).

The overall PSD and RSD_{15} values for largemouth bass at Lake Barkley, along with values for individual embayments are listed in Table 29. The PSD value (76) is slightly above the objective goal (PSD of 55-75) established in the Barkley Lake Fish Management Plan (BLFMP). This higher value indicates a bass fishery slightly skewed toward larger fish. The RSD_{15} (56) was also higher than the set goal (20-40). Again, the higher the value the more the population is skewed toward larger fish. The spring catch of small ($\leq 8.0 \mathrm{in}$) largemouth bass improved this year due to the spawn of 2016, but the catch rate of (8.0-11.9 in) largemouth bass remains lower than average (Table 27). The catch rate of larger ($\geq 15.0 \mathrm{in}$) largemouth bass was average.

The lake specific assessment score for Lake Barkley was "good" (Table 30). The score was "good" for several years prior to 2010. Flood conditions in 2010, 2011, and 2013 as well as drought conditions in 2012 likely influenced sampling resulting in spurious lower ratings for these years. The fishery showed improvement in these ratings in 2017, but the low catch rate of (12.0-14.9 in) largemouth bass still negatively affected the score. The annual mortality of largemouth bass older than a year was 28% as determined using catch-curve regression of fall caught largemouth (Table 30).

During 2015 largemouth bass age and growth data was collected in the fall instead of the spring. This statewide change in sampling procedure was made to simplify the reading of otoliths by eliminating the need to add an unseen annulus onto the outer edge. Age and growth data collected in the fall of 2015 were coupled with spring 2017 data to yield an estimate of the age distribution for largemouth bass which was historically comparable with previous spring samples. This was accomplished by back calculating the lengths of fall captured largemouth bass to their most recent annulus. These back calculated lengths were assumed to be equivalent to lengths of spring caught bass and were used to create a modified age-length key.

Catch rates for spring-caught fish by age-class are shown in Table 31. Ages ranged from 0-11 and the dominant age-class was age-1. Slightly higher catch rates of age- 5 and age-7 bass were also observed.

Largemouth bass were sampled in October to collect length-weight data for condition factors, and to determine the strength of the 2017 year-class. A total of 271 bass were collected, with 88% being largemouth bass (Table 32). Largemouth bass had a catch rate of $53.1 \mathrm{fish} / \mathrm{hr}$. These catch rates were much lower than previous years. Sampling conditions likely affected these rates as it was unseasonably warm and excessive rainfall greatly affected water clarity. Relative weights were determined for all bass, but very few spotted and smallmouth bass were collected (Table 33). The relative weight for harvestable-size ($\geq 15.0 \mathrm{in}$) largemouth bass was 97 . The lengthweight equation for largemouth bass at Lake Barkley is:

$$
\log _{10}(\text { weight })=-3.56676+3.24024 \times \log _{10}(\text { length })
$$

Mean length of the age- 0 cohort of largemouth bass was 4.8 in (Table 34). It has been suggested that bass which reach at least 5.0 in by the fall will have a better chance of survival during their first winter. This year's catch rate of age-0 largemouth bass ($25.1 \mathrm{fish} / \mathrm{hr}$) was below average.

In response to questions about potential harvest restrictions, targeted electrofishing for bluegill and redear sunfish ($120 \mathrm{pps}, 6-8 \mathrm{amps}$) was conducted at Devil's Elbow and Ford's Bay during May 2017. Otoliths were removed from a subsample of fish to reveal growth patterns and age distributions. Bluegill were observed up to age3 and reached an average of 6.9 in (Table 35). Redear sunfish were observed up to age-9 and reached an average
length of 12.3 in at that age (Table 36). Redear sunfish growth up to age-3 is fast (9.3 in), but slows greatly after that point.

Otoliths were also removed from a subsample of bluegill and redear sunfish collected during fall trapnetting for crappie in October and November at Little River, Donaldson Creek, Crooked Creek, and Eddy Bay. Growth rates and age ranges were similar between both spring and fall samples (Tables 35 and 36).

Trap nets were fished for crappie in Little River and Donaldson Creek embayments for 79 net-nights (nn) during October and November. A total of 858 crappie were collected at a rate of $11.0 \mathrm{fish} / \mathrm{nn}$ (Table 37). Additionally, Crooked Creek (LBL) (40 nn) and Eddy Creek (30 nn) were sampled for total of 70 net nights. Both Crooked Creek and Eddy Creek provided a good sample (10.6 fish $/ \mathrm{nn}$), and will be sampled again in the future if possible.

White crappie and black crappie each accounted for 50% of the total catch, and were collected at a rate of 4.2 fish/nn (Table 37). Donaldson Creek contained higher proportions of black crappie than Little River, Crooked Creek, and Eddy Creek (Table 37). For historical comparisons, only data from Little River and Donaldson Creek were used in the standardized population parameters of Lake Barkley crappie in Table 38. The catch rate of harvestable-size ($\geq 10.0 \mathrm{in}$) crappie was slightly lower than the ten-year average at 1.7 fish $/ \mathrm{nn}$. The catch rate of quality-size ($\geq 8.0 \mathrm{in}$) crappie was 2.4 fish $/ \mathrm{nn}$, which is below the management objective (4.0 fish $/ \mathrm{nn}$) set in the BLFMP. The catch rate of age-1 crappie (1.7 fish $/ \mathrm{nn}$) was well below the management objective (5.0 fish $/ \mathrm{nn}$).

The length-weight equations of white and black crappie from Lake Barkley are:

$$
\begin{array}{ll}
\text { White crappie } & \log _{10}(\text { weight })=-3.60596+3.29961 \times \log _{10} \text { (length) } \\
\text { Black crappie } & \log _{10}(\text { weight })=-3.62045+3.36207 \times \log _{10} \text { (length) }
\end{array}
$$

Otoliths from 355 crappie were used for age and growth analysis. Ages ranged from 0-7 years for white crappie and $0-4$ years for black crappie (Tables 40 and 41). Growth continues to be good as crappie reached 10.0 in between age 2 and 3. The average lengths of age $2+$ white crappie and black crappie at capture were 11.2 in and 9.9 in, respectively (Table 38). Crappie collected in trap nets were used to determine stock densities. The PSD (65) and RSD_{10} (22) of white crappie were identical to the 2016 sample (Table 39). The PSD (47) and RSD_{10} (11) values of black crappie were also identical to last year, and suggests a balanced size distribution of black crappie.

Length at age results for both species are given in Tables 42 and 43. Age frequencies were estimated by combining catch data with age data. The catch of white crappie was dominated by age- 0 fish suggesting an average year class in 2017 and a weak year class in 2016 (Table 42). Very few white crappie older than age-2 were collected which was unexpected due to the strong spawn in 2014. Black crappie ages in Little River and Donaldson Creek were also dominated by age 0 fish, suggesting at least an average spawn in 2017 and a weak 2016 spawn (Table 43).

Assessment of the crappie population yielded a rating of "Fair" at Lake Barkley in 2017 (Table 44). The catch of age- 1 crappie was down from 2016 data, however, catches of age- 0 were above average. The growth rate rankings improved slightly. As time goes on and the year class of 2014 succumbs to fishing and natural mortality, we expect the population of crappie to drop in response to the poor year class of 2016.

The catfish population was sampled at Lake Barkley during June by using low pulse (15 PPS) boat electrofishing with one dipper along the main lake river channel. A chase boat with one dipper was also utilized to help collect catfish around the electrofishing boat for a total of two dippers. A total of 1177 catfish were collected during the 68 electrofishing runs made (Table 45). Each run lasted 300 seconds, for a total sample time of 5.7 hours over a four-day period. Of the sample, blue catfish had the highest catch rate at $183.3 \mathrm{fish} / \mathrm{hr}$, and made up 88% of the catfish collected. Flathead catfish and channel catfish are likely underrepresented using this method as these fish were often observed, but were much harder to approach and dip than blue catfish. Relative weight values were near the ideal values of 100 and are listed in Table 46. The aerial drone sampling technique was also utilized at Lake Barkley. See the Kentucky Lake catfish section for methods.

Age data from catfish collected in 2014 was used to calculate an age frequency for catfish collected during 2016. Age frequency data is presented in Tables 47 and 48 for blue catfish and channel catfish, respectively. These
tables should be used with caution as some larger size classes were unrepresented in 2014, and were therefore excluded from this age frequency data. Of the blue catfish, almost 82% of the sample consisted of age 1-3 fish.

Kentucky Lake Creel Survey

A random, non-uniform probability, roving creel survey was conducted on the Kentucky portion (51,000 a) of Kentucky Lake from 16 February to 30 November 2017. The Kentucky portion of the lake was divided into ten creel areas (Appendix B). The survey was conducted five days per week, six hours per day. One hour each day was randomly chosen to conduct an angler count. The remaining five hours was dedicated to creeling anglers actively fishing. The overall temporal sampling scheme was twenty days per month, consisting of six weekend days and fourteen weekdays. Varying time period probabilities were assigned to each month. Higher geographic probabilities, resulting in more frequent interviews, were assigned to the Blood River and Jonathan Creek areas from March through May, and October and November, than were assigned to the other six areas. Equal probabilities were assigned to all areas from June to September. An angler attitude questionnaire concerning fishing on Kentucky Lake was conducted by the creel clerk throughout the survey period (Appendix C).

During the 2017 creel, the typical angler was a male (91\%) resident (58\%) who was casting (48\%) or still fishing (20%) from a boat (92%; Table 49). Of the crappie anglers, 51% used a spider rig (defined as 3 or more poles per angler) for fishing. The average fishing trip for all anglers was 4.9 hours. There was a decline in the number of trips of $(173,145)$. This is the lowest number of trips ever recorded in a Kentucky Lake creel survey, but only represents an 8% decrease since 2015. Despite a low number of trips, anglers caught an above average number of fish $(1,370,520)$. Length frequencies of all harvested or released fish are given in Table 50.

Table 51 provides fish catch and harvest statistics for the 2017 creel survey. Crappie anglers accounted for 33% of fishing trips to Kentucky Lake in 2017 (33% in 2015, 24% in 2011; Table 51). Estimated catch and harvest rates for crappie were well above average. Crappie anglers caught ($2.41 \mathrm{fish} / \mathrm{hr}$) which is well above the long-term average of ($1.12 \mathrm{fish} / \mathrm{hr}$). However, of the crappie caught, 68% were under harvestable size (Table 52). This higher proportion of sublegal-size crappie corresponds to fall trap netting data that suggest good year classes in 2014 and 2015. 68\% of the crappie were caught in February and April (Table 53). As part of our efforts to evaluate harvest by method, crappie anglers were recorded as using the following methods: casting, still fishing (1-2 poles), spider rigging (3 poles), spider rigging ($4-5$ poles), spider rigging (>5 poles). During this survey, 51% of crappie anglers used 3 or more poles. The percentage of crappie anglers using (>5 poles) increased to 26% in 2017 compared to only 15% of crappie anglers in 2015 (Table 54).

Black bass anglers accounted for 42% of all fishing trips to Kentucky Lake during 2017 (Table 51). There were 72,325 black bass fishing trips in the 2017 creel, which is slightly below the long-term average for Kentucky Lake. During older surveys, any bass that was currently in the livewell was recorded as harvested. However, during recent surveys, anglers with bass in the livewell were asked if they intended to release them at the end of the day. In all cases, tournament anglers indicated that they intended to release their fish after the weigh-in. Additionally some non-tournament anglers simply chose to keep fish in the livewell for photographic or "mock tournament" purposes, but indicated that they would release them at the end of the day. As a comparison with previous surveys, bass kept in livewells by anglers were reported as harvested, even though they would be released at the end of the day. The harvest rate, which included tournament bass and "mock tournament" bass, was estimated to be 0.07 bass per hour for anglers actually targeting bass (Table 55). However, when tournament and "mock tournament" harvested bass were removed from the actual harvest, the harvest rate dropped to $0.009 \mathrm{bass} / \mathrm{hr}$. Largemouth bass accounted for 95% of the harvested black bass (Table 56).

About 6\% of all trips were taken to catch panfish during 2017 (Table 51). This value is low compared to recent surveys. In 2011, almost 21% of the trips taken targeted panfish. Likewise, catch and harvest rates were slightly below the long-term average. Almost 68% of the panfish were harvested during May (Table 57). Bluegill and redear sunfish accounted for 99% of the panfish harvested. Of the bluegill, only 52% of the fish caught were harvested, while 87% of the redear sunfish caught were harvested (Table 58).

Catfish anglers accounted for 8% of all fishing trips on Kentucky Lake in 2017 (Table 51). The number of trips for catfish was slightly below the long-term average, but was an increase from recent years. The catfish fishery remains highly harvest oriented. Almost 88% of the catfish caught were harvested (Table 59). Higher numbers of
catfish caught were reported in May (Table 59). These were likely anglers targeting channel catfish in the embayments. The total catch of channel catfish was more than double the catch of blue catfish (Table 60).

Only about 2% of the anglers fishing Kentucky Lake during 2017 sought Morones (Table 51). This group includes; white bass, yellow bass, striped bass and hybrids. However, it is likely that most anglers were fishing for white or yellow bass and incidentally caught some of these other species. Approximately 80% of the Morones caught were yellow bass, but white bass made up 40% of the Morones harvest. Almost 84% of yellow bass were released after being caught (Table 61). There were no reports of anglers targeting Morones in April, however an above average number of Morones were caught incidentally during that month (Table 61).

Kentucky Lake Winter Creel Survey

A random uniform probability roving creel survey was conducted in Jonathan Creek, Blood River, and Big Bear embayments (32,217 acres) on Kentucky Lake from 01 December 2017 through 30 February 2018. The primary objective of the survey was to assess the wintertime crappie fishery. The survey was conducted 15 days per month, six hours per day. One hour each day was randomly chosen to conduct an angler count. The remaining five hours was dedicated to creeling anglers actively fishing. The overall temporal sampling scheme was 15 days per month, consisting of five weekend days and 10 weekdays. Varying time period probabilities were assigned to each month. Equal probabilities were assigned to all three areas. An angler attitude questionnaire concerning fishing on Kentucky Lake was conducted by the creel clerk throughout the survey period (Appendix C).

During the winter creel, the typical angler was a male (98%) resident (94%) who was crappie fishing with >5 poles (67%) from a boat (96%) (Table 63). These results suggest that the wintertime crappie fishery draws much fewer non-resident anglers than was observed throughout the warmer months. Of the crappie anglers, 90% used a spider rig (defined as 3 or more poles per angler) for fishing. The average fishing trip for all anglers was 3.9 hours. Length frequencies of all harvested or released fish are given in Table 64.

Table 65 provides fish catch and harvest statistics for the 2017-2018 winter creel survey. Crappie anglers accounted for 33% of fishing trips to Kentucky Lake in 2017 (33% in $2015,24 \%$ in 2011 ; Table 51). However, the winter creel showed that crappie anglers accounted for a much higher percentage of the fishing trips (82%; Table 65.) Wintertime crappie anglers caught ($2.04 \mathrm{fish} / \mathrm{hr}$) which was slightly lower than the rate observed in the warmer months. Of the crappie caught, 36% were under harvestable size (Table 66). The catch rates for crappie were highest during December (Table 67.) Extremely cold temperatures throughout most of January probably contributed to the low effort during that month. As part of our efforts to evaluate harvest by method, crappie anglers were recorded as using the following methods: casting, still fishing (1-2 poles), spider rigging (3 poles), spider rigging (45 poles), spider rigging (>5 poles). During this survey, 90% of crappie anglers used 3 or more poles. This percentage is much higher than that observed in warmer months (51\%).

Black bass anglers accounted for 17.6% of all fishing trips to Kentucky Lake during the 2017-2018 winter creel (Table 65). During older surveys, any bass that was currently in the livewell was recorded as harvested. However, during recent surveys, anglers with bass in the livewell were asked if they intended to release them at the end of the day. In all cases, tournament anglers indicated that they intended to release their fish after the weigh-in. Additionally some non-tournament anglers simply chose to keep fish in the livewell for photographic or "mock tournament" purposes, but indicated that they would release them at the end of the day. As a comparison with previous surveys, bass kept in livewells by anglers were reported as harvested, even though they would be released at the end of the day. Throughout the entire winter survey, no angler reported any harvest of black basses (Tables 68 and 69).

About 6\% of all trips were taken to catch panfish during 2017 (Table 51). However, in the 2017-2018 winter creel, there were no panfish anglers observed (Table 65). Some bluegill were caught incidentally in December, but it seems clear that the wintertime panfish fishery is very small (Tables 70 and 71).

Catfish anglers accounted for 8% of all fishing trips on Kentucky Lake in 2017 (Table 51). However, as with panfish, there were no catfish anglers observed during the 2017-2018 winter creel. Some channel and flathead catfish were incidentally caught in very low numbers (Tables 72 and 73).

Only about 2% of the anglers fishing Kentucky Lake during 2017 sought Morones (Table 51). This group includes; white bass, yellow bass, striped bass and hybrids. During the 2017-2018 winter creel, less than 1% of anglers indicated that they were targeting Morones (Table 65). The majority of the effort came during the month of December (Table 74). Approximately 37\% of the Morones caught were yellow bass, but white bass were the only Morones harvested (Table 75). Harvest of yellow bass remains low despite the removal of harvest restrictions.

Lake Beshear

Largemouth bass were collected by diurnal electrofishing (120 PPS, DC current) during April at Lake Beshear. One-hundred and eighty-two largemouth bass were collected at a rate of 72.8 fish $/ \mathrm{hr}$ (Table 76). The catch rate of harvestable-size ($\geq 12.0 \mathrm{in}$) largemouth bass was 43.6 fish/hr (Table 77). This year's sample falls slightly below the objective in the Lake Beshear Fish Management Plan (LBFMP) to maintain a catch rate of at least $45.0 \mathrm{fish} / \mathrm{hr}$ for harvestable-sized largemouth bass. The catch of age-1 fish was low this year (6.4 fish $/ \mathrm{hr}$), but low recruitment is typical in Lake Beshear. Other objectives are to maintain high catch rates of bass ≥ 15.0 and $\geq 20.0 \mathrm{in}$. Ideally, these catch rates should be greater than 30.0 and 3.0 fish $/ \mathrm{hr}$, respectively. The catch rates for these size classes of bass were above the management objectives. Lake Beshear continues to have a quality bass fishery with high numbers of bass $\geq 15.0 \mathrm{in}$. The fishery rated as "good" in 2017 (Table 78).

Largemouth bass were collected by diurnal electrofishing (120 PPS, DC current) in October (Table 76). The catch rate ($58.0 \mathrm{fish} / \mathrm{hr}$) was lower than reported during similar sampling the past two years. Sampling conditions were reported to be good, although water temperatures were slightly above normal. There is no obvious reason why the catch would have been lower. Relative weight data suggests that the larger bass ($\geq 15.0 \mathrm{in}$) are healthy with regard to their length-weight ratio. The average relative weight value was 92 for these larger bass and 87 for all sizes of bass. The length-weight equation for largemouth bass at Lake Beshear is:

$$
\log _{10}(\text { weight })=-3.53848+3.17297 \times \log _{10}(\text { length })
$$

Otoliths were removed from a subsample of largemouth bass ≤ 10.0 in to determine the mean fall length of the age- 0 cohort, and determine their catch rate. The catch rate for age- 0 largemouth bass was $38.0 \mathrm{fish} / \mathrm{hr}$ (Table 79). The average length of an age- 0 bass was 4.1 in .

Lake Pennyrile

Electrofishing for all species of sportfish in Lake Pennyrile was conducted on 1 May 2017. One-hundred and eleven largemouth bass were captured at a rate of $111.0 \mathrm{fish} / \mathrm{hr}$ (Table 80). This catch rate is slightly below the 10 -year average of $113.0 \mathrm{fish} / \mathrm{hr}$. The majority of largemouth bass are still below 15.0 in . Only $5(4 \%)$ bass over 15.0 in were captured in this year's sample. While $10(9 \%)$ were 12.0 in or larger. The catch rate of fish ≥ 15.0 in ($5.0 \mathrm{fish} / \mathrm{hr}$) is above the 10-year average (Table 81). The catch rate of largemouth bass 8.0-11.9 in was (67.0 fish $/ \mathrm{hr}$) which falls below the management objective of 80.0 fish $/ \mathrm{hr}$. A high catch rate of intermediate largemouth bass is desirable in order to maintain good numbers of large sunfish in this system.

The catch rate of bluegill ≥ 8.0 in was $19.0 \mathrm{fish} / \mathrm{hr}$ (Table 82). The catch rate for large-size ($\geq 8.0 \mathrm{in}$) redear was above average (18.4 fish $/ \mathrm{hr}$). Over the past three years, the catch rate of large bluegill and redear sunfish has been above the 10 -year average. The most probable explanation for these high catch rates is that there are too few large piscivorous predators and too little angler harvest to limit the abundance of large sunfish in the system.

PSD and RSD values for largemouth bass, bluegill and redear sunfish are listed in Table 83. The PSD value for largemouth bass suggests a population skewed toward small bass. The largemouth fishery is likely stunted. PSD's and RSD's are above average for bluegill and redear, and skewed toward more adult fish.

An accurate lake specific assessment for Pennyrile largemouth bass has not been possible in recent years without good age and growth estimates. In 2011 a small sample of bass were aged. In 2011, the largemouth bass population was rated as "fair" (Table 84). In more recent years, assessments have been completed using the age data from 2011. Due to the shift in management focus towards trophy sunfish, it is unlikely that largemouth bass populations will ever be rated highly.

Ballard County Wildlife Management Area Lakes

During April of 2017, several Ballard County Wildlife Management Area lakes (Little Turner, Big Turner, Shelby, and Castor) were sampled with electrofishing (3-900 second runs at each lake). These lakes are old oxbows of the Ohio River which are primarily managed for waterfowl. The fisheries in these systems fluctuate greatly due to the nearly annual connection with the river during flood events. Big Turner showed the most potential as a largemouth bass fishery (33.3 fish $/ \mathrm{hr}$) (Table 85). Each of the lakes shows potential for good panfishing, despite low numbers of bluegill >6.0 in.

Appendix B. Kentucky Lake creel survey areas, 2017.

Appendix C. KENTUCKY LAKE ANGLER ATTITUDE SURVEY 2017

1. Have you been surveyed this year? Yes - stop survey

No - continue
2. Name \qquad (Optional) and Zip Code \qquad
3. How many times do you fish Kentucky Lake each year?

First time here $3.2 \% \quad 1$ to $410.5 \% \quad 5-10 \quad 16.6 \% \quad$ More than 10 69.6\%
4. Which species of fish do you fish for at Kentucky Lake (check all that applies)? Redear 15.7\% Bluegill 28.4\% Black Bass 62.2\% Crappie 61.4\% Catfish 21.4\% White bass 8.1\% Yellow bass 4.0\% Stripers 0.2\% Sauger 1.0\% Anything 1.4\%
5. Which one species do you fish for most at Kentucky Lake (check only one)?

Redear 0.4\% Bluegill 5.9\% Black Bass 46.4\% Crappie 34.8\% Catfish 8.4\% White bass 1.8\%
Anything 1.4\% Yellow bass .9\%

Answer the following questions for each species you fish for - (see question 4)

Redear Anglers

6. In general, what level of satisfaction or dissatisfaction do you have with redear fishing at Kentucky Lake? Very satisfied 11.6% Somewhat satisfied $41.9 \% \quad$ Neutral $23.3 \% \quad$ Somewhat dissatisfied 17.4%
Very dissatisfied 1.2\% No opinion 4.7\%
6a. If you responded with somewhat or very dissatisfied in question (6) - what is the single most important reason for your dissatisfaction?
Number of fish 100.0\% Size of fish 0.0\% Not happy with regulations 0.0\% Don't know how to catch them 0.0\%

Bluegill Anglers

7. In general, what level of satisfaction or dissatisfaction do you have with the bluegill fishing at Kentucky Lake Very satisfied 46.2\% Somewhat satisfied 31.4\% Neutral 10.3\% Somewhat dissatisfied 7.7\%
Very dissatisfied 0.6\% No opinion3.8\%
7a. If you responded with somewhat or very dissatisfied in question (7) - what is the single most important reason for your dissatisfaction?
Number of fish 83.3% Size of fish 16.7% Not happy with regulations 0.0%

Black Bass Anglers

8. In general, what level of satisfaction or dissatisfaction do you have with the black bass fishing at Kentucky Lake? Very satisfied 37.4\% Somewhat satisfied 41.9\% Neutral 9.8\% Somewhat dissatisfied 8.1\% Very dissatisfied 1.4\% No opinion 1.4\%

8a. If you responded with somewhat or very dissatisfied in question (8) - what is the single most important reason for your dissatisfaction?
Number of fish 81.3\%
Size of fish $9.4 \% \quad$ Not happy with regulations 0.0% Too many tournaments 6.3%
Too much pressure 3.1\%

Crappie Anglers

9. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Kentucky Lake? Very satisfied 51.0\% Somewhat satisfied 29.7\% Neutral 9.8\% Somewhat dissatisfied 5.8\% Very dissatisfied 1.7\% No opinion 2.0\%

9a. If you responded with somewhat or very dissatisfied in question (9) - what is the single most important reason for your dissatisfaction?
Number of fish 76.0% Size of fish 24.0\% Not happy with regulations 0.0\%

Catfish Anglers

10. In general, what level of satisfaction or dissatisfaction do you have with the catfish fishing at Kentucky Lake? Very satisfied 58.2\% Somewhat satisfied 27.9\% Neutral 5.7\% Somewhat dissatisfied 4.1\% Very dissatisfied 1.6\% No opinion 2.5\%

10a. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction?
Number of fish 100.0\% Size of fish 0.0\% Not happy with regulations 0.0\% Too much commercial fishing 0.0\%

White Bass Anglers

11. In general, what level of satisfaction or dissatisfaction do you have with the white bass fishing at Kentucky Lake? Very satisfied 38.6% Somewhat satisfied 36.4% Neutral 15.9% Somewhat dissatisfied 0.0% Very dissatisfied 2.3% No opinion 6.8\%

11a. If you responded with somewhat or very dissatisfied in question (11) - what is the single most important reason for your dissatisfaction?
Number of fish 100.0% Size of fish 0.0% Not happy with regulations 0.0%

All Anglers

12. Are you satisfied with the current size and creel limits on all sport fish at Kentucky Lake? Yes $87.5 \% \quad$ No 12.5% 12a. If you responded "No" to Question 11, which species are you dissatisfied with and what size and creel limits would you prefer? Creel Limit (CL), Length Limit (LL), Slot Limit (SL)

Crappie - $10 \mathrm{CL}, 15 \mathrm{CL}, 25 \mathrm{CL}, 30$ per boat CL, 09" LL, 10.5" LL, 11" LL, 12" LL
Bass - Largemouth 13" LL, Largemouth 16", 12" LL, 14 " LL, $16-10$ " SL, smallmouth no harvest >18", smallmouth 18 ",
Largemouth and Smallmouth no harvest >18 " or <15 "
Bluegill - 30 CL, 8" LL
Redear sunfish - 11 LL
13. Are you aware that the Kentucky Department of Fish and Wildlife creates and maintains shallow water stakebeds marked with white poles, and deepwater brushpiles marked with white buoys as fish attractors in Kentucky Lake? Yes 79.7\% No 20.3\%

13a. When you fish Kentucky Lake, how regularly do you fish around Department placed fish attractors? Always 2.6\% Frequently 25.1\% Occasionally 38.7\% Rarely 17.4\% Never 16.3\%

13b. If you answered "Rarely" or "Never", what is the single most important reason you don't fish around Department placed fish attractors?
Over fished 15.4\% No boat 1.3\% No success 6.7\% Don't know their location 30.9\% Wrong water depth 10.1\% Fishes own stuff 24.2\% Boat too big 0.7\% Get snagged 2.0\% Don't fish structure 0.7\% Don't crappie fish 2.0\%
14. If you fish for crappie, do you spider rig (three or more poles per angler at the same time) as your primary method of crappie fishing?
Yes 23.5\% No 39.5\% Don't Fish 36.9\%
14a. If "Yes", how many poles do you use? 3 14.8\% $4 \quad 41.4 \% \quad 5 \quad 5.5 \% \quad 6 \quad 18.0 \% \quad>6 \quad 20.3 \%$
15. Do you support or oppose a pole limit while fishing for crappie? Support 35.1\% Oppose 17.5\% No Opinion 47.4\%

15a. If you support a pole limit, what should be the pole limit per person?
$\begin{array}{lllllllllllll}18.4 \% & 2 & 15.8 \% & 3 & 37.4 \% & 4 & 24.1 \% & 5 & 2.0 \% & 6 & 8.9 \% & >6 & 3.4 \%\end{array}$
16. If you fish for catfish, do you fish with multiple poles at the same time? Yes 8.0\% No 15.6\% Don't Fish 76.4\%
$\begin{array}{lllllllllllllll}\text { 16a. If "Yes", how many poles do you use? } 2 & 50.0 \% & 3 & 27.3 \% & 4 & 18.2 \% & 5 & 2.3 \% & 6 & 2.3 \% & >6 & 0.0 \%\end{array}$
17. Do you support or oppose a pole limit while fishing for catfish? Support 5.2\% Oppose 12.9% No Opinion 81.8\%

17a. If you support a pole limit, what should be the pole limit per person?
$126.7 \% \quad 230.0 \% \quad 323.3 \% \quad 413.3 \% \quad 53.3 \% \quad 6 \quad 3.3 \% \quad>6 \quad 0.0 \%$
18. Currently there is no statewide daily creel limit for bluegill, would you support or oppose a bluegill daily creel limit? Support 10.5\% Oppose 22.1\% No Opinion 67.4\%

18a. If you support a creel limit, what number do you consider appropriate for a daily limit of bluegill?
$\begin{array}{llllllllllllllllllllll}10 & 3.3 \% & 12 & 1.7 \% & 15 & 6.7 \% & 20 & 28.3 \% & 25 & 8.3 \% & 30 & 40.0 \% & 35 & 1.7 \% & 40 & 5.0 \% & 50 & 5.0 \%\end{array}$
19. If you fish for bluegill, what do you consider to be a keeper size (inches) fish?

6 18.6\% $79.6 \% \quad 8 \quad 4.5 \% \quad 9 \quad 0.9 \% \quad 10 \quad 0.2 \%$
19a. Which do you consider to be more important: Catching more keeper size bluegill, or more trophy size (>10in) bluegill?
More keepers 82.2\% More trophy size 14.2\% No Opinion 3.6\%
20. If you fish for redear sunfish, what do you consider to be a keeper size (inches) fish? $\begin{array}{llllllllll}6 & 7.8 \% & 7 & 3.0 \% & 8 & 10.1 \% & 9 & 3.5 \% & 10 & 4.8 \%\end{array}$

20a. Which do you consider to be more important: Catching more keeper size redear, or more trophy size (>10in) redear? More keepers $66.7 \% \quad$ More trophy size $30.5 \% \quad$ No Opinion 2.9\%
21. Currently, sunfish (bluegill, longear, and redear <6 inches) are allowed to be used as bait. How often do you use sunfish as bait?
Always 0.3\% Frequently 1.4\% Occasionally 3.0\% Rarely 3.5\% Never 91.8\%
22. Are you aware that Asian carps are generally considered to be an excellent fish to eat? Yes 63.5\% No 36.5\%

Table 1. 2017 yearly summary of sampling conditions by waterbody, species sampled, and date.

Water body	Location	Species	Date	Effort	Gear	Weather	Water temp. ${ }^{\circ} \mathrm{F}$	Water level	Secchi (in)	Water conditions	Pertinent sampling comments
Kentucky	Jonathan	crappie	3/31/2017	6 tows	neustonic tow net	after dusk	58.7			calm/stable	good sample
Kentucky	Jonathan	crappie	4/7/2017	6 tows	neustonic tow net	after dusk	61.0	355.7		calm/stable	good sample
Kentucky	Jonathan	crappie	4/14/2017	6 tows	neustonic tow net	after dusk	70.2	357.8		calm/stable	good sample
Kentucky	Jonathan	crappie	4/23/2017	6 tows	neustonic tow net	after dusk	64.0	359.1		calm/stable	good sample
Kentucky	Jonathan	crappie	4/27/2017	6 tows	neustonic tow net	after dusk	67.1	359.4		elevation falling	good sample
Kentucky	Jonathan	crappie	5/5/2017	6 tows	neustonic tow net	after dusk	65.6	358.1		elevation rising fast	good sample
Kentucky	Jonathan	crappie	5/12/2017	6 tows	neustonic tow net	after dusk	70.0	363.0		calm/stable	good sample
Kentucky	Jonathan	crappie	5/19/2017	6 tows	neustonic tow net	after dusk	75.1	360.4		calm/stable	good sample
Kentucky	Jonathan	crappie	5/26/2017	6 tows	neustonic tow net	after dusk	73.9	358.1		calm/stable	good sample
Kentucky	Jonathan	crappie	6/2/2017	6 tows	neustonic tow net	after dusk	80.9	359.3		calm/stable	good sample
Kentucky	Jonathan	crappie	6/9/2017	6 tows	neustonic tow net	after dusk	79.8	360.2		calm/stable	good sample
Pennyrile		sportfish	5/1/2017	1 hr	electrofishing	cloudy/breezy	68.7	normal	42	stable	good sample
Barkley	Little River	black bass	4/25/2017	2.5 hr	electrofishing	sunny	65.9	359.3	26	calm	poor sample, biased tow ards large females
Barkley	Eddy Creek	black bass	4/26/2017	2.5 hr	electrofishing	overcast	65.0	359.4	30	choppy	fair sample
Barkley	Donaldson	black bass	5/2/2017	2.0 hr	electrofishing	sunny/w indy	60.3	357.0	32	calm	fair sample
Barkley	Nickel Branch	black bass	5/8/2017	2.5 hr	electrofishing	sunny/calm	64.0	361.0	32	elevation rising fast	fair sample
Barkley	Devils elbow east	sunfish	5/11/2017	. 5 hr	electrofishing	sunny/light wind	68	363.5	32	w ater high	fish concentrated in flooded habitat
Barkley	Fords Bay	sunfish	5/9/2017	. 75 hr	electrofishing	sunny	64.6		36	lake rising	abandoned bass sample
Barkley	Little River	sunfish/shad	9/27/2017	1.5 hr	electrofishing	sunny	82	355.2		discharge 9,000	ignore catch rates/ AG data collected
Barkley	Devils elbow	catfish	6/8/2017	1.4 hr	low pulse	sunny/calm	74.0	360.2	20	calm	discharge 40,000
Barkley	Nickel	catfish	6/13/2017	1.5 hr	low pulse	partly cloudy	81.0	359.4	34	calm	discharge 27,000
Barkley	Eddyville ferry	catfish	6/15/2017	1.4 hr	low pulse	cloudy	79.8	359.3	26	slightly choppy	good sample
Barkley	Cravens	catfish	6/16/2017	1.58 hr	low pulse	overcast	78.4	359.2	32	calm	discharge 8,600, but rose throughout
Barkley	Eddy Creek	black bass	10/9/2017	2.0 hr	electrofishing	misting	72.0	355.0	24	calm	first time drivers/83 degree air temp
Barkley	Little River	black bass	10/12/2017	2.5 hr	electrofishing	overcast	67.5	355.2	14	calm	elevation falling hard, muddy w ater
Lake Beshear		black bass	4/18/2017	2.5 hr	electrofishing	overcast	67.0	normal	40	calm	good sample
Ballard WMA	L.\&B. Turner, Shelby, Castor	sportfish	4/19/2017	3 hr	electrofishing	sunny	69.0	normal		calm	fair sample
Kentucky	Blood River	black bass	4/21/2017	3.0 hr	electrofishing	overcast/w indy	69.0	358.4	28	choppy	fair sample
Kentucky	Sugar Bay	black bass	4/24/2017	2.5 hr	electrofishing	sunny/calm	64.0	358.9	37	calm	good sample
Kentucky	Jonathan	black bass	4/27/2017	2.5 hr	electrofishing	overcast/breezy	66.0	358.2	35	choppy	good sample
Kentucky	Big Bear	black bass	5/3/2017	2.0 hr	electrofishing	cloudy/breezy	64.5	357.5	24	choppy	fair sample
Kentucky	Blood River	sunfish	5/10/2017	1.3 hr	electrofishing	sunny	68.0	363.4		calm/high	poor sample
Kentucky	Ledbetter	sunfish	5/11/2017	0.8 hr	electrofishing	sunny	70.0	363.6	34	calm/high	poor sample
Kentucky	Patterson Landing	catfish	6/6/2017	. 8 hr	low pulse	sunny/w indy	78.9	359.7		calm	poor sample

Table 1 (cont).

Water body	Location	Species	Date	Effort	Gear	Weather	Water temp. ${ }^{\circ} \mathrm{F}$	Water level	Secchi (in)	Water conditions	Pertinent sampling comments
Kentucky	Fenton	catfish	6/9/2017	2.1 hr	low pulse	sunny/calm	77.0	360.2	47	calm	fair sample
Kentucky	Little Bear	catfish	6/12/2017	1.0 hr	low pulse	sunny/breezy	79.0	359.4		choopy	poor sample
Kentucky	Patterson Landing	catfish	6/14/2017	. 9 hr	low pulse	sunny/w indy	80.0	359.1		choppy	poor sample
Low er TN River	Haddox Ferry	all species	9/7/2017	1.8 hr	electrofishing	sunny	74.0	300.2	40	calm	good sample
Low er TN River	Kentucky TW	all species	9/11/2017	1.0 hr	electrofishing						
Mississippi River	Columbus Belmont	all species	9/8/2017	1.5 hr	electrofishing	cloudy/breezy	74.0	17'			fair sample
Mississippi River	Wickliffe	all species	9/18/2017	1.5 hr	electrofishing	sunny	77.0	12'			fair sample
Kentucky	Blood River	sunfish	9/25/2017	1.8 hr	electrofishing	sunny/calm	82.0	355.2		calm	poor sample
Lake Beshear		black bass	10/5/2017	2.0 hr	electrofishing	partly cloudy	73.0	normal		calm	good sample
Kentucky	Big Bear	black bass	10/11/2017	3 hr	electrofishing	cloudy	71.0	355.6	27	cam	good sample
Kentucky	Blood River	black bass	10/13/2017	2.5 hr	electrofishing	sunny/calm	67.0	355.4	21	calm	good sample
Barkley	Crooked Creek	crappie	10/16-10/20	40 nn	trapnet	sunny	68.0	355.0	21	elevation falling	fair sample
Barkley	Donaldson	crappie	10/23-10/27	39 nn	trapnet	sunny	62.0	354.0	19	lake falling	fair sample
Kentucky	Ledbetter	crappie	10/17-10/20	40 nn	trapnet	variable	68.8	355.8		variable	poor sample
Barkley	Little River	crappie	10/30-11/03	40 nn	trapnet	sunny	52.0	354.0	6	high discharge	fair sample, high discharge and turbidity
Kentucky	Jonathan	crappie	10/24-10/27	40 nn	trapnet	variable	64.0	355.1	23	variable	breezy, fair sample
Barkley	Eddy Creek	crappie	10/30-11/03	30 nn	trapnet	sunny	52.0	354.0	25	calm, high discharge	poor sample
Kentucky	Blood River	crappie	10/31-11/3	38	trapnet	variable	52.0	354.8	21	variable	overcast, fair sample
Ohio River	Birdsville	all species	9/5/2017	2 hr	electrofishing	overcast	77.0		13	muddy	fair sample
Ohio River	Smithland	all species	9/6/2017	1.5 hr	electrofishing	sunny	76.0		13	muddy	fair sample, rocks exposed
Cumb. River	Tiline	all species	9/20/2017	1.5 hr	electrofishing	partly cloudy	76.0		27	normal	good sample
Cumb. River	Barkley TW	all species	9/11/2017	1.0 hr	electrofishing						CSI staff

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 10.0 hours (20-30-minute runs) of diurnal electrofishing at Kentucky Lake during April-May 2017.

Area	Inch class																			Total	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Blood River																						
Smallmouth bass	1	1	1	5	1		1	1		2	2			1					1	17	5.7	4.3
Largemouth bass	1	5	21	55	54	29	23	5	8	4	11	20	24	16	9	2	3	1	3	294	98.0	11.9
Jonathan Creek																						
Smallmouth bass			1	1	1															3	1.2	1.2
Spotted bass				1																1	0.4	0.4
Largemouth bass	5	20	43	63	48	28	10	13	11	15	21	13	10	9	6	4	6			325	130.0	27.0
Big Bear																						
Smallmouth bass			3	3	1	1		1	1			1								11	5.5	2.2
Largemouth bass		3	31	56	75	36	25	6	3	9	4	15	16	12	11	2	1			305	152.5	24.5
Sugar Bay																						
Smallmouth bass		3	7	8	7		1		1					1						28	11.2	3.3
Spotted bass						1														1	0.4	0.4
Largemouth bass		1	25	88	118	99	40	11	10	8	7	16	4	4	3	2	2		1	439	175.6	20.8
Total																						
Smallmouth bass	1	4	12	17	10	1	2	2	2	2	2	1		2					1	59	5.9	1.7
Spotted bass				1		1														2	0.2	0.1
Largemouth bass	1	14	97	242	310	212	116	32	34	32	37	72	57	42	32	12	10	7	4	1363	136.3	11.8

Table 3. Lake specific assessment for largemouth bass collected at Kentucky Lake from 2008-2017. This table includes the parameter estimates and the individual scores as well as the total score and assessment rating. The final two columns list the instantaneous mortality (Z) and \% annual mortality (A). Only data collected from Blood River, Big Bear, Jonathan Bay and Sugar Bay were used for historical comparison.

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	Length group			Total score	Assessment rating	Z	A
			12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
			CPUE	CPUE	CPUE				
$2017{ }^{\text {A }}$	13.2	95.8	14.1	16.4	1.1				
Score	2	4	2	3	2	13	G		
2016	13.2	4.0	25.9	19.1	0.8			0.410	33.7
Score	2	1	4	3	1	11	F		
$2015{ }^{\text {A }}$	13.9	10.2	22.0	15.6	1.2			0.408	33.5
Score	4	1	3	2	2	12	G		
$2014{ }^{\text {A }}$	13.9	32.6	15.0	15.7	0.9			0.452	36.3
Score	4	2	1	2	1	10	F		
2013*A	13.9	40.2	9.6	15.8	0.8			0.446	35.9
Score	4	2	1	2	1	10	F		
2012*	13.9	35.6	26.9	17.5	0.8			0.588	44.5
Score	4	2	2	2	1	11	F		
2011*	12.9	7.4	34.0	8.6	0.9				
Score	3	1	2	1	1	8	F		
2010*	13.8	34.4	42.9	12.4	1.3				
Score	4	2	3	1	1	11	F		
$2009{ }^{\text {A }}$	13.8	27.9	24.3	13.5	1.4			0.429	34.9
Score	4	2	2	1	1	10	F		
$2008{ }^{\text {A }}$	13.8	73.1	19.1	24.2	1.9			0.575	43.7
Score	4	4	2	3	2	15	G		
Average	13.6	36.1	23.4	15.9	1.1	11.1		0.472	37.5

Data from 1985 to 2007 is listed in previous annual reports.
Assessment quartiles were updated in 2015, previous years' APR's will list rating based on old assessment ranges.

A age and growth data was not collected this year, therefore used previous age data set estimates.
2010*, 2011* and 2013* samples were hampered by high water levels during flooding, sample was later than normal; overall a poor sample and not all embayments were sampled.
2012* sample was hampered by low water levels during drought.

Rating
5-7 = Poor (P)
8-11 = Fair (F)
12-16 = Good (G)
17-20 = Excellent (E)
(Kentucky Bass Database.xls)

Table 4. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Kentucky Lake during May $2008-2017$.

Year	Mean length age-3 at capture (in)	Age-1		Length group										Total			
				<8.0 in		12.0-14.9 in		≥ 15.0 in		≥ 18.0 in		≥ 20.0 in					
		CPUE	Std err	PSD	RSD_{15}												
2017	13.2	95.8	10.6	66.4	7.1	14.1	1.7	16.4	1.7	3.3	0.7	1.1	0.3	136.3	11.8	44	23
2016	13.2	4.0	0.7	11.8	2.0	25.9	2.4	19.1	2.4	2.9	0.7	0.8	0.3	63.2	5.7	88	37
2015	13.9	10.2	1.1	3.9	0.7	22.4	2.1	14.1	1.3	5.3	0.6	1.1	0.3	60.4	4.2	65	25
2014	13.9	32.6	6.2	26.4	5.5	15.0	1.4	15.7	1.7	4.2	0.6	0.9	0.3	78.1	7.1	59	30
2013	13.9	40.2	7.0	30.5	6.4	9.6	1.3	15.8	1.6	3.3	0.5	0.8	0.3	78.2	7.1	53	33
2012	13.9	35.6	5.3	25.6	4.0	26.9	3.5	17.5	2.2	2.7	0.6	0.8	0.3	86.2	6.7	73	29
2011	12.4	7.4	1.6	5.1	1.1	34.0	5.4	8.6	2.0	3.7	1.0	0.9	0.6	61.1	7.7	76	15
2010	13.8	34.4	5.9	29.7	5.5	42.9	3.6	12.4	1.6	3.7	1.0	1.3	0.4	121.6	11.0	60	14
2009	13.8	27.9	5.0	29.5	5.3	24.3	2.2	13.5	1.2	4.2	0.6	1.4	0.3	112.6	10.3	46	16
2008	13.8	73.1	8.6	51.7	7.2	19.1	2.3	24.2	3.1	6.0	1.0	1.9	0.4	134.8	11.1	52	29
Average	13.6	36.1		28.1		23.4		15.7		3.9		1.1		93.2		61.6	25.1
KLFMP	≥ 12.0 in	≥ 30				≥ 21		≥ 18				≥ 2				55-75	20-40

(Kentucky Bass Database.xis)
Data for 1985-2007 is listed in previous annual reports; KLFMP - Kentucky Lake Fish Management Plan objective goal.

Table 5. PSD and RSD_{15} values calculated for largemouth bass collected during diurnal electrofishing at Kentucky Lake during May 2017; 95\% confidence limits are shown in parentheses.

	No. ≥ 8.0 in	PSD	RSD $_{15}$
Area	158	$59(+/-7)$	$37(+/-7)$
Blood River	194	$49(+/-7)$	$25(+/-6)$
Jonathan Creek	140	$50(+/-8)$	$30(+/-8)$
Big Bear	207	$23(+/-6)$	$8(+/-4)$
Sugar Bay	699	$43(+/-4)$	$23(+/-3)$
Total			

wfdpsdky.d17

Table 6. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 5.5 hours (11-30-minute runs) of diurnal electrofishing at Kentucky Lake during October 2017.

Area / Species	Inch class																			Total	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Blood River																						
Smallmouth bass		4	10	13	5		1	2			1		2							38	15.2	5.5
Spotted bass												1								1	0.4	0.4
Largemouth bass		3	13	26	31	10	11	26	13	3	1	3	10	5	2		1	1	1	160	64.0	8.3
Big Bear																						
Smallmouth bass		1	6	8	2			4	1	1		1	1							25	8.3	2.3
Spotted bass								1												1	0.3	0.3
Largemouth bass	1		7	9	17	6	7	16	11	4	4	5	5	9	6	5	4			116	38.7	7.3
TOTAL																						
Smallmouth bass		5	16	21	7		1	6	1	1	1	1	3							63	11.5	2.9
Spotted bass								1				1								2	0.4	0.2
Largemouth bass	1	3	20	35	48	16	18	42	24	7	5	8	15	14	8	5	5	1	1	276	50.2	6.5

Table 7. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall, and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Kentucky Lake.

	Age $0^{\text {A }}$		$\begin{gathered} \text { Age 0 } \\ \geq 5.0 \mathrm{in}^{\mathrm{A}} \end{gathered}$				Age 1^{B}	
Year class	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2017	5.9	0.1	28.9	5.2	18.2	3.6		
2016	6.4	0.1	58.4	7.4	47.9	5.3	95.8	10.6
2015	4.6	0.1	32.6	8.6	9.1	1.5	4.0	0.7
2014	4.1	0.1	20.2	7.9	3.8	1.0	10.2	1.1
2013	5.7	0.1	31.3	5.2	21.5	4.1	32.6	6.2
2012	6.4	0.1	63.0	13.9	55.9	12.5	40.2	7.0
2011	5.7	0.1	75.9	8.3	54.1	6.4	35.6	5.3
2010	5.7	0.1	24.3	4.9	17.4	2.6	7.4	1.6
2009	5.0	0.1	30.9	5.4	16.7	2.8	34.4	5.9
2008	5.8	0.1	33.8	6.9	27.2	4.8	27.9	5.0
Average	5.5		39.9		27.2		32.0	

${ }^{\text {A }}$ Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of LMB <8.0 in and extrapolated to the entire catch of the fall sample. Since 2010, bass up to 10.0 in have been collected for analysis.
${ }^{B}$ Data from diurnal electrofishing samples collected the following spring (April/May).
*2010, 2011 and 2013 spring data was poor due to high water levels.
*2012 spring data was poor due to low water levels.
Data from 1990 to 2007 is listed in previous year reports.
wfdwrky.dxx, wfdwragk.dxx, wfdpsdky.dxx

Table 8. Number of bass and relative weight (Wr) for each length group of black bass collected at Kentucky Lake during October 2017.

Species	Area	Length group									Total		
		8.0-11.9 in			12.0-14.9 in			≥ 15.0 in					
		No.	Wr	Std err									
Largemouth bass	Blood River	53	90	1	14	85	2	10	85	4	77	88	1
	Big Bear	38	87	1	14	84	3	24	91	3	76	88	1
	Total	91	89	1	28	84	2	34	89	2	153	88	1
		Length group									Total		
		7.0-10.9 in			11.0-13.9 in			≥ 14.0 in					
Species	Area	No.	Wr	Std err									
Spotted bass	Total	1	98		1	97					2	98	0
Smallmouth bass	Total	8	84	2	3	83	1	3	87	4	14	84	1

wfdwrky.d17

Table 9. Age frequency and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Kentucky Lake in October 2017.

Age	Inch class																			Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
0	1	3	20	35	48	15	16	21												159	57.6	28.9	5.2
1						1	2	21	22	3	1									50	18.1	9.1	1.3
2									2	1	1	1	1	1						7	2.5	1.3	0.1
3										1	1	4	4	4	1					15	5.4	2.7	0.4
4										1	1	2	4	5	3	2	1			19	6.9	3.5	0.5
5											1	1	6	4	4	3	3			22	8.0	4.0	0.8
6																	1			1	0.4	0.2	0.1
7																		1		1	0.4	0.2	0.2
8																			1	1	0.4	0.2	0.1
9																	1			1	0.4	0.2	0.1
Total	1	3	20	35	48	16	18	42	24	6	5	8	15	14	8	5	6	1	1	276	100		
\%	0	1	7	13	17	6	7	15	9	2	2	3	5	5	3	2	2	0	0	100			

wfdwrky.d17 and wfdlbkag.d16

Table 10. Electrofishing for redear sunfish and bluegill to determine relative abundance and CPUE (fish/hr) during 2.0 hours ($8-900$-second runs) at Kentucky Lake during May 2017.

Area / Species	Inch class											Total	CPUE	Std err
	1	2	3	4	5	6	7	8	9	10	11			
Blood River														
Bluegill	3	26	27	45	29	10						140	112.0	39.1
Redear			3	2	13	10	2	5	2	2	6	45	36.0	14.0
Ledbetter														
Bluegill		3	4	23	41	39	9					119	158.7	48.7
Redear						1	3		1	3	8	16	21.3	1.3
TOTAL														
Bluegill	3	29	31	68	70	49	9					259	129.5	29.6
Redear			3	2	13	11	5	5	3	5	14	61	30.5	8.8

[^0]Table 11. Mean back-calculated length (in) at each annulus of bluegill including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River and Ledbetter Bay) in spring 2017. A separate otolith collection was also conducted in fall 2017 using fish collected while trapnetting (Blood River, Ledbetter, and Jonathan Creek)

Year class	N	SPRING SAMPLE						
		Age						
		1	2	3	4	5	6	7
2016	26	2.8						
2015	14	3.2	4.8					
2014	40	3.6	6.0	7.1				
2013	10	3.0	5.0	6.0	6.5			
2012	1	2.6	4.6	5.2	5.6	6.0		
2011	2	2.6	4.3	5.5	6.1	6.5	6.8	
2010	1	3.2	4.7	5.4	6.0	6.4	6.8	7.2
Mean	94	3.2	5.5	6.8	6.4	6.3	6.8	7.2
Smallest		1.6	4.1	5.2	5.6	6.0	6.5	7.2
Largest		4.8	6.9	8.4	7.5	6.7	7.1	7.2
Std err		0.1	0.1	0.1	0.2	0.1	0.2	
Low 95\% Cl		3.1	5.3	6.5	6.1	6.1	6.5	
High 95\% Cl		3.4	5.7	7.0	6.6	6.6	7.1	

* Intercept = 0.
wfdbgsak.d17

FALL SAMPLE

Year class	N	FALL SAMPLE			
		Age			
		1	2	3	4
2016	24	2.6			
2015	15	3.2	4.9		
2014	15	2.9	4.9	6.0	
2013	3	2.2	3.8	5.4	5.9
Mean	57	2.9	4.8	5.9	5.9
Smallest		1.5	3.3	4.7	5.5
Largest		3.8	5.8	6.7	6.2
Std err		0.1	0.1	0.1	0.2
Low 95\% CI		2.7	4.6	5.6	5.5
High 95\% CI		3.0	5.0	6.1	6.4

* Intercept = 0.
wfdbgfak.d17

Table 12. Mean back-calculated length (in) at each annulus of redear sunfish including the range in length at each age and the 95\% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River and Ledbetter Bay) in spring 2017. A separate otolith collection was also conducted in fall 2017 using fish collected while trapnetting (Blood River, Ledbetter, and Jonathan

		SPRING	MPLE									
							Age					
$\underline{\text { Year class }}$	N	1	2	3	4	5	6	7	8	9	10	11
2016	5	3.7										
2015	39	4.5	7.0									
2014	7	5.0	8.3	9.7								
2013	2	4.3	7.0	8.8	9.7							
2012	11	4.4	7.7	9.4	10.4	11.0						
2011	1	2.8	5.6	7.0	7.7	8.2	8.5					
2010	5	4.0	6.6	8.4	9.2	9.8	10.4	10.8				
2009	1	4.2	6.3	8.1	9.2	9.9	10.4	10.9	11.2			
2008	1	3.3	4.6	6.1	6.9	8.9	9.9	10.5	11.3	12.0		
2007	5	3.3	5.2	6.3	7.1	7.8	8.4	8.9	9.4	9.8	10.2	
2006	1	2.3	4.0	5.1	6.3	7.3	7.9	8.6	9.5	10.2	10.8	11.3
Mean	94	4.3	7.0	8.5	9.1	9.7	9.3	9.9	9.9	10.2	10.3	11.3
Smallest		2.3	4.0	5.1	6.3	6.7	7.2	7.5	7.9	8.3	8.5	11.3
Largest		6.8	9.3	10.4	11.0	11.5	11.2	11.7	11.3	12.0	11.6	11.3
Std err		0.1	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	
Low 95\% Cl		4.1	6.6	7.9	8.5	9.1	8.6	8.6	9.0	9.2	9.3	
High 95\% Cl		4.5	7.3	9.0	9.7	10.4	10.0	10.0	10.8	11.2	11.4	
$\begin{aligned} & \text { * Intercept }=0 . \\ & \text { wfdbgsak.d17 } \end{aligned}$												
FALL SAMPLE												
						Age						
Year class	N	1	2	3	4	5	6	7	8	9		

Table 13. Species composition, relative abundance, and CPUE (fish/nn) of crappie collected by trap nets fished during 117 netnights of effort at three embayments of Kentucky Lake during October-November 2017. The Sub-Total is used for historical comparison and excludes the data for an embayment which historically had not been sampled.

Area	Species	Inch class													Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14			
Blood River	White crappie	6	5	7	4			3	15	14	2	1	1		58	1.6	0.4
	Black crappie	14	11	3	1	5	17	66	87	37	6	1	1		249	6.7	1.4
Jonathan Cr.	White crappie		4	10	2	2	9	39	114	55	5	3	3	3	249	6.2	1.0
	Black crappie	12	9	2	13	25	117	194	118	39	6	3	1		539	13.5	2.0
Sub-Total	White crappie	6	9	17	6	2	9	42	129	69	7	4	4	3	307	4.0	0.2
	Black crappie	26	20	5	14	30	134	260	205	76	12	4	2		788	10.2	0.8
Ledbetter	White crappie	3	1	1	2			2	1		1	2	1		14	0.4	0.1
	Black crappie	10	15	7	1	1	5	5	7	2	2	1			56	1.4	0.3
TOTAL	White crappie	9	10	18	8	2	9	44	130	69	8	6	5	3	321	2.7	0.4
	Black crappie	36	35	12	15	31	139	265	212	78	14	5	2		844	7.2	0.9

wfdtpntk.d17

Table 14. Crappie population parameters used to manage the population at Kentucky Lake, with values determined from fall trap netting at Blood River and Jonathan Creek.

	Total CPUE (fish/nn) excluding age-0			$\begin{gathered} \text { CPUE (f/nn) } \\ \text { age-0 } \\ \hline \end{gathered}$			Mean length (in) age-2 at capture			CPUE (fish/nn)$\geq 8.0 \text { in }$			CPUE (fish/nn) age-1			$\begin{gathered} \text { CPUE }(\mathrm{fish} / \mathrm{nn}) \\ \geq 10.0 \mathrm{in} \\ \hline \end{gathered}$		
Year	WC	BC	Crappie															
2017	3.6	9.6	13.1	0.4	0.7	1.1	9.6	8.2	8.9	3.4	7.3	10.6	0.3	1.2	1.5	1.1	1.2	2.4
2016	1.7	6.3	8.0	0.2	0.7	0.9	10.0	9.3	9.7	1.4	3.8	5.3	0.8	2.1	2.9	0.5	0.9	1.4
2015	7.7	15.0	22.7	2.2	2.1	4.3	9.7	8.8	9.2	4.4	4.9	9.3	4.1	5.8	9.9	1.2	0.5	1.7
2014	3.6	6.7	10.3	1.7	1.2	2.9	10.3	8.8	9.7	1.7	2.3	3.9	2.4	4.3	6.7	1.2	1.1	2.3
2013	2.5	7.4	9.9	2.5	3.1	5.5	10.4	8.8	9.4	2.4	6.3	8.7	0.5	1.8	2.3	1.7	2.9	4.6
$2012^{\text {A }}$	4.2	8.7	12.9	0.0	0.2	0.2	10.5	9.6	10.0	3.4	7.0	10.4	2.8	2.5	5.3	1.4	3.1	4.5
2011	3.2	15.6	18.8	2.3	1.1	3.4	10.5	9.6	10.0	2.0	10.3	12.3	2.3	6.7	9.0	0.9	2.5	3.4
$2010^{\text {A }}$	5.2	13.5	18.7	9.1	3.7	12.8	11.5	10.4	10.6	2.7	5.7	8.4	4.1	9.0	13.0	1.9	3.3	5.2
2009	2.0	14.2	16.2	1.4	2.0	3.4	11.5	10.4	10.6	1.6	12.0	13.6	1.8	3.0	4.9	0.3	10.1	10.4
$2008{ }^{\text {A }}$	0.4	14.9	15.3	0.4	1.4	1.8	11.2	10.2	10.7	0.4	13.0	13.3	0.2	6.2	6.3	0.2	8.3	8.5
Average	3.4	11.2	14.6	2.0	1.6	3.6	10.5	9.4	9.9	2.3	7.2	9.6	1.9	4.2	6.2	1.0	3.4	4.4
KLFMP			≥ 20			≥ 8			≥ 9.5 in			≥ 10			≥ 11			≥ 4

${ }^{\text {A }}$ Indicates year where age and grow th data w as not collected. Age and grow th data from the previous year w as used to calculate the appropriate value.
Data from 1985 to 2007 is listed in previous annual reports.
KLFMP - Kentucky Lake Fish Management Plan objective goal.
Kentucky Lake Crappie Database

Table 15. Lake specific assessment for crappie collected at Kentucky Lake (Blood River and Jonathan Creek) from 2008-2017. This table includes the individual scores for each parameter, as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A).

Year	CPUE age-1 and older	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-0 } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Mean length age-2 at capture	Total score	Assessment rating	Z	A
2017	13.1	1.5	1.1	10.6	8.9			0.805	55.3
Score	1	1	1	3	1	7	P		
2016	8.0	2.9	0.9	5.3	9.7			1.072	65.8
Score	1	1	1	1	2	6	P		
2015	22.7	9.9	4.3	9.3	9.2			0.925	60.3
Score	4	3	3	3	1	14	G		
2014	10.5	6.7	2.9	3.9	9.7			0.910	59.7
Score	1	1	2	1	2	7	P		
2013	9.9	2.3	5.5	8.7	9.4			0.657	48.2
Score	1	1	3	2	1	8	P		
2012	13.0	5.3	0.5	10.4	10.0			1.028	64.2
Score	1	1	1	3	3	9	F		
2011	18.8	9.0	3.4	12.3	10.0			0.916	60.0
Score	3	2	2	3	3	13	F		
2010	18.7	13.0	12.8	8.4	10.6			0.556	42.6
Score	3	3	4	2	4	16	F		
2009	16.2	4.9	3.4	13.6	10.6			0.758	53.1
Score	2	1	1	4	4	12	F		
2008	15.3	6.3	1.8	13.3	10.7			0.440	35.6
Score	2	1	1	4	4	12	F		
Average	14.6	6.2	3.7	9.6	9.9	10.4		0.807	54.48

Rating
1-7 = Poor (P)
8-12 = Fair (F)
13-17 = Good (G)
18-20 = Excellent (E)
Assessment Quartiles updated in 2015. Assessment on this table are based on new ranges.
Kentucky Lake Crappie Database

Table 16. Proportional stock density (PSD) and relative stock density (RSD_{10}) of white and black crappie collected with trap nets (117 net-nights) at Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) during October and November 2017. 95\% confidence intervals are shown in parentheses.

Location	Species	N	PSD	RSD_{10}
Blood River	White crappie	40	$90(\pm 18)$	$45(\pm 16)$
	Black crappie	221	$90(\pm 4)$	$20(\pm 5)$
Jonathan Creek	White crappie	235	$94(\pm 3)$	$29(\pm 6)$
	Black crappie	516	70 ($\pm 4)$	$9(\pm 3)$
Sub Total	White crappie	275	$93(\pm 3)$	$32(\pm 6)$
	Black crappie	737	$76 \pm 3)$	$12(\pm 3)$
Ledbetter	White crappie	9	$78(\pm 29)$	$44(\pm 34)$
	Black crappie	24	$71(\pm 19)$	$21(\pm 17)$
Total	White crappie	284	$93(\pm 3)$	$32(\pm 5)$
	Black crappie	761	$76(\pm 3)$	$13(\pm 2)$

wfdtpntk.d17

Table 17. Mean back-calculated length (in) at each annulus of white crappie including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) in fall 2017.

		Age								
Year class	N	1	2	3	4	5	6	7	8	8
2016	11	4.2								
2015	35	4.5	7.6							
2014	23	4.0	7.0	9.4						
2013	7	3.9	7.4	9.6	11.5					
2011	3	3.6	7.5	9.5	11.1	12.5	13.3			
2010	3	3.7	7.1	9.1	10.4	11.7	12.5	13.0		
2009	1	3.5	6.7	8.9	10.0	10.9	11.7	12.5	13.4	
2008	1	2.7	6.0	8.3	9.7	10.3	10.9	11.6	12.4	13.2
Mean	84	4.2	7.3	9.4	11.0	11.7	12.5	12.6	12.9	13.2
Smallest		2.7	5.8	7.7	8.9	10.3	10.9	11.6	12.4	13.2
Largest		7.2	9.4	11.6	13.1	13.1	14.0	14.0	13.4	13.2
Std err		0.1	0.1	0.2	0.3	0.4	0.4	0.4	0.5	
Low 95\% CI		4.0	7.1	9.1	10.4	11.0	11.7	11.8	11.9	
High 95\% Cl		4.3	7.5	9.7	11.6	12.4	13.3	13.4	13.9	

* Intercept $=0$.
wfdtnagk.d17

Table 18. Mean back-calculated length (in) at each annulus of black crappie including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) in fall 2017.

Year class	N	Age							
		1	2	3	4	5	6	7	8
2016	39	4							
2015	37	4.3	6.7						
2014	26	3.8	6.9	8.7					
2013	32	3.8	6.7	8.5	9.7				
2011	2	3.4	6.3	8.9	10.0	11.0	11.8		
2010	1	4.4	7.1	9.3	10.3	11.0	11.9	12.4	
2009	1	3.9	6.4	8.2	9.5	10.7	11.1	11.9	12.3
Mean	138	4.0	6.7	8.6	9.8	10.9	11.7	12.1	12.3
Smallest		2.6	5.0	6.7	7.8	10.0	10.8	11.9	12.3
Largest		7.7	9.9	11.8	12.9	12.0	12.9	12.4	12.3
Std err		0.1	0.1	0.1	0.1	0.4	0.5	0.3	
Low 95\% Cl		3.8	6.5	8.4	9.5	10.4	10.8	11.6	
High 95\% Cl		4.1	6.9	8.8	10.0	11.7	12.5	12.6	

* Intercept = 0.
wfdtnagk.d17

Table 19. Age frequency and CPUE (fish/nn) of white crappie collected in trap nets fished for 77 net-nights in Kentucky Lake (Blood River and Jonathan Creek) during October and November 2017.

Inch class														Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12	13	14				
0		9	17	6										32	11	0.4	0.1
1					2	5	8	7						22	7	0.3	0.3
2						4	34	79	39	1				157	52	2.0	0.2
3								43	27	5				75	25	1.0	0.02
4									3	1	2	1		7	2	0.1	0.01
6											1	1	1	3	1	0.04	0.02
7											1		2	3	1	0.04	0.01
8												1		1	0	0.01	0.01
9												1		1	0	0.01	0.01
Total		9	17	6	2	9	42	129	69	7	4	4	3	301		3.91	
\%		3	6	2	1	3	14	43	23	2	1	1	1				

wfdtpntk.d17, wfdtnagk.d17

Table 20. Age frequency and CPUE (fish/nn) of black crappie collected in trap nets fished for 77 net-nights in Kentucky Lake (Blood River and Jonathan Creek) during October and November 2017.

Inch class													Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12	13				
0	26	21	3	2									52	7	0.7	0.1
1			2	12	21	28	15	10					88	11	1.1	0.2
2					9	99	153	51	7	1			320	41	4.2	0.6
3						7	61	92	18	1	2		181	23	2.4	0.3
4							31	51	51	9		1	143	18	1.9	0.2
6										1		1	2	0.3	0.03	0.01
7											1		1	0.1	0.01	0.01
8											1		1	0.1	0.01	0.01
Total	26	21	5	14	30	134	260	204	76	12	4	2	788		10.0	
\%	3	3	1	2	4	17	33	26	10	2	1	0				

wfdtpntk.d17, wfdtnagk.d17

Table 21. Length frequency, CPUE (fish $/ 1000 \mathrm{M}^{3}$), median catch, and geometric mean catch (standard error given in parentheses) of each 0.5 mm class of crappie collected during nocturnal neuston tow net sampling (66 tows) at 6 sample sites in the Jonathan Creek embayment of Kentucky Lake from 31 March-9 June 2017. See Appendix A for sample site locations.

Date	Location	mm class															CPUE	Median	Geometric Mean
		5	5.5	6	6.5	7	7.5	. 5	8	8.5	9	9.5	10	10.5	11	11.5			
3/31/2017	JC002																0	0.0	0.0
	JC003																0		
	JC004																0		
	JC006																0		
	JC007																		
	JC005																0		
4/7/2017	JC002																0	0.0	0.0
	JC003																		
	JC004																0		
	JC006																0		
	JC007																0		
	JC005																0		
4/14/2017	JC002																0	0.0	0.0
	JC003																0		
	JC004																		
	JC006																0		
	JC007																0		
	JC005																0		
4/23/2017	JC002																0	0.0	0.0
	JC003																0		
	JC004																		
	JC006																0		
	JC007																0		
	JC005																0		
4/27/2017	JC002					5	5	5									11	9.2	5.56 (4.22)
	JC003																0		
	JC004						4	4	4										
	JC006					25		4									28		
	JC007																0		
	JC005					4											4		
5/5/2017	JC002																0	4.6	3.66 (2.52)
	JC003																0		
	JC004									3	10								
	JC006																0		
	JC007								4		4		4				11		
	JC005					4					4						7		
5/12/2017	JC002																0	1.0	1.64 (.71)
	JC003																0		
	JC004					4													
	JC006																0		
	JC007								3								3		
	JC005																0		
5/19/2017	JC002					4											4	41.6	31.99 (20.31)
	JC003			4	4	4											12		
	JC004			3	13	50			17			3	3		3		92		
	JC006		4	7	4	56	18	8	37	4							128		
	JC007					22			26		4						55		
	JC005					8	11		8										
5/26/2017	JC002																0	49.1	28.6 (25.27)
	JC003							5	5		5						15		
	JC004					14			28		18		14		9		83		
	JC006			3	6	20	6	6	42	6	28	3	28	8	11		161		
	JC007								4	7		11	15	4	11		51		
	JC005					11		4	7	4			11		4		41		
6/2/2017	JC002																0	1.0	2.36 (2.95)
	JC003																0		
	JC004						7		10								17		
	JC006								4.2			4					8		
	JC007																0		
	JC005																0		
6/9/2017	JC002																0	1.0	1.85 (1.28)
	JC003																0		
	JC004										4						4		
	JC006												7				7		
	JC007																0		
	JC005																0		

Table 22. Geometric mean catch rates for pelagic larval fish captured in neuston tow nets from 31 March-9 June 2017 (six tows per sample night). Standard errors given in parentheses. Temperature (degrees Fahrenheit) and water elevation (feet above sea level) also provided.

Day	Geometric Mean (Standard Error)					
	Pomoxis spp.		Clupeidae	Atherinidae		
	8.0-11.0mm	Total Catch	Total Catch	Total Catch	Temp	Elevation
3/31/2017	0.0	0.0	1.92 (1.47)	0.0	60.3	355.7
4/7/2017	0.0	0.0	0.0	0.0	61.8	355.7
4/14/2017	0.0	0.0	0.0	0.0	66.4	357.9
4/23/2017	0.0	0.0	97.97 (50.42)	0.0	67.5	358.9
4/27/2017	1.7	5.56 (4.22)	277.70 (209.2)	1.44 (1.31)	66.8	358.2
5/5/2017	3.1	3.66 (2.52	472.79 (121.57)	1.42 (1.22)	67.7	358.4
5/12/2017	1.3	1.64 (.71)	614.56 (127.7)	2.97 (1.04)	70	363.1
5/19/2017	8.2	31.99 (20.31)	4186.5 (2964.4)	7.43 (16.02)	74.71	360.4
5/26/2017	22.7	28.6 (25.27)	4540.8 (1326.3)	2.84 (4.79)	74.16	358.9
6/2/2017	2.2	2.36 (2.95)	3591.79 (3045.54)	40.96 (73.39)	77.54	359.2
6/9/2017	1.9	1.85 (1.28)	4338.3 (1667.43)	85.87 (32.45)	78.66	360.2

Table 23. Estimated hatch dates in Jonathan Creek, derived using larval fish lengths back calculated using a growth rate derived from the daily ring counts of juveniles in 2016 and 2015. "\# hatch" represents the time when crappie actually hatched on the nest. "\#spawned" represents the time when crappie eggs were fertilized. Elevation and discharge at Kentucky Dam also provided. Temperature readings taken at Hancock Biological Station in main channel. Environmental variables were provided by TVA and Murray State University.

Jonathan Creek			Environmental variables		
	Back calculated estimate	Back calculated estimate			
	$\begin{gathered} \hline \text { \# hatch / } \\ 1000 \mathrm{~m}^{3} \end{gathered}$	$\begin{gathered} \text { \# spaw ned / } \\ 1000 \mathrm{~m}^{3} \end{gathered}$	Elevation	Discharge (cfs)	Temp. F
9-Apr	0.0	1.3	356.7	20,779	61.9
10-Apr	0.0	0.0	357.1	20,123	62.6
11-Apr	0.0	1.3	357.3	20,505	63.2
12-Apr	1.3	0.0	357.8	15,202	64.0
13-Apr	0.0	0.0	357.9	13,050	64.9
14-Apr	1.3	0.0	357.9	26,167	66.4
15-Apr	0.0	0.0	358.1	33,982	65.2
16-Apr	0.0	1.3	358.3	16,336	65.6
17-Apr	0.0	2.5	358.4	12,327	66.6
18-Apr	0.0	1.3	358.6	13,040	66.8
19-Apr	1.3	1.3	358.7	19,113	67.1
20-Apr	2.5	0.0	358.6	25,675	67.8
21-Apr	1.3	0.0	358.4	45,590	68.4
22-Apr	1.3	0.0	358.3	53,170	
23-Apr	0.0	0.0	358.9	61,290	
24-Apr	0.0	0.0	358.9	85,474	67.0
25-Apr	0.0	0.0	358.8	157,489	66.8
26-Apr	0.0	1.3	358.9	165,048	66.9
27-Apr	0.0	0.0	358.2	173,803	66.8
28-Apr	0.0	1.3	357.6	184,075	67.1
29-Apr	1.3	0.0	357.0	176,377	68.1
30-Apr	0.0	2.6	356.8	169,119	69.3
1-May	1.3	1.3	356.7	162,286	68.9
2-May	0.0	1.3	357.1	137,527	68.2
3-May	2.6	7.3	357.5	112,295	68.7
4-May	1.3	0.0	358.1	77,979	68.7
5-May	1.3	4.4	358.4	57,583	67.7
6-May	7.3	1.9	359.8	41,990	66.9
7-May	0.0	8.5	360.3	41,073	67.5
8-May	4.4	3.9	361.5	38,353	67.8
9-May	1.9	2.5	362.6	14,444	
10-May	8.5	8.1	363.4	15,472	
11-May	3.9	0.0	363.3	36,753	
12-May	2.5	0.0	363.1	68,648	*70.0
13-May	8.1	0.0	362.9	74,988	
14-May	0.0	1.3	362.7	73,347	
15-May	0.0	0.0	362.2	72,295	72.3
16-May	0.0	0.0	361.8	75,480	73.0
17-May	1.3	2.0	361.3	77,723	73.6
18-May	0.0	0.0	360.9	75,141	73.9
19-May	0.0	0.0	360.4	68,297	74.7
20-May	2.0	0.0	360.1	61,811	75.1
21-May	0.0	1.4	359.7	60,503	75.2
22-May	0.0	1.3	359.6	59,538	75.4
23-May	0.0	0.0	359.4	59,242	75.3
24-May	1.4	0.0	358.8	54,853	74.7
25-May	1.3	0.0	359	64,531	74.1

* represents temperature readings taken during the larval sampling events

Table 24. Length frequency and CPUE (fish/hr) of channel, blue, and flathead catfish collected from Kentucky Lake in June 2017 using low pulse (15 PPS) electrofishing along the main river channel. A chase boat was used. A total of 4.83 hours of sampling consisting of 58-300-second runs.

Species	Inch class																												Total	CPUE	Std err
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	33	35	36	41	44			
Blue catfish		3	2	3	7	7	5	7	12	10	7	8	10	4	5	4	4	1	2	2		3	1	1		1	1	1	111	23.9	5.6
Channel catfish	1		1		2	3																							7	1.5	0.5
Flathead catfish	2	1			3	1	1			1	1			4	1				1			1		1	1				19	4.1	1.1

wfdkcat.d17

Table 25. Relative weight $\left(W_{r}\right)$ of each length group of blue, channel, and flathead catfish collected from Kentucky Lake during June 2017. Fish were collected using low pulse (15 PPS) electrofishing.

Species	Length group											
Blue catfish	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	55	117	2	40	115	2	7	126	3	102	117	1
Length group												
Channel catfish	11.0-15.9 in			16.0-23.9 in			≥ 24.0 in			Total		
	N	Wr	Std err									
	6	107	2							6	107	2
Flathead catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	7	91	5	5	94	5	2	114	3	14	95	4

wfdkcat.d17

Table 26. Age frequency and CPUE (fish/hr) of blue catfish collected from low pulse (15 PPS) electrofishing at Kentucky Lake in June 2017.

Inch class																					Total	\%	CPUE	Std err
Age	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	33	36				
2	3	2																			5	5	1.04	0.7
3			3	6	1	1															11	11	2.28	0.7
4				1	6	4	7	12	10												40	39	8.28	2.1
5										4	3	5		1							13	13	2.69	0.8
6										3	5	5		4							17	17	3.52	1.1
7													4		4						8	8	1.66	1.0
8																4					4	4	0.83	0.4
10																	1		1	1	3	3	0.62	0.4
12																			1		1	1	0.21	0.1
Total	3	2	3	7	7	5	7	12	10	7	8	10	4	5	4	4	1	0	2	1	102			
\%	3	2	3	7	7	5	7	12	10	7	8	10	4	5	4	4	1	0	2	1				

Table 27. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 9.5 hours (19-30-minute runs) of diurnal electrofishing at Lake Barkley from 25 April to 8 May 2017.

Area	Species	Inch class																			Total	CPUE	Std err
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Lower																							
Donaldson Cr.	Smallmouth bass																	2			2	2.0	2.0
	Spotted bass						1							1							2	2.0	2.0
	Largemouth bass	1		2	2	6	8	5	2	3	2	1	4	2	7	8	6	1	1		61	61.0	11.0
Fords	Smallmouth bass				2	2			1						1						6	6.0	6.0
	Spotted bass											1									1	1.0	1.0
	Largemouth bass		5	9	13	7	7	6	4	2		1		1	6	5	3	3	3		75	75.0	1.0
Middle																							
Little River	Smallmouth bass									1											1	0.4	0.4
	Spotted bass											1									1	0.4	0.4
	Largemouth bass			4	5	7	2	1	1		3	3	13	13	20	19	9	6	2	3	111	44.4	8.9
Eddy Cr.	Smallmouth bass			1											3	1					5	2.0	1.6
	Spotted bass																				0	0.0	0.0
	Largemouth bass		1	12	12	7	5	2	3	5	8	7	18	18	29	18	7	12	1	1	166	66.4	12.6
Upper																							
Nickell Cr.	Smallmouth bass			2	2			1													5	5.0	3.0
	Spotted bass																				0	0.0	0.0
	Largemouth bass			4	15	8	7	5	2	6	5	4	6	13	3	6	1		2		87	87.0	9.0
Willow	Smallmouth bass			2																	2	1.3	0.7
	Largemouth bass		1	7	25	27	17	7	4	7	8	5	4	7	6	4	6		2	1	138	92.0	20.5
Total	Smallmouth bass			5	4	2		1	1	1					4	1		2			21	2.2	0.8
	Spotted bass						1					2		1							4	0.4	0.3
	Largemouth bass	1	7	38	72	62	46	26	16	23	26	21	45	54	71	60	32	22	11	5	638	67.2	6.2

w fdpsdb.d17

Table 28. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Lake Barkley during late April/early May since 2008.

Year	Mean length age-3 at capture	Age-1		Length group										Total	
				<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
		CPUE	Std err												
2017		26.5	5.1	19.0	3.8	11.7	2.5	9.7	1.3	26.8	3.5	1.7	0.5	67.2	6.2
2016		10.8	1.8	6.6	1.2	6.0	1.2	14.9	2.3	22.2	3.2	1.0	0.4	49.7	4.9
2015*	13.4	10.3	1.3	8.5	1.3	15.1	2.1	29.7	4.0	26.3	3.0	1.7	0.4	79.6	7.1
2014		22.2	3.7	21.4	3.6	13.5	1.7	22.8	2.5	23.5	4.1	1.4	0.3	81.2	7.5
2013		18.2	2.7	14.6	2.3	16.2	2.4	22.9	3.2	19.3	2.1	0.7	0.3	73.0	7.9
2012	13.0	10.0	1.7	8.7	1.8	13.1	2.0	32.4	5.4	24.1	5.0	1.5	0.5	78.4	10.6
2011	Did not sample due to flooding														
2010		17.1	1.8	15.5	1.5	34.3	3.4	28.4	2.4	18.9	1.9	2.2	0.5	97.1	5.4
2009		69.2	7.4	63.9	7.5	42.5	3.5	38.8	2.7	34.0	3.4	2.4	0.4	179.3	10.2
2008		28.8	3.0	24.1	3.5	25.8	3.9	32.6	3.9	41.2	4.5	3.0	0.5	123.7	6.3
Average	13.2	23.7		20.3		19.8		25.8		26.3		1.7		92.1	

(Revised_Barkley_Bass_Database.xlsx)
Data is available since 1985 in previous annual reports

* back-calculated fall age data used in 2015

Table 29. PSD and RSD $_{15}$ values calculated for largemouth bass collected during 9.5 hours (19-30-minutes runs) of spring diurnal electrofishing at each area of Lake Barkley from 25 April to 8 May 2017. 95% confidence intervals are shown in parentheses.

Area	No. ≥ 8.0 in	PSD	RSD_{15}
Donaldson	50	$64(+/-13)$	$50(+/-14)$
Fords	41	$54(+/-13)$	$51(+/-15)$
Little River	95	$96(+/-4)$	$76(+/-8)$
Eddy Creek	134	$89(+/-6)$	$64(+/-8)$
Nickell	60	$67(+/-14)$	$42(+/-12)$
Willow	78	$55(+/-11)$	$33(+/-10)$
Total	458	$76(+/-4)$	$56(+/-5)$
wfdpsdb.d17			

Table 30. Lake specific assessment for largemouth bass collected at Lake Barkley from 2008-2017. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings. The final two columns list the instantaneous mortality rate (Z) and the annual mortality (A).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	Length group			Total score	Assessment rating	Z	A
			12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
			CPUE	CPUE	CPUE				
2017	13.4	26.51	9.68	26.84	1.68			0.322	27.5
Score	4	3	1	3	2	13	G		
2016	13.4	10.8	14.9	22.2	1.7			0.402	33.1
Score	4	1	1	2	1	9	F		
2015**	13.4	10.3	29.7	26.3	1.7			0.472	38.0
Score	4	1	2	2	1	10	F		
2014	13.0	22.2	22.8	23.5	1.4			0.649	47.8
Score	3	2	1	2	1	9	F		
2013	13.0	18.2	22.9	19.3	0.7			0.282	25.0
Score	3	1	1	1	1	7	P		
2012	13.0	10.0	32.4	24.1	1.5			0.431	35.0
Score	3	1	2	2	1	9	F		
2011	*	*	*	*	*				
$2010^{\text {A }}$	12.7	17.1	28.4	18.9	2.2			0.400	33.0
Score	2	1	1	1	2	7	P		
$2009{ }^{\text {A }}$	12.7	69.2	38.8	34.0	2.4			0.422	34.0
Score	2	4	2	3	3	14	G		
$2008{ }^{\text {A }}$	12.7	28.8	32.6	41.2	3.0			0.339	29.0
Score	2	3	2	4	3	14	G		
Average	13.0	23.7	25.8	26.3	1.8	10.2		0.4	33.6

Older data is listed in previous annual reports.
(Revised _Barkley_bass_Database.xlsx)

* data not available ** used back calculated lengths from fall
${ }^{\text {A }}$ age and grow th data w as not collected. Previous year data used for age estimates.

Rating

5-7 = Poor (P)
8-11 = Fair (F)
12-16 = Good (G)
17-20 $=$ Excellent (E)

Table 31. Age frequency and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Lake Barkley in spring 2017. Age1 data was calculated with a subsample of 2017 spring aged fish; however, 2015 back calculated fall age and growth data were used for the remaining calculations of age-frequency.

Age	Inch class																		Total	\%	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
1	1	7	38	72	62	46													226	11	26.5	4.6
2							26	16	21	13									76	22	8.0	1.7
3									2	11	16	26							55	24	5.8	0.7
4										2	4	13	14	15					48	13	5.1	0.6
5											2	6	22	36	10				76	12	8.0	1.0
6													7	10		16			33	5	3.5	0.4
7													11	10	40	16	11	6	94	10	9.9	1.3
8																	6		6	1	0.6	0.2
9																		6	6	1	0.6	0.2
11															10		6		16	2	1.7	0.3
Total	1	7	38	72	62	46	26	16	23	26	22	45	54	71	60	32	23	12	636	100	67.16	6.2
\%	0	1	8	14	12	9	5	3	5	5	4	9	11	14	12	6	5	2	100			

Table 32. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 4.5 hours of diurnal electrofishing (9-30-minute runs) for black bass in each area of Lake Barkley October 9 and 12, 2017.

Area / Species	Inch class																				Total	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Little River																							
Smallmouth bass		2	6	4			1		2					1							16	6.4	2.0
Spotted bass							1		1					2							4	1.6	1.0
Largemouth bass		16	30	23	13	4		3	5	5	5	1	6	7	4	5	2	2			131	52.4	12.0
Eddy Creek																							
Smallmouth bass			7	1	2	1		1													12	6.0	1.6
Largemouth bass	1	6	14	8	1	3	1	16	14	3	8	9	6	4	5	3		5		1	108	54.0	12.8
Total																							
Smallmouth bass		9	7	6	1		1	1	2					1							28	6.2	1.3
Spotted bass							1		1					2							4	0.9	0.6
Largemouth bass		122	44	31	14	7	1	19	19	8	13	10	12	11	9	8	2	7	1		239	53.1	8.2

wfdw rb.d17

Table 33. Number of fish and the relative weight $\left(W_{r}\right)$ values for each length group of largemouth collected at Lake Barkley during 4.5 hours (9-30-minute runs) of diurnal electrofishing in October 2017.

Species	Area	Length group								
		8.0-11.9 in			12.0-14.9 in			≥ 15.0 in		
		No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
Largemouth bass	Little River	13	91	3	12	95	3	20	96	2
	Eddy Creek	34	93	1	23	95	2	18	98	2
	Total	47	92	1	35	95	2	38	97	1

Species	Area	Length group								
		7.0-10.9 in			11.0-13.9 in			≥ 14.0 in		
		No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
Smallmouth bass	Little River	4	88	1				1	90	0
	Eddy Creek									
	Total	4	88	1				1	90	0

wfdwrb.d17

Table 34. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Lake Barkley.

					Age-0	. $0 \mathrm{in}^{\text {A }}$		
Year class	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2017	4.8	0.1	25.1	4.8	10.2	3.0		
2016	5.5	0.9	22.7	4.5	14.9	3.1	26.5	5.0
2015	4.7	0.1	46.4	6.5	16.6	6.5	10.8	1.8
2014	4.8	0.1	24.8	4.4	11.0	1.9	10.3	2.0
2013	5.8	0.1	55.0	8.7	43.3	6.0	22.2	3.7
2012	6.1	0.1	40.6	6.9	35.7	5.7	22.2	2.7
2011	5.5	0.1	18.6	2.7	13.4	2.4	10.0	1.7
2010	6.5	0.1	46.0	7.8	42.0	6.9	*	
2009	5.6	0.1	37.6	4.8	29.2	3.4	17.1	1.8
2008	6.2	0.1	55.6	6.7	50.2	6.3	69.2	7.4
Average	5.6		37.2		26.6		23.5	
${ }^{\text {A }}$ Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths, removed from a subsample of LMB $<12.0 \mathrm{in}$.								
${ }^{B}$ Data collected during the following spring (April/May) diurnal electrofishing sample.								
Data no wfdwrb.d	ted in sprsb	ring of 20	due to flo	d conditi				

Table 35. Mean back-calculated length (in) at each annulus of bluegill including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Lake Barkley (Devil's Elbow and Fords Bay) in spring 2017. A separate otolith collection was also conducted in fall 2017 using fish collected while trapnetting (Little River, Donaldson Creek, and Crooked Creek)

> SPRING SAMPLE

		Age			
Year class	N	1	2	3	
2016	28	3.5			
2015	9	4.2	6.2		
2014	8	3.8	6.0	6.9	

Mean	45	3.7	6.1	6.9
Smallest		2.5	5.1	6.3
Largest		5.2	7.2	7.5
Std err	0.1	0.1	0.1	
Low $95 \% \mathrm{Cl}$	3.5	5.8	6.6	
High $95 \% \mathrm{Cl}$	3.9	6.4	7.1	

* Intercept = 0 .
wfdreagb.d17
FALL SAMPLE

		Age		
Year class	N	1	2	3
2016	21	3.5		
2015	13	3.8	5.9	
2014	9	3.6	5.9	6.8
Mean	43	3.6	5.9	6.8
Smallest		2.2	5.0	6.4
Largest		4.8	6.8	7.4
Std err		0.1	0.1	0.1
Low 95\% CI	3.4	5.7	6.6	
High 95\% Cl	3.8	6.1	7.1	

* Intercept = 0 .
wfdbgagb.d17

Table 36. Mean back-calculated length (in) at each annulus of redear sunfish including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Lake Barkley (Devil's Elbow and Ford's Bay) in spring 2017. A separate otolith collection was also conducted in fall 2017 using fish collected while trapnetting (Little River, Donaldson Creek, and Crooked Creek).

		SPRING SAMPLE								
						Age				
Year class	N	1	2	3	4	5	6	7	8	9
2016	27	4.7								
2015	26	5.0	7.9							
2014	17	4.4	7.8	9.8						
2013	4	4.0	7.5	9.5	10.6					
2012	4	5.0	7.8	9.7	10.6	11.1				
2011	5	4.5	8.0	9.5	10.5	11.3	11.9			
2010	4	4.4	7.3	9.0	10.0	10.7	11.4	11.8		
2009	5	4.6	6.5	7.9	9.2	10.1	10.9	11.5	12.1	
2008	2	3.5	6.4	7.8	8.5	9.2	9.9	10.9	11.7	12.3
Mean	94	4.6	7.7	9.3	10.0	10.6	11.2	11.5	12.0	12.3
Smallest		2.3	4.5	6.7	7.5	8.3	9.2	10.5	11.4	12.1
Largest		6.8	9.5	10.8	11.6	11.9	12.4	12.5	12.5	12.5
Std err		0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1	0.2
Low 95\% CI		4.4	7.4	9.0	9.6	10.3	11.2	11.2	11.7	11.9
High 95\% Cl		4.8	7.9	9.6	10.4	11.0	11.9	11.9	12.3	12.7

* Intercept = 0 .
wfdreagb.d17

FALL SAMPLE

Year class	N	Age									
		1	2	3	4	5	6	7	8	9	10
2016	20	4.7									
2015	19	3.6	6.9								
2014	15	3.9	7.1	9.2							
2010	2	4.6	7.3	8.8	9.5	10.2	10.7	11			
2009	1	3.6	5.7	6.4	8.2	8.8	9.4	10	10.7		
2007	1	4.4	6.5	7.7	8.2	8.9	9.4	10	10.6	11	11.4
Mean	58	4.1	6.9	8.9	8.8	9.5	10.0	10.5	10.6	11.0	11.4
Smallest		2.2	4.1	5.2	8.2	8.8	9.4	10.0	10.6	11.0	11.4
Largest		7.4	9.6	10.5	9.8	10.5	10.7	11.1	10.7	11.0	11.4
Std err		0.2	0.2	0.3	0.4	0.4	0.4	0.3	0.0		
Low 95\% CI		3.8	6.5	8.3	8.1	8.7	9.3	9.9	10.6		
High 95\% Cl		4.4	7.4	9.5	9.6	10.3	10.8	11.1	10.7		

* Intercept $=0$.
wfdrsagb.d17

Table 37. Length frequency and CPUE (fish/nn) of each inch class of white and black crappie collected by trap nets (148 net-nights) at Lake Barkley from 18 October-5 November 2017. Sub-Total is shown for comparisons with historical data which included only Little River and Donaldson Creek.

Area	Species	Inch class														Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14	15			
Little River	White crappie	8	20	12	6		6	11	15	31	20	2	1	1		133	3.4	0.4
	Black crappie	10	24	3		9	8	14	6	6	2					82	2.1	0.3
Donaldson Creek	White crappie	167	68	10	3		1	2	6	8	6	6		1		278	7.2	1.4
	Black crappie	242	40	5	1	5	25	22	10	12	2	1				365	9.4	2.7
Sub-Total	White crappie	175	88	22	9		7	13	21	39	26	8	1	2		411	5.3	0.8
	Black crappie	252	64	8	1	14	33	36	16	18	4	1				447	5.7	1.4
Crooked Creek	White crappie	42	40	24	12	1		5	3	10	17	2			1	157	3.9	0.7
	Black crappie	83	9	3	2	9	10	9	6	6						137	3.4	0.5
Eddy Creek	White crappie	14	10	9	10			2	4	1	3	5	1			59	2.0	0.5
	Black crappie	8	11	1	1	1	6	6	2	2	1					39	1.3	0.2
TOTAL	White crappie	231	138	55	31	1	7	20	28	50	46	15	2	2	1	627	4.2	0.5
	Black crappie	343	84	12	4	24	49	51	24	26	5	1				623	4.2	0.8

wfdtpnb1.d17

Table 38. Crappie population parameters used to manage the population at Lake Barkley for 2008-2017, with values determined from fall trap netting. To allow for historical comparisons, only data from Little River and Donaldson Creeks are presented.

	Total CPUE (fish/nn) excluding age-0			CPUE (fish/nn) age-2			Mean length (in) age-2 at capture			$\begin{gathered} \text { CPUE (fish/nn) } \\ \geq 8.0 \text { in } \\ \hline \end{gathered}$			CPUE (fish/nn) age-1			$\begin{gathered} \text { CPUE (fish/nn) } \\ \geq 10.0 \text { in } \\ \hline \end{gathered}$		
Year	WC	BC	Crappie															
2017	1.5	1.6	3.1	0.6	0.4	1.0	11.2	9.9	10.7	1.4	1.0	2.4	0.7	1.1	1.7	1.0	0.3	1.3
2016	6.2	3.5	9.7	2.0	0.6	2.6	10.6	9.5	10.3	3.6	1.3	4.9	4.1	2.6	6.7	1.4	0.4	1.8
2015	11.4	3.1	14.4	0.3	1.6	1.9	11.6	9.9	10.5	3.2	1.9	5.1	10.8	1.4	12.2	0.9	0.9	1.8
2014	1.5	2.1	3.5	0.1	0.0	0.1	11.8	9.6	11.4	1.3	0.6	1.9	1.1	1.9	3.0	0.7	0.1	0.8
2013	2.2	0.8	3.0	0.8	0.4	1.2	11.1	10.6	10.9	2.2	0.8	3.0	0.3	0.0	0.4	1.9	0.6	2.5
2012	4.1	2.6	6.7	2.9	1.5	4.4	10.9	10.0	10.5	4.0	2.2	6.3	1.1	0.9	2.0	2.8	0.9	3.7
$2011^{\text {A }}$	4.6	2.8	7.4	0.3	0.2	0.5	11.6	10.5	11.1	3.0	0.7	3.6	4.2	2.6	6.8	0.8	0.2	1.0
2010	4.1	3.1	7.2	0.3	0.4	0.7	11.6	10.5	11.0	3.1	2.1	5.2	3.5	2.5	6.1	1.3	0.5	1.8
$2009{ }^{\text {A }}$	1.3	1.0	2.3	0.2	0.2	0.4	11.3	11.3	11.3	1.7	0.9	2.6	1.1	0.7	1.7	0.7	0.3	1.0
2008	1.1	1.7	2.8	0.2	0.2	0.4	11.3	11.3	11.3	1.7	1.1	2.7	0.6	1.4	2.0	0.7	0.4	1.0
Average	3.8	2.2	6.0	0.8	0.6	1.3	11.3	10.3	10.9	2.5	1.3	3.8	2.8	1.5	4.3	1.2	0.4	1.7

A Indicates year where age and grow th data w as not collected. Age and grow th data from the previous year w as used to calculate the appropriate value.
Data from 1985 to 2007 is listed in previous annual reports.
Revised_Barkley_Crappie_Database

Table 39. Proportional stock density (PSD) and relative stock density (RSD_{10}) of white and black crappie collected by trap-nets (148 net-nights) at Lake Barkley during the weeks of 18 October and 5 November 2017. Sub-Total uses only data collected from Little River and Donaldson Creek. Numbers in parentheses represent 95\% confidence intervals.

Location	Species	N	PSD	RSD_{10}
Little River	White crappie	93	87 (+/-7)	59(+/-10)
	Black crappie	45	62 (+/-15)	18 (+/-11)
Donaldson	White crappie	33	$88(+/-11)$	64 (+/-16)
	Black crappie	78	60 (+/-11)	19 (+/-9)
Sub-Total	White crappie	126	87 (+/-6)	60 (+/-8)
	Black crappie	123	61 (+/-9)	19 (+/-7)
Crooked Creek	White crappie	26	74 (+/-14)	59 (+/-13)
	Black crappie	19	50 (+/-15)	14 (+/-11)
Eddy Creek	White crappie	38	62 (+/-20)	$38(+/-10)$
	Black crappie	42	58 (+/-22)	16 (+/-16)
Total	White crappie	190	65 (+/-4)	22 (+/-2)
	Black crappie	184	47 (+/-5)	11 (+/-3)

Table 40. Mean back-calculated length (in) at each annulus of white crappie including the range in length at each age and the 95\% confidence interval of each age group. Otoliths were collected from Lake Barkley (Little River, Donaldson Creek, Crooked Creek, and Eddy Creek) during the weeks of 18 October and 5 November 2017. Additional otoliths were collected at a fishing tournament on 10 November 2017.

		Age									
Year class	N	1	2	3	4	5	6	7			
2016	54	4.9									
2015	58	5.1	9.2								
2014	27	5.0	8.3	10.8							
2013	3	4.3	7.6	9.1	9.7						
2011	2	3.6	7.4	9.6	10.7	12.0	12.9				
2010	5	5.1	7.4	9.3	10.5	11.3	12.0	12.7			
Mean	149	5.0	8.8	10.4	10.3	11.5	12.3	12.7			
Smallest		2.5	4.5	5.5	6.0	7.8	8.4	8.8			
Largest		8.9	11.1	12.5	12.5	13.4	14.4	14.3			
Std err		0.1	0.1	0.2	0.7	0.7	0.7	1.0			
Low 95\% Cl		4.8	8.5	9.9	9.0	10.1	10.8	10.7			
High 95\% Cl		5.1	9.0	10.9	11.6	12.8	13.8	14.7			

* Intercept = 0.
wfdtnagb.d17

Table 41. Mean back-calculated length (in) at each annulus of black crappie including the range in length at each age and the 95\% confidence interval of each age group. Otoliths were collected from Lake Barkley (Little River, Donaldson Creek, Crooked Creek, and Eddy Creek) during the weeks of 18 October and 5 November 2017. Additional otoliths were collected at a crappie tournament 10
November 2017.

		Age				
Year class	N	1	2	3	4	
2016	96	4.7				
2015	37	4.7	8.0	9.2		
2014	10	4.2	7.1	8.6	10.0	
2013	3	4.0	7.1			
				9.1	10.0	
Mean		4.6	7.8	7.4	9.3	
Smallest		2.5	4.6	10.1	11.1	
Largest		8.7	9.8	0.2	0.6	
Std err		0.1	0.2	8.6	8.9	
Low 95\% Cl		4.5	7.4	9.5	11.1	
High 95\% Cl		4.8	8.1			

* Intercept $=0$.
wfdtnagb.d17

Table 42. Age frequency and CPUE (fish/nn) of white crappie collected during 148 net-nights at Lake Barkley (Little River, Donaldson Creek, Crooked Creek, and Eddy Bay) during the weeks of 18 October and 5 November 2017. Little River and Donaldson Creek also shown separately for historical comparison.

Little River and Donaldson Creek

Inch class															Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
0	175	88	22	9											294	71	3.7	0.8
1						6	12	17	17	1					53	13	0.7	0.1
2							1	4	19	19	3				46	11	0.6	0.1
3									3	6	4	1			14	3	0.2	<0.1
4										1					2	0	0.0	<0.1
7								1					2		3	1	0.0	<0.1
Total	175	88	22	9	0	7	13	22	39	27	7	1	2	0	412		5.3	
\%	42	21	5	2	0	2	3	5	9	7	2	0	0	0				

Lake Barkley Total

Inch class															Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12	13	14	15				
0	231	138	55	31	1										456	52	3.1	0.5
1						6	18	22	22	1					69	8	0.5	<0.1
2							2	5	24	33	6				70	8	0.5	<0.1
3									4	11	8	1			24	3	0.2	<0.1
4						1				1	1				3	0	<0.1	<0.1
6											1			1	2	0	<0.1	<0.1
7								1				1	2		4	0	<0.1	<0.1
Total	231	138	55	31	1	7	20	28	50	46	16	2	2	1	628		13.6	1.0
\%	26	22	9	5	0	1	3	4	8	7	3	0	0	0				

[^1]Table 43. Age frequency and CPUE (fish/nn) of black crappie collected during 148 netnights at Lake Barkley (Little River, Donaldson Creek, Crooked Creek, and Eddy Bay) during weeks of 18 October and 5 November 2017. Little River and Donaldson Creek also shown separately for historical comparison.

Little River and Donaldson Creek

Age	Inch class										Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11				
0	252	64	8	1							325	73	4.1	1.3
1				1	14	32	32	6	1		86	19	1.1	0.2
2						1	3	9	12	2	27	6	0.3	0.1
3							1	1	4	1	7	2	0.1	<0.1
4									1		1	0	<0.1	<0.1
Total	252	64	8	2	14	33	36	16	18	3	446		5.6	
\%	57	14	2	0	3	7	8	4	4	1				

Lake Barkley Total

Age	Inch class										Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11				
0	343	84	12	2							441	71	3.0	0.7
1				2	24	47	45	9	2	1	130	21	0.9	0.1
2						2	4	14	17	2	39	6	0.3	<0.1
3							1	1	5	2	9	1	0.1	<0.1
4									2	1	3	0	<0.1	<0.1
Total	343	84	12	4	24	49	50	24	26	6	622		4.2	0.4
\%	55	14	287	1	4	8	8	4	4	1				

Table 44. Lake specific assessment for crappie collected at Lake Barkley (Little River and Donaldson Creek) from 2008-2017. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A).

Year	CPUE age-1 and older	CPUE age-1	$\begin{aligned} & \text { CPUE } \\ & \text { age-0 } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Mean length age-2 at capture	Total score	Assessment rating	Z	A
2017	3.1	1.7	7.9	2.4	10.7			0.9486	0.6
Score	1	2	4	1	3	11	F		
2016	9.7	6.7	1.5	4.9	10.3			1.472	77.0
Score	4	4	1	3	2	14	G		
2015	14.5	12.2	5.0	5.1	10.5			0.680	49.3
Score	4	4	3	3	3	17	G		
2014	3.5	3.0	9.2	1.9	11.2			0.418	34.2
Score	1	2	4	1	4	12	F		
2013	3.0	0.4	2.8	3.0	10.9			0.788	54.5
Score	1	1	2	2	4	10	F		
2012	6.7	2.0	0.4	6.3	10.5			0.857	57.6
Score	2	2	1	4	3	12	F		
2011	7.4	6.8	10.0	3.6	10.9			1.188	69.5
Score	3	4	4	2	4	17	G		
2010	7.2	6.3	23.3	5.2	10.9			1.209	70.1
Score	3	4	4	3	4	18	E		
2009	2.3	1.7	5.3	2.6	11.3			1.330	73.5
Score	1	1	3	2	4	11	F		
2008	2.8	2.0	4.9	2.7	11.3			0.960	61.7
Score	1	2	3	2	4	12	F		
Average	6.0	4.3	7.0	3.8	10.9	12.4		1.198	54.914

Rating
1-7 = Poor (P)
8-12 = Fair (F)
13-17 = Good (G)
18-20 = Excellent (E)
(Revised_Barkley_Crappie_Database.xlsx)

Table 45. Length frequency and CPUE (fish/hr) of channel, blue, and flathead catfish collected from Lake Barkley in June 2017 using low pulse (15 PPS) electrofishing along the main lake river channel. A chase boat was used. A total of 5.7 hours of sampling consisting of 81 - 300 -second runs.

Species	Inch class																													Total	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	31	32	34	35	37			
Blue catfish	3	60	131	96	40	101	139	50	36	80	115	56	36	33	31	14	8	7	1	2	2	2		1	1					1045	183.3	17.5
Channel catfish	1	3	40	18	3	1	14	7	5	12	4	3	1	4	2															118	20.8	4.3
Flathead catfish									1			1		1					1	1	1	1	1	1	1	1	1	1	1	14	2.5	0.9

Table 46. Relative weight $\left(W_{r}\right)$ of each length group of blue, channel, and flathead catfish collected from Lake Barkley during June 2017. Fish were collected using low pulse (15 PPS) electrofishing.

Species Blue catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	303	98	1	14	98	6	1	116		318	98	1
Length group												
Channel catfish	11.0-15.9 in			16.0-23.9 in			≥ 24.0 in			Total		
	N	Wr	Std err									
	19	99	3	4	91	2				23	98	2
Flathead catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	2	86	9	6	105	7	4	109	7	12	103	5

wfdcatb.d17

Table 47. Age frequency and CPUE (fish/hr) of blue catfish (<20.0 in TL) collected from low pulse (15 PPS) electrofishing at Lake Barkley in June 2017. Age and growth data from 2014 was used to calculate the appropriate values.

Age	Inch class																		*Total	\%	*CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
1	3	60	131	96	40	34													364	35	63.9	1.8
2						67	139	50	27										283	27	49.6	4.7
3									9	80	115								204	20	35.8	2.7
4												56	36						92	9	16.1	2.4
5														22		4			26	3	4.6	1.1
6														11	31	10	3		55	5	9.6	1.8
7																	5		5	0	0.9	0.5
9																		7	7	1	1.2	0.4
Total	3	60	131	96	40	101	139	50	36	80	115	56	36	33	31	14	8	7	1036		*181.75	17.5
\%	0	6	13	9	4	10	13	5	3	8	11	5	3	3	3	1	1	1				

wfdcatb.d17 and wfdbcatag.d14

* fish >20.0 in TL were excluded, as these fish were not represented in the 2014 age data set.

Table 48. Age frequency and CPUE (fish/hr) of channel catfish (<14.0 in TL) collected from low pulse (15 PPS) electrofishing at Lake Barkley in June 2017. Age and growth data from 2014 was used to calculate the appropriate values.

Age	Inch class										*Total	\%	*CPUE	Std err
	3	4	5	6	7	9	10	11	12	13				
1	1	3	40	18	3						65	60	11.4	3.8
2						14	4	1	3		22	20	3.9	0.8
3							4	4	6		14	13	2.5	0.7
4									3	4	7	6	1.2	0.4
Total	1	3	40	18	3	14	8	5	12	4	108		*18.95	4.3
\%	1	3	37	17	3	13	7	5	11	4				

wfdcatb.d17 and wfdcatag.d14

* fish >14.0 in TL were excluded, as these fish were not represented in the 2014 age data set.

Table 49. Fishery statistics derived from a creel survey at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

Fishing Trips			
	No. of fishing trips (per acre)	173,145	(3.4)
Fishing Pressure			
	Total angler-hours (S.E.)	855,798	(40650.0)
	Angler-hours/acre	16.8	
Catch / Harvest			
	No. of fish caught (S.E.)	1,370,520	$(205,000)$
	No. of fish harvested (S.E.)	439,556	$(73,999)$
	Lb of fish harvested	291,554	
Harvest Rates			
	Fish/hour	0.51	
	Fish/acre	8.62	
	Pounds/acre	5.72	
Catch Rates			
	Fish/hour	1.6	
	Fish/acre	26.87	
Miscellaneous Characteristics (\%)			
	Male	90.70	
	Female	9.30	
	Resident	58.20	
	Non-resident	41.80	
Method (\%)			
	Still fishing	19.60	
	Casting	47.50	
	Trolling	0.70	
	Trotline/Jugging	0.60	
	Bow Fishing	<. 01	
	Crappie Anglers Only		
	Casting	37.25	
	Still fishing (1-2 poles)	11.61	
	Spider Rig (3 Poles)	14.18	
	Spider Rig (4-5 Poles)	10.80	
	Spider Rig (>5 Poles)	26.16	
Mode (\%)			
	Boat	91.90	
	Bank	5.40	
	Dock	3.30	

Table 50. Length distribution for each species of fish harvested or released (lengths of released fish were estimated by anglers) at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

Species	Inch class																								
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
White crappie	H								47,557	157,656	17,270	2,984	2,667	762	825	127	64								
	R	192	512	4,416	9,664	11,392	43,903	261,051	9,152	3,392	1,088	128	640	192	192	63									
Black crappie	H								12,791	15,434	6,906	1,201	901		60										
	R			59	117	527	7,673	22,960	1,640	1,699	703	117	175												
Largemouth bass	H													1,892	2,635	608	1,014		136						
	R						18,225	2,678	51,532	14,149	64,226	18,749	37,907	28,532	26,960	12,111	16,187	3,377	3,843	1,165	1,339	291	1,048		60
Smallmouth bass	H														62	187	62								
	R						2,006	54	3,253	488	5,910	1,844	3,470	1,356	1,410	976	759	163	108	108	54	54	56		
Spotted Bass	H						37																		
	R								61	61	243		182												
Bluegill	H		468	2,740	29,606	35,955	8,688	2,473	1,738																
	R	1,750	20,024	35,057	12,312	5,119	324	130																	
Redear sunfish	H					64	579	386	1,867	451	451														
	R		131				196			131	129														
Longear sunfish				643	193	64																			
	R 57	1,076	5,095	1,019	169																				
Warmouth	H						246																		
	R				92																				
Green sunfish	R		67																						
Channel catfish	H								921	329	2,632	461	4,606	1,776	6,580	2,500	4,803	1,053	1,711	263	658	329	197		66
	R				187		747		809	62	498		311	62	373	62	933	62		62	685		249	62	62
Blue catfish	H								436	436	599	381	926	327	2,234	872	2,507	545	817	490	490		926	109	272
	R										168								112				112		
Flathead catfish																	46						46		
	R																71								
White bass	H					225	1,297	1,240	4,735	846	3,495	676	338	58											
	R				1,670	1,092	4,304	1,349	5,652	64	2,377	193	256												
Hybrid striped bass	H														97										
	R																								
Yellow bass	H			697	2,789	4,401	6,972	3,007	1,699	44	305		42												
	R	416	9,111	25,210	40,769	14,311	8,362	1,830	1,830	83	42														
Sauger	H												59	176	176	57									
	R								131		196	65	261	131	653	129									
Bullhead Buffalo	R																								
	R													37											
Drum	H																				72				
	R				284	57	284		1,534		2,842	57	170	455	284		739		966		114		227		170
Shad	R								145																
Skipjack herring	H								128		64														
	R						269		2,962	135	741		337		134										
Common Carp	R																73								
Silver Carp	R										69				206	275	205								
Grass Carp	R																51						51		
Golden Shiner	R								38																
Gar	H										73						73			73		71			
	R													61			123								

Table 50 (cont).

Species	Inch class																							
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	44	45	46	47	48	49	56	Total
White crappie	H																							229,912
	R																							345,977
Black crappie	H																							37,293
	R																							35,670
Largemouth bass	H	33																						6,318
	R																							302,379
Smallmouth bass	H																							311
	R																							22,069
Spotted Bass	H																							37
	R																							547
Bluegill	H																							81,668
	R																							74,716
Redear sunfish	H																							3,798
	R																							587
Longear sunfish																								900
	R																							7,416
Warmouth	H																							246
	R																							92
Green sunfish	R																							67
Channel catfish	H 461	132		64																				29,542
	R							64																5,290
Blue catfish	H 109	109		163		57																		12,805
	R	56		56							57													561
Flathead catfish						46																		138
	R	72																						143
White bass	H																							12,910
	R																							16,957
Hybrid striped bass	H																							97
	R																							0
Yellow bass	H																							19,956
	R																							101,964
Sauger	H																							468
	R																							1,566
Bullhead Buffalo	H																							0
	R	73																						110
Drum	H																							72
	R			114																				8,297
Shad	R																							145
Skipjack herring	H																							192
	R																							4578
Common Carp	R																							73
Silver Carp	R																							755
Grass Carp	R																							102
Golden Shiner	H																							38
Gar	H																							290
	R			61						123						62								430

Table 51. Fish harvest statistics derived from a creel survey at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

						$\begin{aligned} & \stackrel{0}{0} 0 \\ & \stackrel{0}{3} \\ & \frac{0}{0} \end{aligned}$						$\begin{aligned} & \text { ס} \\ & \text { D } \\ & \text { 言 } \end{aligned}$					\qquad	
No. caught	331,624	308,663	22,380	584	648,851	575,889	72,962	48,479	34,832	281	13,366	0	169,550	156,383	4,385	8,316	338	67
(per acre)	(6.50)	(6.05)	(0.44)	(0.01)	(12.72)	(11.29)	(1.43)	(0.95)	(0.68)	(0.01)	(0.26)		(3.32)	(3.07)	(0.09)	(0.16)	(0.01)	T
No. harvested	6,633	6,284	311	36	267,204	229,912	37,292	42,485	29,542	138	12,805		74,801	81,668	3,798	900	246	
(per acre)	(0.13)	(0.12)	(0.01)	T	(5.24)	(4.51)	(0.73)	(0.83)	(0.58)	T	(0.25)		(1.47)	(1.60)	(0.07)	(0.02)	T	T
$\%$ of total no. harvested	1.5	1.4	0.1	T	60.8	60.8	8.5	9.7	6.7	T	2.9		19.7	18.6	0.9	0.2	T	
Lb. harvested	14,616	13,872	735	9	171,566	144,766	26,800	70,574	41,321	819	28,436		16,641	16,164	2,435	87	85	
(per acre)	(0.29)	(0.27)	(0.01)	T	(3.36)	(2.84)	(0.53)	(1.38)	(0.81)	(0.02)	(0.56)		(0.33)	(0.32)	(0.05)	(0.00)	(0.00)	
$\%$ of total lb. harvested	5.0	4.8	0.3	T	58.8	49.7	9.2	24.2	14.2	0.3	9.8		6.5	5.5	0.8	T	T	
Mean length (in)		16.3	17.0	8.0		10.9	11.4		15.5	24.7	19.6			6.7	9.8	5.3	8.0	
Mean w eight (lb)		2.25	2.32	0.25		0.62	0.82		1.28	6.92	3.34			0.19	0.64	0.09	0.35	
No. of fishing trips for that species	72,325				57,321			14,320					10,732					
\% of all trips	41.8				33.1			8.3					6.2					
Hours fished for that species	357,480				283,323			70,781					53048					
(per acre)	(7.01)				(5.56)			(1.39)					(1.04)					
No. harvested fishing for that species	5,258				263,997			34,732					74,801					
Lb harvested fishing for that species	11,911				169,210			60,263					18,820					
No./hour harvested fishing for that species	0.01				0.99			0.57					1.58					
\% success fishing for that species	2.6				62.5			50.7					64.4					

Table 51 (cont.).

	$\begin{aligned} & \overline{\mathbf{D}} \\ & \text { (} \\ & \stackrel{\rightharpoonup}{W} \end{aligned}$	$\begin{aligned} & \text { © O } \\ & \text { 을 } \\ & \text { 를 } \end{aligned}$	$$	$\begin{aligned} & \mathscr{0} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { E气 } \\ & \hline \end{aligned}$		$\stackrel{\text { ¢ }}{\substack{\text { ® }}}$	$\begin{aligned} & \frac{0}{\stackrel{0}{0}} \\ & \stackrel{\rightharpoonup}{5} \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 윾 } \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{\pi}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\nabla}{\pi} \\ & \omega \\ & \hline \end{aligned}$		
No. caught	2,034	152,301	29,867	121,920	97	8,628	4,769				73	0	145	38	
(per acre)	(0.04)	(2.99)	(0.59)	(2.39)	(0.00)	(0.17)	(0.09)	(0.01)	(0.00)	(0.02)	T		T	T	
No. harvested	141	33,059	12,909	19,956	97	217	218	290	72	755			145	0	
(per acre)	(0.00)	(0.65)	(0.25)	(0.39)	T	T	T	(0.01)	T	(0.01)	T		T	T	
$\%$ of total no. harvested	0.10	7.52	2.94	4.54	0.02	0.05	0.10	0.06	0.02	0.17			0.03	T	
Lb. harvested	149	6,481	6,830	3,820	200	431	64	164	891	1,709			48.6	0	
(per acre)	(0.00)	(0.13)	(0.13)	(0.07)	T	(0.01)	T	T	(0.02)	(0.03)	T		T	T	
$\%$ of total lb. harvested	0.09	3.95	2.34	1.31	0.07	0.15	0.02	0.06	0.31	0.59			0.02	T	
Mean length (in)	15.6		10.7	7.9	16.0	15.7	10.7	18.5	28.0	14.5			10.0		
Mean w eight (lb)	1.19		0.55	0.20	2.08	1.97	0.33	0.57	12.29	1.58			0.35		
No. of fishing trips for that species		2,955													15,386
\% of all trips		1.7													8.9
Hours fished for that species		14607													76,049
(per acre)		(0.29)													(1.49)
No. harvested fishing for that species		16,497													
Lb harvested fishing for that species		6,480													
No./hour harvested fishing for that species		1.85													
\% success fishing for that species		54.5													19.7

Table 52. Crappie catch and harvest statistics derived at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

	White crappie				Black crappie			
	Harvested	Released		Total	Harvested	Released		Total
	≥ 10.0 in	<10.0 in	≥ 10.0 in		≥ 10.0 in	<10.0 in	≥ 10.0 in	
*Total no. of crappie	229,912	331,130	14,847	575,889	37,292	31,336	4,333	72,961
\% of crappie harvested by number	86.0				14.0			
*Total weight of crappie (lb)	242,319	93,365	4,187	339,871	26,800	11,279	1,559	39,638
\% of crappie harvested by weight	84.4				15.6			
Mean length (in)	10.9				11.4			
Mean weight (lb)	0.62				0.82			
*Catch rate (fish/hr)	0.67				0.09			
*Harvest rate (fish/hr	0.243				0.041			

* Includes effort and catch of non-crappie anglers

Table 53. Monthly crappie angling success at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

	Total no. of crappie caught	Total no. of crappie harvested	*Total no. of crappie harvested	No. of crappie fishing trips	Hours fished for crappie	Crappie caught by crappie anglers	Crappie caught/ hour by crappie anglers	Crappie harvested by crappie anglers	Crappie harvested/ hour by crappie anglers
Feb	212,704	93,439	93,439	11,367	56,184	9,898	3.52	93,439	1.55
Mar	93,705	46,473	45,266	8,766	43,327	40,577	2.32	44,506	1.12
Apr	232,218	90,456	90,456	23,040	113,878	42,385	2.45	89,487	0.96
May	28,283	5,947	5,947	3,968	19,614	2,909	1.46	5,222	0.30
Jun	9,998	3,450	3,309	1,746	8,628	467	1.84	3,239	0.63
Jul	1,620	918	918	304	1,503		0.88	864	0.50
Aug	1,557	912	912	488	2,414		0.81	760	0.45
Sept	29,180	10,804	10,804	2,136	10,557	2,941	2.65	10,774	0.98
Oct	21,016	8,466	8,466	3,096	15,305	6,921	1.90	8,098	0.75
Nov	18,569	7,688	7,688	2,410	11,912	9,991	1.88	7,608	0.78
Total	648,851	268,552	*267,205	57,322	283,323	116,089		263,997	
Mean	64,885	26,855		5,732	28,332	14,511	2.41	26399.70	1.00

* harvest which excluded crappie kept in a livew ell, but which the angler stated they intended to release as part of an organized tournament

Table 54. Crappie angling methods at Kentucky Lake (51,000 acres) during 16 February through 30 November 2017.

Year	Casting (1 pole)	Still-fishing (1-2 poles)	Spider Rig (3 poles)	Spider Rig (4-5 poles	Spider Rig (>5 poles)
2017	37.3%	11.6%	14.2%	10.8%	26.2%
2015	65.9%	29.3%	37.6%	11.7%	14.8%
Mean	51.58%	20.46%	25.89%	11.25%	20.47%

Month	Total no. of bass caught	Total no. of bass harvested	*Total no. of bass harvested	No. of black bass fishing trips	Hours fished by bass anglers	Bass caught by bass anglers	Bass caught/ hour by bass anglers	Bass harvested by bass anglers	*Bass harvested by bass anglers	Bass harvested/ hour by bass anglers	*Bass harvested/ hour by bass anglers
Feb	18,959	870.55	870.55	4,494	22,212	15,768	0.75	871	871	0.04	0.04
Mar	39,278	4,915	536	7,733	38,221	36,999	0.83	4,826	446	0.11	0.01
Apr	84,565	5,295	2,461	12,847	63,499	74,274	0.79	4,773	1,939	0.05	0.02
May	89,563	13,344	1,668	17,673	87,350	84,052	0.83	12,909	1,233	0.13	0.01
Jun	36,544	2,605	493	10,923	53,989	34,783	0.48	2,464	352	0.03	0.00
Jul	14,740	1,296	270	3,927	19,412	13,822	0.55	1,242	216	0.05	0.01
Aug	7,748	532	114	2,547	12,593	7,140	0.42	532	114	0.03	0.01
Sept	13,947	1,257	120	3,273	16,181	12,810	0.67	1,197	60	0.06	0.00
Oct	17,851	1,472	74	5,883	29,079	16,674	0.45	1,399	0	0.04	0
Nov	8,433	771	27	3,024	14,945	8,354	0.48	772	27	0.04	0.00
Total	331,628	32,358	*6632	72,323	357,481	304,676		30,985	*5258		
Mean							0.65			0.07	*. 009

* harvest which excluded bass kept in a livew ell, but which the angler stated they intended to release

Table 56. Black bass catch and harvest statistics derived at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

* harvest which excluded bass kept in a livew ell, but which the angler stated they intended to release
** Includes effort and catch of non-bass anglers

Table 57. Monthly panfish angling success at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

Month	Total no. of panfish caught	Total no. of panfish harvested	No. of panfish fishing trips	Hours fished by panfish anglers	Panfish caught by panfish anglers	Panfish caught/ hour by panfish anglers	Panfish harvested by panfish anglers	Panfish harvested/ hour by panfish anglers
Feb	1,935	1,064						
Mar	357	179						
Apr	21,626	11,037	1,486	7,347	14,095	2.16	7,383	1.13
May	114,148	62,585	7,143	35,306	103,779	2.90	60,266	1.68
Jun	11,759	3,591	1,197	5,917	8,097	2.75	2,112	0.72
Jul	4,481	2,106	203	1,002	3,834	7.63	1,998	3.98
Aug	4,330	1,633	127	630	798	6.56	190	1.56
Sept	6,854	3,053	359	1,776	4,788	5.08	2,005	2.13
Oct	3,902	1,399	217	1,071	1,951	2.65	847	1.15
Nov	160	27						
Total	169,550	86,673	10,733	53,048	137,342		74,801	
Mean	16,955	8,667	1,073	5,305	13,734	2.97	7,480	1.59

Table 58. Panfish catch and harvest statistics derived from Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

	Bluegill				Redear sunfish			
	Harvested	Released		Total	Harvested	Released		Total
		6.0-7.9 in	≥ 8.0 in			6.0-7.9 in	≥ 8.0 in	
Total no. of panfish	81,668	17,431	454	156,384	3,798		456	4,386
\% of panfish harvested by number	94.2				4.4			
Total weight of panfish (lb)	16,164	1,441	37	22,341	2,435		197	2,689
\% of panfish harvested by weight	85.9				12.9			
Mean length (in)	6.7				9.8			
Mean weight (lb)	0.19				0.64			
*Catch rate (fish/hr)	0.18				0.01			
*Harvest rate (fish/hr)	0.095				0.004			

* includes effort and catch of non-panfish anglers

Table 59. Monthly catfish angling success at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

Month	Total no. of catfish caught	Total no. of catfish harvested	No. of catfish fishing trips	Hours fished by catfish anglers	Catfish caught by catfish anglers	Catfish caught/ hour by catfish anglers	Catfish harvested by catfish anglers	Catfish harvested/ hour by catfish anglers
Feb	290	193	66	327				
Mar	670	581	59	292	402	1.80	402	1.80
Apr	2,610	2,386	531	2,624	1,193	0.22	1,193	0.22
May	24,004	20,668	5,450	26,937	15,883	0.67	15,230	0.65
Jun	11,477	10,139	4,539	22,434	10,773	0.75	10,139	0.71
Jul	3,509	3,401	1,419	7,013	3,456	0.65	3,402	0.64
Aug	2,393	2,241	616	3,043	2,165	0.81	2,165	0.81
Sept	1,496	1,167	1,058	5,229	958	0.23	868	0.21
Oct	1,656	1,362	495	2,449	1,067	0.54	1,067	0.54
Nov	372	346	88	433	266	0.53	266	0.53
Total	48,479	42,486	14,320	70,781	36,163		34,732	
Mean						0.60		0.57

Table 60. Catfish catch and harvest statistics derived at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

	Blue catfish				Channel catfish				Flathead catfish			
	Harvest	Release		Total	Harvest	Release		Total	Harvest	Release		Total
		8.0-11.9	$\geq 12.0 \mathrm{in}$			8.0-11.9	≥ 12.0 in			8.0-11.9	$\geq 12.0 \mathrm{in}$	
Total no. of catfish	12,805		561	13,366	29,542	1,618	3,485	34,832	138		143	434
\% of catfish harvested by number	30.1				69.5				0.3			
Total weight of catfish (lb)	28,436		2,931	31,367	41,320	1,722	3,710	46,952	819		779	1,598
\% of catfish harvested by weight	40.3				58.5				1.2			
Mean length (in)	19.6				15.5				24.7			
Mean weight (lb)	3.34				1.28				6.92			
*Catch rate (fish/hr)	0.02				0.04				0.00			
*Harvest rate (fish/hr	0.016				0.030				0.0002			

* includes effort and catch of non-catfish anglers

Table 61. Monthly Morone angling success at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

	Total no. of Morone caught	Total no. of Morone harvested	No. of Morone fishing trips	Hours fished by Morone anglers	Morones caught by Morone anglers	Morones caught/ hour by Morone anglers	Morones harvested by Morone anglers	Morones harvested/ Mour by anglers
Month	21,474	2,612	397	1,960	1,547	6.40	1,547	6.40
Feb	10,278	2,056	207	1,021	1,787	2.13	1,742	2.07
Mar	17,897	1,268						
Apr	12,038	5,439	635	3,138	4,569	1.96	3,046	1.31
May	1,942	3,028	299	1,479	704	0.91	282	0.36
Jun	8,942	10,133	10,636	3.46	6,317	2.05		
Jul	13,552	6,857	836	4,133				
Aug	7,900	2,431	276	1,364	4,785	6.46	1,595	2.15
Sept	33,579	4,429	160	789	1,975	2.84	1,047	1.51
Oct	15,201	4,196	93	459	1,031	3.29	921	2.94
Nov	11,439	745						
Total	152,300	33,059	14,607	14,607	27,034		16,497	
Mean								

Table 62. Morone catch and harvest statistics derived at Kentucky Lake (51,000 acres) from 16 February through 30 November 2017.

* includes effort and catch of non-morone anglers

Table 63. Fishery statistics derived from a creel survey at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 1 December 2017 through 30 February 2018.

Fishing Trips			
	No. of fishing trips (per acre)	8,273	(0.5)
Fishing Pressure			
	Total angler-hours (S.E.)	32,217	(8737.4)
	Angler-hours/acre	2.4	
Catch / Harvest			
	No. of fish caught (S.E.)	84,576	$(32,396)$
	No. of fish harvested (S.E.)	40,514	$(16,765)$
	Lb of fish harvested	24,809	
Harvest Rates			
	Fish/hour	0.96	
	Fish/acre	2.65	
	Pounds/acre	1.62	
Catch Rates			
	Fish/hour	2.07	
	Fish/acre	5.53	
Miscellaneous Characteristics (\%)			
	Male	97.52	
	Female	2.48	
	Resident	94.41	
	Non-resident	5.59	
Method (\%)			
	Still fishing	0.31	
	Casting	20.50	
	Trolling		
	Trotline/Jugging		
	Bow Fishing		
	Crappie Anglers Only		
	Casting	1.85	
	Still fishing (1-2 poles)	8.81	
	Spider Rig (3 Poles)	1.85	
	Spider Rig (4-5 Poles)	21.33	
	Spider Rig (>5 Poles)	66.75	
Mode (\%)			
	Boat	96.27	
	Bank	0.93	
	Dock	2.80	

Table 64. Length distribution for each species of fish harvested or released (lengths of released fish were estimated by anglers) at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

Species	Inch class																								
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
White crappie	H								12,060	16,701	5,591	365	256												
	R			33	67	33	334	23,394	2,807	2,473	969	134	100	167	67	68									
Black crappie	H								2,283	1,573	710														
	R			91			183	2,652		457	46		46												
Largemouth bass	H																								
	R				34	34	171		512	205	1,024	273	853	648	205	273	205	68							
Smallmouth bass	H																								
	R				43						43	43			43			88							
Spotted Bass	H																								
	R										53														
Bluegill	H																								
	R			106	211																				
Redear sunfish	H																								
	R																								
Longear sunfish																									
	R																								
Warmouth	H																								
	R																								
Green sunfish	R																								
Channel catfish	H																								
	R												24												
Blue catfish	H																								
	R																								
Flathead catfish																							53		
	R																								
White bass	H								150	120	360	150	60		30										
	R				35	140	594		349	175	838	349	35												
Hybrid striped bass	H																								
	R																								
Yellow bass	H																								
	R	187	187	327	1,028	140		47	46																
Sauger	H														53										
	R												17	16											
Bullhead Buffalo	R																								
	R																								
Drum	H																								
	R												31		31		31						62		
Shad Skipjack herring	R																								
	H																								
	R																								
Common Carp	R																								
Silver Carp Grass Carp Golden Shiner Gar	R																53								
	R																								
	R																								
	H																								
	R																								

Table 64 (cont).

Species	Inch class																							
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	44	45	46	47	48	49	56	Total
White crappie	H																							34,973
	R																							30,646
Black crappie	H																							4,566
	R																							3,475
Largemouth bass	H																							0
	R																							4,505
Smallmouth bass Spotted Bass	H																							0
	R																							260
	H																							0
	R																							53
Bluegill	H																							0
	R																							317
Redear sunfish	H																							0
	R																							0
Longear sunfish																								0
	R																							0
Warmouth	H																							0
	R																							0
Green sunfish	R																							0
Channel catfish	H																							0
	R																							24
Blue catfish	H																							0
	R																							0
Flathead catfish																								53
	R																							0
White bass	H																							870
	R																							2,515
Hybrid striped bass	H																							0
	R																							0
Yellow bass	H																							0
	R																							1,962
Sauger	H																							53
	R																							33
Bullhead	H																							0
Buffalo	R																							0
Drum	H																							0
	R																							155
Shad	R																							0
Skipjack herring	H																							0
	R																							0
Common Carp	R																							0
Silver Carp	R																							53
Grass Carp	R																							0
Golden Shiner	H																							0
Gar	H																							0
	R																							0

Table 65. Fish harvest statistics derived from a creel survey at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

					$\begin{aligned} & \frac{00}{0} \\ & \frac{0}{3} \\ & \frac{0}{0} 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$									$\begin{aligned} & \overline{\bar{\sigma}} \\ & \text { 弟 } \end{aligned}$				ENu
No. caught	4,817	4,505	260	53	73,660	65,619	8,041	77	24	53	0	0	317	317	0	0	0	0
(per acre)	(0.31)	(0.29)	(0.02)	(0.00)	(4.81)	(4.28)	(0.52)	(0.01)	(0.00)	(0.00)	(0.00)	T	(0.02)	(0.02)	T	T	T	T
No. harvested	0	0	0	0	39,539	34,973	4,565	53	0	53			0	0				
(per acre)	T	T	T	T	(2.58)	(2.28)	(0.30)	T	T	T			T	T				
\% of total no. harvested					97.6	86.3	11.3	0.1		0.1								
Lb. harvested					23,827	20,837	2,989	289	0	289								
(per acre)					(1.56)	(1.36)	(0.20)	(0.02)	T	(0.02)								
$\%$ of total lb. harvested					96.0	84.0	12.1	1.2	0.0	1.2								
Mean length (in)		13.7	15.4	12.0		10.9	10.4		14.0	24.0				5.7				
Mean w eight (lb)		1.37	2.00	0.74		0.60	0.61		0.88	5.40				0.12				
No. of fishing trips for that species	1,445				6,718			0					0					
\% of all trips	17.6				81.8			0.0					0.0					
Hours fished for that species	$6,498$				30,226								0					
(per acre)	(0.42)				(1.97)			(0.00)					(0.00)					
No. harvested fishing for that species	0				39,539			0					0					
Lb harvested fishing for that species	0				23,827			0					0					
No./hour harvested fishing for that species	0.00				0.99			0.00					0.00					
\% success fishing for that species	0.0				60.0													

Table 65 (cont.).

		$\begin{aligned} & \text { © O } \\ & \text { 응 } \\ & \text { 른 } \end{aligned}$		$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & \text { E } \\ & \hline \end{aligned}$		¢0	$\begin{aligned} & \frac{\circ}{\overbrace{0}^{5}} \\ & \stackrel{4}{5} \end{aligned}$		듣 응 0	$\begin{aligned} & \frac{2}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \ddot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\omega}{\omega} \end{aligned}$		
No. caught	86	5,347	3,384	1,962	0	218	0	0	0	53	0	0	0	0	
(per acre)	(0.01)	(0.35)	(0.22)	(0.13)	T	(0.01)	T	T	T	T	T	T	T	T	
No. harvested	53	870	870	0		0				0					
(per acre)	T	(0.06)	(0.06)	T		T				T					
\% of total no. harvested	0.13	2.14	2.14												
Lb. harvested (per acre)	$\begin{array}{r} 68 \\ T \end{array}$	$\begin{array}{r} 624 \\ (0.04) \end{array}$	$\begin{array}{r} 624 \\ (0.04) \end{array}$												
$\%$ of total lb. harvested	0.27	2.52	2.52												
Mean length (in)			11.9	5.7		25.2				18.0					
Mean w eight (lb)			0.71	0.07		5.98				2.75					
No. of fishing trips for that species		46													0
\% of all trips		0.6													
Hours fished for that species (per acre)		$\begin{array}{r} 205 \\ (0.01) \end{array}$													0
No. harvested fishing for that species		159													
Lb harvested fishing for that species		624													
No./hour harvested fishing for that species		0.78													
\% success fishing for that species		54.5													

Table 66. Crappie catch and harvest statistics derived at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

\% of crappie harvested by number $88.5 \quad 11.5$

| *Total weight of
 crappie (lb) | 20,838 | 8,555 | 2,432 | 31,824 | 2,989 | 1,090 | 204 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 4,283$

[^2]Table 67. Monthly crappie angling success at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

Month	Total no. of crappie caught	Total no. of crappie harvested	*Total no. of crappie harvested	No. of crappie fishing trips	Hours fished for crappie	Crappie caught by crappie anglers	Crappie caught/ hour by crappie anglers	Crappie harvested by crappie anglers	Crappie harvested/ hour by crappie anglers
Dec	47,616	27,670	27,670	3,926	17,662	47,616	2.70	27,670	1.57
Jan	2,960	1,587	1,587	445	2,001	2,961	1.48	1,588	0.79
Feb	23,084	10,617	10,280	2,348	10,562	23,084	2.19	10,281	0.97
Total	73,660	39,874	*39538	6,719	30,225	73,661		39,539	
Mean	24,553	13,291	*13179	2,240	10,075	24,554	2.12	13179.67	2.03

Table 68. Monthly black bass angling success at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

Month	Total no. of bass caught	Total no. of bass harvested	*Total no. of bass harvested	No. of black bass fishing trips	Hours fished by bass anglers	```Bass caught by bass anglers```	Bass caught/ hour by bass anglers	Bass harvested by bass anglers	*Bass harvested by bass anglers	Bass harvested/ hour by bass anglers	*Bass harvested/ hour by bass anglers
Dec	2,804			502	2,259	2,011	0.89				
Jan	116	33		43	195	99	0.51	33		0.17	
Feb	1,898			899	4,044	1,802	0.45				
Total	4,817	33	*0	1,444	6,498	3,912		33	*0		
Mean							0.61			0.17	*0

* harvest which excluded bass kept in a livew ell, but w hich the angler stated they intended to release

Table 69. Black bass catch and harvest statistics derived at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

* harvest which excluded bass kept in a livew ell, but which the angler stated they intended to release
** Includes effort and catch of non-bass anglers

Table 70. Monthly panfish angling success at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

Month	Total no. of panfish caught	Total no. of panfish harvested	No. of panfish fishing trips	Hours fished by panfish anglers	Panfish caught by panfish anglers	Panfish caught/ hour by panfish anglers	Panfish harvested by panfish anglers	Panfish harvested/ hour by panfish anglers
Dec	317							
Jan	0							
Feb	0							
Total	317							
Mean	106							

Table 71. Panfish catch and harvest statistics derived from Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

	Bluegill				Redear sunfish			
	Harvested	Released		Total	Harvested	Released		Total
		6.0-7.9 in	≥ 8.0 in			6.0-7.9 in	≥ 8.0 in	
Total no. of panfish	0.0	211	0.0	317				0.0
\% of panfish harvested by number	94.2							
Total weight of panfish (lb)	0.0	25	0.0	37				
\% of panfish harvested by weight	85.9							
Mean length (in)								
Mean weight (lb)								
*Catch rate (fish/hr)	0.01							
*Harvest rate (fish/hr)								

Table 72. Monthly catfish angling success at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

Month	Total no. of catfish caught	Total no. of catfish harvested	No. of catfish fishing trips	Hours fished by catfish anglers	Catfish caught by catfish anglers	Catfish caught/ hour by catfish anglers	Catfish harvested by catfish anglers	Catfish harvested/ hour by catfish anglers
Dec	53	53	0.0					
Jan			0.0					
Feb	24		0.0					
Total	77	53						
Mean	26	18						

Table 73. Catfish catch and harvest statistics derived at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

	Blue catfish				Channel catfish				Flathead catfish			
	Harvest	Release		Total	Harvest	Release		Total	Harvest	Release		Total
		8.0-11.9	≥ 12. in			8.0-11.9	≥ 12.0 in			8.0-11.9	$\geq 12.0 \mathrm{in}$	
Total no. of catfish				0.0	24		24	24	53			53
$\%$ of catfish harvested by number					0.0				100.0			
Total weight of catfish (lb)					0		21	21	289			289
\% of catfish harvested by weight									100.0			
Mean length (in)									24.0			
Mean weight (lb)									5.47			
*Catch rate (fish/hr)					T				T			
*Harvest rate (fish/hr)									T			

*includes effort and catch of non-catfish anglers
$\mathrm{t}=<.005$

Table 74. Monthly Morone angling success at Kentucky Lake (Jonathan Creek, Blood River, Big Bear Creek) from 01 December through 30 February 2018.

	Total no. of Morone caught	Notal no. of Morone harvested	Morone fishing trips	Hours fished by Morone anglers	Morones caught by Morone anglers	Morones caught/ hour by Morone anglers	Morones harvested by Morone anglers	Morvested/ hour by Morone anglers
Denth	3,598	317	46	205	212	1.03	159	0.78
Jan	116	0.0						
Feb	1,633	552						
Total	5,346	869	46	205	212		53	
Mean	1782	290	15	68	71			

Table 75. Morone catch and harvest statistics derived at Kentucky Lake (Jonathan Creek) from 01 December through 30 February 2018.

	White Bass			Yellow Bass			Hybrid Striped Bass			Striped Bass		
	Harvest	Release	Total									
	$12.0-14.9$ in ≥ 15.0 in						12.0 -14.9 in ≥ 15.0 in			≥ 15.0 in	9 in ≥ 1	
Total no. of Morone	870	1,222	3,385	0	1,962	1,962			0.0			0.0
\% of Morone harvested by number	100.0			0.0								
Total w eight of Morone (lb)	624	706	2,077	0		129						
\% of Morone harvested by w eight	100.0			0.0								
Mean length (in)	11.9											
Mean w eight (lb)	0.71											
*Catch rate (fish/hr)	0.11			0.06								
*Harvest rate (fish/hr)	0.027											

Table 76. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Lake Beshear during 2017.

Season	Inch class																					Total	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Spring		4	5	3	4	7	19	16	6	9	14	6	10	12	8	11	24	12	9	2	1	182	72.8	5.9
Fall	3	33	27	11	2	2	5	3		6	6	3	1	4	2	2	4	1	1			116	58.0	4.7

[^3]Table 77. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Lake Beshear during April or May of 2008 to 2017.

Year	Mean length age-3 at capture	Age-1		Length group												Total		PSD	RSD_{15}
				<8.0 in		≥ 12.0 in		12.0-14.9 in		≥ 15.0 in		≥ 18.0 in		≥ 20.0 in					
		CPUE	Std err																
$2017{ }^{\text {A }}$	13.8	6.4	1.3	20.0	3.9	43.6	3.1	12.0	2.4	31.6	4.6	19.2	4.2	4.8	2.4	72.8	5.9	69	50
$2016^{\text {AB }}$	13.8	30.4	4.0	16.4	3.4	67.2	8.3	10.8	2.3	56.4	7.0	32.8	4.8	5.6	1.2	102.8	6.5	78	65
$2015^{\text {B }}$	13.8	4.4	1.5	4.4	1.5	78.4	4.5	17.6	3.5	60.8	3.4	28.0	3.0	8.0	0.6	91.6	3.9	90	70
$2014{ }^{\text {A }}$	13.3	1.9	0.9	3.2	1.4	61.6	5.6	18.0	2.3	43.6	6.1	20.4	2.3	4.4	1.2	83.6	6.8	77	54
$2013^{\text {A }}$	13.3	33.8	9.6	37.5	10.3	63.0	11.8	18.0	5.5	45.0	7.2	23.5	5.6	6.0	1.4	127.0	18.4	70	50
$2012^{\text {A }}$	13.3	27.6	5.5	34.4	4.9	46.8	3.6	8.8	2.2	38.0	4.6	18.4	1.8	4.4	1.0	114.8	7.0	58	47
2011	13.3	11.7	2.2	13.5	1.7	65.0	9.2	17.5	4.8	47.5	5.9	23.5	3.0	5.5	1.7	92.5	10.3	82	60
$2010^{\text {A }}$	13.8	22.3	4.9	9.0	1.7	51.0	6.9	11.3	1.3	39.7	6.1	14.0	3.8	3.7	1.9	82.7	15.7	69	54
$2009{ }^{\text {A }}$	13.8	5.2	1.6	3.6	1.7	35.6	3.0	6.0	0.6	29.6	2.9	13.6	1.7	4.4	1.6	47.2	4.6	82	68
$2008{ }^{\text {A }}$	13.8	10.4	3.7	8.4	3.9	32.0	4.6	11.2	3.8	20.8	3.4	10.0	2.7	3.6	1.7	51.6	6.8	74	48
Average	13.6	15.4		15.0		54.4		13.1		41.3		20.3		5.0		86.7		74.9	56.5
LBFMP	≥ 12.0 in	≥ 10				≥ 45		≥ 15		≥ 30				≥ 3				55-75	20-40

Data for 1985-2007 is listed in previous year reports.
${ }^{A}$ age and grow th data w as not collected. Previous year data used for age estimates.
${ }^{B}$ age and grow th data w as collected in the Fall. Mean length age- 3 w as calculated from back calculations. Spring CPUE age-1 w as determined from back-calculations and extrapolation with spring data. Mortality was determined fromfall age frequency data.
LBFMP - Lake Beshear Fish Management Plan objective goal.

Table 78. Lake specific assessment for largemouth bass collected at Lake Beshear from 2008-2017. This table includes the parameter estimates and the individual score as well as the total score and assessment rating. The final two columns list the instantaneous mortality (Z) and annual mortality (A).

	Mean length		Length group			Total score	Assessment rating	Z	A
	age-3 at	CPUE age-1	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
Year	capture		CPUE	CPUE	CPUE				
2017	13.8	6.4	12.0	31.6	4.8			0.349	29.4
Score	3	3	3	2	3	14	G		
2016	13.8	30.4	10.8	56.4	5.6			0.423	34.5
Score	3	4	2	4	4	17	E		
$2015{ }^{\text {B }}$	13.8	4.4	17.6	60.8	8.0			0.457	36.7
Score	3	2	4	4	4	17	E		
$2014{ }^{\text {A }}$	13.3	1.9	18.0	43.6	4.4			0.145	13.5
Score	3	1	4	4	3	15	G		
$2013{ }^{\text {A }}$	13.3	33.8	18.0	45.0	6.0			0.355	29.9
Score	3	4	4	4	4	19	E		
$2012{ }^{\text {A }}$	13.3	27.6	8.8	38.0	4.4			0.291	25.2
Score	3	4	2	3	3	15	G		
2011	13.3	11.7	17.5	47.5	5.5			0.194	17.6
Score	3	3	4	4	4	18	G		
$2010{ }^{\text {A }}$	13.8	22.3	11.3	39.7	3.7			0.297	25.7
Score	3	4	3	3	2	15	G		
$2009{ }^{\text {A }}$	13.8	5.2	6.0	29.6	4.4			0.142	13.2
Score	3	2	1	2	3	11	G		
$2008{ }^{\text {A }}$	13.8	10.4	11.2	20.8	3.6			0.316	27.1
Score	3	3	3	1	2	12	G		
Average	13.6	15.4	13.1	41.3	5.0	15.3		0.297	25.3

Data from 1985 to 2007 is listed in previous year reports.
${ }^{\text {A }}$ age and growth data was not collected. Previous year data used for age estimates.
${ }^{B}$ age and growth data was collected in the Fall. Mean length age-3 was calculated from back calculations. Spring CPUE age-1 was determined from back-calculations and extrapolation with spring data. Mortality was determined from fall age frequency data.

Assessment Quartiles were updated. Assessment on this table is updated with new ranges.
Rating \qquad
1-7 = Poor (P)
8-11 = Fair (F)
12-16 = Good (G)
17-20 = Excellent (E)

Lake Beshear Bass Data Base

Table 79. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall, and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Lake Beshear.

Year class	Age $0^{\text {A }}$		Age $0^{\text {A }}$		Age $0 \geq 5.0 \mathrm{in}^{\text {A }}$		Age $1^{\text {B }}$	
	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2017	4.1	0.1	38.0	2.9	6.5	1.9		
2016	4.4	0.1	50.5	6.0	10.0	4.0	6.4	1.3
2015	3.9	0.1	34.5	7.0	3.5	1.5	30.4	4.0
2014	4.8	0.1	24.8	4.4	11.0	1.9	4.4	1.5
2013	4.1	0.1	25.0	7.0	4.5	2.6	1.9	0.9
2012	6.3	0.1	34.0	8.8	33.2	7.4	33.8	9.6
2011	5.0	0.1	41.6	14.8	23.6	7.6	27.6	5.5
2010	4.9	0.1	54.0	4.6	22.0	4.5	11.7	2.2
2009	3.6	0.1	24.8	5.3	2.0	0.6	22.3	4.9
2008	4.3	0.1	12.4	1.2	2.0	0.9	4.8	1.6
Average	4.5		34.0		11.8		15.9	

A Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of LMB <10.0 in, which were extrapolated to the entire catch of the fall sample, and length frequencies.
${ }^{B}$ Data collected during the following spring (April/May) diurnal electrofishing sample.

WFDWRLB.Dxx, WFDWRAGB.Dxx, WFDPSDLB.Dxx

Table 80. Species composition, relative abundance, and CPUE (fish/hr) of sportfish collected during 1.0 hour (4-900s-runs) of diurnal electrofishing at Lake Pennyrile on 1 May, 2017.

Species	Inch class																	Total	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	13	14	15	16	18	19	20			
Largemouth bass		3	11	12	2	7	11	18	20	18	3	1	1	1	1	1	1	111	111.0	18.3
Bluegill	6	41	32	14	14	28	19											154	154.0	35.4
Redear sunfish		1	9	5	5	9	15	10										54	54.0	30.4
White crappie							1		2	1								4	4.0	2.8
Longear sunfish		4	21	12	4													41	41.0	7.9
Yellow Bullhead				1														1	1.0	1.0
Warmouth		2	3	7	5	4	1											22	22.0	3.8

wfdpsdp.d17

Table 81. Spring, diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Pennyrile Lake from 2008-2017

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std err										
2017	35.0	11.0	67.0	9.7	4.0	1.6	5.0	1.9	1.0	1.0	111.0	18.4
2016	44.0	9.7	62.0	6.2	13.0	3.0	3.0	1.9	1.0	1.0	122.0	10.0
2015	44.0	3.6	68.8	8.1	8.8	2.9	3.2	1.5	0.8	0.8	124.8	10.6
2014	17.0	3.0	36.0	5.2	7.0	3.0	1.0	1.0			61.0	8.2
2013	63.0	11.8	48.0	4.9	11.0	3.0	2.0	1.2	1.0	1.0	124.0	12.3
2012*												
2011	32.0	10.4	68.0	7.7	12.0	2.5	1.6	1.0	0.8	0.8	113.6	18.3
2010	46.4	9.3	64.3	10.7	12.5	3.3	7.1	1.6	4.5	1.8	130.4	17.0
2009*												
2008	38.9	5.1	63.0	12.0	13.3	2.8	2.0	1.2	0.0	0.0	117.1	14.5
Mean	40.0		59.6		10.2		3.1		1.3		113.0	

wfdpsdp.dxx
Data from 1990 to 2007 is listed in previous year reports.
*Did not sample

Table 82. Spring electrofishing CPUE (fish/hr) for each length group of bluegill and redear sunfish collected at Lake Pennyrile during May from 2008-2017.

Species	Year	Length group								Total	
		<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in			
		CPUE	Std err								
Bluegill											
	2017	6.0	2.58	87.0	13.3	42.0	22.5	19.0	9.2	154.0	35.4
	2016	45.0	16.4	65.0	3.4	51.0	12.3	41.0	18.4	202.0	49.1
	2015	30.4	3.0	84.0	11.4	64.8	13.9	32.0	5.7	211.2	
	2014			12.0	4.3	15.0	6.6			27.0	7.9
	2013*	1.0	1.0	18.0	5.8	21.0	6.2			40.0	12.1
	2012	Did Not Sample									
	2011	1.6	1.0	36.8	20.2	41.6	14.2	5.6	1.6	85.6	35.7
	2010	3.6	1.9	81.3	17.2	40.2	6.2	6.3	2.7	131.3	17.0
	2009	Did Not Sample									
	2008	38.1	19.9	136.2	43.0	93.2	42.7	11.3	4.7	278.8	85.4
	Mean	18.0		65.0		46.1		19.2		141.2	
		Length group									
		<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		Total	
Redear sunfish											
	2017			15.0	3.0	14.0	10.4	25.0	18.4	54.0	30.4
	2016			16.0	5.9	15.0	3.0	30.0	7.4	61.0	15.8
	2015	0.8	0.8	12.0	2.5	4.8	1.5	32.8	15.3	50.4	
	2014			8.0	5.4	17.0	5.7	8.0	3.7	33.0	12.5
	2013*			4.0	2.3	9.0	5.5	12.0	2.8	25.0	6.6
	2012	Did Not Sample									
	2011			9.6	4.5	17.6	8.1	28.0	11.9	55.2	21.4
	2010			3.6	1.9	8.9	2.3	17.9	5.0	30.4	5.4
	2009	Did Not Sample									
	2008	2.7	1.8	21.0	9.2	12.8	6.3	41.0	25.1	77.4	40.4
	Mean	1.7		11.1		12.4		24.3		48.3	

wfdpsdp.dxx
*2013 sample collected in June due to water conditions at normal sample time in May

Table 83. PSD and RSD values obtained for largemouth bass, bluegill and redear sunfish collected during 1.0 hour of diurnal electrofishing (4-900s-runs) at Lake Pennyrile on 1 May 2017. 95\% confidence intervals are in parentheses.

Species	N	PSD	RSD*
Largemouth bass	76	$12(+/-7)$	$7(+/-6)$
Bluegill	148	$41(+/-8)$	$13(+/-5)$
Redear sunfish	53	$64(+/-12)$	$19(+/-11)$

* Largemouth $=\mathrm{RSD}_{15}$, Bluegill $=\mathrm{RSD}_{8}$, Redear sunfish $=\mathrm{RSD}_{9}$.
wfdpsdp.d17

Table 84. Lake specific assessment for largemouth bass collected at Pennyrile Lake from 2008-2017. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A) in years when age and growth was collected.

Year	Age-1 CPUE	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Mean length age-3 at capture	Total score	Assessment rating	Z	A
2017	28.0	4.0	5.0	1.0	11.7				
Score	1	1	4	4	4	14	G		
2016	38.0	13.0	3.0	1.0	11.7				
Score	2	2	2	4	4	14	G		
2015	36.0	8.8	3.2	0.8	11.7				
Score	2	1	2	4	4	13	G		
2014	19.8	7.0	1.0		11.7				
Score	1	1	1		4	7	P		
2013	10.6	11.0	2.0	1.0	11.7				
Score	1	2	2	4	4	13	G		
2012	Did not sample								
Score									
2011	31.0	12.0	1.6	0.8	11.7			0.488	38.6
Score	1	2	1	4	4	12	F		
2010	36.1	12.3	7.1	4.5					
Score	2	2	4	4	1	13	G		
2009	Did not sample								
Score									
2008	27.9	13.3	2.0						
Score	1	2	2		1	6	P		
Average	28.4	10.2	3.1	1.1	11.7				

Rating
$1-7=$ Poor (P)
$8-12=$ Fair (F)
$13-17=$ Good (G)
$18-20=$ Excellent (E)

Table 85. Species composition, relative abundance, and CPUE (fish/hr) of sportfish collected from Ballard Wildlife Management Area lakes during April 2017. A total of 0.75 hrs (3-900 second runs) of electrofishing was conducted at each lake.

Area	Inch class															Total	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	19			
Little Turner																		
Bluegill	1	5	33	16	12											67	89.3	36.1
Redear sunfish					1		1									2	2.7	1.3
Largemouth bass						1	2	1	1		1	1	3			10	13.3	2.7
White crappie				1			1	1								3	4.0	4.0
Big Turner																		
Bluegill			19	22	6	1										48	64.0	6.1
Redear sunfish			1	1	1											3	4.0	4.0
Spotted bass								1		1						2	2.7	1.3
Largemouth bass					5		3	6	2	3	1	2	1	1	1	25	33.3	4.8
Black crappie		1														1	1.3	1.3
Sauger											1					1	1.3	1.3
Shelby																		
Bluegill		4	26	17	3	1										51	68.0	26.6
Redear sunfish				2	1											3	4.0	2.3
Spotted bass								1		1	1					3	4.0	2.3
Largemouth bass			1	2	4		1		1	1	1	2	1	2		16	21.3	5.3
White crappie					1											1	1.3	1.3
Castor																		
Bluegill	1	2	15	12	6											36	48.0	6.1
Redear sunfish				1	1											2	2.7	1.3
Largemouth bass							1		1	1	2	3	1			9	12.0	2.3
White crappie			1													1	1.3	1.3

NORTHWESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Table 1 presents a summary of conditions encountered while sampling at state-owned or managed lakes and ACOE reservoirs during the 2017 field season.

Nolin River Lake

Black Bass Sampling

Spring (May) and fall (October) electrofishing surveys were conducted in 2017 to monitor the black bass population at Nolin River Lake (Tables 2-9). In 2017, the spring electrofishing catch rates were nearly double those collected in 2016. However, the 2016 catch rates were lower than what has been typically collected over the last 5 years, and the 2017 catch rates are more consistent with those catch rates. Condition factors and age-growth data collected during fall electrofishing were good and consistent with that collected over the last 15 years. Overall, Nolin's largemouth bass population is stable and performing as expected.

Rough River Lake

Hybrid Striped Bass Sampling

Gill netting to monitor the hybrid striped bass population was conducted the last week of November (Tables 10-14). Catch rates in 2017, and in 2016, were lower than those collected during the last several surveys. At the same time growth rate, which has always been excellent, has increased and is the highest documented at Rough River Lake since sampling began in 1999. Age-0 fish accounted for 48% of the total sample (CPUE 15.8), which is three times higher than 2016. Gill netting will continue to be conducted annually for the next few years as part of a project to document any differences in survival and growth rate of reciprocal and original crosses. The hybrid striped bass population continues to be stable and thriving.

Channel Catfish Sampling

Gill netting to assess the channel catfish population was conducted concurrently with hybrid striped bass sampling. A total of 56 channel catfish were collected over 12 net nights for a CPUE of 4.7 fish per net night (Tables 15-16).
The CPUE is similar to previous collections prior to 2016. A large number of channel catfish were captured in 2016, likely due to water level at time of sampling (lowest on record during sampling). Condition is good and similar to prior collections.

Dissolved Oxygen - Temperature Profiles

Dissolved oxygen and temperature profiles were conducted in May, June, July, and September in 2017 (Tables 1720). An August sample could not be conducted due to a dissolved oxygen meter malfunction. Profiles were conducted at three sites (lower, middle, and upper) along the main channel of the south fork of the lake on each sample date consistent with samples in previous years. These profiles were conducted as part of a project to document survival and growth of the original and reciprocal hybrid striped bass crosses stocked at Rough River Lake. Profiles will continue to be conducted May - September for the next few years.

Lake Malone

Largemouth Bass Sampling

Electrofishing to assess the largemouth bass population at Lake Malone was conducted during April (Tables 21-24). Largemouth bass catch rate data collected in 2017 are similar to catch rate data collected during the last several years. Malone has historically been plagued by an overabundance of bass $<12.0 \mathrm{in}$. A variety of size and creel limits have been tried with little success to reduce this abundance. Even when these fish are not protected, as in the current $12.0-$ to 15.0 -in. protective slot limit, angler harvest is not sufficient to adequately control their numbers. Despite this abundance of smaller-size fish, the number of largemouth greater than 15.0 in. and greater than 20.0 in. has remained in the good to excellent range. The largemouth bass population at Malone is relatively stable and performing as expected. The necessity of continuing the 12.0 - to 15.0 -in protective slot limit will be investigated in 2018.

Mauzy Lake

Largemouth Bass Sampling

Electrofishing to assess the largemouth bass population at Mauzy was conducted in April (Tables 23, 25-27). Over the last 3-4 years the catch rate of largemouth less than 12.0 in has increased while the catch rate of bass over 15.0 in has decreased. This trend continued in 2017 with the exception of the catch rate for largemouth 12.0-15.0 in, which increased. Age-growth analysis was conducted in October 2015 and indicated length at age data had declined dramatically when compared to age-growth analysis in 2012 and prior samples. Annual sampling continue to monitor this trend and age data will be collected again in 2018. Due to multiple drawdowns for repair work, vegetation control, and an attempted shad kill, the lake has not maintained a normal pool for multiple consecutive years since 2009. A few consecutive years with a stable normal pool should allow for a determination of the direction of this fishery.

Bluegill Redear Sunfish Sampling

Electrofishing to assess the bluegill and redear sunfish populations was conducted in April (Tables 28-32). Both bluegill and redear sunfish catch rates have been variable over the last few years, but the general trend has been a decrease in the catch rate of bluegill and an increase in the catch rate of redear sunfish. This trend persisted in 2017. In 2017, a total of 186 bluegill ($248.0 \mathrm{fish} / \mathrm{hr}$) and 338 redear sunfish ($450.7 \mathrm{fish} / \mathrm{hr}$) were collected in 0.75 hours of electrofishing. While bluegill have historically been sampled in mid-May, an earlier April sampling date was selected in 2017 due to an abundance of shoreline Eurasian watermilfoil present in mid-May that makes efficient netting difficult. The earlier sampling date could explain part of the increase in the number of redear and decrease in the number of bluegill collected in 2017, but this trend has also been observed over the last few years during the traditional mid-May sampling time.

Bluegill were last collected for age-growth analysis in October 2015. Mean length at age was lower for each age class when compared to the preceding collection in 2012. In 2015, the mean length at age-2 at capture and the number of years to reach 6.0 in were both some of the worst recorded to date.

Redear sunfish were stocked in Lake Mauzy in 2004 and 2005, but few redear sunfish were collected prior to 2010. Since 2010, the general trend has been an increase in the catch rate of redear sunfish. Despite this continued increase, no redear sunfish greater than 9.0 in have been collected. Redear sunfish were last collected for age-growth analysis with bluegill in October 2015. Age data suggested growth has continually slowed at each age class over the last 8 years. As the catch rate has increased, redear seem to be plateauing in the 8.0 - to 9.0 -in range.

Intensive sampling of the largemouth bass, bluegill and redear sunfish populations, including age data, will be conducted during 2018 to better define these populations and develop a management strategy moving forward.

Carpenter Lake

Largemouth Bass

Largemouth bass were sampled at Carpenter Lake in April 2017 (Tables 23, 33-35). Total CPUE was within the range of previous samples. Catch rate for fish 12.0-14.9 in was the highest observed since 1999 (CPUE 100.0 fish $/ \mathrm{hr}$), yet catch rates for all other length groups was lower than 2016. Bass for age-growth analysis were last collected in 2015. The 2015 growth rate had declined by 1.0 in since 2006. Age-growth data will again be collected in 2018 to see if mean length continues to decline. It will also provide baseline data prior to the introduction of saugeye in 2018. Saugeye will be stocked in 2018 in an attempt to control the gizzard shad population.

Bluegill Redear Sunfish Sampling

Electrofishing to assess the bluegill/redear sunfish populations was conducted in April (Tables 30, 36-38). Catch rates for small bluegill ($<6.0 \mathrm{in}$) in 2017 were well above the 10 -year average. Catch rates for 6.0 - to 7.9 -in bluegill had increased slightly from 2016 and are closer to anticipated values. Both 2013 and 2014 had exceptionally high catch rates for $6.0-$ to 7.9 -in fish which have skewed the long term average. In the last decade only one bluegill greater than 8.0 in has been collected in Carpenter Lake. Gizzard shad were first discovered in the lake in 2006 and seem to be negatively affecting the bluegill population. After two failed shad eradication efforts, saugeye will be stocked at 50 fish/acre beginning in 2018 in an attempt to reduce the number of gizzard shad and small crappie. This reduction should positively affect bluegill growth and produce bluegill greater than 8.0 inches in the near future. Bluegill age and growth data will be collected in 2018 to establish baseline data prior to saugeye introduction.

Fifty-two redear sunfish were collected in April in conjunction with bluegill sampling. Overall, catch rates for all length groups increased from 2016 and fall within expected ranges. Redear sunfish less than 3.0 in have yet to be found in collections since 2010 . That is likely a result of sampling inefficiencies rather than lack of reproduction. This is evidenced by the large increase in $3.0-$ to 5.9 -in fish observed this year. Numbers remain fairly low but quality fish are available. Redear sunfish will be collected in conjunction with bluegill for age-growth analysis in 2018.

New Kingfisher Lakes

Largemouth Bass

Electrofishing to assess the largemouth bass population at New Kingfisher Lake was conducted in April and October (Tables 23, $39-42$). The April sampling was the first standardized sample collected since 2012. A total of 55 largemouth bass were collected in 0.375 hours of sampling. Catch rates for bass less than 12.0 in are lower than prior to renovation, but this is to be expected soon after re-stocking. The catch rate of fish 12.0-14.9 in is similar to pre-renovation samples and the CPUE of fish greater than 15.0 in is the highest ever collected. The presence of these large fish would indicate either there is exceptional growth of the stocked fish (not likely), they are hold overs from the renovation that escaped the rotenone (plausible), or thoughtful anglers have provided theses additional fish, which is the most likely scenario. Regardless of the reason, several preferred-size fish are present in the population. During October, another 31 fish were collected ranging from 6.0 to 19.0 in. The largemouth bass fishery should continue to grow and develop over the next few years.

Bluegill Redear Sunfish Sampling

The sunfish population was sampled via electrofishing in April (Tables 30, $43-45$). Total CPUE was the highest collected since 1999. Bluegill 3.0-5.9 in accounted for 90% of that total. As the largemouth bass population continues to grow, predation pressure will increase on the small bluegill enhancing their growth rate and size structure. Redear sunfish were not stocked following the renovation, but several have been collected. Their origin is questionable but presence is acceptable. Age data will be collected in the future once the populations have stabilized.

Despite a rotenone treatment of all remaining water following the renovation, gizzard shad were observed during both spring and fall samples. The bluegill population will be monitored to ensure adequate growth and size structure develops, and if not, shad control methods will be invoked. Potential options available for controlling the shad population will be wintertime rotenone treatments and/or saugeye stocking if that proves to be a successful method in Carpenter Lake.

Old Kingfisher Lake

Largemouth Bass

Electrofishing to assess the largemouth bass population was conducted at Old Kingfisher Lake in April and October (Tables 30, 46-49). A total of 72 bass were collected ranging from 4.0 to 20.0 in . Catch rates for each length group is similar to 2017 rates at New Kingfisher. As in New Kingfisher, there are several large fish present of unknown origin. Fewer fish were collected during the October sample but still ranged from 5.0 to 19.0 in . Weights were not collected at this time, but will be collected in the future with growth rate data.

Bluegill Redear Sunfish Sampling

The sunfish population at Old Kingfisher Lake was sampled via electrofishing in April (Tables 30, $50-52$). Total bluegill CPUE was 1333.3 fish $/ \mathrm{hr}$ with just over 70% made up of 3.0 - to 5.9 -in fish. Catch rate of $6.0-$ to 7.9 -in fish (309.3 fish $/ \mathrm{hr}$) was also very good and higher than all but the two banner years at Carpenter Lake. There were no 8.0 -in fish collected but some should be seen in 2018. Gizzard shad were noted during both spring and fall samples. We will keep an eye on the bluegill population to ensure progress continues, otherwise alternative strategies will need to be invoked. Two potential options for controlling the shad are winter shad eradications and saugeye stocking.

Old and New Kingfisher are now connected by a six-foot metal culvert and should presumably develop nearly identical fish populations. If, after several years, both Old and New Kingfisher show similar population characteristics, sampling data may be combined and reported together as Kingfisher Lake.
*Old and New Kingfisher were drawn down December 2012 to complete renovation work. The lakes were allowed to dry during 2013 and renovation work was completed during the summer of 2014. As water levels increased, channel catfish, bluegill and advanced fingerling largemouth bass were stocked in fall of 2015.

Washburn Lake

Largemouth Bass

Electrofishing to assess the largemouth bass population at Washburn Lake was conducted in April and October (Tables 23, $53-59$). The population has been relatively stable over the past several years and comprised mostly of fish less than 12.0 in with one or two larger fish collected. Catch rate for bass less than 8.0 in was the highest since 2001. Catch rate for 8.0 - to 11.9 -in (306.7 fish $/ \mathrm{hr}$) and 12.0- to 14.9 -in ($42.7 \mathrm{fish} / \mathrm{hr}$) fish increased from 2016. Total CPUE was the highest recorded since renovation. Largemouth bass were sampled again during October to determine condition factor and age and growth statistics. Condition factors (Wr) are within the range typically encountered in NWFD lakes. Mean length at age remains similar to the last age data collection (2010) and fish continue to be stockpiling at approximately 12.0 in . The fertility issue has yet to be identified or resolved and water clarity can range from gin clear to pea soup within a week's time. Submerged aquatic vegetation has also become an issue that requires chemical treatment multiple times a year. There are likely several factors contributing to the poor quality of this fishery. Treating vegetation in a timely manner to facilitate improved bass foraging, and angler access, will be attempted. Using trail cameras to document angler usage will be discussed. Lake renovation plans to dredge and deepen extensive shallow areas will also be discussed and will take place when the water control structure is replaced.

Bluegill Redear Sunfish Sampling

The sunfish population was sampled via electrofishing in May (Tables 30, 60-62). Almost equal numbers of bluegill and redear sunfish were collected in 2017. Bluegill catch rate is similar to previous collections but distributed a little differently than usual. Washburn is the only state lake sampled in NWFD to produce 8.0 -in bluegill in 2017. Bluegill age and growth statistics have not been determined since 2009 and data will be collected in 2018. Redear sunfish have been on a general rise since 2012 but catch rates are similar to previous collections.

Honeycomb Lake (Peabody WMA)

Electrofishing to assess the sunfish population at Honeycomb Lake was conducted in April (Tables 30 and 63). We have been trying to establish a trophy sunfish fishery in this lake over the last several years. Redear sunfish have been stocked on two occasions, and spawning gravel, and dense habitat has been added. The April sample allowed us to collect more redear sunfish than usual but did not seem to affect our bluegill catch. Fertilization efforts will continue in 2018 and more fish habitat will be added as time allows. We hope to get a gravel road and boat ramp constructed to facilitate easier access for management activities. The fishery is progressing well and efforts will continue.

Lil Gill Lake (Peabody WMA)

Electrofishing to assess the sunfish population at Lil Gill Lake was conducted in April (Tables 30 and 64). We have been trying to establish a trophy sunfish fishery in this lake over the last several years. We collected more redear sunfish than bluegill in 2017. The fishery seems to be progressing well and efforts will continue. The lake will be fertilized again in 2018 and fish habitat will be added as time allows.

Table 1. Annual summary of sampling conditions by waterbody, species sampled and date for Northwestern Fishery District lakes during 2017.
Time Water Water Secchi

Water body	Species	Date	$\begin{gathered} \hline \text { Time } \\ (24 \mathrm{hr}) \\ \hline \end{gathered}$	Gear	Weather	Water temp. F	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Nolin River Lake	LMB	5/8	930	Shock	Sunny, breezy, 65°	65.8	512.8	68 "	Good	
Nolin River Lake	LMB	5/9	930	Shock	Sunny, windy (15 mph), 75°	68	513	40	Good	
Nolin River Lake	LMB	5/10	930	Shock	Sunny, breezy (10-15 mph), 80°	71.6	513.1	48"	Good	
Nolin River Lake	LMB	10/18	930	Shock	Sunny, breezy, 60°	70.5	512.8	24-58"	Fair	Collect fish for age/grow th
Rough River Lake	HSB	5/31	1030	Temp/DO	Sunny, 85°		499.7		Good	
Rough River Lake	HSB	6/14	1030	Temp/DO	Sunny, 90°		495.2	60	Good	
Rough River Lake	HSB	7/18	930	Temp/DO	Sunny, hot, light breeze, 90°		497.2		Good	
Rough River Lake	HSB	9/8	930	Temp/DO	Sunny, clear, 60°		495.9	$54 "$	Good	
Rough River Lake	HSB	11/27-28	900	Gill Net	Sunny, breezy, 50s	49-53	490.7-488.3	30-42	Good	Urban on NF, NWFD on SF, 12 net nights
Lake Malone	LMB	4/18	1030	Shock	Mostly cloudy, 75°	68.5	+1'	21 "	Fair - Poor	Water murky, very difficult to see fish
Lake Malone	LMB	4/19	1000	Shock	Mostly sunny, breezy (10-15mph), 75°	70.5	+1'	22	Fair - Poor	Water murky, very difficult to see fish
Mauzy Lake	LMB	4/12	1000	Shock	Sunny, light breeze ($5-8 \mathrm{mph}$)	62.2	pool	48 "	Good	
Mauzy Lake	BG/RE	4/28	1030	Shock	Cloudy, windy, 58°	67.1	+ 1^{\prime}	36 "	Good	
Carpenter Lake	LMB	4/13	900	Shock	Sunny, 60°	64.8	pool	32"	Good	
Carpenter Lake	BG/RE	4/26	1000	Shock	Sunny, breezy, 75°	69.1	pool	38 "	Good	
New Kingfisher Lake	LMB	4/13	1130	Shock	Sunny, 75-80	65.8	+4"	30	Good	
New Kingfisher Lake	LMB	10/17	1300	Shock	Sunny, 60°	67.3	pool	20	Good	
New Kingfisher Lake	BG/RE	4/26	1230	Shock	Partly sunny, windy 77°	73.4	pool	34 "	Good	
Old Kingfisher Lake	LMB	4/13	1030	Shock	Sunny, 70°	66.7	+4"	33 "	Good	
Old Kingfisher Lake	LMB	10/17	1200	Shock	Sunny, 60°	67.3	pool	20	Good	
Old Kingfisher Lake	BG/RE	4/26	1130	Shock	Sunny, windy, 75°	72.4	pool	29 "	Good	
Washburn Lake	LMB	4/17	1000	Shock	Cloudy, 75°	72.7	pool	$34 "$	Good	
Washburn Lake	LMB	10/17	930	Shock	Sunny, 55°	67.3	pool	$56 "$	Fair	Water clear, vegetation very thick
Washburn Lake	BG/RE	5/2	1000	Shock	Sunny, windy ($15-20 \mathrm{mph}$), 68°	65.3	pool	75 "	Fair	Very clear w ater, miffoil thick around edges
Honeycomb Lake (PWMA)	BG/RE	4/25	1000	Shock	Sunny, light breeze, 70°	67.8	pool	$64 "$	Good	Beavers have raised normal pool approx 2^{\prime}
Lil Gill Lake (PWMA)	BG/RE	4/25	1100	Shock	Sunny, light breeze, 70°	67.3	pool	$84 "$	Fair	Water clear, fish running from boat

Table 2. Species composition, length frequency, and CPUE (fish/hr) of black bass collected during 5.0 hours of 30-minute diurnal electrofishing at Nolin River Lake in May 2017.

Area	Species	Inch class																					Total	CPUE	SE
		1	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Upper	Largemouth bass	1	2	6	11	28	75	57	37	22	28	44	74	48	27	11	1	2	6	3	1		484	193.6	19.0
	Spotted bass	1							2	2	2	7	3	1									18	7.2	2.6
Mid	Largemouth bass		3	4	7	14	30	31	19	19	18	23	51	63	31	9	8	1	1	3		1	336	134.4	24.0
	Spotted bass		3		2	2		3	5	7	8	10	8	3									51	20.4	4.5
Total	Largemouth bass	1	5	10	18	42	105	88	56	41	46	67	125	111	58	20	9	3	7	6	1	1	820	164.0	17.5
	Spotted bass	1	3		2	2		3	7	9	10	17	11	4									69	13.8	3.3

nw d1psd.d17

Table 3. PSD and RSD ${ }^{a}$ values obtained for each black bass species taken in spring electrofishing samples in each area of Nolin River Lake during May 2017;
95\% confidence intervals are in parentheses.

Area	Species	No. \geq stock	PSD	RSD $^{\text {b }}$
Upper	Largemouth bass	361	$60(\pm 5)$	$14(\pm 4)$
	Spotted bass	17	$76(\pm 21)$	$6(\pm 11)$
Mid	Largemouth bass	278	$69(\pm 6)$	$19(\pm 4)$
	Spotted bass	44	$66(\pm 14)$	$7(\pm 7)$
Total	Largemouth bass	639	$64(\pm 4)$	$16(\pm 3)$
	Spotted bass	61	$69(\pm 11)$	$6(\pm 6)$

[^4]Table 4. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Nolin River Lake during spring electrofishing 1999-2017.

	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2017	36.2	8.8	46.2	8.0	60.6	4.0	21.0	2.3	1.6	0.4	164.0	17.4
2016	19.6	5.3	23.8	6.0	37.1	6.6	12.0	2.6	1.6	0.6	92.4	14
2015												
2014	21.4	2.3	29.2	2.5	64.0	5.4	15.0	1.7	1.4	0.6	129.6	6.9
2013												
2012	76.9	9.6	52.7	6.4	53.8	4.7	16.0	2.1	0.2	0.2	199.3	14.8
2011*												
2010*												
2009	30.0	5.7	25.1	4.3	36.0	3.6	5.3	1.1	0.7	0.3	96.4	7.1
2008	50.4	7.9	45.8	5.4	34.2	4.3	11.3	1.6	3.6	1.0	141.8	11.2
2007	53.3	10.0	17.3	2.2	27.6	4.9	8.2	1.3	0.7	0.5	106.4	14.2
2006	17.8	2.8	15.8	1.5	23.6	2.7	7.6	1.5	0.4	0.4	64.7	5.7
2005	27.1	5.0	27.1	4.1	25.3	3.9	14.2	2.3	0.4	0.3	93.8	10.1
2004	23.7	1.6	16.4	3.7	16.2	2.4	8.9	2.6	0.4	0.3	65.3	6.8
2003	12.9	3.7	10.2	2.3	8.9	2.2	7.6	2.0	0.0		39.6	9.2
2002	4.0	1.3	9.8	2.6	8.0	3.1	8.0	1.6	0.0		29.8	5.4
2001	5.5	1.7	27.0	7.4	18.0	3.3	9.0	2.8	0.0		59.5	11.7
2000	9.5	3.1	35.0	6.3	41.5	5.1	14.0	4.3	0.5	0.5	100.0	13.1
1999	n / d		61.3	16.8	56.9	9.2	8.0	1.8	0.4	0.4	126.2	26.0

* Unable to sample due to high water nwd1psd.d17

Table 5. Species composition, length frequency, and CPUE (fish/hr) of black bass collected during 2.0 hours of 30-minute diurnal electrofishing at Nolin River Lake in October 2017.

Area		Inch class																		Total	CPUE	SE
	Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Upper	Largemouth bass																					
	Spotted bass																					
Mid	Largemouth bass	4	65	23	14	41	33	25	15	15	11	19	13	14	11	11	7		1	322	161.0	70.1
	Spotted bass	1	5	6	5	5	5	5	1	3	2	5	2	1						46	23.0	3.9
Total	Largemouth bass Spotted bass																					

nwd11mb.d17

Table 6. Number of fish and relative weight (Wr) for length groups of largemouth bass collected at Nolin River Lake during October 2017. Standard errors are in parentheses.

Species	Area	Length group					
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in	
		No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Upper						
Largemouth bass	Lower						
Largemouth bass	Total	54	92 (1)	46	88 (1)	30	91 (2)

nwd11mb.d17

Table 7. Mean back calculated lengths (in) at each annulus for largemouth bass collected at Nolin River Lake in October 2017.

Year		Age							
class	No.	1	2	3	4	5	6	7	
2016	32	7.5							
2015	12	5.9	10.7						
2014	9	6.5	10.6	12.7					
2013	4	7.7	11.1	12.8	14.0				
2012	6	6.2	10.5	12.3	13.5	14.6			
2011	2	5.4	10.0	11.5	13.2	14.5	15.8		
2010	1	4.8	10.5	12.0	13.0	14.0	15.1	16.3	
Mean		6.9	10.6	12.5	13.6	14.5	15.5	16.3	
No.	66	66	34	22	13	9	3	1	
Smallest		3.6	8.7	11.2	12.7	13.8	15.1	16.3	
Largest		10.2	13.0	14.2	15.4	16.1	16.1	16.3	
SE		0.2	0.2	0.1	0.2	0.3	0.3		
95\% CI (\pm)		0.3	0.3	0.3	0.4	0.5	0.6		

nwd11mba.d17

Table 8. Age-frequency and CPUE (fish/nn) per inch class of largemouth bass collected in 2.0 hours of electrofishing at Nolin River Lake during October 2017

Inch class																	No.	CPUE	SE	Age (\%)
Age	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17				
0	4	65	23	14	41	33											180	90.0		56.1
1							25	10	15	9	13	3	1				76	37.9	17.4	23.7
2								5		2	4	3	5	2			21	10.4	3.5	6.5
3											2	5	4	2			13	6.5	1.6	4.1
4												3		2	3		8	4.2	0.9	2.5
5													4	4	4		12	6.1	0.8	3.7
6															4	3	7	3.6	0.6	2.2
7																4	4	1.7	0.7	1.2
Total	4	65	23	14	41	33	25	15	15	11	19	14	14	11	11	7	321			
(\%)	1.2	20.2	7.2	4.4	12.8	10.3	7.8	4.7	4.7	3.4	5.9	4.4	4.4	3.4	3.4	2.2				100

nwd1Imb.d17, nwd1Imba.d17

Table 9. Population assessment for largemouth bass based on spring electrofishing at Nolin River Lake from 2000-2017 (scoring based on statewide assessment).

Year	Mean length age 2+ at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age } 1 \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2017	12.9 (3)	58.8 (4)	60.6 (4)	21.0 (4)	1.6 (4)	0.968	58.7	19	Excellent
2016		23.1 (3)	37.1 (4)	12.0 (2)	1.6 (4)			> 14	G-E
2015									
2014		22.2 (2)	64.0 (4)	15.0 (3)	1.4 (4)			> 14	G-E
2013									
2012	13.4 (4)	82.9 (4)	53.8 (4)	16.0 (3)	0.2 (2)	0.582	44.1	17	Excellent
2011*									
2010*									
2009	12.6 (3)	29.2 (3)	36.0 (4)	5.3 (1)	0.7 (3)			14	Good
2008	12.6 (3)	49.7 (4)	34.2 (4)	11.3 (2)	3.6 (4)	0.553	42.5	17	Excellent
2007	12.6 (3)	51.6 (4)	27.6 (3)	8.2 (2)	0.7 (3)	0.609	45.0	15	Good
2006	12.6 (3)	17.0 (2)	23.6 (3)	7.6 (2)	0.4 (2)	0.447	36.0	12	Fair
2005	13.1 (3)	26.2 (3)	25.3 (3)	14.2 (3)	0.2 (2)	0.617	46.0	14	Good
2004	13.1 (3)	22.9 (3)	16.2 (1)	8.9 (2)	0.4 (2)	0.684	49.5	11	Fair
2003	13.1 (3)	11.3 (1)	8.9 (1)	7.6 (2)	0.0 (1)	0.534	41.4	8	Poor
2002	13.1 (3)	3.8 (1)	8.0 (1)	8.0 (2)	0.0 (1)			8	Poor
2001	13.1 (3)	5.0 (1)	18.0 (2)	9.0 (2)	0.0 (1)			9	Fair
2000	13.1 (3)	9.0 (1)	41.4 (4)	14.0 (3)	0.5 (3)			14	Good

* Unable to sample due to high water

Table 10. Length frequency and CPUE (fish/nn) for hybrid striped bass collected in 12 net-nights of sampling at Rough River Lake during November 2017.

Inch class																		Total	CPUE	SE
Species	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Hybrid striped bass	17	35	35	80	22			2	34	61	16	25	31	12	13	5	3	391	32.6	3.8

Table 11. Number of fish and the relative weight (Wr) for each length group of hybrid striped bass collected at Rough River Lake during November 2017.
Standard errors are in parentheses.

	Length group									
	$8.0-11.9 \mathrm{in}$							$12.0-14.9 \mathrm{in}$		≥ 15.0 in
Species	No. Wr	No. $\quad \mathrm{Wr}$	No.	Wr						

| Hybrid striped bass | 172 | $93(1)$ | 2 | $88(5)$ | 201 | $86(1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | nwd2gn.d17

Table 12. Mean back calculated lengths (in) at each annulus for hybrid striped bass collected at Rough River Lake in November 2017.

		Age										
Year class	No.	1	2	3	4	5	6	7	8	9	10	11
2016	98	11.8										
2015	45	11.2	16.5									
2014	31	9	15.7	18.1								
2013	11	10.2	15.9	18.6	20.3							
2012	15	8.4	14.9	17.9	19.6	20.7						
2011	1	10.6	16.4	19.0	20.2	21.1	22.3					
2010	1	7.0	14.1	16.3	17.6	18.6	19.7	20.7				
2009	1	9.8	16.7	18.7	19.7	20.8	21.6	22.2	22.8			
2006	1	7.2	11.4	13.0	14.3	15.7	16.3	17.9	18.9	19.9	20.5	21.5
Mean		10.9	15.9	18.1	19.6	20.4	20.0	20.3	20.9	19.9	20.5	21.5
No.	204	204	106	61	30	19	4	3	2	1	1	1
Smallest		6.6	11.1	13.0	14.3	15.7	16.3	17.9	18.9	19.9	20.5	21.5
Largest		16.9	18.0	20.1	21.6	21.9	22.3	22.2	22.8	19.9	20.5	21.5
SE		0.1	0.1	0.1	0.2	0.3	1.3	1.2	1.9			
95\% Cl (\pm)		0.2	0.2	0.2	0.5	0.6	2.6	2.5	3.8			

nwd2hsba.d17

Table 13. Age-frequency and CPUE (fish/nn) per inch class of hybrid stiped bass collected in 12 net-nights of sampling at Rough River Lake during November 2017.

Inch class																		No.	CPUE	SE	Age (\%)
Age	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23				
0	17	35	35	80	22													189	15.8		48.3
1								2	34	60	2							98	8.2	1.2	25.1
2										1	10	17	16					44	3.7	0.8	11.3
3											4	8	13	4	2			31	2.5	0.5	7.9
4													2	1	6	1	1	11	0.9	0.3	2.8
5														6	5	3		14	1.2	0.4	3.6
6																	1	1	0.1	<0.1	0.2
7														1				1	0.1	<0.1	0.2
8																	1	1	0.1	<0.1	0.2
11																1		1	0.1	<0.1	0.2
Total	17	35	35	80	22			2	34	61	16	25	31	12	13	5	3	391			
(\%)	4.4	8.9	8.9	20.5	5.6			0.5	8.7	15.6	4.1	6.4	7.9	3.1	3.3	1.3	0.8				100

nwd2gn.d17, nwd2hsba.d17

Table 14. Population assessment for hybrid striped bass based on fall gill net sampling at Rough River Lake from 1999-2017 (scoring based on statewide assessment).

	CPUE (excluding age 0)	Mean length age 2+ at capture	CPUE ≥ 15.0 in	CPUE age 1	Instantaneous mortality (z)	Annual mortality $(A) \%$	Total score	Assessment rating
2017	$16.8(3)$	$18.5(4)$	$16.7(4)$	$8.2(4)$	0.635	47.0	15	Excellent
2016	$22.3(3)$	$17.6(3)$	$21.0(4)$	$4.8(3)$	0.523	40.7	13	Good
2014	$43.8(4)$	$16.8(2)$	$32.6(4)$	$14.2(4)$	0.457	36.7	14	Excellent
2012	$35.1(4)$	$16.7(2)$	$25.1(4)$	$11.6(4)$	0.717	51.2	14	Excellent
2010	$60.2(4)$	$16.8(2)$	$34.5(4)$	$28.9(4)$	0.525	40.8	14	Excellent
2008	$25.1(4)$	$16.3(1)$	$19.3(4)$	$6.3(3)$	0.544	42.0	12	Good
2006	$23.7(4)$	$16.9(2)$	$14.5(4)$	$8.9(4)$	0.447	36.1	14	Excellent
2003	$33.9(4)$	$16.5(2)$	$30.9(4)$	$3.1(2)$	0.680	49.8	12	Good
2001	$29.9(4)$	$15.9(1)$	$16.8(4)$	$13.1(4)$			13	Good
1999	$26.4(4)$	$16.5(2)$	$18.5(4)$	$8.1(4)$			14	Excellent

Table 15. Length frequency and CPUE (fish/nn) for channel catfish collected in 12 net-nights of sampling at Rough River Lake during November 2017.

Species	Inch class																Total	CPUE	SE
	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25			
Channel catfish	1	1	1	6	1	3	2	4	6	8	9	4	3	5	1	1	56	4.7	0.9

Table 16. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Rough River Lake during November 2017. Standard errors are in parentheses.

	Length group						
	$11.0-15.9 \mathrm{in}$		$16.0-23.9 \mathrm{in}$		≥ 24.0 in		
Species	No.	Wr	No.	Wr	No.	Wr	
Channel catfish	12	$83(3)$	41	$90(1)$	2	$103(3)$	

nwd2gn.d17

Table 17. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 31 May 2017.

	Site location					
	Lower		Middle		Upper	
Depth (ft.)	Temp	DO	Temp	DO	Temp	DO
Surface	26.0	12.9	27.2	11.9	27.6	14.7
2	25.8	12.8	27.1	11.2	26.0	16.8
4	25.5	13.6	25.8	12.9	24.9	14.0
6	25.2	13.6	25.6	12.0	23.9	11.8
8	24.6	13.7	24.4	9.2	19.9	4.0
10	23.4	8.8	23.2	5.9	19.1	4.0
12	22.5	4.2	21.7	3.7	17.8	4.4
14	21.7	2.2	20.7	3.5	17.5	4.6
16	21.3	1.4	20.1	3.5	17.4	4.7
18	20.9	1.0	19.8	3.4	17.3	4.9
20	20.5	0.7	19.1	3.2	17.2	5.0
22						
25	19.6	0.7	18.8	2.9	17.2	5.0
26						
28			Depth 29		Depth 25	
30	18.0	0.7				
32						
34						
36						
38						
40						
45	Depth 48 '					
50						

Table 18. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 14 June 2017.

	Site Location					
	Lower		Middle		Upper	
Depth (ft.)	Temp	DO	Temp	DO	Temp	DO
Surface	29.1	7.9	30.3	8.7	29.6	10.3
2	29.0	7.8	29.5	8.8	29.4	9.7
4	29.0	7.8	28.7	9.0	28.8	10.9
6	29.0	7.8	27.4	8.2	28.4	10.4
8	28.0	7.8	26.5	7.2	26.3	9.4
10	26.2	6.9	25.9	5.7	24.3	5.4
12	24.9	4.0	24.3	1.7	21.3	3.9
14	23.7	1.0	23.5	0.9	19.5	3.0
16	22.8	0.4	21.8	0.6	19.4	2.6
18					19.1	1.9
20	20.8	0.4	19.6	0.5	18.9	1.4
22						
25	19.7	0.4	18.8	0.6	18.3	0.7
26						
28				Depth 30		
30						
32						
34						
36						
40						
45	Depth 45					
50						

Table 19. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 18 July 2017.

	Site location					
	Lower		Middle		Upper	
Depth (ft.)	Temp	DO	Temp	DO	Temp	DO
Surface	30.4	7.0	31.0	6.6	31.0	8.8
2	30.5	6.6	30.6	6.9	30.6	9.0
4	30.3	6.8	30.2	7.0	30.3	8.9
6	30.2	6.7	30.2	6.7	30.1	8.1
8	30.1	6.8	29.9	5.2	29.7	7.6
10	29.7	6.5	29.5	4.0	28.6	6.4
12	29.0	3.9	28.5	2.7	25.6	4.6
14	27.4	1.4	27.6	2.1	22.8	4.3
16	26.4	0.7	25.7	1.6	21.7	4.0
18	25.6	0.6	24.3	0.9	20.9	3.4
20	25.0	0.6	22.4	0.3	20.6	2.5
22					20.5	2.5
25	23.8	0.6	21.1	0.4		
26					20.2	1.3
28						
30				Depth 31		Depth 26.5^{\prime}
32						
34						
36						
38						
40						
45	Depth 55'					
50						

Table 20. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 8 September 2017.

	Site location					
	Lower		Middle		Upper	
Depth (ft.)	Temp	DO	Temp	DO	Temp	DO
Surface	24.3	4.6	24.5	6.2	24.1	10.1
2	24.1	4.6	24.4	6.4	22.5	11.3
4	24.1	4.6	23.8	6.4	22.1	9.9
6	24.0	4.4	23.7	6.3	22.0	10.1
8	24.0	4.4	23.7	6.3	21.7	9.9
10	24.0	4.5	23.7	6.3	21.7	8.5
12	24.0	4.6	23.7	6.2	18.6	5.2
14	24.0	4.6	23.6	6.2	18.2	5.1
16	24.0	4.6	23.4	5.4	17.7	5.0
18	24.0	4.5	22.9	3.9	17.6	5.1
20	24.0	4.6	20.8	1.9	17.5	5
22	24.0	4.3	20.2	1.7	17.5	4.6
25	24.0	4.4	19.9	1.7	17.5	3.7
26	24.0	4.3	19.9	1.6		
28	24.0	4.2				
30	24.0	4.2	19.8	1.5		
32	24.0	3.9	Depth $30 '$		Depth 24 '	
34	23.9	2.7				
36	23.2	0.4				
38	22.8	0.3				
40	22.3	0.2				
45	Depth 45					
50						

Table 21. Length frequency and CPUE (fish/hr) of largemouth bass collected during 2.5 hours of 30 -minute diurnal electrofishing at Lake Malone in April 2017.

Species	Inch class																				Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	3	8	10	9	5	19	16	23	22	35	38	39	23	10	14	14	18	8	4	2	320	128.0	16.8

Table 22. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Lake Malone 1999-2017.

Year	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	SE										
2017	14.0	3.2	32.0	6.8	44.8	8.1	37.2	9.2	5.6	1.3	128.0	16.8
2015	18.8	2.7	81.6	7.7	60.8	5.3	42.8	7.2	8.4	1.2	204.0	17.2
2014	9.6	1.3	44.4	9.6	23.2	4.6	29.8	3.3	5.0	0.6	107.0	16.7
2012	46.4	18.4	123.6	18.1	48.8	10.9	48.8	10.3	2.8	1.0	267.6	44.5
2011	45.6	10.3	56.0	7.3	35.2	7.7	34.4	6.8	4.0	1.1	171.2	26.8
2010	37.2	8.8	49.6	5.0	49.6	5.4	62.0	7.1	3.6	1.6	198.4	16.3
2009	10.0	1.4	29.6	4.4	51.2	7.6	37.2	3.6	5.6	0.4	128.0	11.7
2008	18.8	6.5	78.8	6.6	77.2	5.0	43.6	8.1	6.4	1.5	218.4	12.4
2007	29.2	4.0	80.4	10.4	30.8	2.0	37.6	10.3	3.6	1.3	178.0	17.8
2006	31.6	3.7	81.6	14.3	22.4	2.1	28.0	5.9	5.2	1.6	163.6	19.8
2005	32.4	4.8	69.2	14.3	32.0	8.7	53.6	5.7	8.4	1.2	187.2	30.1
2004	28.4	3.9	53.6	5.7	26.4	4.2	53.2	3.9	6.0	1.6	161.6	12.8
2003	57.0	3.3	76.5	6.8	35.0	5.0	57.5	4.9	9.5	2.8	226.0	12.1
$2002{ }^{\text {a }}$	8.6	3.3	43.4	5.0	43.4	8.5	41.7	7.6	8.0	3.0	137.1	17.5
$2001{ }^{\text {a }}$	18.0	8.1	66.0	12.0	50.0	8.0	31.3	6.3	0.7	0.7	165.3	15.6
$2000^{\text {a }}$	13.3	3.4	46.0	4.2	51.3	7.8	24.0	4.0	2.0	0.9	134.7	14.5
$1999{ }^{\text {a }}$	n / d		48.7	9.8	61.3	7.0	23.3	4.9	2.7	1.3	133.3	12.7

[^5]Table 23. PSD and RSD $_{15}$ values obtained for largemouth bass taken in spring electrofishing samples at Lake Malone, Carpenter Lake, Old and New Kingfisher lakes, Mauzy Lake and Washburn Lake during 2017; 95\% confidence intervals are in parentheses.

Lake	Species	No. ≥ 8.0 in	PSD	RSD_{15}
Malone	Largemouth	285	$72(\pm 5)$	$33(\pm 5)$
Mauzy	Largemouth	198	$14(\pm 11)$	$5(\pm 2)$
Carpenter	Largemouth	126	$74(\pm 8)$	$14(\pm 6)$
New Kingfisher	Largemouth	34	$97(\pm 6)$	$68(\pm 17)$
Old Kingfisher	Largemouth	25	$96(\pm 8)$	$60(\pm 20)$
Washburn	Largemouth	133	$14(\pm 6)$	$2(\pm 2)$

nwd3psd.d17
nwd4psd.d17
nwd5psd.d17
nwd6psd.d17
nwd7psd.d17
nwd8psd.d17

Table 24. Population assessment for largemouth bass based on spring electrofishing at Lake Malone from 2001-2017 (scoring based on statewide assessment).

Year	$\begin{gathered} \text { Mean length } \\ \text { age-3 } \\ \text { at capture } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous Mortality (z)	Annual Mortality (A)\%	Total score	Assessment Rating
2017		12.8 (1)	44.8 (3)	37.2 (4)	5.6 (4)			≥ 13	Good
2015	10.8 (3)*		60.8 (4)	42.8 (4)	8.4 (4)			≥ 16	G-E
2014		7.8 (1)	23.2 (2)	29.8 (3)	5.0 (4)			≥ 11	F-G
2012		31.2 (2)	48.8 (3)	48.8 (4)	2.8 (3)			≥ 13	Good
2011		41.2 (2)	35.2 (3)	34.4 (4)	4.0 (4)			≥ 14	G - E
2010	10.4 (2)	15.1 (1)	49.6 (3)	62.0 (4)	3.6 (3)	0.397	32.7	13	Good
2009	10.3 (2)	8.8 (1)	51.2 (4)	37.2 (4)	5.6 (4)	0.293	25.4	15	Good
2008	10.3 (2)	16.4 (2)	77.2 (4)	43.6 (4)	6.4 (4)	0.357	30.0	16	Good
2007	10.3 (2)	29.2 (2)	30.8 (2)	37.6 (4)	3.6 (3)	0.330	28.1	13	Good
2006	11.5 (4)	20.2(2)	22.4 (2)	28.0 (3)	5.2 (4)	0.526	40.9	15	Good
2005	11.5 (4)	19.0 (2)	32.0 (2)	53.6 (4)	8.4 (4)	0.387	32.0	16	Good
2004	11.5 (4)	19.0 (2)	26.4 (2)	53.2 (4)	6.0 (4)	0.365	31.1	16	Good
2003	11.5 (4)	35.0 (2)	35.0 (3)	48.0 (4)	8.5 (4)	0.416	34.1	17	Excellent
2002	11.5 (4)	6.0 (1)	43.4 (3)	41.7 (4)	8.0 (4)			16	Good
2001	12.9 (4)	14.0 (1)	50.0 (4)	31.3 (4)	0.7 (1)			14	Good

*Back calculated from age table

Table 25. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.75 hour of diurnal electrofishing at Mauzy Lake in April 2017.

	Inch class																			Total	CPUE	SE
Species	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	30	27	2	24	80	20	25	34	21	5	4	1	2		2		1	2	1	281	374.7	34.7

Table 26. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Mauzy Lake during spring 1999-2017.

Table 27. Population assessment for largemouth bass based on spring electrofishing at Mauzy Lake from 2001-2017 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2017		78.7 (4)	40.0 (3)	12.0 (2)	5.3 (4)			≥ 14	G - E
2015	10.2 (2)*		20.0 (2)	15.0 (2)	5.0 (4)			≥ 13	Good
2014		40.0 (2)	21.0 (2)	35.0 (4)	13.0 (4)			≥ 13	Good
2013		63.1 (3)	13.3 (1)	34.7 (4)	4.0 (4)			≥ 13	Good
2012	13.6 (4) ${ }^{\text {a }}$	74.0 (3)	20.0 (2)	40.0 (4)	15.0 (4)	0.965	61.9	17	Excellent
2011		61.3 (3)	56.7 (4)	40.0 (4)	10.7 (4)			≥ 16	G - E
2010			21.3 (2)	44.0 (4)	17.3 (4)			≥ 11	F -G
$2009{ }^{\text {b }}$									
2008	12.2 (4)	99.0 (4)	21.0 (2)	83.0 (4)	7.0 (4)	0.466	37.3	18	Excellent
2007	12.2 (4)	21.0 (2)	40.0 (3)	64.0 (4)	0.0 (0)	0.374	31.2	13	Good
2006	10.3 (2)	24.0 (2)	24.0 (2)	60.0 (4)	0.0 (0)	0.755	53.0	10	Fair
2005	10.3 (2)	34.0 (2)	147.0 (4)	21.0 (3)	4.0 (4)			15	Good
2004	10.3 (2)	2.7 (1)	5.3 (1)	6.7 (2)	0.0 (0)	0.884	58.7	6	Poor
$2003{ }^{\text {c }}$	10.3 (2)	86.8 (4)	73.6 (4)	20.8 (3)	2.8 (3)			16	Good
2002	10.3 (2)	25.3 (2)	9.3 (1)	6.7 (2)	1.3 (2)			9	Fair
2001	10.3 (2)	5.3 (1)	26.7 (2)	4.0 (2)	0.0 (0)			7	Poor

${ }^{a}$ Only one age-3 fish
${ }^{\text {b }}$ Lake drawn down for repairs in 2009
${ }^{\text {c }}$ Lake renovated in 2003

* Back calculated age table

Table 28. Length frequency and CPUE (fish/hr) for bluegill and redear sunfish collected during 0.75 hour of electrofishing at Mauzy Lake in April 2017

	Inch class										
Species	1	2	3	4	5	6	7	8	Total	CPUE	SE
Bluegill	4	6	50	68	30	18	10		186	248.0	30.8
Redear sunfish			11	50	21	83	145	28	338	450.7	54.4
nwd4bg.d17											

[^6]Table 29. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (2000-2017) and redear sunfish (2007-2017) collected at Mauzy Lake during spring samples.

Bluegill	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2017	13.3	7.9	197.3	24.4	37.3	9.61	0.0		0.0		248.0	30.8
2015	17.3	12.1	165.3	27.1	44.0	7.1	0.0		0.0		226.7	31.2
2014	10.3	2.3	253.7	55.6	104.0	21.0	0.0		0.0		368.0	69.1
2013	91.2	21.1	417.6	54.0	73.6	11.1	0.0		0.0		582.4	60.9
2012	23.0	7.8	553.0	108.5	55.0	14.3	0.0		0.0		631.0	126.7
2011	182.4	72.9	726.4	144.1	216.0	51.4	121.6	43.3	0.0		1246.4	195.0
2010	238.4	76.5	280.0	41.0	97.6	34.0	0.0		0.0		616.0	74.4
$2009^{\text {a }}$												
$2008{ }^{\text {a }}$												
2007	101.3	11.1	621.3	39.6	38.7	8.9	0.0		0.0		761.3	44.5
2006	96.0	27.9	614.0	137.7	10.0	7.6	0.0		0.0		720.0	163.4
2005	289.7	45.5	596.2	101.3	14.1	5.8	0.0		0.0		900.0	86.6
2004	101.1	18.0	84.6	17.5	64.8	12.0	1.1	1.1	0.0		251.7	36.1
$2003{ }^{\text {b }}$												
2002	9.3	3.5	94.7	19.6	125.3	29.2	1.3	1.3	0.0		230.7	48.0
2001	5.3	3.5	65.3	16.2	137.3	27.9	1.3	1.3	0.0		209.3	40.7
2000	1.3	1.3	52.0	4.0	73.3	5.3	4.0	2.3	0.0		130.7	10.9

Redear	Length group											
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in		Total	
Year	CPUE	SE										
2017	0.0		109.3	22.9	304.0	50.6	37.3	16.2	0.0		450.7	54.4
2015	0.0		140.0	17.4	254.7	53.9	18.7	7.4	0.0		413.3	59.5
2014	1.1	1.1	112.0	19.7	208.0	26.1	27.4	6.0	0.0		348.6	33.1
2013	0.0		72.0	11.0	161.6	26.0	65.6	15.5	0.0		299.2	40.8
2012	0.0		107.0	13.7	39.0	7.6	33.0	8.6	0.0		179.0	21.9
2011	3.2	2.0	8.0	6.2	32.0	32.0	35.2	26.4	0.0		78.4	65.3
2010	0.0		16.0	10.1	240.0	48.3		7.3	0.0		270.4	61.0
$2009{ }^{\text {a }}$												
$2008{ }^{\text {a }}$												
2007	2.7	1.7	41.3	13.1	14.7	3.8	6.7	5.2	0.0		65.3	12.6
${ }^{\text {a }}$ Lake draw n dow n for repairs in 2008-2009												
${ }^{\text {b }}$ Lake ren nw d 4 bg.	ed in 20	${ }^{\text {b }}$ Lake renovated in 2003										

Table 30. PSD and RSD ${ }^{\text {a }}$ values obtained for bluegill and redear sunfish collected in spring electrofishing samples at NWFD state-owned lakes during 2017; 95\% confidence intervals are in parentheses.

Lake	Species	No.	PSD	RSD ${ }^{\text {a }}$
Mauzy	Bluegill	176	$16(\pm 6)$	0
	Redear sunfish	327	$53(\pm 5)$	0
Carpenter	Bluegill	389	$32(\pm 5)$	0
	Redear sunfish	45	$49(\pm 15)$	$20(\pm 12)$
New Kingfisher	Bluegill	352	$9(\pm 3)$	0
	Redear sunfish	22	$31(\pm 20)$	0
Old Kingfisher	Bluegill	478	$24(\pm 4)$	0
	Redear sunfish	19	$16(\pm 17)$	$5(\pm 10)$
Washburn	Bluegill	84	$36(\pm 10$	$17(\pm 8)$
	Redear sunfish	102	$30(\pm 9)$	$2(\pm 2)$
Honeycomb (PWMA)	Bluegill	34	$85(\pm 12)$	$50(\pm 17)$
	Redear sunfish	29	$41(\pm 19)$	$14(\pm 13)$
Lil Gill (PWMA)	Bluegill	26	$65(\pm 19)$	$19(\pm 15)$
	Redear sunfish	45	56 ($\pm 16)$	$2(\pm 4)$

${ }^{\mathrm{a}}$ Bluegill $=\mathrm{RSD}_{8}$, redear $=\mathrm{RSD}_{9}$
nwd4bg.d17
nwd5bg.d17
nwd6bg.d17
nwd7bg.d17
nwd8bg.d17
nwd17bg.d17
nwd18bg.d17

Table 31. Population assessment for bluegill based on spring electrofishing at Mauzy Lake from 2001-2017 (scoring based on statewide assessment).

Year	$\begin{aligned} & \text { Mean length } \\ & \text { age-2 } \\ & \text { at capture } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2017			37.3 (2)	0.0 (1)			≥ 5	P - G
2015	3.4 (1)	≥ 5 (1)	44.0 (2)	0.0 (1)			5	Poor
2014			104.0 (4)	0.0 (1)			≥ 7	F-G
2013			73.6 (3)	0.0 (1)			≥ 5	P-G
2012	4.0 (2)	4-4+ (2)	55.0 (3)	0.0 (1)	0.884	58.7	8	Fair
2011			337.6 (4)	121.6 (4)			≥ 10	G-E
2010			97.6 (4)	0.0 (1)			≥ 7	F-G
$2009{ }^{\text {a }}$								
$2008^{\text {a }}$								
2007	3.3 (1)	4-4+ (2)	38.7 (2)	0.0 (1)	0.642	35.8	6	Poor
2006	3.7 (2)	4-4+(2)	10.0 (1)	0.0 (1)	0.755	53.0	6	Poor
2005	4.3 (2)	2-2+ (4)	14.1 (1)	0.0 (1)			8	Fair
2004	4.3 (2)	2-2+ (4)	65.9 (3)	1.1 (2)			11	Good
$2003{ }^{\text {b }}$								
2002	4.3 (2)	2-2+ (4)	126.7 (4)	1.3 (2)			12	Good
2001	4.3 (2)	2-2+ (4)	138.7 (4)	1.3 (2)			12	Good

Table 32. Population assessment for redear sunfish based on spring electrofishing at Mauzy Lake from 2007-
2017 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	Years to 8.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2017			37.3 (4)	0.0 (1)			≥ 7	F - G
2015	5.9 (2)	≥ 6 (1)	18.7 (4)	0.0 (1)			8	Fair
2014			27.4 (4)	0.0 (1)			≥ 7	F-G
2013			65.6 (4)	0.0 (1)			≥ 7	F-G
2012	7.6 (4)	4-4+ (3)	33.0 (4)	0.0 (1)			12	Good
2011			35.2 (4)	0.0 (1)			≥ 7	F-G
2010			14.4 (3)	0.0 (1)			≥ 6	P-G
$2009{ }^{\text {a }}$								
$2008^{\text {a }}$								
2007	8.2 (4)	3-3+ (4)	6.7 (2)	0.0 (1)	0.790	54.6	11	Good

${ }^{\text {a }}$ Lake drawn down for repairs in 2008-2009.

Table 33. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.75 hours of 15 -minute diurnal electrofishing at Carpenter Lake in April 2017.

Species	Inch class																					Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23			
Largemouth bass	3	3	5	8	5	3	9	6	15	28	31	16	4	3	3	3	1	2	0	1	1	150	200.0	38.6

Table 34. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Carpenter Lake 1999-2017.

	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2017	32.0	2.3	44.0	12.9	100.0	20.8	24.0	4.6	5.3	2.7	200.0	38.6
2016	97.3	31.5	57.3	5.8	65.3	11.4	33.3	5.3	12.0	6.1	254.3	41.9
2015	21.3	5.8	86.7	3.5	12.0	2.3	17.3	2.7	0.0		137.3	4.8
2014	16.0	6.7	131.2	17.6	48.0	13.2	30.4	5.9	12.8	5.4	225.6	37.0
2013	80.0	26.2	138.7	9.6	20.0	4.0	22.7	1.3	5.3	1.3	261.3	38.5
2012	40.0	16.7	74.7	15.0	46.7	7.4	22.7	12.7	1.3	1.3	184.0	46.7
2011	182.7	15.4	166.7	9.6	73.3	13.1	9.3	3.5	4.0	4.0	432.0	30.2
2010	73.3	19.4	198.7	39.6	10.7	5.8	12.0	4.6	2.7		294.7	34.7
2009	102.7	18.7	166.7	26.3	18.7	4.8	8.0	2.3	0.0		296.0	27.2
2008	136.0	17.7	229.0	28.8	9.0	2.5	11.0	4.1	1.0	1.0	385.0	50.3
2007	45.3	7.4	128.0	24.3	12.0	2.3	10.7	3.5	1.3		196.0	31.8
2006	97.3	12.0	134.7	8.7	24.0	1.3	9.3	2.3	0.0		265.3	55.4
2005	157.3	3.5	165.3	48.6	30.7	3.5	2.7	1.3	0.0		356.0	54.6
2004	80.0	16.7	128.0	28.0	22.7	3.5	21.3	8.7	2.7		252.0	47.7
2003	181.3	49.3	97.3	11.4	18.7	4.8	36.0	12.2	1.3		333.3	63.4
$2002{ }^{\text {a }}$	12.0	4.6	52.0	4.6	12.0	0.0	21.3	3.5	0.0		97.3	4.8
$2001{ }^{\text {a }}$	14.7	8.7	29.3	5.3	90.7	9.3	66.7	2.7	1.3		201.3	17.6
$2000^{\text {a }}$	2.7	1.3	45.3	7.1	48.0	2.3	0.0				96.0	8.3
1999 ${ }^{\text {a }}$	1.3	1.3	142.7	18.5	29.3	13.5	1.3	1.3			174.7	31.0

Table 35. Population assessment for largemouth bass based on spring electrofishing at Carpenter Lake from 2001-2017 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2017		34.7 (3)	100.0 (4)	24.0 (3)	5.3 (4)			≥ 15	G-E
2016		97.3 (4)	65.3 (4)	33.3 (4)	12.0 (4)			≥ 17	Excellent
2015	10.6 (2)*		12.0 (1)	17.3 (3)	0.0 (1)			≥ 8	P - F
2014		16.0 (2)	48.0 (4)	30.4 (4)	12.8 (4)			≥ 15	G-E
2013		69.3 (4)	20.0 (2)	22.7 (3)	5.3 (4)			≥ 14	G - E
2012		12.0 (2)	46.7 (4)	22.7 (3)	1.3 (2)			≥ 12	F-G
2011		182.7 (4)	73.3 (4)	9.3 (2)	4.0 (4)			≥ 15	G-E
2010	10.1 (1)	72.0 (4)	10.7 (1)	12.0 (2)	2.7 (3)	0.438	35.5	11	Fair
2009	10.3 (2)	97.9 (4)	18.7 (2)	8.0 (2)	0.0 (1)			11	Fair
2008	10.3 (2)	120.3 (4)	9.0 (1)	11.0 (2)	1.0 (2)	0.561	42.9	11	Fair
2007	10.3 (2)	39.9 (3)	12.0 (1)	10.7 (2)	1.3 (2)	0.560	42.9	10	Fair
2006	11.6 (4)	78.7 (4)	24.0 (2)	9.3 (2)	0.0 (1)	1.160	68.7	13	Good
2005	11.6 (4)	132.0 (4)	30.7 (3)	2.7 (1)	0.0 (1)			13	Good
2004	11.6 (4)	56.0 (4)	22.7 (2)	21.3 (3)	2.7 (3)	1.155	68.5	16	Good
2003	11.6 (4)	162.7 (4)	54.7 (4)	36.0 (4)	1.3 (2)	0.943	61.1	18	Excellent
2002	11.6 (4)	12.0 (2)	12.0 (1)	21.3 (3)	0.0 (1)			11	Fair
2001	11.6 (4)	8.0 (2)	90.7 (4)	66.7 (4)	1.3 (2)			16	Good

* Back calculated age table

Table 36. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected during 0.75 hour of electrofishing at Carpenter Lake in April 2017.

Species	Inch class										Total	CPUE	SE
	1	2	3	4	5	6	7	8	9	10			
Bluegill	2	65	87	124	50	88	40				456	608.0	84.3
Redear sunfish			7	14	1	8	5	8	8	1	52	69.3	19.8

Table 37. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (1999-2017) and redear sunfish (2010-2017) collected at Carpenter Lake during spring samples.

Bluegill	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2017	89.3	27.9	348.0	38.8	170.7	22.0	0.0		0.0		608.0	84.3
2016	8.0	3.6	133.3	30.5	156.0	25.0	0.0		0.0		297.3	52.5
2015	2.7	1.7	125.3	17.9	220.0	52.9	0.0		0.0		348.0	65.5
2014	5.3	4.0	352.0	34.6	332.0	34.1	1.3		0.0		690.7	49.7
2013	20.0	9.2	138.7	27.1	312.0	42.5	0.0		0.0		470.7	70.8
2012	1.6	1.6	144.0	31.9	147.2	22.3	0.0		0.0		292.8	49.7
2011	16.0	10.4	400.0	157.5	180.8	50.5	0.0		0.0		596.8	214.4
2010	10.7	6.4	100.0	18.6	101.3	19.0	0.0		0.0		212.0	30.8
2009	17.3	9.6	124.0	24.4	140.0	17.9	0.0		0.0		281.3	42.9
2008	0.0		88.0	18.8	150.0	50.7	0.0		0.0		238.0	68.5
2007	2.7	2.7	61.3	17.7	168.0	38.5	1.3	1.3	0.0		233.3	9.1
2006	1.3	1.3	57.3	10.0	102.7	12.1	0.0		0.0		161.3	21.3
2005	12.1	9.8	190.1	17.1	98.9	6.8	18.7	9.0	0.0		319.8	23.1
2004	12.3	4.6	26.2	7.1	46.2	11.4	1.5	1.5	0.0		86.2	20.4
2003	7.7	2.8	102.6	23.0	47.4	13.2	3.9	1.7	0.0		161.5	34.1
2002	2.3		8.1		17.2		1.2		0.0		28.7	0.0
2001			198.7	74.7	152.0	22.7	41.3	12.7	0.0		392.0	108.9
2000			4.0	2.3	10.7	4.8	12.0	6.1	0.0		26.7	9.6
1999			10.7	2.6	82.7	10.9	12.0	8.0	0.0		105.3	18.0

Redear	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	Std. err.										
	0.0		29.3	19.0	17.3	5.2	22.7	10.0	1.3	1.3	69.3	19.8
2016	0.0		1.3	1.3	8.0	2.9	12.0	6.4	2.7	1.7	21.3	7.9
2015	0.0		2.7	2.7	10.7	3.4	40.0	9.9	1.3	1.3	53.3	11.4
2014	0.0		0.0		10.7	4.0	72.0	11.7	0.0		82.7	11.4
2013	0.0		1.3	1.3	9.3	2.5	12.0	2.7	0.0		22.7	2.5
2012	0.0		8.0	3.6	41.6	20.3	6.4	3.0	0.0		56.0	25.2
2011	0.0		32.0	24.4	28.8	17.6	16.0	5.7	0.0		76.8	43.1
2010	0.0		2.7	2.7	16.0	4.6	9.3	2.5	0.0		28.0	6.5

Table 38. Population assessment for bluegill based on spring electrofishing at Carpenter Lake from 2001-2016 (scoring based on statewide assessment).

Year	Mean length age-2 at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality $\text { (A) } \%$	Total score	Assessment rating
2017			170.7 (4)	0.0 (1)			≥ 7	F-G
2016			156.0 (4)	0.0 (1)			≥ 7	F-G
2015	4.9 (4)	4-4+ (2)	220.0 (4)	0.0 (1)			11	Good
2014			333.3 (4)	1.3 (2)			≥ 8	F-E
2013			312.0 (4)	0.0 (1)			≥ 7	F-G
2012			147.2 (4)	0.0 (1)			≥ 7	F-G
2011			180.8 (4)	0.0 (1)			≥ 7	F-G
2010	4.9 (4)	3-3+ (3)	101.3 (4)	0.0 (1)	0.615	45.9	12	Good
2009	4.6 (3)	3-3+ (3)	140.0 (4)	0.0 (1)			11	Good
2008	4.6 (3)	3-3+ (3)	150.0 (4)	0.0 (1)	0.571	43.9	11	Good
2007	4.6 (3)	3-3+ (3)	169.3 (4)	1.3 (2)	0.386	32.0	12	Good
2006	5.6 (4)	2-2+ (4)	84.6 (3)	0.0 (1)	1.657	80.9	12	Good
2005	5.6 (4)	2-2+ (4)	117.6 (4)	18.7 (4)			16	Excellent
2004	5.6 (4)	2-2+ (4)	47.7 (2)	1.5 (2)			12	Good
2003	5.6 (4)	2-2+ (4)	53.3 (2)	4.0 (3)	1.427	76.0	13	Good
2002	5.6 (4)	2-2+ (4)	18.4 (1)	1.2 (2)			11	Good
2001			145.7 (4)	41.3 (4)			≥ 10	G - E

Table 39. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hour of 7.5 -minute diurnal electrofishing at New Kingfisher Lake in April 2017.

Species	Inch class															Total	CPUE	SE
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Largemouth bass	10	11					1	2	3	5	13	6	1	1	2	55	146.7	43.7

Table 40. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at New Kingfisher Lake during spring samples 1999-2017.

Length group

	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		Total	
Year	CPUE	SE								
2017***	56.0	21.2	2.7	2.7	26.7	2.7	61.3	30.1	146.7	43.7
2012-2016	No sampling									
2011	213.3	75.9	128.0	28.1	24.0	4.6	16.0	8.0	381.3	99.6
2010	178.7	48.5	112.0	25.5	34.7	9.6	16.0	8.0	341.3	84.2
2009	109.3	37.3	24.7	2.7	21.3	2.7	0.0		165.3	37.3
2008**	282.7	37.3	240.0	33.3	56.0	9.2	0.0		578.7	71.8
2007	98.7	27.8	392.0	92.7	21.3	2.7	2.7	2.7	514.7	112.8
2006	189.3	14.1	333.3	46.3	10.7	2.7	0.0		533.3	62.9
2005	287.2	97.4	428.2	53.5	41.0	6.8	12.8	5.1	769.2	141.2
2004	161.5	45.1	243.6	45.6	12.8	6.8	2.6	2.6	420.5	92.5
2003	105.6	28.2	425.0	55.5	8.3	4.8	0.0		538.9	59.8
2002*	116.3		258.1		4.7		0.0		379.1	
2001*	89.7		364.1		20.5		2.6		476.9	
2000*	137.8		493.3		24.4		6.7		662.2	
1999*			315.6		17.8		2.2		335.6	

***First standardized sample since renovation
**Major fish kill 9/5/08
*Nocturnal samples
nwd6psd.d17

Table 41. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.333 hour of diurnal electrofishing at New Kingfisher Lake in October 2017.

| | 6 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Total | CPUE | SE |
| :--- |
| Species | | | | | | | | | | | | | | | | | | |
| Largemouth bass | 2 | 6 | 6 | 3 | 1 | 1 | 1 | 1 | 1 | 0 | 3 | 3 | 2 | 1 | 31 | 93.10 | 0.00 | |
| nwd6Imb.d17 | | | | | | | | | | | | | | | | | | |

Table 42. Population assessment for largemouth bass based on spring electrofishing at New Kingfisher Lake from 2001-2017 (scoring based on statewide assessment).

Year	$\begin{gathered} \text { Mean length } \\ \text { age-3 } \\ \text { at capture } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \text { age } 1 \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality $\text { (A) } \%$	Total score	Assessment rating
2017			26.7 (3)	61.3 (4)	0.0 (1)			≥ 10	F-G
2012-2016	No sampling - Renovation								
2011		192.0 (4)	24.0 (2)	16.0 (2)	0.0 (1)			≥ 10	F-G
2010			34.7 (2)	16.0 (2)	0.0 (1)			≥ 7	P-G
2009	10.5 (2)	77.3 (4)	21.3 (2)	0.0 (1)	0.0 (1)			10	Fair
2008	10.5 (2)	250.7 (4)	56.0 (4)	0.0 (1)	0.0 (1)	0.562	43.0	12	Fair
2007	10.5 (2)	96.0 (4)	21.3 (2)	2.7 (1)	0.0 (1)	0.608	39.2	10	Fair
2006	11.0 (3)	149.3 (4)	10.7 (1)	0.0 (1)	0.0 (1)	1.335	73.7	10	Fair
2005	11.0 (3)	248.7 (4)	41.0 (3)	12.8 (2)	0.0 (1)			13	Good
2004	11.0 (3)	94.9 (4)	12.8 (1)	2.6 (1)	0.0 (1)	1.230	70.8	10	Fair
2003	11.0 (3)	100.0 (4)	8.3 (1)	0.0 (1)	0.0 (1)	1.330	73.6	10	Fair
2002	11.0 (3)	116.3 (4)	4.7 (1)	0.0 (1)	0.0 (1)			10	Fair
2001	11.0 (3)	89.7 (4)	20.5 (2)	2.6 (1)	0.0 (1)			11	Fair

Table 43. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected in 0.375 hours of electrofishing at New Kingfisher Lake in April 2017.

Species	Inch class							Total	CPUE	SE
	2	3	4	5	6	7	8			
Bluegill	7	28	120	172	31	1		359	957.3	222.3
Redear Sunfish				3	12	4	3	22	58.7	32.4

nwd6bg.d17

Table 44. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at New Kingfisher Lake during spring samples 1999-2017.

Year	Length group										Total	
	< 3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
	CPUE	SE										
2017	18.7	5.3	853.3	203.7	85.3	28.2	0.0		0.0		957.3	222.3
2012-2016	No sampling											
2011	8.0	4.6	338.7	37.3	413.3	97.6	0.0		0.0		760.0	92.3
2010	130.7	27.1	274.7	30.8	80.0	21.2	0.0		0.0		485.3	47.2
2009	194.7	21.3	338.7	35.3	74.7	30.1	0.0		0.0		608.0	53.3
2008	42.7	5.3	242.7	65.5	37.3	14.9	0.0		0.0		322.7	85.2
2007	5.3	2.7	69.3	26.3	45.3	5.3	0.0		0.0		120.0	33.3
2006	16.0	13.5	104.0	33.8	14.0	2.0	0.0		0.0		134.0	44.0
2005	0.0		53.9	7.7	12.8	6.8	10.3	6.8	0.0		76.9	8.9
2004	0.0		15.4	8.9	23.1	11.8	0.0		0.0		38.5	4.4
2003	12.8	6.8	56.4	2.6	15.4	7.7	5.1	2.6	0.0		89.7	5.1
2002			9.3		62.8		7.0		0.0		79.1	0.0
2001			61.5		66.7		7.7		0.0		135.9	0.0
2000			31.1		66.7		11.1		0.0		109.0	0.0
1999			6.7		20.0		4.4		0.0		31.1	0.0
nwd6bg.d17												

Table 45. Population assessment for bluegill based on spring electrofishing at New Kingfisher Lake from 2001-2017 (scoring based on statewide assessment).

Year	Mean length age 2+ at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality $\text { (A) } \%$	Total score	Assessment rating
2017			85.3 (3)	0.0 (1)			≥ 6	P - G
2012-2016	No sampling							
2011			413.3 (4)	0.0 (1)			≥ 7	F-G
2010			80.0 (4)	0.0 (1)			≥ 7	F-G
2009	4.3 (2)	3-3+ (3)	74.7 (3)	0.0 (1)			9	Fair
2008	4.3 (2)	3-3+ (3)	37.3 (2)	0.0 (1)	2.140	88.2	8	Fair
2007	4.3 (2)	3-3+(3)	45.3 (2)	0.0 (1)	0.574	42.6	8	Fair
2006	5.7 (4)	2-2+ (4)	14.0 (1)	0.0 (1)	1.587	79.5	10	Good
2005	5.7 (4)	2-2+(4)	23.1 (1)	10.3 (3)			12	Good
2004	5.7 (4)	2-2+(4)	23.1 (1)	0.0 (1)			10	Good
2003	5.7 (4)	2-2+ (4)	21.6 (1)	5.4 (2)	0.865	57.9	11	Good
2002	5.7 (4)	2-2+ (4)	69.8 (3)	7.0 (2)			13	Good
2001	5.7 (4)	2-2+ (4)	64.4 (3)	6.7 (2)			13	Good

Table 46. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.317 hour of diurnal electrofishing at Old Kingfisher Lake in April 2017.

Species	Inch class																	Total	CPUE	SE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	14	28	4	1	1				2	3	4	6	3	2	1	2	1	72	227.1	0.0

Table 47. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Old Kingfisher Lake during spring sampling 2017.

	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
*2017	148.3	0.0	3.2	0.0	28.4	0.0	47.3	0.0	3.2	0.0	227.1	0

*First standardized sample since renovation
nwd7psd.d17

Table 48. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.307 hours of diurnal electrofishing at Old Kingfisher Lake in October 2017.

Species	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Total	CPUE	SE
Largemouth bass	3	1	9	2	1	0	0	0	1	1	1	1	3	0	1	24	78.2	0.0

Table 49. Population assessment for largemouth bass based on spring electrofishing at Old Kingfisher Lake for 2017 (scoring based on statewide assessment).

Year	Mean length age 3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age } 1 \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2017			28.4 (3)	47.3 (4)	3.2 (3)			≥ 12	F-E

Table 50. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected in 0.375 hours of electrofishing at Old Kingfisher Lake in April 2017.

Species	Inch class									Total	CPUE	SE
	1	2	3	4	5	6	7	8	9			
Bluegill	1	21	27	112	223	115	1			500	1333.3	178.0
Redear sunfish					4	12	2		1	19	50.7	14.1

Table 51. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Old Kingfisher Lake during spring sampling 2017.

Year	Length group										Total	
	< 3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
	CPUE	SE										
2017	58.7	14.1	965.3	100.6	309.3	72.2	0.0		0.0		1333.3	178.0

Table 52. Population assessment for bluegill based on spring electrofishing at Old Kingfisher Lake for 2017 (scoring based on statewide assessment).

Year	Mean length age 2+ at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) $\%$	Total score	Assessment rating
2017			309.3 (4)	0.0 (1)			≥ 7	F-G

Table 53. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hours of 7.5 -minute diurnal electrofishing runs at Washburn Lake in April 2017.

Species	Inch class																			Total	CPUE	SE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	7	40	32	18	2	4	43	66	15	1							1		1	230	613.3	46.3

Table 54. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Washburn Lake during spring samples 2001-2017.

Year	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	SE										
2017	258.7	31.4	306.7	9.6	42.7	7.1	5.3	2.7	5.3	2.7	613.3	46.3
2015	66.7	22.8	253.3	61.5	8.0	4.6	10.7	2.7	8.0	4.6	338.7	44.9
2014	90.7	7.1	333.3	30.8	8.0	4.6	10.7	2.7	5.3	2.7	442.7	23.3
2012	213.3	39.8	218.7	46.3	16.0	0.0	8.0	0.0	5.3	2.7	456.0	77.7
2011	205.3	44.9	133.3	35.3	2.7	2.7	5.3	2.7	0.0		346.7	78.6
2010	96.0	28.1	80.0	16.7	5.3	5.3	2.7	2.7	2.7	2.7	184.0	45.5
2009	104.0	60.0	82.7	39.8	0.0		10.7	5.3	0.0		197.3	104.3
2008	170.7	42.9	61.3	21.8	16.0	0.0	13.3	9.6	0.0		261.3	59.6
2007	133.3	35.3	80.0	4.6	16.0	4.6	21.3	9.6	0.0		250.7	30.8
2006	96.0	9.2	98.7	39.3	64.0	0.0	18.7	5.3	2.7	2.7	277.3	25.4
2005	43.6	11.2	146.2	16.0	28.2	5.1	2.6	2.6	2.6	2.6	220.5	25.3
2004	46.2	4.4	353.9	49.5	0.0		0.0		0.0		400.0	51.2
2003	123.1	33.5	438.5	49.5	0.0		0.0		0.0		561.5	52.4
2002	50.0		321.4		0.0		0.0		0.0		371.4	0.0
2001	260.0		8.0		0.0		0.0		0.0		268.0	0.0

[^7]Table 55. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hours of diurnal electrofishing at Washburn Lake in October 2017.

	Inch class																	Total	CPUE	SE
Species	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Largemouth bass	11	7	2	7	19	12	6	12	4	1							1	82	218.70	2.70

Table 56. Number of fish and relative weight (Wr) for length groups of largemouth bass collected during electrofishing samples at Washburn Lake in October 2017.
Standard errors are in parentheses.

Species	Length group					
	8.0-11.9 in		12.0-14.9 in		≥ 15.0 in	
	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	44	84 (1)	17	80 (20)	1	101

Table 57. Mean back calculated lengths (in) at each annulus for largemouth bass collected at Washburn Lake
in October 2017.

Year		Age					
class	No.	1	2	3	4	5	
2016	30	6.4					
2015	8	7.1	10.4				
2014	3	6.1	9.6	10.7			
2013	1	6.1	8.5	9.8	11.4		
2012	1	6.1	8.8	10.3	11.3	12.4	
Mean		6.5	9.9	10.4	11.4	12.4	
No.	43	43	13	5	2	1	
Smallest		3.9	8.5	9.7	11.3	12.4	
Largest		8.6	11.1	11.4	11.4	12.4	
SE		0.1	0.2	0.3	0.1		
95\% CI (土)		0.3	0.5	0.7	0.1		

nwd8Imba.d17

Table 58. Age-frequency and CPUE (fish/hr) per inch class of largemouth bass collected in 0.375 hours of electrofishing at Washburn Lake in October 2017.

	Inch class												
Age	5	6	7	8	9	10	11	12	13	No.	CPUE	SE	Age (\%)
0	11	7								18	48.0		22.5
1			2	7	19	11	1			40	105.4	7.5	50.0
2							4	6	2	12	32.8	6.5	15.0
3						1	1	3		5	13.8	3.1	6.3
4								3		3	8.0	3.1	3.7
5									2	2	5.3	1.3	2.5
Total	11	7	2	7	19	12	6	12	4	80			
$(\%)$	13.8	8.8	2.5	8.8	23.8	15.0	7.5	15.0	5.0				100

nwd8Imb.d17, nwd8Imba.d17

Table 59. Population assessment for largemouth bass based on spring electrofishing at Washburn Lake 2003-2017 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2017	10.4 (2)	258.7 (4)	42.7 (3)	5.3 (1)	5.3 (4)	0.939	60.9	14	Good
2015			8.0 (1)	10.7 (2)	8.0 (4)			≥ 9	F-G
2014		90.7 (4)	8.0 (1)	10.7 (2)	5.3 (4)			≥ 12	F-G
2012			16.0 (1)	8.0 (2)	5.3 (4)			≥ 9	F-G
2011			2.7 (1)	5.3 (2)	0.0 (1)			≥ 6	P-F
2010	10.7 (2)	96.0 (4)	5.3 (1)	0.0 (1)	0.0 (1)	0.819	55.9	9	Fair
2009	13.1 (4)	99.7 (4)	0.0 (1)	10.7 (2)	0.0 (1)			12	Fair
2008	13.1 (4)	165.9 (4)	16.0 (1)	13.3 (2)	0.0 (1)	1.117	67.3	12	Fair
2007	13.1 (4)	131.2 (4)	16.0 (1)	21.3 (3)	0.0 (1)	0.944	61.1	13	Good
2006	11.2 (3)	94.7 (4)	64.0 (4)	18.7 (3)	2.7 (3)	0.669	48.8	17	Excellent
2005	11.2 (3)	41.0 (3)	28.2 (2)	2.6 (1)	2.6 (3)			12	Good
2004	11.2 (3)	48.3 (3)	0.0 (1)	0.0 (1)	0.0 (1)			9	Fair
2003	11.2 (3)	131.6 (4)	0.0 (1)	0.0 (1)	0.0 (1)			10	Fair

Table 60. Length frequency and CPUE (fish/hr) for bluegill and redear sunfish
collected in 0.375 hours of electrofishing at Washburn Lake in May 2017.

Species	Inch class									Total	CPUE	SE
	1	2	3	4	5	6	7	8	9			
Bluegill	4	23	39	11	4	3	13	14		111	296.0	8.0
Redear			2	30	35	6	11	18	2	104	227.3	29.7

Table 61. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (2001-2017) and redear sunfish (2012-2017) collected at Washburn Lake during spring samples.

Bluegill	Length group										Total	
	< 3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2017	72.0	25.7	144.0	25.7	42.7	19.2	37.3	20.8	0.0		296.0	8.0
2015	26.0	13.6	152.0	18.2	122.0	17.4	8.0	4.6	0.0		308.0	20.8
2014	0.0		181.3	64.1	133.3	9.6	8.0	4.6	0.0		322.7	55.9
2013	10.7	7.1	101.3	16.2	109.3	58.5	2.7	2.7	0.0		224.0	46.2
2012	30.0	11.9	158.0	27.6	64.0	23.3	22.0	6.8	0.0		274.0	49.1
2011	24.0	10.7	93.3	16.5	33.3	10.4	5.3	2.7	0.0		156.0	19.6
2010	53.3	16.2	152.0	57.9	32.0	0.0	0.0		0.0		237.3	41.7
2009	60.0	15.1	80.0	19.0	138.0	10.0	0.0		0.0		278.0	20.8
2008	2.7	2.7	152.0	37.8	168.0	48.7	0.0		0.0		322.7	69.5
2007	58.7	14.1	245.3	37.1	40.0	12.2	0.0		0.0		344.0	54.5
2006	58.7	50.7	138.7	39.3	32.0	16.0	0.0		0.0		229.3	81.6
2005	161.5	31.9	155.8	18.9	9.6	3.7	0.0		0.0		326.9	39.3
2004	80.8	7.4	48.1	3.7	11.5	5.0	21.2	10.6	0.0		161.5	13.0
2003	7.7	3.1	71.2	12.7	113.5	39.9	0.0		0.0		192.3	39.9
2002			46.5		102.3		0.0		0.0		148.8	0.0
2001			28.0		64.0		4.0		0.0		96.0	0.0

* Washburn Lake renovated summer 1999 and restocked spring 2000
nwd8bg.d17

Redear Year	Length group											
	< 3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in		Total	
	CPUE	SE										
2017	0.0		178.7	57.8	45.3	9.6	53.3	29.3	0.0		227.3	29.7
2015	0.0		44.0	12.4	74.0	23.0	94.0	29.5	0.0		212.0	55.1
2014	0.0		5.3	2.7	85.3	14.9	98.7	30.8	0.0		189.3	39.8
2013	0.0		96.0	20.1	85.3	2.7	0.0		0.0		181.3	22.8
2012	0.0		28.0	12.4	2.0	2.0	0.0		0.0		30.0	11.0

Table 62. Population assessment for bluegill based on spring electrofishing at Washburn Lake 2003-2017 (scoring based on statewide assessment).

Year	Mean length age-2+ at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z) \qquad	Annual mortality $\text { (A) } \%$	Total score	Assessment rating
2017			80.0 (3)	37.3 (4)			≥ 9	F-G
2015			130.0 (4)	8.0 (4)			≥ 10	F-G
2014			141.3 (4)	8.0 (4)			≥ 10	F-G
2013			112.0 (4)	2.7 (3)			≥ 9	F-G
2012			86.0 (3)	22.0 (4)			≥ 9	F-G
2011			38.7 (2)	5.3 (4)			≥ 8	P-G
2010			32.0 (2)	0.0 (1)			≥ 5	P - F
2009	4.7 (3)	3-3+ (3)	138.0 (4)	0.0 (1)	0.599	45.1	11	Good
2008	5.3 (4)	2-2+ (4)	168.0 (4)	0.0 (1)	2.046	87.1	13	Good
2007	5.3 (4)	2-2+ (4)	40.0 (2)	0.0 (1)	1.050	65.0	11	Good
2006	5.3 (4)	2-2+ (4)	32.0 (2)	0.0 (1)			11	Good
2005	5.4 (4)	2-2+ (4)	9.6 (1)	0.0 (1)			10	Good
2004	5.4 (4)	2-2+ (4)	32.7 (2)	22.0 (4)			14	Excellent
2003	5.4 (4)	2-2+ (4)	118.0 (4)	0.0 (1)			13	Good

Table 63. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected during 0.281 hrs of diurnal electrofishing at Honeycomb Lake (PWMA) during April 2017.

	Inch class									
Species	4	5	6	7	8	9	10	Total	CPUE	SE
Bluegill	2	3	2	10	14	3		34	121.0	0.0
Redear sunfish	5	5	7	6	2	3	1	29	103.2	0.0
nwd17bg.d17										

Table 64. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected during 0.306 hrs of diurnal electrofishing at Lil Gill Lake (PWMA) during April 2017.

	Inch class										
Species	3	4	5	6	7	8	9	10	Total	CPUE	SE
Bluegill	3	4	2	3	9	5			26	85.0	0.0
Redear sunfish	1	3	11	6	14	10		1	46	150.3	0.0

[^8]
SOUTHWESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Lake sampling conditions are summarized in Table 1.

Barren River Lake (10,000 acres)

Black Bass

Black bass were collected with diurnal electrofishing in mid-April from both lake arms (Tables 2-5). A total of 873 black bass were collected at a rate of 145.5 fish/hr (Table 2). The overall catch rate for largemouth bass (124.7 fish $/ \mathrm{hr}$) increased from the previous two years (Table 3). Largemouth bass made up 86% of the total catch while spotted bass made up 14% (Table 2) and their distribution remains tied to the lower $1 / 3$ of the reservoir. The 2016 spawn resulted in a strong age-1 year class (age-1 CPUE $=39.5$ fish $/ \mathrm{hr}$; Table 4), which was up from the previous two years. The largemouth bass population assessment rated "Excellent".

Largemouth bass size structure indices ($\mathrm{PSD}=70$ and $\mathrm{RSD}_{15}=38$; Table 5) were higher than previous year averages. Spotted bass size structure remains high quality as well ($\mathrm{PSD}=69$ and $\mathrm{RSD}_{14}=32$). The smallmouth bass population remains poorly represented in samples (Tables 2 and 6), but larger fish are reported by anglers.

Fall young of year sampling (Tables 6 and 7) suggested a moderate 2017 year-class. Largemouth bass made up the majority of the fall sample (93%), while spotted bass only made up 7% of the sample (Table 6). Smallmouth bass remain poorly represented in samples. Age-0 CPUE (150.2 fish $/ \mathrm{hr}$; Table 7) and age-0 CPUE ≥ 5.0 in ($23.5 \mathrm{fish} / \mathrm{hr}$) was lower when compared to most years. Age-0 largemouth bass mean length (4.0 in) was average compared to most years.

Crappie

Trap netting for crappie yielded 902 total crappie (521 black crappie and 381 white crappie) in 85 net-nights (Table 8). The crappie population appears to remain an even mix of both species (58% white and 42% black). Age- 0 catch rates of both species represented 25% of total crappie catch (6% of white crappie and 40% of black crappie catch rates; Tables 9 and 10). The population is reflective of good 2015 and moderate-poor 2016 year classes for both species (Tables 9 and 10). White crappie reached harvestable size (9.0 in) in 1.6 years and 10.0 inches in 2.3 years (calculated from Von Bertalanffy equation; FAST 3.0 software). Black crappie reached harvestable size (9.0 in) in 2.7 years and 10.0 inches in 3.8 years (calculated from Von Bertalanffy equation; FAST 3.0 software). The assessment rating remained "Fair" for black crappie, while white crappie dipped to a "Fair" assessment (Tables 11 and 12). This resulted in an overall crappie assessment rating of "Fair" (Table 13). The length-weight equations for black crappie $(\mathrm{n}=315)$ and white crappie $(\mathrm{n}=361)$ are:

$$
\begin{aligned}
& \text { Black crappie } \log _{10}(\text { weight })=-5.92623+3.46988^{*} \log _{10}(\text { Length }) \\
& \text { White crappie } \log _{10}(\text { weight })=-5.62311+3.32189^{*} \log _{10}(\text { Length })
\end{aligned}
$$

Hybrid Striped Bass

Gillnet sampling for hybrids in late September/early October yielded a good catch rate (15.5 fish $/ \mathrm{nn}$) overall, with mostly larger ($\geq 13.0 \mathrm{in}$) sizes represented (Table 15). The double stocking rate ($\mathrm{n}=400,000$) year class of 2013 (age$4+$) has subsisted well in the fishery; however, similarly stocked year classes (2015 and 2016) have not performed as well (Table 16). The assessment rating for the fishery improved to "Excellent" due to the increase in the catch rates of larger-sized (15.0 -in plus) and age- 1 fish (Table 17). Larger-sized fish were in better condition ($\mathrm{Wr}=88$; Table 18) than the 2015 sample ($\mathrm{Wr}=79$), but remained lower than average relative weights (mid-upper 90 's) from prior years. The length-weight equation for hybrid striped bass $(\mathrm{n}=93)$ was:

$$
\log _{10}(\text { weight })=-5.79652+3.34046 * \log _{10}(\text { Length })
$$

Briggs Lake (18 acres)

Sunfish

The sunfish population was sampled by diurnal electrofishing on April 17 (Table 19). Overall CPUE of bluegill ($218.0 \mathrm{fish} / \mathrm{hr}$) was slightly lower than the average from previous years (Table 20). Redear CPUE (202.0 fish/hr) was similar to recent years (Table 21). The catch rate of the ≥ 8.0-in length group (126.0 fish $/ \mathrm{hr}$) achieved its' highest CPUE ever recorded at the lake. Size structure indices for bluegill ($\mathrm{PSD}=44$) dipped significantly from $2015(\mathrm{PSD}=44)$ while indices for redear $(\mathrm{PSD}=69)$ continued to reflect high quality fisheries (Table 22). The population assessments for both bluegill and redear remain "Excellent", similar to previous years (Tables 23 and 24). Sampling of smaller-sized redear remains enigmatic and a poor predictor of year class strength. Redear lengthfrequency from hoop net samples (Table 25) was similar to the spring electrofishing sample.

Channel Catfish

Channel catfish were sampled with tandem set hoop nets in mid-June and late August with limited success (3.1 fish/set-night; Table 25). Only age-1+ fish (stocked in fall of 2016) were collected (Table 26) and they were in excellent condition ($\mathrm{Wr}=97$; Table 27). Dissolved oxygen levels remained good ($>7 \mathrm{ppm}$) throughout the sampling period and seemingly not a factor in low catch rates. Due to this year's and the previous year's poor sample, the stocking rate was doubled to 50 fish per acre every even year.

Green River Lake (8,210 Acres)

Muskie

Muskellunge sampling continues to be problematic as multiple attempts (Table 1) were made with diurnal and nocturnal electrofishing with poor results. Samplings results seemingly do not reflect the current population (2014 angler attitude survey and angler catch rates) or historic sampling norms. As a result, no catch data is presented for this year. Muskie growth rates and condition data will be presented in the Fish Habitat Branch APR.

Black Bass

Nocturnal bass electrofishing was conducted on the upper and lower ends of each lake arm (Green River and Robinson Creek) during late-April and early-mid May (Table 28). Overall bass CPUE was $226.9 \mathrm{fish} / \mathrm{hr}$, bolstered by a good 2016 year class from all three bass species.

The overall largemouth CPUE of 164.0 fish $/ \mathrm{hr}$ is the highest noted as is the catch rate of largemouth ≥ 15.0 inches (59.8 fish $/ \mathrm{hr}$) and remains well above average (Table 29). Largemouth bass size structure indices dipped slightly ($\mathrm{PSD}=71$; RSD $=43$; Table 30) from previous years' values. The population assessment for largemouth bass remained "Excellent" which is similar to most recent years (Table 31).

Spotted bass catch rate (55.7 fish $/ \mathrm{hr}$) nearly doubled from last year, attaining more historic levels (approximating 50.0 fish $/ \mathrm{hr}$). The population continues to produce fish >12.0 inches in length, which was rare prior to alewife introduction in 2004, when few spotted bass achieved such lengths.

Fall YOY sampling (Tables 32 and 33) suggests a very good largemouth bass year class in 2016, but a weaker 2017 year class, as age-0 overall CPUE ($19.0 \mathrm{fish} / \mathrm{hr}$) and age-0 CPUE ≥ 5.0 in ($7.0 \mathrm{fish} / \mathrm{hr}$) were both well below average. Mean age- 0 largemouth bass length (4.8 in) was slightly above average.

Walleye/White bass

Experimental gill net sampling for white bass and walleye during mid-November produced moderate catch rates for both species (Table 34). White bass CPUE ($10.1 \mathrm{fish} / \mathrm{nn}$) dipped from 2015, but was still dominated by the 2014 year class (age-3+; Table 35). The moderate 2015 year class marks a significant all-natural contribution to the fishery, even though the spawning population density was low. Growth rates (mean length age $-2+=14.3$ in; Table
37) and condition indices for all size ranges ($\mathrm{Wr}=95-98$; Table 39) of white bass has been excellent. The white bass population assessment fell to "Good", due to low age-1+ fish densities (weak 2016 year class). The lengthweight equation for white bass ($\mathrm{n}=94$) was similar to previous years:

$$
\log _{10}(\text { weight })=-3.44205+3.10253 * \log _{10}(\text { Length })
$$

Walleye CPUE (2.8 fish $/ \mathrm{nn}$) increased slightly from 2015 with multiple year classes (age-0 through age-5) represented (Tables 34 and 36). Growth rate (19.5 in by age-2+; Table 38) and condition indices for all size ranges ($\mathrm{Wr}=93-101$; Table 40) remain excellent. The walleye population assessment remained "Good". The lengthweight equation for walleye $(\mathrm{n}=33)$ was similar to previous years:

$$
\log _{10}(\text { weight })=-3.81301+3.31099 * \log _{10}(\text { Length })
$$

Mill Creek Lake (109 acres)

Black Bass

Bass were sampled by nocturnal electrofishing on April 12 (Table 1); results are presented in Tables 41-43. Largemouth bass catch rates of fish ≥ 15.0 in (50.7 fish $/ \mathrm{hr}$) and fish $\geq 20.0 \mathrm{in}$ ($8.7 \mathrm{fish} / \mathrm{hr}$) remains excellent, similar to previous years (Table 42). Size structure indices ($\mathrm{PSD}=65$; RSD $=43$; Table 43) remain very good. Age data has not been collected from this population.

Shanty Hollow Lake (136 acres)

Sunfish

Sunfish (bluegill and redear) were sampled by diurnal electrofishing on April 26. Catch rates of intermediate-size bluegill improved significantly, but still lag below historic values (Table 45) despite resuming lake fertilization in 2016 after a 3-year hiatus (2013-2015). Bluegill size structure has slid from a PSD = 58 in 2015 to PSD = 31 (Table 47). Bluegill population assessment remains "Fair", similar to recent years (Table 48).

The redear population remains low density (CPUE $=19.2$ fish $/ \mathrm{hr}$; Table 44 and 46), but with good size structure (PSD $=48, \mathrm{RSD}=32$; Table 47). The population assessment rated "Fair", deviating from "Good" ratings from recent years (Table 49). Redear length-frequency derived from hoop net samples (Table 50) was similar to the spring electrofishing sample.

Channel Catfish

Tandem hoop nets were deployed from September 5-11 with poor results (Tables 50 and 51). Nets were fished in suitable dissolved oxygen levels ($5-9 \mathrm{ppm}$) and captured miscellaneous other fish species, but only five channel catfish (age-3+ and 4+). Hoopnetting done from 2007-2011 by Black Bass/Warm Water Fisheries Research crews yielded catch rates ranging from $70-139$ fish/set. Recent stocking rates may explain some of the decline in catch as the lake was only stocked once in the last 3 years (2016; at reduced rate of 10 fish/a).

Spurlington Lake (25 acres)

Channel Catfish

Tandem hoop nets were deployed from September 5-11 with poor results (Tables 52 and 53). Nets were fished in suitable dissolved oxygen levels ($7-9 \mathrm{ppm}$) and captured miscellaneous other fish species, but only seven channel catfish representing six year classes (age- $1+$ to $6+$). Recent stocking rate changes may explain some of the decline in catch as the lake was only stocked once in the last 3 years (2016; at 25 fish/a).

Fagan Branch Lake (140 acres)

Black bass

Largemouth were sampled on November 27 for condition indices (Table 1). Largemouth condition remains low across all size groups ($\mathrm{Wr}=79-86$; Table 54) and similar to previous samples from $2001(\mathrm{Wr}=80-85)$ and 2002 ($\mathrm{Wr}=81-88$). The length-weight equation for largemouth bass $(\mathrm{n}=114)$ was similar to previous years:

$$
\log _{10}(\text { weight })=-3.59504+3.19619 * \log _{10}(\text { Length })
$$

Lake infertility (secchi depths ranging from 12 to 22 feet) and significant aquatic vegetation stands (brittle naiad and American pondweed) contribute to bass crowding and likely poorer foraging success.

Table 1. Lake sampling conditions in the Southwestern Fisheries District in 2017.

Lake	Date	Species	Weather	Water temp. surface (F)	Conductivity (umhos)	Secchi (in.)	Comments
Barren River	4/12	Bass	calm and clear	67-69	237		8 -ft below summer pool \& rising with 74 cfs outflow
	4/18	Bass	overcast	69			7 -ft below summer pool \& rising with 51 cfs outflow
	4/19	Bass	cloudy	74	275		7 -ft below summer pool \& rising with 51 cfs outflow
	4/25	Bass	clear	71			4 -ft below summer pool \& rising with 53 cfs outflow
	10/2	YOY bass	clear	74	200		summer pool \& steady w/ 269 cfs outflow
	10/4	YOY bass	clear	73	220	24	summer pool \& steady w/ 269 cfs outflow
	10/4	YOY bass	clear		197	30	summer pool \& steady w/ 269 cfs outflow
	10/5	YOY bass	clear	73	203		summer pool \& steady w/ 269 cfs outflow
	9/28-9/29	Hybrids	clear	77			summer pool \& steady w/ 269 cfs outflow
	10/3	Hybrids	cloudy				summer pool \& steady w/ 269 cfs outflow
	10/17-10/20	Crappie	clear	66-68		26	4 -ft below summer pool \& falling w/ 1800 cfs outflow
	10/24-10/25	Crappie	overcast/w indy	60-66			5 -ft below summer pool \& falling w/ 2600 cfs outflow
Briggs	4/17	Bluegill \& Redear	overcast	72		84	Normal
	6/16-6/19	Channel catfish	cloudy/w indy			48	Normal
	8/25	Channel catfish	clear/w indy	83		26	Normal
Fagan Branch	11/27	Trout \& Bass	Clear	50			Normal
Green River	2/14	Muskie EF	overcast/w indy	47		48	w inter pool \& steady w/ 435 cfs outflow (5 fish)
	3/3	Muskie EF	cloudy/w indy				$1-\mathrm{ft}$ above w inter pool \& falling w ith 2200 cfs outflow (10 fish)
	3/23	Muskie NEF	cloudy/calm	53			$1-\mathrm{ft}$ above w inter pool \& steady w/ 114 cfs outflow (4 fish)
	4/4	Muskie NEF	clear/calm	57			1 -ft below summer pool \& rising w/ 843 cfs outflow (14 fish)
	4/19	Bass	clear/calm				summer pool \& steady w/ 1300 cfs outflow
	4/25	Bass	clear/calm	68-69	135	66	summer pool \& steady w/ 1600 cfs outflow
	10/12	YOY bass	overcast		151		summer pool \& steady w/ 400 cfs outflow
	10/26	YOY bass	clear		147	45	summer pool \& steady w/ 400 cfs outflow
	11/9	YOY bass	clear				2 -ft above summer pool \& rising with 417 cfs outflow
	11/16	YOY bass	cloudy/w indy	57	147		2 -ft above summer pool \& falling w ith 2300 cfs outflow
	11/14-11/17	White Bass \& Walleye	overcast/w indy	56			2-ft above summer pool \& rising/falling with 419-2300 cfs outflow
Mill Creek	4/12	Bass	clear	66-71	231		Normal
Shanty Hollow	4/26	Bluegill \& Redear	clear/w indy	66-70	114	60	High
	5/10	Bluegill \& Redear	cloudy/w indy	69-72	118	39	Normal
	9/5-9/11	Channel catfish	overcast-rainy	76		42	Normal
Spurlington	9/15-9/18	Channel catfish	cloudy	69-77			Normal

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of diurnal electrofishing at Barren River Lake in mid-late April 2017.

Area	Species	Inch class																					Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Peninsula	Smallmouth bass											1											1	0.7	0.7
	Spotted bass	1	5	2	3	1	4	6	9	6	8	10	10	17	6		1					1	90	60.0	20.4
	Largemouth bass	2	3		1	5	8	10	9	8	13	14	13	20	25	29	14	4	2	1			181	120.7	9.3
Beaver Creek	Smallmouth bass																						0		
	Spotted bass																						0	0.0	
	Largemouth bass		1	1			4	8	5	5	8	11	19	25	37	16	11	6	5	2			164	109.3	19.1
Peter Creek	Smallmouth bass													1									1	0.7	0.7
	Spotted bass			1	3	1	2	2		1	2	2	7	9									30	20.0	7.2
	Largemouth bass		10	31	8	8	24	21	9	3	4	8	12	14	13	14	6	5	3				193	128.7	11.6
Walnut Creek	Smallmouth bass																						0		
	Spotted bass						1			2													3	2.0	1.2
	Largemouth bass		5	27	7	19	26	38	18	2	6	13	10	21	7	5	4	2					210	140.0	53.1
TOTAL	Smallmouth bass											1		1									2	0.3	0.2
	Spotted bass	1	5	3	6	2	7	8	9	9	10	12	17	26	6		1					1	123	20.5	8.6
	Largemouth bass	2	19	59	16	32	62	77	41	18	31	46	54	80	82	64	35	17	10	3			748	124.7	12.9

swdbrlbb.d17

Table 3. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Barren River Lake 1997-2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error						
1997	6.7	1.4	31.1	5.2	48.4	6.4	49.3	6.5	3.3	0.7	135.6	11.6
1998	17.2	4.2	11.4	2.7	23.2	3.1	32.2	2.7	1.2	0.4	83.8	8.3
1999	10.7	2.4	31.3	5.6	41.7	6.9	36.3	4.7	2.3	0.6	120.8	11.2
2000	8.3	1.7	24.1	3.5	33.0	3.2	27.3	2.4	1.4	0.5	92.7	7.3
2001	11.8	1.6	42.3	4.0	49.3	6.3	61.9	4.1	1.1	0.4	165.3	9.6
2002	12.6	2.2	22.4	2.9	30.4	4.0	37.6	4.2	1.3	0.4	102.9	9.5
2003	21.7	3.4	22.5	3.5	20.5	2.9	39.5	4.7	0.3	0.2	104.2	10.6
2004	47.7	14.0	37.7	6.3	16.7	4.0	18.4	3.3	0.7	0.5	120.2	22.2
2005	17.7	2.9	66.0	7.7	31.5	4.7	36.8	3.4	2.0	0.7	152.0	8.6
2006	22.8	4.7	46.2	6.9	57.2	9.8	44.0	6.0	1.3	0.4	170.2	21.8
2007	12.7	3.1	44.2	10.9	37.7	5.0	37.2	5.8	1.0	0.6	131.7	17.0
2008	38.2	7.8	30.3	4.6	30.3	3.1	38.3	3.8	1.5	0.6	137.2	11.5
2009	14.7	4.1	25.7	2.4	18.8	2.3	23.2	3.9	1.3	0.6	82.3	9.8
2010	29.0	4.2	40.3	6.3	36.7	4.4	28.8	2.3	0.7	0.3	134.8	12.8
2011	no data due to flooding											
2012	31.3	9.0	52.7	7.3	65.2	7.0	54.7	5.6	2.7	0.6	203.8	15.8
2013	no data due to flooding											
2014	26.9	10.0	45.8	6.1	48.7	5.5	44.0	7.2	2.0	0.8	165.3	18.5
2015	10.5	3.1	44.3	6.7	40.2	5.8	24.7	4.3	1.2	0.4	119.7	12.2
2016	7.5	1.6	16.5	2.8	48.0	4.9	23.5	3.9	0.5	0.3	95.5	7.4
2017	31.7	9.5	27.8	5.5	30.0	3.3	35.2	5.5	0.5	0.3	124.7	12.9

swdbrlbb.d97-d17

Table 4. Population assessment of largemouth bass based on spring sampling at Barren River Lake 2007-2017 (scoring based on statewide assessment).

Parameter	Year																	
	$\underline{2007}$		2008		2009		$\underline{2010}$		$\underline{2012}$		2014*		$\underline{2015}$		$\underline{2016}$		$\underline{2017}$	
	Value	Score	Value	Score	Value	Score	Value	Score V	Value	Score								
Grow th																		
Mean length age-3 at capture	14.1	4	14.4	4	14.4	4	14.4	4	14.4	4	14.6	4	14.6	4	14.6	4	14.6	4
Size structure																		
Spring CPUE 12.0-14.9 in	37.7	4	30.3	3	18.8	2	36.7	4	65.2	4	48.7	4	40.2	4	48.0	4	30.0	3
Size structure																		
Spring CPUE ≥ 15.0 in	37.2	4	38.3	4	23.2	4	28.8	4	54.7	4	44.0	4	24.7	4	23.5	4	35.2	4
Size structure																		
Spring CPUE ≥ 20.0 in	1.0	3	1.5	3	1.3	4	0.7	3	2.7	4	2.0	4	1.2	3	0.5	3	0.5	3
Recruitment																		
Spring CPUE age-1	18.0	2	13.8	2	18.9	2	35.7	3	43.8	4	44.5	4	19.2	2	8.0	1	39.5	3
Instantaneous mortality (z)			-0.62								-0.558							
Annual mortality (A)\%			46.2								44.2							
Total score		17		14		16		18		20		20		17		16		17
Assessment rating		Excellent		Good		Good		Excellent		Excellent		Excellent		Excellent		Good		Excellent

sw dbrlbb.d07-d17

* - age data collected in fall

Table 5. PSD and RSD values obtained for each black bass species collected during 6.0 hours (120.50 -hour runs) of spring diurnal electrofishing at each area of Barren River Lake in mid-late April 2017. 95\% confidence intervals are in parentheses.

[^9]Table 6. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of diurnal electrofishing at Barren River Lake from early October 2017.

Area	Species	Inch class																		Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Peninsula	Smallmouth bass		1			1														2	1.3	1.3
	Spotted bass		15	1	5	10	1	2				1								35	23.3	2.4
	Largemouth bass	6	33	8	3	3	8	5		1	2	4	2	4	1		1			81	54.0	5.0
Beaver Creek	Smallmouth bass																			0		
	Spotted bass																			0		
	Largemouth bass	13	253	67	5	20	21	3	5	4	6	8	7		3	2	2		1	420	280.0	88.5
Peter Creek	Smallmouth bass																			0		
	Spotted bass	2	18	10	1									1						32	21.3	15.5
	Largemouth bass	17	89	18	4	15	12	6	7	11	4	3	1	2	1	2			1	193	128.7	54.7
Walnut Creek	Smallmouth bass																			0		
	Spotted bass		5	5	1			2												13	8.7	5.9
	Largemouth bass	40	185	31	10	17	15	1	4	7	7	2	2	1	2		1			325	216.7	63.7
TOTAL	Smallmouth bass		1			1														2	0.3	0.3
	Spotted bass	2	38	16	7	10	1	4				1		1						80	13.3	4.6
	Largemouth bass	76	560	124	22	55	56	15	16	23	19	17	12	7	7	4	4		2	1019	169.8	36.7

swdbrlyy.d17

Table 7. Indices of year-class strength at age-0 and age-1 and mean length (in.) of largemouth bass collected during diurnal fall electrofishing at Barren River Lake 2002-2017.

Year-class	Age-0 ${ }^{\text {A }}$		Age-0 ${ }^{\text {A }}$		Age-0 $\geq 5.0 \mathrm{in}^{\text {A }}$		Age-1 ${ }^{\text {B }}$	
	Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2002	4.0	0.05	171.7	25.8	34.2	4.1	26.9	3.7
2003	4.4	0.04	198.0	30.8	84.0	18.7	44.9	13.3
2004	3.7	0.04	108.4	22.2	20.8	3.9	11.2	2.5
2005	3.7	0.04	160.7	25.6	25.3	4.2	17.5	3.6
2006	3.4	0.02	299.7	87.2	21.8	5.6	18.0	4.8
2007	4.2	0.06	61.5	12.8	14.0	2.5	13.8	1.5
2008	3.8	0.03	307.5	46.9	59.7	10.5	18.9	4.4
2009	3.2	0.02	401.3	76.1	36.8	8.6	35.7	5.2
2010	5.7	0.05	166.6	19.1	105.0	18.7	ND	
2011	4.5	0.05	175.5	33.7	65.7	10.8	43.8	9.4
2012	5.1	0.08	70.0	16.7	32.7	11.0	ND	
2013	3.9	0.03	369.3	92.2	61.5	10.0	44.5	13.1
2014	4.4	0.08	108.5	27.5	33.0	6.3	19.2	na
2015	3.8	0.03	167.7	23.5	18.7	3.4	8.0	1.7
2016	4.3	0.04	191.8	38.9	46.5	13.9	39.5	12.1
2017	4.0	0.04	150.2	36.3	23.5	3.8		

[^10]${ }^{B}$ Data collected during the following spring (April/May) diurnal electrofishing sample.
swdbrlbb.d02-d17
swdbrlag. d02-d17
swdbrlyy. d02-d17

Table 8. Length frequency and CPUE (fish/nn) of each inch class of white and black crappie collected by trap net (85 net-nights) at Barren River Lake from mid-late October 2017.

Location	Species	Inch class											Total	CPUE	Std. error
		2	3	4	5	6	7	8	9	10	11	12			
Beaver Creek	White crappie		2	12	1	6	13	37	123	103	9	4	310	10.7	2.6
	Black crappie		27	9	47	46	45	52	15	8	1		250	8.6	2.1
Walnut Creek	White crappie		4	2			1	1	14	40	9		71	1.3	0.4
	Black crappie	16	152	2	23	20	26	19	9	4			271	4.8	1.0
TOTAL	White crappie		6	14	1	6	14	38	137	143	18	4	381	4.5	1.0
	Black crappie	16	179	11	70	66	71	71	24	12	1		521	6.1	1.0

swdbrltn.d17

Table 9. Age frequency and CPUE (fish/nn) of black crappie collected during 85 net-nights at Barren River Lake from mid-late October 2017.

Age	Inch class										Total	Percent	CPUE	Std. error
	2	3	4	5	6	7	8	9	10	11				
0+	16	179	11								206	39	2.4	0.6
1+				67	31	17		3	1		119	23	1.4	0.3
2+				3	35	51	57	10	1		157	30	1.8	0.4
$3+$						3	4	9	4		20	4	0.2	0.1
4+							11	3	6	1	21	4	0.2	0.1
Total	16	179	11	70	66	71	72	25	12	1	523	100		
\%	3	34	2	13	13	14	14	5	2	0	100			

swdbrltn.d17; swdbrlag.d17

Table 10. Age frequency and CPUE (fish/nn) of white crappie collected during 85 net-nights at Barren River Lake from mid-late October 2017.

Age	Inch class										Total	Percent	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12				
0+	6	14	1								21	6	0.2	0.1
1+				4	4	3	14	7			32	8	0.4	0.09
2+				2	9	35	123	129	14		312	82	3.7	0.8
3+					1			7	2	1	11	3	0.1	0.03
4+									2	2	4	1	0.05	0.01
5+														
6+										1	1	0	0.01	0.01
Total	6	14	1	6	14	38	137	143	18	4	381	100		
\%	2	4	0	2	4	10	36	38	5	1	100			

swdbrltn.d17; swdbrlag.d17

Table 11. Black crappie assessment from trap netting at Barren River Lake from 1986-2017 (scoring based on statewide assessment).

Year	CPUE excluding age-0		CPUE age-1		CPUE age-0		CPUE ≥ 8.0 in		Mean length age 2+ at capture		Total score	Rating
	Value	Score										
1986	10.7	4	6.9	4	3.8	4	2.8	3	8.7	2	17	E
1987	3.3	2	1.9	3	2.8	4	1.3	2	9.6	3	14	G
1988	6.2	3	5.7	4	0.1	1	0.4	1	9.3	3	12	F
1989	9.2	4	1.5	3	7.5	4	5.9	4	8.2	1	16	G
1990	29.1	4	26.1	4	0.1	1	1.9	3	8.8	2	14	G
1991	3.5	3	1.0	2	0.9	2	3.6	4	7.6	1	12	F
1992	9.2	4	3.5	3	0.1	1	4.2	4	7.7	1	13	G
1993	12.6	4	1.1	2	0.3	2	9.1	4	8.1	1	13	G
1994	0.7	1	0.1	1	0.8	2	0.7	2	8.8	2	8	P
1995	7.4	3	6.5	4	1.3	3	0.5	1	8.9	2	13	G
1996	9.0	4	0.8	2	0.5	2	4.2	4	7.8	1	13	G
1997	9.1	4	1.5	3	0.9	2	6.0	4	7.6	1	14	G
1998	1.7	1	0.1	1	1.8	3	1.6	3	8.2	1	9	F
1999	4.7	3	3.8	4	0.3	2	0.9	2	8.6	2	13	G
2000	1.8	2	0.2	1	0.2	1	0.7	2	7.8	1	7	P
2001	5.7	3	0.3	1	0.4	2	4.5	4	7.6	1	11	F
2002	4.6	3	1.0	2	3.1	4	3.3	3	8.7	2	14	G
2003	2.4	2	1.2	2	5.4	4	0.9	2	9.7	3	13	G
2004	6.9	3	4.4	4	0.7	2	2.2	3	9.2	3	15	G
2005*	6.4	3	2.3	3	2.0	4	4.4	4	9.1	3	17	E
2006*	2.7	2	1.4	2	0.6	2	1.3	2	8.9	2	10	F
2007	6.6	3	3.2	3	0.2	1	1.3	2	8.5	2	11	F
2008*	1.8	2	0.2	1	1.4	3	1.6	3	9.7	3	12	F
2009*	5.9	3	4.3	4	0.4	2	0.6	1	8.0	1	11	F
2010	5.7	3	1.4	2	0.8	2	3.6	4	8.7	2	13	G
2011	5.3	3	2.3	3	0.2	1	3.1	3	9.0	2	12	F
2012	5.2	3	1.0	2	0.1	1	3.3	3	8.3	1	10	F
2013	9.7	4	0.7	2	12.3	4	8.5	4	8.7	2	16	G
2015	3.1	2	1.4	2	7.0	4	0.4	1	7.8	1	10	F
2017	0.7	1	1.4	2	2.4	4	1.3	2	8.0	1	10	F

* Age assessment data extrapolated from previous age data
sw dbrltn.D85-D17

Table 12. White crappie assessment from trap netting at Barren River Lake from 1986-2017 (scoring based on statewide assessment).

Year	$\begin{gathered} \text { CPUE excluding } \\ \text { age-0 } \\ \hline \end{gathered}$		CPUE age-1		CPUE age-0		CPUE ≥ 8.0 in		Mean length age 2+ at capture		Total score	Rating
	Value	Score										
1986	13.6	3	3.6	3	1.9	3	8.9	4	9.0	2	15	G
1987	4.0	2	1.3	2	0.4	1	2.5	2	10.8	4	11	F
1988	3.1	2	2.5	2	0.2	1	2.5	2	11.1	4	11	F
1989	4.2	2	1.7	2	3.3	3	2.6	2	11.0	4	13	G
1990	22.8	4	20.8	4	0.5	2	13.4	4	10.8	4	18	E
1991	31.0	4	0.5	1	1.0	2	8.9	4	9.8	3	14	G
1992	6.8	3	5.1	3	0.1	1	4.0	3	11.5	4	14	G
1993	5.8	2	0.6	1	0.0	1	5.2	3	10.0	3	10	F
1994	0.7	1	0.1	1	0.7	2	0.4	1	10.6	4	9	F
1995	8.0	3	7.7	4	0.6	2	5.5	3	11.5	4	16	G
1996	6.3	2	0.8	1	1.4	2	5.6	3	9.7	3	11	F
1997	6.7	3	5.1	3	1.0	2	5.2	3	10.2	3	14	G
1998	1.2	1	0.7	1	2.0	3	0.9	1	10.9	4	10	F
1999	6.5	2	5.9	3	0.5	2	2.9	2	10.9	4	13	G
2000	2.5	2	0.3	1	0.0	1	2.4	2	9.3	2	8	P
2001	1.6	1	0.5	1	0.2	1	1.3	1	10.5	4	8	P
2002	1.4	1	0.3	1	1.2	2	0.8	1	10.7	4	9	F
2003	1.4	1	1.0	2	0.4	1	1.1	1	11.5	4	9	F
2004	1.6	1	0.9	1	0.2	1	1.3	1	11.1	4	8	P
2005*	0.7	1	0.6	1	0.0	1	0.7	1	11.0	4	8	P
2006*	0.3	1	0.2	1	0.0	1	0.2	1	10.6	4	8	P
2007	0.4	1	0.3	1	0.8	2	0.3	1	11.2	4	9	F
2008*	0.0	1	0.0	1	0.2	1	0.0	1	10.8	4	8	P
2009*	4.4	2	4.0	3	0.0	1	4.0	3	10.2	3	12	F
2010	0.7	1	0.3	1	0.6	2	0.7	1	10.9	4	9	F
2011	4.7	2	4.5	3	0.2	1	2.8	2	10.9	4	12	F
2012	7.5	3	2.5	2	0.1	1	6.5	4	9.9	3	13	G
2013	5.6	2	0.2	1	11.9	4	5.6	3	10.1	3	13	G
2015	7.0	3	3.7	3	4.8	4	3.6	3	10.2	3	16	G
2017	4.2	2	0.4	1	0.2	1	4.0	3	9.7	3	10	F

* Age assessment data extrapolated from previous age data sw dbrltn.D85-D17

Table 13. Population assessment for all crappie from Barren River trap net data collected from 2007-2017 (scoring based on statewide assessment).

Parameter	Year																	
	2007		$\underline{2008}$		2009		2010		2011		2012		2013		2015		$\underline{2017}$	
	Value	Score																
Population density (CPUE age-1 and older)	7.0	2	1.8	1	10.3	3	6.4	2	10.0	3	12.7	3	15.4	4	10.1	3	8.0	3
Recruitment (CPUE age-1)	3.6	2	0.2	1	8.3	4	1.7	2	6.8	3	3.5	2	0.9	1	5.0	3	1.8	2
Recruitment (CPUE age-0)	1.0	2	1.6	2	0.4	1	1.4	2	0.5	1	0.2	1	24.2	4	11.7	4	2.7	3
Size structure (CPUE ≥ 8.0 in)	1.6	1	1.6	1	4.6	3	4.3	3	5.8	3	9.8	4	14.1	4	4.0	2	5.3	3
Grow th (Mean length age-2 at capture)	8.6	1	9.8	3	9.1	1	8.9	1	9.0	1	9.3	2	9.5	2	9.1	1	9.0	1
Instantaneous mortality (Z) Annual mortality (A)\%	$\begin{array}{r} -1.59 \\ 79.9 \end{array}$																	
Total score:		8		8		12		10		11		12		15		13		12
Assessment rating:		Poor		Poor		Fair		Fair		Fair		Fair		Good		Good		Fair

sw dbrltn.D06-D17

Table 14. Proportional stock density (PSD) and relative stock density
(RSD_{10}) of white and black crappie collected by trap nets (85 net-nights)
at Barren River lake from mid-late October 2017. Numbers in parentheses
represent 95% confidence intervals.

Species	Number ≥ 5.0 in	PSD	RSD_{10}
White crappie	361	$95(2)$	$46(5)$
Black crappie	315	$34(5)$	$4(2)$

swdbrltn.D17

Table 15. Length frequency and CPUE (fish/nn) for blue catfish, white bass, and hybrid striped bass collected by experimental gillnets (6 netnights) from late September and early October at Barren River Lake, KY 2017.

Species	Inch class																			Total	CPUE	Std. error
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25			
Blue catfish			3	6	10	6	3		3	4	2	2		1	2				2	44	7.3	2.6
White bass	2	5			1	2	5	2	3	1										21	3.5	2.4
Hybrid striped bass							8	7	7	28	6	1	4	5	5	9	9	4		93	15.5	5.8

swdbrlgn.d17

Table 16. Age frequency and CPUE (fish/nn) of hybrid striped bass collected from experimental gillnets late September and early October at Barren River Lake, 2017.

Age	Inch class												Total	Percent	CPUE	Std. error
	13	14	15	16	17	18	19	20	21	22	23	24				
1+	8	7	7	28	6								56	60	9.3	4.3
$2+$						1	4	2					7	8	1.2	0.8
$3+$								3	4	2			9	10	1.5	0.6
4+									1	7	8	4	20	22	3.3	2.1
5+											1		1	1	0.2	0.1
Total	8	7	7	28	6	1	4	5	5	9	9	4	93	100		
\%	9	8	8	30	6	1	4	5	5	10	10	4	100			

swdbrlgn.D17; swdbrlag.D17

Table 17. Hybrid striped bass population assessment from experimental gillnetting at Barren River Lake 2012-2017 (scoring based on statewide assessment).

Parameter	Year					
	$\underline{2012}$		$\underline{2015}$		$\underline{2017}$	
	Value	Score	Value	Score	Value	Score
Population density						
CPUE age-1 and older	18.0	3	10.1	3	15.5	3
Growth rate						
Mean length age-2+ at capture	18.4	3	18.5	3	19.5	4
Size structure						
CPUE ≥ 15.0 in	12.2	3	8.0	3	13.0	4
Recruitment						
CPUE age-1	7.0	3	2.4	2	9.3	4
Instantaneous mortality (z)	-0.308					
Annual mortality (A)\%	26.5					
Total score		12		11		15
Assessment rating		Good		Good		Excellent
swdbrlag.d12-17 swdbrlgn.d12-17						

Table 18. Relative weight (Wr) for each length group of hybrid striped bass collected by gill nets (8 netnights) at Barren River Lake from late September and early October, 2017. Standard errors are in parentheses.

	Length group		
	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in
Wr		$83(1)$	$88(1)$
N	0	15	78

swdbrlgn.D17

Table 19. Length frequency and CPUE (fish/hr) of bluegill, redear sunfish and warmouth collected in 0.5 hours (4-450-sec runs) of diurnal electrofishing at Briggs Lake on 17 April 2017.

Species	Inch class										Total	CPUE	Std. error
	1	2	3	4	5	6	7	8	9	10			
Bluegill	2	6	5	36	16	18	17	9			109	218.0	63.5
Redear sunfish				3	7	21	7	30	32	1	101	202.0	50.5
Warmouth	1		1		2		3				7	14.0	3.8

swdbrgbg.d17

Table 20. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Briggs Lake from mid-April to mid-May 2007-2017. Standard errors are in parentheses.

Year	Length group				Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	
2007	$\begin{aligned} & 8.0 \\ & (4.4) \end{aligned}$	$\begin{gathered} 83.2 \\ (9.9) \end{gathered}$	$\begin{aligned} & 84.8 \\ & (26.1) \end{aligned}$	$\begin{gathered} 25.6 \\ (9.9) \end{gathered}$	$\begin{aligned} & 201.6 \\ & (33.7) \end{aligned}$
2008	$\begin{aligned} & 288.0 \\ & (175.0) \end{aligned}$	$\begin{aligned} & 106.0 \\ & (31.2) \end{aligned}$	$\begin{aligned} & 70.0 \\ & (18.9) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 384.0 \\ & (96.2) \end{aligned}$
2009	$\begin{gathered} 19.2 \\ (10.3) \end{gathered}$	$\begin{aligned} & 137.6 \\ & (19.5) \end{aligned}$	$\begin{aligned} & 17.6 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 19.2 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 193.6 \\ & (21.5) \end{aligned}$
2010	$\begin{aligned} & 20.8 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 94.4 \\ & (38.0) \end{aligned}$	$\begin{aligned} & 153.6 \\ & (81.0) \end{aligned}$	$\begin{aligned} & 52.8 \\ & (41.9) \end{aligned}$	$\begin{aligned} & 321.6 \\ & (159.3) \end{aligned}$
2011	$\begin{aligned} & 66.0 \\ & (15.1) \end{aligned}$	$\begin{aligned} & 94.0 \\ & (39.2) \end{aligned}$	$\begin{aligned} & 60.0 \\ & (19.7) \end{aligned}$	$\begin{aligned} & 24.0 \\ & (3.3) \end{aligned}$	$\begin{gathered} 244.0 \\ (60.7) \end{gathered}$
2012	$\begin{aligned} & 56.0 \\ & (32.2) \end{aligned}$	$\begin{aligned} & 158.0 \\ & (32.7) \end{aligned}$	$\begin{aligned} & 62.0 \\ & (21.3) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 292.0 \\ & (53.7) \end{aligned}$
2013	$\begin{aligned} & 4.8 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 40.0 \\ & (13.6) \end{aligned}$	$\begin{aligned} & 81.6 \\ & (26.5) \end{aligned}$	$\begin{aligned} & 19.2 \\ & (4.1) \end{aligned}$	$\begin{aligned} & 145.6 \\ & (43.1) \end{aligned}$
2014	$\begin{aligned} & 3.2 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 27.2 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 128.0 \\ & (25.7) \end{aligned}$	$\begin{aligned} & 9.6 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 168.0 \\ & (32.4) \end{aligned}$
2015*	$\begin{aligned} & 174.0 \\ & (59.5) \end{aligned}$	$\begin{aligned} & 112.0 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 170.0 \\ & (26.6) \end{aligned}$	$\begin{aligned} & 108.0 \\ & (25.4) \end{aligned}$	$\begin{aligned} & 564.0 \\ & (104.4) \end{aligned}$
2017	$\begin{aligned} & 16.0 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 114.0 \\ & (38.1) \end{aligned}$	$\begin{gathered} 70.0 \\ (15.8) \end{gathered}$	$\begin{aligned} & 18.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 218.0 \\ & (63.5) \end{aligned}$

swdbrgbg.D07 - D17

* nocturnal electrofishing used due to high water clarity

Table 21. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Briggs Lake during mid-April to mid-May 2007-2017. Standard errors are in parentheses.

Year	Length group					Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	≥ 10.0 in	
2007	na	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 62.4 \\ & (13.0) \end{aligned}$	$\begin{aligned} & 12.8 \\ & (6.5) \end{aligned}$	$\begin{gathered} 1.6 \\ (1.6) \end{gathered}$	$\begin{aligned} & 83.2 \\ & (16.9) \end{aligned}$
2008	$\begin{gathered} 1.6 \\ (1.6) \end{gathered}$	$\begin{aligned} & 3.2 \\ & (2.0) \end{aligned}$	na	$\begin{aligned} & 4.0 \\ & (2.3) \end{aligned}$	na	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$
2009	$\begin{aligned} & 1.6 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 8.0 \\ & (6.2) \end{aligned}$	$\begin{aligned} & 54.4 \\ & (14.8) \end{aligned}$	$\begin{gathered} 17.6 \\ (12.0) \end{gathered}$	$\begin{aligned} & 4.8 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 81.6 \\ & (25.1) \end{aligned}$
2010	na	$\begin{aligned} & 9.6 \\ & (3.9) \end{aligned}$	$\begin{aligned} & 16.0 \\ & (7.2) \end{aligned}$	$\begin{aligned} & 17.6 \\ & (9.6) \end{aligned}$	$\begin{gathered} 1.6 \\ (1.6) \end{gathered}$	$\begin{aligned} & 43.2 \\ & (19.9) \end{aligned}$
2011	na	$\begin{aligned} & 4.0 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 14.0 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 28.0 \\ & (10.6) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 46.0 \\ & (14.4) \end{aligned}$
2012	$\begin{aligned} & 4.0 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 58.0 \\ & (19.2) \end{aligned}$	$\begin{aligned} & 94.0 \\ & (33.1) \end{aligned}$	$\begin{aligned} & 6.0 \\ & (3.8) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 162.0 \\ & (49.9) \end{aligned}$
2013	$\begin{aligned} & 1.6 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 41.6 \\ & (16.7) \end{aligned}$	$\begin{aligned} & 48.0 \\ & (18.8) \end{aligned}$	$\begin{aligned} & 56.0 \\ & (11.9) \end{aligned}$	$\begin{aligned} & 6.4 \\ & (3.9) \end{aligned}$	$\begin{aligned} & 147.2 \\ & (37.6) \end{aligned}$
2014	$\begin{gathered} 1.6 \\ (1.6) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (3.6) \end{aligned}$	$\begin{aligned} & 96.0 \\ & (12.9) \end{aligned}$	$\begin{gathered} 67.2 \\ (13.1) \end{gathered}$	$\begin{aligned} & 8.0 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 178.2 \\ & (24.0) \end{aligned}$
2015*	na	$\begin{aligned} & 34.0 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 72.0 \\ & (5.7) \end{aligned}$	$\begin{aligned} & 108.0 \\ & (21.0) \end{aligned}$	$\begin{aligned} & 12.0 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 214.0 \\ & (20.8) \end{aligned}$
2017	na	$\begin{aligned} & 20.0 \\ & (8.3) \end{aligned}$	$\begin{aligned} & 56.0 \\ & (7.3) \end{aligned}$	$\begin{aligned} & 126.0 \\ & (38.8) \end{aligned}$	$\begin{gathered} 2.0 \\ (2.0) \end{gathered}$	$\begin{aligned} & 202.0 \\ & (50.5) \end{aligned}$

swdbrgbg.D07-D17

* nocturnal electrofishing used due to high water clarity

Table 22. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear sunfish collected by diurnal electrofishing at Briggs Lake on 17 April 2017. Numbers in parentheses represent 95\% confidence intervals.

Species	N	PSD	RSD $^{\text {a }}$
Bluegill	101	$44(9)$	$9(5)$
Redear sunfish	101	$69(9)$	$33(9)$

[^11]Table 23. Bluegill population assessment for Briggs Lake 2009-2017 (scoring based on statewide assessment).

Parameter	$\underline{2009}$		$\underline{2010}$		$\underline{2011}$		$\underline{2012}$		$\underline{2013}$		$\underline{2014}$		$\underline{2015}$		$\underline{2017}$	
	Value	Score														
Grow th																
Mean length age-2 at capture	4.9*	4	4.9*	4	4.9*	4	4.7	3	4.7*	3	4.7*	3	4.7*	3	4.7*	3
Grow th																
Years to 6.0 in	2.6*	4	2.6*	4	2.6*	4	2.6*	4	2.6*	4	2.6 *	4	2.6*	4	2.6*	4
Size structure																
CPUE ≥ 6.0 in	36.8	2	206.4	4	84.0	3	78.0	3	100.8	4	137.6	4	278.0	4	88.0	3
Size structure																
CPUE ≥ 8.0 in	19.2	4	52.8	4	24.0	4	16.0	4	19.2	4	9.6	4	108.0	4	18.0	4
Instantaneous mortality (z)																
Annual mortality (A)\%																
Total score:		14		16		15		15		15		15		15		14
Assessment rating:		Excellent														

Table 24. Redear population assessment for Briggs Lake 2009-2017 (scoring based on statewide assessment).

Parameter	$\underline{2009}$		$\underline{2010}$		$\underline{2011}$		$\underline{2012}$		$\underline{2013}$		$\underline{2014}$		$\underline{2015}$		$\underline{2017}$	
	Value	Score														
Grow th																
Mean length age-3 at capture	8.6*	4	8.6*	4	8.6*	4	8.6*	4	8.6*	4	8.6*	4	8.6*	4	8.6*	4
Grow th																
Years to 8.0 in	2.7*	4	2.7*	4	$2.7 *$	4	2.7*	4	2.7*	4	$2.7 *$	4	2.7*	4	2.7*	4
Size structure																
CPUE ≥ 8.0 in	17.6	3	17.6	3	28.0	4	6.0	2	62.4	4	67.2	4	108.0	4	126.0	4
Size structure																
CPUE ≥ 10.0 in	4.8	4	1.6	3	12.0	4	2.0	4	6.4	4	8.0	4	12.0	4	2.0	4
Instantaneous mortality (z)																
Annual mortality (A)\%																
Total score:		15		14		16		14		16		16		16		16
Assessment rating:		Excellent		Good		Excellent		Good		Excellent		Excellent		Excellent		Excellent

Table 25. Length frequency and CPUE (fish/set-night) of channel catfish collected during 8 sets of tandem hoop nets (2 sets with 3 nets each) at Briggs Lake during mid-June and late-August 2017.

Species	Inch class												Total	CPUE	Std err
	4	5	6	7	8	9	10	11	12	13	14	15			
Channel catfish									5	8	8	4	25	3.1	1.2
Redear sunfish	1	9	9	8	41	41	13	1					123	15.4	3.3

swdbrgcc.d17 and brgspcc.d17

Table 26. Age frequency and CPUE (fish/set-night) of channel catfish
collected from tandem hoopnetting at Briggs Lake in mid-June and late-
Auguest 2017

	Inch class							
Age	12	13	14	15	Total	Percent	CPUE	Std. error
$0+$					0			
$1+$	5	8	8	4	25	100	3.1	1.2
Total	5	8	8	4	25	100.0		
$\%$	20	32	32	16	100			

swdbrgcc.D17, swdbrgag.D17

Table 27. Relative weight (Wr) for each length group of channel catfish collected by 8 nights of tandem set hoopnets (2 sets with 3 nets each) at Briggs Lake from 13-19, June and 22-28, August 2017.
Standard errors are in parentheses.

	Length group		
	$11.0-15.9$ in	$16.0-23.9$ in	≥ 24.0 in
Wr	$97(2)$		0
N	25	0	

swdbrgcc.D17

Table 28. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of nocturnal electrofishing at Green River Lake on April 19 and 25, 2017.

Area	Species	Inch class																			Total	CPUE Std err	
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Green River Arm																							
Holmes Bend	Smallmouth bass									1				1							2	1.3	0.7
	Spotted bass		1	7	3	1	5	7	4	4	1	1	2								36	24.0	7.6
	Largemouth bass		6	13	21	28	42	15	15	39	30	9	18	27	20	13	12	9	4	4	325	216.7	7.7
Ramp 1	Smallmouth bass		1	3	1		1		1			1			1	1					10	6.7	1.3
	Spotted bass	3	1	1	2	2	12	13	16	2	5	6	2	1	1	1					68	45.3	10.5
	Largemouth bass	2	2	5	7	7	10	9	6	22	31	19	12	16	17	11	25	9	6	1	217	144.7	15.8
Robinson Creek Arm																							
Smith Ridge	Smallmouth bass																				0		
	Spotted bass	1	5	4	5	4	10	17	3	5	4	2									60	40.0	22.3
	Largemouth bass		1	15	15	7	9	3	7	31	16	2	7	16	15	11	14	14	4		187	124.7	14.6
Lone Valley	Smallmouth bass			3	1	5	3	3	4	4	4		2	2							31	20.7	3.5
	Spotted bass	3	4	3	9	7	20	29	28	23	12	9	14	3	3	3					170	113.3	8.7
	Largemouth bass				1	1	5	5	5	26	62	21	18	26	25	24	22	9	3	2	255	170.0	12.1
TOTAL	Smallmouth bass		1	6	2	5	4	3	5	5	4	1	2	3	1	1					43	7.2	2.6
	Spotted bass	7	11	15	19	14	47	66	51	34	22	18	18	4	4	4					334	55.7	11.8
	Largemouth bass	2	9	33	44	43	66	32	33	118	139	51	55	85	77	59	73	41	17	7	984	164.0	11.7

sw dgrlbb.d17

Table 29. Spring diurnal electrofishing CPUE (fish/hr) of largemouth bass by length group collected at Green River Lake during late-April to early-mid May since 1997.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. error										
1997	3.7	1.0	22.3	2.5	23.3	2.8	23.2	2.1	1.2	0.5	72.5	5.2
1998	33.5	7.7	9.0	1.8	8.8	2.0	17.5	1.8	2.0	0.7	68.8	8.6
1999	21.4	3.8	53.5	7.2	19.4	4.0	14.3	1.7	2.8	0.8	108.6	12.5
2000	2.5	0.9	41.0	4.4	24.2	3.4	14.7	3.4	3.2	1.0	82.3	8.6
2001	10.2	2.5	26.7	3.0	32.2	6.5	12.5	1.5	1.7	0.4	81.5	7.8
2002	5.0	1.1	9.5	1.5	20.5	2.5	13.0	2.5	1.2	0.4	48.0	4.2
2003	5.8	1.4	12.3	2.1	5.8	1.8	18.2	3.0	1.8	0.7	42.2	4.1
2004	17.3	2.7	22.8	2.1	11.6	1.8	15.6	2.6	0.9	0.3	67.3	6.4
2005	67.8	8.0	30.7	2.8	11.7	1.9	16.8	2.5	1.5	0.7	127.0	12.5
2006	15.1	2.0	44.4	3.6	23.1	2.8	18.9	2.1	0.3	0.2	96.2	5.3
2007	3.8	1.0	20.5	2.5	33.7	5.8	22.2	3.6	0.5	0.3	80.2	10.3
2008	22.8	9.5	25.8	4.7	27.8	4.0	30.2	2.7	0.8	0.4	106.7	17.0
2009	7.2	1.8	11.3	3.4	13.0	2.7	42.8	7.9	1.7	0.8	74.3	12.3
2010	no data due to flooding											
2011	no data due to flooding											
2012	16.5	4.3	54.8	6.3	35.3	6.4	38.0	5.4	1.3	0.5	144.7	16.3
2013	4.2	0.7	23.7	3.7	44.0	4.8	52.8	5.3	3.3	0.7	124.7	11.7
2014	no data due to flooding											
2015	9.2	1.8	23.3	6.0	23.7	3.7	51.7	5.9	2.7	0.7	107.8	15.0
2016	15.0	3.7	13.0	2.7	25.0	4.7	40.0	5.8	2.5	0.7	93.5	9.1
2017	21.8	5.9	41.5	6.3	40.8	6.4	59.8	4.7	4.0	0.9	164.0	11.7

Table 30. PSD and RSD values for each black bass species collected during 6.0 hours (12-0.50-hour runs) of nocturnal electrofishing by area at Green River Lake on April 19 and 25, 2017. 95\% confidence intervals are in parentheses.

Area	Species	$\begin{aligned} & \geq \text { sto } \\ & \text { size } \end{aligned}$	PSD	RSD ${ }^{\text {A }}$
Green River Arm				
Holmes Bend	Largemouth bass	257	57(6)	35(6)
	Spotted bass	25	32(19)	8(9)
	Smallmouth bass	2	*	*
Ramp 1	Largemouth bass	194	76(6)	44(7)
	Spotted bass	61	30(12)	8(7)
	Smallmouth bass	5	60(48)	40(48)
Robinson Creek Arm				
Smith Ridge	Largemouth bass	149	66(8)	50(8)
	Spotted bass	45	24(14)	*
	Smallmouth bass		*	*
Lone Valley	Largemouth bass	253	84(5)	44(6)
	Spotted bass	151	44(8)	15(6)
	Smallmouth bass	27	44(19)	15(14)
Total	Largemouth bass	853	71(3)	43(3)
	Spotted bass	282	37(6)	11(4)
	Smallmouth bass	34	50(17)	21(14)

[^12]Table 31. Population assessment of largemouth bass based on nocturnal spring sampling at Green River Lake from 2005-2017 (scoring based on statewide assessment).

Parameter	$\underline{2005}$		2006		$\underline{2007}$		2008		$\underline{2009}$		$\underline{2012}$		$\underline{2013}$		$\underline{2015}$		$\underline{2016}$		$\underline{2017}$	
	Value	Score	Value	Score	Value	Score	Value	Score V	Value	Score	Value	Score	Value	Score V	Value	Score	Value	Score	Value	Score
Mean length age-3 at capture	14.4	4	14.4	4	14.4	4	14.4	4	14.6	4	14.6	4	14.6	4	13.1	4	13.1	4	13.1	4
Spring CPUE age-1	65.3	4	14.3	2	3.8	1	22.8	3	7.2	1	15.5	2	3.8	1	16.0	2	17.3	2	34.5	3
Spring CPUE 12.0-14.9 in	11.7	1	23.1	3	33.7	4	27.8	3	13.0	1	35.3	4	44.0	4	23.7	3	25.0	3	40.8	4
Spring CPUE ≥ 15.0 in	16.8	3	18.9	3	22.2	4	30.2	4	42.8	4	39.3	4	52.8	4	51.7	4	40.0	4	59.8	4
Spring CPUE ≥ 20.0 in	1.5	4	0.3	2	0.5	3	0.8	3	1.7	4	1.3	4	3.3	4	2.7	4	2.5	4	4.0	4
Instantaneous mortality (z)									-0.610						-0.473					
Annual mortality (A)\%									45.7						37.71					
Total score		16		14		16		17		14		15		17		17		17		19
Assessment rating		Good		Good		Good		Excellent		Good		Good		Excellent		Excellen		Excellent		Excellent

sw dgrlag.D03, D09, 15
sw dgrlbb.D02-D17

Table 32. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of diurnal electrofishing at Green River Lake from mid-late October through mid-November 2017.

Area	Species	Inch class																				Total	CPUE Std err	
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Green River Arm																								
Holmes Bend	Smallmouth bass					1																1	0.7	0.7
	Spotted bass	2	63	47	9	8	14	12	7	2	1	2										167	111.3	12.7
	Largemouth bass		25	20	10	10	5	2	4	6	4			1		1	1					89	59.3	16.8
Ramp 1	Smallmouth bass	1	6	5		2	1	1	1													17	11.3	7.3
	Spotted bass				1	1	2	4	4	3	1	1		1								18	12.0	4.0
	Largemouth bass			1		2	3	2	1	1		5	3	3		1	2	3				27	18.0	9.0
Robinson Creek Arm																								
Smith Ridge	Smallmouth bass																						0.0	
	Spotted bass		8	2		1			3					1								15	10.0	3.5
	Largemouth bass	1	11	10	4	3	4	1	7	9	7	3		3	5	3	2	1		2	1	77	51.3	13.5
Lone Valley	Smallmouth bass	1	11	3				1	2						1		1					20	13.3	4.7
	Spotted bass	20	20	2	5	6	4	4	2	1		1	1		1							67	44.7	7.3
	Largemouth bass	2	2						1						2	1		1	1			10	6.7	0.7
TOTAL	Smallmouth bass	2	17	8		3	1	2	3						1		1					38	6.3	2.6
	Spotted bass	22	91	51	15	16	20	20	16	6	2	4	1	2	1							267	44.5	12.8
	Largemouth bass	3	38	31	14	15	12	5	13	16	11	8	3	7	7	6	5	5	1	2	1	203	33.8	8.3

sw dgrly. d 17

Table 33. Largemouth bass mean length (in) at age-0 and catch rates at age 0 and age 1 collected at Green River Lake since 2002.

	Age $0^{\text {A }}$		Age $0^{\text {A }}$		Age $0 \geq 5.0 \mathrm{in}^{\text {A }}$		Age $1^{\text {B }}$	
Year class	Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2002	3.9	0.1	32.7	9.7	5.3	1.2	7.3	1.6
2003	3.9	0.1	32.8	9.7	5.5	1.2	11.9	2.1
2004	5.0	0.1	60.8	9.0	28.0	3.6	65.3	7.7
2005	5.2	0.1	31.7	7.4	16.8	4.3	14.3	2.4
2006	4.3	0.1	13.5	3.4	3.7	1.2	3.8	1.0
2007	4.2	0.1	21.8	5.3	5.8	2.2	22.8	9.5
2008	4.8	0.1	23.7	5.8	11.5	3.6	7.2	1.8
2009	3.7	0.1	66.8	9.8	11.5	3.9	ND	
2010	4.8	0.1	45.0	8.1	18.3	4.9	ND	
2011	3.9	0.1	28.8	7.5	5.8	1.5	15.5	4.0
2012	4.2	0.1	16.5	4.2	5.0	2.0	3.8	0.8
2013	5.9	0.1	26.0	15.4	19.3	12.9	ND	
2014	data collected too late in year for reasonable comparisons							
2015	5.7	0.1	65.0	22.6	44.7	15.8	17.5	4.2
2016	5.1	0.1	55.3	8.7	30.3	7.9	34.7	8.8
2017	4.8	0.1	19.0	6.6	7.0	2.5		

${ }^{\text {A }}$ Data collected by fall (late-Sept through early November) diurnal electrofishing. Mean lengths w ere determined by otoliths taken from a subsample of LMB <9.0 inches and extrapolated to the entire catch of the fall sample.
${ }^{\text {B }}$ Data collected during the follow ing spring (May) nocturnal electrofishing.
sw dgrlbb.D02-D17
sw dgrlag. D02-D17
sw dgrlyy. D02-D13, 15-17

Table 34. Length frequency and CPUE (fish/nn) for white bass and walleye collected in experimental gillnets (14 net-nights) from November 14-17 at Green River Lake, KY 2017.

Species	Inch class																			Total	CPUE	Std. error
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
White bass		4	3	3			3	17	48	42	22									142	10.1	2.5
Walleye				1	4	3	1		2	3	4	6	4		5	1	2	2	1	39	2.8	0.6

swdgrlgn.d17

Table 35. Age frequency and CPUE (fish/nn) of white bass collected from Green River Lake in experimental gillnets (14 net-nights) from 14-17 November 2017.

Age	Inch class										Total	Percent	CPUE	Std. error
	7	8	9	10	11	12	13	14	15	16				
0+	4	3	3								10	7	0.7	0.3
1+						2	2	3			7	5	0.5	0.1
2+						1	15	28	9		53	37	3.8	1.0
3+								17	33	21	71	50	5.1	1.5
4+											0	0		
$5+$											0	0		
6+											0	0		
7+										1	1	1	0.1	0.0
Total	4	3	3			3	17	48	42	22	142	100		
\%	3	2	2			2	12	34	30	15	100			

Table 36. Age frequency and CPUE (fish/nn) of walleye collected from experimental gillnets in Green River Lake from 14-17 November 2017

Age	Inch class															Total	Percent	CPUE	Std. error
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23				
0+	1	4	3	1												9	24	0.6	0.2
1+						2	3	4	6	1						16	43	1.1	0.4
2+										3		1	1			5	14	0.4	0.1
$3+$												4				4	11	0.3	0.1
4+															1	1	2	0.1	0.1
5+														2	1	3	8	0.2	0.1
Total	1	4	3	1		2	3	4	6	4		5	1	2	2	38	100.0		
\%	3	11	8	3		5	8	11	16	11		14	3	5	5	100			

Table 37. White bass population assessment from experimental gillnetting at Green River Lake 1991-2007, 2015 and 2017.

Year	CPUE age-1 and older		Mean length age-2+ at capture		CPUE ≥ 12.0 in		CPUE age 1		Instantaneous mortality (z)	Annual mortality (A)	Assessment	Rating
	Value	Assessment	Value	Assessment	Value	Assessment	Value	Assessment				
1991	22.2	4	14.0	4	10.7	4	14.6	4	1.204	70.0	16	E
1992	33.8	4	13.4	3	16.8	4	10.1	4	1.542	78.6	15	E
1993	32.3	4	13.7	4	16.3	4	15.0	4	0.964	61.9	16	E
1994	22.6	4	13.4	3	15.6	4	4.5	3	0.347	29.4	14	E
1995	17.6	3	13.5	3	11.9	4	9.1	4	NA		14	E
1996	33.1	4	13.6	4	18.9	4	18.4	4	1.012	63.7	16	E
1997	17.1	3	12.9	3	10.9	4	3.8	3	0.680	49.3	13	G
1998	19.1	4	12.9	3	6.3	3	6.4	3	1.187	69.5	13	G
1999	26.6	4	13.3	2	13.4	4	16.2	4	1.117	67.3	14	E
2000	11.5	3	13.6	4	9.4	4	2.8	2	0.619	46.2	13	G
2001	8.0	2	14.0	4	4.9	3	0.1	1	0.646	47.6	10	G
2002	10.2	3	13.8	4	4.4	3	5.4	3	0.735	52	13	G
2003	18.9	4	12.5	2	1.3	2	2.3	2	0.660	48.3	10	G
2004	5.8	2	12.8	2	0.5	1	3.5	3	1.320	73.3	8	F
2005	7.4	3	12.4	2	3.5	2	5.8	3	NA		10	G
2006	5.8	2	13.8	4	4.1	3	2.1	2	0.341	28.9	11	G
2007	3.2	1	14.0	4	2.6	2	1.1	1	0.575	43.7	8	F
2015	24.8	4	NA	4	23.8	4	24.0	4	NA		16	E
2017	9.4	3	14.3	4	9.4	4	0.7	1	NA		12	G

NA - data not available or not amenable for use
sw dgrlgn. d91-d08, 15, 17
sw dgrlag.d91-08, 15, 17

Table 38. Walleye population assessment from experimental gillnetting at Green River Lake 1996-2017 (scoring based on statewide assessment).

			Mean length age-2+\qquad at capture		CPUE ≥ 20.0 in		CPUE age 1		Mortality			
Year		Assessment	Value	Assessment	Value	Assessment	Value	Assessment	Instantaneous mortality (z)	Annual mortality (A)	Assessment	Rating
1996	1.8	1	18.5	3	0.1	1	1.4	2	NA		7	F
1997	0.8	1	17.3	1	0.2	2	0.4	1	NA		5	P
1998	0.5	1	17.6	2	0.1	1	0.3	1	NA		5	P
1999	3.2	2	17.3	1	0.1	1	1.7	3	NA		7	F
2000	5.0	3	18.1	2	0.2	2	4.1	4	-0.684	49.6	11	G
2001	5.8	3	17.8	2	0.0	1	5.0	4	NA		10	G
2002	2.6	2	17.8	2	0.4	2	0.7	1	-0.778	54.1	7	F
2003	2.1	1	18.3	2	0.5	2	1.6	2	NA		7	F
2004	1.1	1	16.4	1	0.0	1	0.8	1	NA		4	P
2005	0.6	1	17.8	2	0.1	1	0.5	1	NA		5	P
2006	2.3	1	17.9	2	0.1	1	1.6	2	-0.489	38.7	6	P
2007	6.8	4	18.6	3	0.8	3	3.9	4	-0.689	49.8	14	E
2008	3.7	2	19.6	4	0.9	3	1.1	2	-0.357	30.0	11	G
2009	4.1	3	19.6	4	1.1	4	2.3	3	-0.657	48.2	14	E
2010	3.6	2	18.8	3	1.0	3	1.7	3	-0.566	43.2	11	G
2011	1.8	1	19.3	4	0.8	3	0.4	1	-0.409	33.5	9	F
2012	3.1	2	19.2	4	0.9	3	1.3	2	-0.479	38.1	11	G
2013	2.8	2	19.2	4	0.9	3	1.1	2	NA		11	G
2014	1.0	1	20.1	4	0.7	3	0.1	1	NA		9	F
2015	2.1	1	19.5	4	1.1	4	0.8	1	NA		10	G
2017	2.1	1	19.5	4	0.8	3	1.1	2	NA		10	G

NA - catch data not amenable to mortality estimates
sw dgrlgn.d96-15, 17
sw dgrlag.d96-15, 17

Table 39. Relative weight (Wr) for each length group of white bass collected by gill nets (14 net-nights) at
Green River Lake from 14-17 November 2017. Standard errors are in parentheses.

	Length group		
	$6.0-8.9$ in	$9.0-11.9$ in	≥ 12.0 in
$W r$	$97(3)$	$98(2)$	$95(1)$
N	5	3	86

swdgrlgn.D17

Table 40. Relative weight (Wr) for each length group of walleye collected by gill nets (14 net-nights) at Green River Lake from 14-17 November 2017. Standard errors are in parentheses.

	Length group		
	$10.0-14.9$ in	$15.0-19.9$ in	≥ 20.0 in
$W r$	$93(1)$	$98(2)$	$101(2)$
N	10	15	8

swdgrlgn.D17

Table 41. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected during 1.5 hours (6- .25hour runs) of nocturnal electrofishing at Mill Creek Lake on 12 April 2017.

Inch class																						
Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Total	CPUE	Std err
Spotted bass	1	4	3	11	13	12	8	9	10	4	4	3		2						84	56.0	8.2
Largemouth bass		2	10	5	2	10	13	9	30	23	8	6	19	9	18	11	6	11	2	194	129.3	14.8

swdmilbb.D17

Table 42. Spring nocturnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Mill
Creek Lake during mid-late April to mid-May, 2006-2017.

Year	Length group										Total CPUE	Std. error
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. error										
2006	42.7	6.8	124.0	6.8	36.7	3.8	29.3	8.4	6.0	2.7	232.7	16.5
2007	ND											
2008	ND											
2009	ND											
2010	ND											
2011	42.0	9.3	49.3	4.3	32.7	3.8	64.0	9.6	4.7	1.2	188.0	9.6
2014	2.0	1.4	36.7	6.7	56.7	5.4	46.0	6.1	6.0	2.7	141.3	11.5
2017	12.7	4.2	41.3	5.1	24.7	5.7	50.7	9.8	8.7	3.5	129.3	14.8

swdmilbb.D06, D11, D14, D17
ND = no data collected

Table 43. PSD and RSD_{15} values from spring nocturnal electrofishing (1.5 hours; 6
runs; 0.25 hours each) for largemouth bass at Mill Creek Lake on 12 April 2017. 95\% confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD ($\pm 95 \% \mathrm{Cl})$	$\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})$
Spotted bass	65	$35(12)$	$8(6)$
Largemouth bass	175	$65(7)$	$43(7)$

swdmilbb.D17

Table 44. Length frequency and CPUE (fish/hr) of each inch class of bluegill and redear collected by 1.5 hours (12 runs; $450 \mathrm{sec} . / r u n$) of diurnal electrofishing at Shanty Hollow Lake on 26 April 2017.

Species	Inch class									Total	CPUE	Std. error
	1	2	3	4	5	6	7	8	9			
Bluegill	4	25	36	48	38	30	22	4		207	165.6	12.9
Redear			1		11	1	3	4	4	24	19.2	3.6
Warmouth	1			1		2	4			8	6.4	2.0

swdshlbg.d17

Table 45. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Shanty Hollow Lake from 2001-2017. Standard errors are in parentheses.

Year	Length group				Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	
2001	$\begin{gathered} 99.9 \\ (28.2) \end{gathered}$	$\begin{aligned} & 224.7 \\ & (57.5) \end{aligned}$	$\begin{aligned} & 239.4 \\ & (67.8) \end{aligned}$	$\begin{gathered} 4.4 \\ (3.5) \end{gathered}$	$\begin{gathered} 573.3 \\ (153.3) \end{gathered}$
2002	$\begin{gathered} 78.0 \\ (15.2) \end{gathered}$	$\begin{aligned} & 391.3 \\ & (55.2) \end{aligned}$	$\begin{aligned} & 121.3 \\ & (15.0) \end{aligned}$	$\begin{aligned} & 10.7 \\ & (2.8) \end{aligned}$	$\begin{aligned} & 601.3 \\ & (67.1) \end{aligned}$
2003	$\begin{gathered} 43.3 \\ (10.4) \end{gathered}$	$\begin{aligned} & 346.7 \\ & (34.6) \end{aligned}$	$\begin{aligned} & 106.0 \\ & (17.0) \end{aligned}$	$\begin{gathered} 5.3 \\ (2.8) \end{gathered}$	$\begin{aligned} & 501.3 \\ & (47.6) \end{aligned}$
2004	$\begin{gathered} 85.7 \\ (26.7) \end{gathered}$	$\begin{aligned} & 285.2 \\ & (53.0) \end{aligned}$	$\begin{aligned} & 157.1 \\ & (27.6) \end{aligned}$	*	$\begin{gathered} 590.8 \\ (100.1) \end{gathered}$
2005	$\begin{gathered} 76.3 \\ (16.5) \end{gathered}$	$\begin{aligned} & 194.5 \\ & (23.2) \end{aligned}$	$\begin{aligned} & 124.3 \\ & (15.3) \end{aligned}$	$\begin{gathered} 1.2 \\ (0.8) \end{gathered}$	$\begin{aligned} & 396.3 \\ & (43.3) \end{aligned}$
2006	$\begin{aligned} & 134.0 \\ & (45.3) \end{aligned}$	$\begin{aligned} & 78.7 \\ & (8.9) \end{aligned}$	$\begin{gathered} 98.7 \\ (13.9) \end{gathered}$	$\begin{aligned} & 12.7 \\ & (4.7) \end{aligned}$	$\begin{aligned} & 324.0 \\ & (50.2) \end{aligned}$
2007	$\begin{aligned} & 197.1 \\ & (33.0) \end{aligned}$	$\begin{aligned} & 321.5 \\ & (38.2) \end{aligned}$	$\begin{gathered} 94.6 \\ (18.2) \end{gathered}$	$\begin{gathered} 0.7 \\ (0.7) \end{gathered}$	$\begin{aligned} & 613.8 \\ & (64.2) \end{aligned}$
2008	$\begin{aligned} & 115.1 \\ & (23.9) \end{aligned}$	$\begin{aligned} & 142.8 \\ & (11.5) \end{aligned}$	$\begin{aligned} & 108.9 \\ & (18.4) \end{aligned}$	*	$\begin{aligned} & 366.8 \\ & (31.5) \end{aligned}$
2009	$\begin{aligned} & 16.0 \\ & (8.1) \end{aligned}$	$\begin{aligned} & 184.0 \\ & (41.7) \end{aligned}$	$\begin{aligned} & 28.7 \\ & (8.0) \end{aligned}$	*	$\begin{aligned} & 228.7 \\ & (51.2) \end{aligned}$
2010	$\begin{gathered} 66.0 \\ (11.2) \end{gathered}$	$\begin{aligned} & 181.3 \\ & (24.6) \end{aligned}$	$\begin{aligned} & 29.3 \\ & (5.8) \end{aligned}$	$\begin{gathered} 0.7 \\ (0.7) \end{gathered}$	$\begin{aligned} & 277.3 \\ & (27.5) \end{aligned}$
2011			NO DATA		
2012	$\begin{aligned} & 192.8 \\ & (25.9) \end{aligned}$	$\begin{aligned} & 452.0 \\ & (70.1) \end{aligned}$	$\begin{gathered} 59.2 \\ (11.5) \end{gathered}$	$\begin{gathered} 0.8 \\ (0.8) \end{gathered}$	$\begin{aligned} & 704.8 \\ & (82.6) \end{aligned}$
2013			NO DATA		
2014			NO DATA		
2015	$\begin{gathered} 38.7 \\ (14.6) \end{gathered}$	$\begin{aligned} & 51.3 \\ & (9.6) \end{aligned}$	$\begin{gathered} 67.3 \\ (10.5) \end{gathered}$	$\begin{gathered} 3.3 \\ (1.2) \end{gathered}$	$\begin{aligned} & 160.7 \\ & (26.7) \end{aligned}$
2017	$\begin{aligned} & 23.2 \\ & (8.0) \\ & \hline \end{aligned}$	$\begin{array}{r} 97.6 \\ (9.8) \\ \hline \end{array}$	$\begin{array}{r} 41.6 \\ (5.8) \\ \hline \end{array}$	$\begin{array}{r} 3.2 \\ (2.4) \\ \hline \end{array}$	$\begin{aligned} & 165.6 \\ & (26.7) \end{aligned}$

sw dshlbg.D01 - D17

Table 46. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Shanty Hollow Lake from 2001-2017. Standard errors are in parentheses.

Year	Length group					Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	≥ 10.0 in	
2001	*	$\begin{gathered} 0.8 \\ (0.8) \end{gathered}$	$\begin{aligned} & 13.8 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 42.1 \\ & (8.7) \end{aligned}$	*	$\begin{aligned} & 60.0 \\ & (8.3) \end{aligned}$
2002	*	$\begin{gathered} 3.3 \\ (1.2) \end{gathered}$	$\begin{gathered} 6.7 \\ (2.2) \end{gathered}$	$\begin{gathered} 6.7 \\ (3.1) \end{gathered}$	*	$\begin{aligned} & 16.7 \\ & (5.1) \end{aligned}$
2003	*	$\begin{gathered} 2.7 \\ (1.1) \end{gathered}$	$\begin{gathered} 1.3 \\ (0.9) \end{gathered}$	$\begin{aligned} & 10.7 \\ & (6.0) \end{aligned}$	*	$\begin{aligned} & 14.7 \\ & (5.9) \end{aligned}$
2004	$\begin{gathered} 1.2 \\ (0.8) \end{gathered}$	$\begin{gathered} 8.0 \\ (2.6) \end{gathered}$	$\begin{gathered} 8.0 \\ (2.2) \end{gathered}$	$\begin{gathered} 9.9 \\ (3.2) \end{gathered}$	*	$\begin{aligned} & 27.1 \\ & (4.8) \end{aligned}$
2005	$\begin{gathered} 1.2 \\ (1.2) \end{gathered}$	$\begin{gathered} 3.7 \\ (1.5) \end{gathered}$	$\begin{gathered} 9.2 \\ (2.7) \end{gathered}$	$\begin{gathered} 3.7 \\ (1.5) \end{gathered}$	*	$\begin{aligned} & 17.9 \\ & (3.8) \end{aligned}$
2006	0.0	$\begin{gathered} 8.0 \\ (3.3) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.2) \end{gathered}$	$\begin{gathered} 8.7 \\ (2.9) \end{gathered}$	*	$\begin{aligned} & 22.7 \\ & (5.6) \end{aligned}$
2007	$\begin{gathered} 1.5 \\ (1.0) \end{gathered}$	$\begin{gathered} 9.5 \\ (2.8) \end{gathered}$	$\begin{aligned} & 34.2 \\ & (6.4) \end{aligned}$	$\begin{gathered} 2.9 \\ (1.2) \end{gathered}$	*	$\begin{aligned} & 48.0 \\ & (7.3) \end{aligned}$
2008	$\begin{gathered} 1.2 \\ (0.8) \end{gathered}$	$\begin{gathered} 3.1 \\ (1.9) \end{gathered}$	$\begin{gathered} 9.2 \\ (3.0) \end{gathered}$	$\begin{aligned} & 11.7 \\ & (6.2) \end{aligned}$	*	$\begin{aligned} & 25.2 \\ & (9.2) \end{aligned}$
2009	$\begin{gathered} 3.3 \\ (2.1) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (3.6) \end{aligned}$	$\begin{gathered} 6.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 6.0 \\ (3.7) \end{gathered}$	*	$\begin{aligned} & 31.3 \\ & (9.2) \end{aligned}$
2010	0.0	$\begin{aligned} & 12.7 \\ & (3.4) \end{aligned}$	$\begin{gathered} 8.7 \\ (2.3) \end{gathered}$	$\begin{gathered} 2.0 \\ (1.4) \end{gathered}$	*	$\begin{aligned} & 23.3 \\ & (4.1) \end{aligned}$
2011	NO DATA					
2012	$\begin{gathered} 4.0 \\ (2.2) \end{gathered}$	$\begin{aligned} & 20.8 \\ & (5.6) \end{aligned}$	$\begin{gathered} 5.6 \\ (2.4) \end{gathered}$	$\begin{gathered} 9.6 \\ (3.1) \end{gathered}$	*	$\begin{aligned} & 40.0 \\ & (8.2) \end{aligned}$
2013	NO DATA					
2014	NO DATA					
2015	*	$\begin{gathered} 3.3 \\ (1.5) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.2) \end{gathered}$	$\begin{aligned} & 16.0 \\ & (3.6) \end{aligned}$	$\begin{gathered} 0.7 \\ (0.7) \end{gathered}$	$\begin{aligned} & 25.3 \\ & (4.2) \end{aligned}$
2017	*	$\begin{gathered} 9.6 \\ (2.0) \\ \hline \end{gathered}$	$\begin{gathered} 3.2 \\ (1.8) \\ \hline \end{gathered}$	$\begin{gathered} 6.4 \\ (1.1) \\ \hline \end{gathered}$	*	$\begin{array}{r} 19.2 \\ (3.6) \\ \hline \end{array}$

sw dshlbg.D01-D17

Table 47. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear collected by diurnal electrofishing at
Shanty Hollow Lake on 26 April 2017. Numbers in parentheses
represent 95\% confidence intervals.

Species	N	PSD	RSD $^{\text {a }}$
Bluegill			
Redear	23	$31(7)$	$2(2)$
		$48(21)$	$17(15)$

[^13]Table 48. Bluegill population assessments from 2006-2017 at Shanty Hollow Lake (scoring based on statewide assessment).

Parameter	$\underline{2006}$		$\underline{2007}$		$\underline{2008}$		$\underline{2009}$		$\underline{2010}$		$\underline{2011}$	$\underline{2012}$		$\underline{2013}$	$\underline{2014}$	$\underline{2015}$		2017	
	Value	Score		Value	Score			Value	Score	Value	Score								
Mean length age-2 at capture	4.8*	3	4.8*	3	3.7	1	$3.7 *$	2	$3.7 *$	1	ND	$3.7 *$	1	ND	ND	3.4*	1	3.4	1
Years to 6.0 in	2.6 *	4	2.6*	4	2.7	4	2.7*	4	$2.7 *$	4	ND	2.7*	4	ND	ND	3.0	3	3.0	3
CPUE ≥ 6.0 in	111.3	4	95.3	4	108.9	4	28.7	1	30.0	2	ND	60.0	3	ND	ND	70.7	3	44.8	2
CPUE ≥ 8.0 in	12.7	4	0.7	2	0.0	1	0.0	1	0.7	1	ND	0.8	1	ND	ND	3.3	3	3.2	3
Instantaneous mortality (z)						-0.75										NA			
Annual mortality (A)						52.9													
Total score:		15		13		10		8		8			9				10		9
Assessment rating:		Excellent		Good		Good		Fair		Fair			Fair				Fair		Fair

*No age data collected, value carried over from years with age data
ND - data collected, but no amenable for use
sw dshlag.d02, 08, 15
sw dshlbg.D02 - D17

Table 49. Redear population assessments from 2006-2017 at Shanty Hollow Lake (scoring based on statewide assessment).

Parameter	$\underline{2006}$		$\underline{2007}$		$\underline{2008}$		$\underline{2009}$		$\underline{2010}$		$\underline{2011}$	$\underline{2012}$		$\underline{2013}$	$\underline{2014}$	$\underline{2015}$		$\underline{2017}$	
	Value	Score		Value	Score			Value	Score	Value	Score								
Mean length age-3 at capture	7.2*	2	*7.2	2	7.8	3	7.8*	3	7.8*	3	ND	7.8*	3	ND	ND	7.5	2	7.5*	2
Years to 8.0 in	3.9	4	3.9	4	3.7	4	3.7	4	3.7	4	ND	3.7	4	ND	ND	3.7	4	3.7	4
CPUE ≥ 8.0 in	8.7	3	2.9	2	11.7	3	6.0	2	2.0	2	ND	9.6	3	ND	ND	16.0	3	6.4	2
CPUE ≥ 10.0 in	0.0	1	0.0	1	0.0	1	0.0	1	0.0	1	ND	0.0	1	ND	ND	0.7	2	0.0	1

Instantaneous mortality (z)
Annual mortality (A)

Total score:	10	9	11	10	10	11	9	11
Assessment rating:	Good	Fair	Good	Good	Good	Good	Good	Fair

*No age data collected, value carried over from years w ith age data
ND - data collected
sw dshlag.d02, 08, 15
sw dshlbg.D02-D17

Table 50. Length frequency and CPUE (fish/set-night) of channel catfish collected from 8 sets of tandem hoop nets (4 sets with 3 nets each with 72 hour soak time) at Shanty Hollow Lake from 5-11 September 2017.

Species	Inch class																	Total		CPUE	Std err
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2				
Channel catfish											1	1			1		2		5	0.6	0.6
Redear sunfish	2	9	6	16	12														45	5.6	1.4

[^14]Table 51. Age frequency and CPUE (fish/set-night) of channel catfish collected from 8 tandem hoop net sets at Shanty Hollow from 5-11 September 2017.

	Inch class									
Age	15	16	17	18	19	20	21	Total.	Percent	CPUE
error										

$0+$								0		
$1+$								0		
$2+$								0		
$3+$	1	1						2	40	0.3
$4+$					1		2	3	60	0.3
								0.4		
Total	1	1	0	0	1	0	2	5	100.0	
$\%$	20	20	0	0	20	0	0	100		

swdshlcc.D17, swdshlag.D17

Table 52. Length frequency and CPUE (fish/set-night) of channel catfish collected from 8 sets of tandem hoop nets (4 sets with 3 nets each with 72 hour soak time) at Spurlington Lake from 12-18 September 2017.

Species	Inch class																								Total	CPUE	Std err
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27			
Channel catfish												1		2				1				1	1	1	7	0.9	0.5
Redear sunfish	2	8	16	19	7	3	1																		56	7.0	3.1
Bluegill	23	65	13	7	1																				109	13.6	4.1

swdsplcc.d17

Table 53. Age frequency and CPUE (fish/set) of channel catfish collected from 8 tandem hoop net sets at Spurlington Lake from 12-18 September 2017.

Age	Inch class													Total	Percent	CPUE	Std. error
	15	16	17	18	19	20	21	22	23	24	25	26	27				
0+														0			
1+	1													1	14.3	0.1	0.1
2+			1											1	14.3	0.1	0.1
3+			1											1	14.3	0.1	0.1
4+							1						1	2	28.6	0.3	0.2
5+											1			1	14.3	0.1	0.1
$6+$												1		1	14.3	0.1	0.1
Total	1	0	2	0	0	0	1	0	0	0	1	1	1	7	100.0		
\%	14.3	0	28.6	0	0	0	14.3	0	0	0	14.3	14.3	14.3	100			

Table 54. Relative weight (Wr) for each length group of largemouth bass collected by nocturnal electrofishing at Fagan Branch Lake on November 27, 2017. Standard errors are in parentheses.

	Length group		
	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in
$W r$	$79(1)$	$79(1)$	$86(5)$
N	72	21	9

swdlclwr.D17

CENTRAL FISHERIES DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Lake sampling conditions for 2017 are summarized in Table 1.

Taylorsville Lake (3,050 acres)

Spring diurnal electrofishing was completed in April 2017 to assess the black bass population. Three sections (Big Beech Creek, Ashes/Jacks Creek, and Van Buren area) of Taylorsville Lake were sampled for 7.5 hours (2.5 hours per section; 30-minute runs). Length distribution and CPUE for largemouth bass are presented in Tables 2 and 3. The catch rate of bass collected in 2017 ($171.1 \mathrm{fish} / \mathrm{hr}$) was higher than the lake's historical average of 116.3 fish $/ \mathrm{hr}$. Catch rate for keeper bass ($\geq 15.0 \mathrm{in}$) was $46.9 \mathrm{fish} / \mathrm{hr}$; higher than the lake average ($18.5 \mathrm{fish} / \mathrm{hr}$) and was the highest catch rate recorded for harvestable-size fish. Big Beech Creek area recorded the highest catch rate for largemouth bass. The PSD for largemouth bass was 82, which was higher than the lake's average of 56 (Table 4). Additionally, the RSD_{15} value was 32 ; higher than the lake's average of 22. The largemouth bass population assessment score, based on spring electrofishing data, was 16 ("Good"), which is equal to the average rating at Taylorsville Lake (Table 5).

Length frequency, relative weights, and index of year class strength at age- 0 and age- 1 of largemouth bass based on September electrofishing are presented in Tables 6-8. Average body condition for largemouth bass was good in $2017\left(\mathrm{~W}_{\mathrm{r}}=92\right)$, but was slightly lower than the historical average $\left(\mathrm{W}_{\mathrm{r}}=96\right)($ Table 7$)$. Catch rate of age-0 largemouth bass in the fall of 2017 (46.2 fish/hr) was higher than the lake's historic average of $42.1 \mathrm{fish} / \mathrm{hr}$ (Table 8). The year class strength model indicated above average recruitment for young-of-the-year largemouth bass in 2017, therefore no largemouth bass fingerlings were stocked during 2017. However, 989 6- to 8 -inch largemouth bass were stocked into Taylorsville Lake due to a bass removal from Beaver Lake. Largemouth bass fingerlings have been stocked almost annually since 2000 at rates ranging from 5.0 fish/acre to 10.0 fish/acre and from 1985 to 1992 at various rates. The need for stocking and the numbers stocked in reservoirs are based (since 2004) on results of the age- 0 year class strength sampled in early September and the predicted age-1 year class strength the following spring.

Trap netting effort for crappie (Table 9) resulted in the collection of 614 white crappie and 181 black crappie. Crappie were sampled with trap nets during 48 net-nights. PSD and RSD_{10} values are shown in Table 10. Age and growth determinations along with age frequency for black and white crappie were completed using otoliths and are shown in Tables 11-14. Age studies indicated both white and black crappie reach 9.0 in between age 2 and age 3. The crappie population assessment scores (Tables 15 and 16) rated both white and black crappie as "Fair". Historically, the crappie population at Taylorsville Lake has been very cyclic with peaks occurring every 7 to 9 years. In an effort to help recruitment on the lake, white crappie were stocked from 2009 through 2013. Significant spawns have occurred in both 2013 and 2015, however the 2016 and 2017 spawn appeared to be poor based off trap net data. Body condition of white and black crappie in the fall of 2017 were acceptable, but the black crappie are lower than expected for Taylorsville Lake (Table 17).

Fall gill netting for hybrid striped bass and white bass was conducted in October 2017 (Tables 18-26). A total of 125 hybrid striped bass were collected in 2017 compared to 167 in 2016, 47 in 2015, and 90 in 2014, Hybrid striped bass were captured in 8 net-nights (4 nets for 2 nights) for a CPUE of $12.5(\pm 3.6)$ fish $/ \mathrm{nn}$. The hybrid striped bass population has exhibited notable fluctuations since 1990. The density of hybrid striped bass in Taylorsville Lake appeared to be negatively correlated with the amount of tailwater discharge (due to rainfall) and fishing pressure. It is theorized that above-normal discharge leads to escapement of hybrid striped bass but has little effect on the white bass density in the lake. Additionally, a late fall water quality issue with low oxygen in the lower portion of Taylorsville Lake may be causing additional stress on the hybrid striped bass. Age and growth studies were completed for hybrid striped bass using otoliths (Tables 19 and 20). Data indicate hybrid striped bass reached 15.0 in between one to two years. This is good growth for hybrid striped bass at Taylorsville Lake. The relative weight $\left(\mathrm{W}_{\mathrm{r}}\right)$ index for hybrid striped bass (85) continues to show below average body condition at Taylorsville Lake
(Table 21). The average W_{r} for Taylorsville Lake is 86 . The population assessment for hybrid striped bass was rated at "Fair", an average rating for hybrid striped bass at Taylorsville Lake (Table 22). Annual stocking rates for hybrid striped bass have been 20 fish/acre (1.4 to 2.0 in) for the last 15 years. Taylorsville Lake was stocked with 61,206 (20.1 fish/acre; 1.5 in) hybrid striped bass in June 2017. The 2017 hybrid striped bass stocking in Taylorsville Lake included both crosses of hybrid striped bass (30,588 reciprocal cross hybrids (no OTC mark) and 30,618 original cross hybrid striped bass (OTC marked)). Data for white bass collected during fall 2017 gillnetting studies are presented in Tables 18 and 23-26. White bass comprised about 17% of the Morones sampled, compared to 35% in $2016,27 \%$ in 2015 , and 47% in 2014 , Age and growth studies indicated white bass reach 12.0 in by age 3 (Tables 23 and 24). Relative weight values ($\mathrm{W}_{\mathrm{r}}=93$) revealed acceptable body condition for all sizes of white bass (Table 25). The white bass population assessment was rated "Poor", an average rating for white bass at Taylorsville Lake (Table 26).

Saugeye were collected during fall gill netting conducted in October. A total of 40 saugeye were collected ranging from the 9.0-19.0 inch class (Table 18). Taylorsville Lake was stocked with 115,261 (37.8 fish/acre; 1.7 in) saugeye in 2017. This was the third stocking of saugeye into Taylorsville Lake.

Summer diurnal low-pulse electrofishing was completed in July 2017 to assess the blue catfish population. Two sections (Lower Lake: Big Beech Creek and Ashes/Jacks Creek and Upper Lake: Chowning Lane and Van Buren areas) of Taylorsville Lake were sampled for 3.0 hours (15-minute runs). Two hundred and fifty-one blue catfish were collected in the lower section compared to 399 blue catfish collected in the upper section of the lake (Table 27). The number of blue catfish collected in 2017 (216.7 fish/hr) was significantly higher than the lake's historic average of 122.8 fish $/ \mathrm{hr}$ and the second highest catch rate of blue catfish since blue catfish have been stocked into Taylorsville Lake (Table 28). Relative weight values revealed good body condition for all sizes of blue catfish (Table 29). A total of 23,540 (7.7 fish/acre) blue catfish (6.0-9.0 in) were stocked in Taylorsville Lake during April 2017. Additionally, another 27,520 (9.0 fish/acre) blue catfish (5.0-18.0 in) were stocked in Taylorsville Lake during October 2017.

Dissolved oxygen and temperature profiles were completed from April through November at Taylorsville Lake. Three sites were sampled during 2017, including Big Beech Creek near Settlers Marina (no wake buoy line; Table 30), the mouth of Ashes and Jack's Creek (no ski buoy line; Table 31), and VanBuren / Chowning Lane Area (no ski buoy line; Table 32). The thermocline became well established from June through September. Dissolved oxygen levels suitable for fish ($\geq 4 \mathrm{mg} / \mathrm{l}$) could generally be found from $0-12 \mathrm{ft}$ deep during the summer months. There was a decline in oxygen throughout the water column in the lower portions of Taylorsville Lake during November. These late season declines in oxygen may be a result of decomposition from significant blooms of bluegreen algae that occurred during the summer months at Taylorsville Lake. Lake temperatures peaked during the month of August in the mid 80-degree range.

Herrington Lake (2,410 acres)

Spring diurnal electrofishing studies were completed in April 2017 to monitor the black bass population. Upper, middle, and lower sections were sampled for a total of 7.5 hours (2.5 hours per section). Species composition, relative abundance, and CPUE of black bass collected in the spring are presented in Table 33. Largemouth bass (94.8%) dominated the black bass fishery, followed by spotted bass (5.1\%) and smallmouth bass (0.1%). Numbers of largemouth bass collected in 2017 ($114.0 \mathrm{fish} / \mathrm{hr}$) was comparable to the lake's historic average of $113.8 \mathrm{fish} / \mathrm{hr}$ (Table 34). Fluctuations in the overall catch rates over the past couple of years seem to be related to lake level during sampling. The higher the lake level the lower the catch rate of bass at Herrington Lake. The lake level during the 2017 spring electrofishing sample was low, which may have led to a slight increase in the catch rate for largemouth bass. Catch rate for keeper bass ($\geq 12.0 \mathrm{in}$) was $47.1 \mathrm{fish} / \mathrm{hr}$, comparable to the lake's historical average ($44.9 \mathrm{fish} / \mathrm{hr}$). Overall, black bass catch rates were comparable in all three sections. The PSD for largemouth bass was 54 , comparable to the lake's average of 56 (Table 35). Additionally, the RSD 15 value was 19, which is lower than the lake average of 24. The largemouth bass population assessment score, based on spring electrofishing data, was 16 ("Good"), which is the average rating for Herrington Lake (Table 36). Length frequency, relative weights and index of year class strength at age- 0 and age- 1 of largemouth bass based on September electrofishing at Herrington Lake are presented in Tables 37-39. Largemouth bass condition ($\mathrm{W}_{\mathrm{r}}=91$) was slightly lower than the lake's historical average $\left(\mathrm{W}_{\mathrm{r}}=92\right)$ (Table 38). The year class strength model for

Herrington Lake indicated a below average recruitment year for young-of-year largemouth bass based on age-1 CPUE (Table 39). Age-0 CPUE ($26.0 \mathrm{fish} / \mathrm{hr}$) was less than the lake average ($36.4 \mathrm{fish} / \mathrm{hr}$). Herrington Lake was stocked with 40,112 (16.6 fish/acre) largemouth bass (4.1-4.7 in) in 2017.

Gill netting for hybrid striped bass and white bass was completed in October and November 2017. During the 30 net-night sampling period, 156 hybrid striped bass and 76 white bass were collected (Table 40). Otoliths were taken from both species for age and growth determinations. Results of these studies indicated excellent growth rates for both hybrids (Tables 41-42) and white bass (Tables 45-46). Hybrid striped bass continue to reach 15.0 in between age 1 and 2 (Table 41), as they have historically. Of the hybrid striped bass sampled, 60% were age- $1+$ or older (Table 42). Condition of hybrid striped bass in $2017\left(\mathrm{~W}_{\mathrm{r}}=95\right)$ was higher than the lake's historical average ($\mathrm{W}_{\mathrm{r}}=93$) (Table 43). The population assessment for hybrid striped bass indicated a "Fair" population (Table 44). White bass age and growth determinations showed they reached 12.0 in between age- 1 and age- 2 (Table 45). Of the white bass sampled, 91% were age- $1+$ and older (Table 46). The white bass population assessment indicated a "Fair" population, which is an average rating (Table 47). Body condition of white bass ($\mathrm{W}_{\mathrm{r}}=93$) was lower than the lake's historical average ($\mathrm{W}_{\mathrm{r}}=96$) (Table 48). Herrington Lake was stocked with 51, 150 (21.2 fish/acre; 1.5 in) hybrid striped bass in June 2017. The hybrid striped bass stocking was divided into 25,635 reciprocal cross hybrids (no mark) and 25,515 original cross hybrids (OTC marked).

Dissolved oxygen and temperature profiles were completed from April through November at Herrington Lake. Three sites were sampled at Herrington Lake during 2017, including the mouth of Cane Run (no wake buoy line; Table 49), near Gwynn Island Marina (no wake buoy line; Table 50), and near King's Mill Marina (no wake buoy line; Table 51). The thermocline appeared in May and became established during the months of June through October. However, near the dam at the Cane Run sample site a layer of dissolved oxygen $>4.0 \mathrm{ppm}$ was observed below a layer of insufficient oxygen ($<4 \mathrm{ppm}$) during June, July, and August. Dissolved oxygen levels suitable for fish ($\geq 4 \mathrm{mg} / \mathrm{l}$) could generally be found from $0-14 \mathrm{ft}$ deep during the summer months. Lake temperatures peaked during the month of July in the low 80-degree range.

Guist Creek Lake (317 acres)

Spring nocturnal electrofishing studies were completed for length frequency, CPUE and population assessment for largemouth bass in April 2017 (Table 52). Total largemouth bass catch rate ($176.3 \mathrm{fish} / \mathrm{hr}$) was higher than the lake average of 163.7 fish $/ \mathrm{hr}$ (Table 53). The PSD for largemouth bass was 65 compared to the lake average of 66 (Table 54). The RSD_{15} was 43 compared to the lake average of 41 . The population assessment gave a rating of "Excellent", an above average rating observed at Guist Creek Lake (Table 55). Fall largemouth bass sampling was conducted for relative weights, age and growth, and index of year class strength at age-0 and age-1 (Tables 56-59). Relative weights indicated good body condition for bass, especially for bass over 15.0 in (Table 58). Mean length of age-0 largemouth bass (5.0 in) was significantly larger than in recent years and catch rate of age-0 largemouth bass ($75.3 \mathrm{fish} / \mathrm{hr}$) was higher than the average recruitment (avg. $=47.3 \mathrm{fish} / \mathrm{hr}$; Table 59). Therefore, largemouth bass were not stocked into Guist Creek Lake in 2017.

Gill netting was completed in October for hybrid striped bass (Table 60). Four nets were fished for two nights (8 net-nights) in similar sites as in past years. A total of 48 hybrid striped bass were captured compared to 31 in 2014, 51 in 2011, 32 in 2010 and 26 in 2009. Age and growth studies were completed using otoliths. Calculations indicated hybrid striped bass continued to reach 15.0 in between age 1 and age 2, and 20.0 in between age 2 and age 3 (Tables 61-62). Relative weights of these hybrid striped bass continue to be below average ($\mathrm{W}_{\mathrm{r}}=83$) for their size (Table 63). The population assessment indicated a rating of "Poor", below the average population rating of "Fair" for Guist Creek Lake (Table 64). Guist Creek Lake was stocked with 19,098 (60.2 fish/acre; 1.6 in) hybrid striped bass in June 2017

Saugeye were collected during the spring largemouth bass sample (Table 52). Sampling yielded 32 saugeye (10.7 fish $/ \mathrm{hr}$) ranging in size from the 8.0 - to 23.0 -in size class. Additionally, saugeye were collected during fall electrofishing (Table 65). Sampling yielded 37 saugeye ($24.7 \mathrm{fish} / \mathrm{hr}$) ranging in size from the 8.0 - to 24.0 -in size class. Gill netting for 8 net-nights was completed in October for saugeye (Table 60). A total of 123 saugeye were captured from the 9.0 - to 24.0 -in classes. Age and growth studies were completed using otoliths. Calculations indicated that on average saugeye reach 15.0 in between age 1 and age 2, and 20.0 in by age 3 (Tables 66). All five
stocked year classes were represented in this sample (Table 67). Guist Creek Lake was stocked with 15,850 (50.0 fish/acre; 1.8 in) saugeye in 2017. This was the fifth year of saugeye stocking into Guist Creek Lake.

Guist Creek Lake was stocked with 3,167 (10.0 fish/acre; 5.0-10.0 in) channel catfish in March 2017.

A.J. Jolly Lake (175 acres)

Spring diurnal electrofishing was completed in April 2017 to assess the black bass population (Table 68). Results indicated largemouth bass catch rates (131.6 fish $/ \mathrm{hr}$) were greater than the lake's historical average (85.5 fish $/ \mathrm{hr}$) (Table 69). The PSD for largemouth bass was 48 and the RSD_{15} was 26 (Table 70). The population assessment indicated a "Good" bass population, the average rating since 2010 (Table 71). Fall diurnal electrofishing was conducted for relative weights and to index year class strength of age-0 largemouth bass in October (Tables 7274). Relative weights indicated acceptable body condition $\left(\mathrm{W}_{\mathrm{r}}=89\right)$ (Table 73). Fall sampling indicated an above average number of age- 0 bass, ($37.5 \mathrm{fish} / \mathrm{hr}$; average $=24.1 \mathrm{fish} / \mathrm{hr}$) and above average size of age- 0 bass (5.4 in ; average=4.6 in) (Table 74). Largemouth bass were not stocked during 2017.
A.J. Jolly Lake was stocked with 8,750 (50.0 fish/acre; 1.8 in) saugeye in 2017. This was the fifth year of saugeye stocking. Saugeye were collected during the spring largemouth bass sample (Table 68). Sampling yielded 42 saugeye (16.8 fish $/ \mathrm{hr}$) ranging in size from the 7.0 - to 21.0 -in size class. Additionally, saugeye were collected during the fall largemouth bass sample (Table 72). Sampling yielded 74 saugeye ($37.0 \mathrm{fish} / \mathrm{hr}$) ranging in size from the 4.0 - to 23.0 -in size class.

Channel catfish were sampled in October using tandem hoop nets at A.J. Jolly in 2017. Length frequency results for channel catfish showed a size distribution between the 8.0 and 22.0 -in size classes (Table 75). The PSD and RSD_{24} for channel catfish was 19 and 0 , respectively (Table 76). Relative weights indicated good body condition for channel catfish $\left(\mathrm{W}_{\mathrm{r}}=95\right)$ (Table 77). Overall, catch rates at A.J. Jolly remain lower than the lake average of $38.3 \mathrm{fish} / \mathrm{hr}$ (Table 78). A.J. Jolly Lake was stocked with 1,750 (10.0 fish/acre; $5.0-10.0 \mathrm{in}$) channel catfish in March 2017.

On May 31, 2017 a total of 218 common carp were removed from AJ Jolly Lake. The average weight of a common carp removed from AJ Jolly Lake was 3.3 lbs . Therefore, it was estimated that 720 lbs of common carp were removed from AJ Jolly Lake. The seven-year total for common carp removed from AJ Jolly Lake is 1,954 fish at an estimated weight of $6,266.7 \mathrm{lbs}$ (3.2 lbs average weight per fish).

A creel survey conducted during 2016 and 2017 by the AJ Jolly Nature Resource Committee resulted in 30 completed creel cards. From this very small sample size, the average trip length was 4.5 hrs with 55% of anglers fishing from a boat and 45% of anglers' bank fishing. The most sought after species was catfish (40\%) followed by fishing for anything (33\%).

An angler attitude survey was conducted at AJ Jolly Lake through both an online survey during 2016 and an onsite survey conducted in both 2016 and 2017 by the AJ Jolly Nature Resource Committee in conjunction with the Campbell County Fiscal Court. A total of 92 surveys were completed. The survey reflected that 60.5% of all anglers were satisfied with the fishing at AJ Jolly compared to the 14.2% of anglers that were dissatisfied. Overall, 94.1% of anglers were satisfied with the current size and creel limits. The majority of anglers (58.5\%) stated that they would prefer AJ Jolly to be managed for a balanced bass and bluegill fishery. Seventy-four percent of anglers are satisfied with the current facilities at AJ Jolly compared to 3.5% of anglers that were dissatisfied.

Beaver Lake (158 acres)

During March, April, and June, an effort was made to reduce the crowded largemouth bass population at Beaver Lake. Two thousand three hundred eighty-seven (2,387 ; 15.1 fish/acre) largemouth bass were removed from Beaver Lake during three separate events with fish transported to Boltz, Kinman, Taylorsville, and 4 FINS lakes. Largemouth bass ranging in size from 4.0 to 13.0 in (<8.0 in $=1,758$ (73.6%); 8.0-10.9 in $=439$ (18.4%); 11.0-13.0 in $=190(8.0 \%))$ were removed from Beaver Lake.

A spring diurnal electrofishing sample was completed in April 2017 to assess the black bass population (Table 79). The CPUE for all sizes was $480.0 \mathrm{fish} / \mathrm{hr}$, greater than the lake average of $249.9 \mathrm{fish} / \mathrm{hr}$ (Table 80). The PSD and RSD_{15} for largemouth bass were 20 and 2, respectively, compared to the current lake average of 28 and 4 (Table 81). The population assessment score indicated a "Good" bass population (Table 82), which is the average assessment rating for Beaver Lake. Fall diurnal electrofishing was conducted for relative weights and the index of age- 0 year class strength (Tables $83-85$). The relative weight index continues to reflect below expected average weights for most length groups of largemouth bass $\left(\mathrm{W}_{\mathrm{r}}=83\right)$; which is lower than the lake average of 85 (Table 84). Fall sampling indicated above average numbers of age-0 bass, ($227.3 \mathrm{fish} / \mathrm{hr}$; average $=130.7 \mathrm{fish} / \mathrm{hr}$) and the average size of largemouth bass (4.8 in) was higher than the lake's average of 4.2 in (Table 85).

Spring diurnal electrofishing was completed in March and May 2017 to assess the panfish populations; however, only the May sampling results were used in the assessment tables to remain consistent with reported historical data (Tables 86-92). Length frequency results showed the majority of bluegill were in the 6.0 - to 7.0 -in range (Table 86). The PSD for bluegill was 66 compared to the lake average of 31 (Table 88). The RSD 8 was 4, compared to the lake average of 1. CPUE for all length groups of bluegill was $402.4 \mathrm{fish} / \mathrm{hr}$; considerable higher than the lake average of 250.5 fish/hr (Table 89). Redear sunfish PSD and RSD 9 were 74 and 37, respectively (Table 88). The population assessment for bluegill indicated an "Excellent" population rating, which is above average for Beaver Lake (Table 90). The catch rate of redear sunfish ≥ 8.0 in was 7.2 fish $/ \mathrm{hr}$ and was significantly lower than the lake average of 23.4 fish $/ \mathrm{hr}$ (Table 91). Additionally, catch rates for all sizes were significantly lower than the lake's average catch rate (68.5 fish $/ \mathrm{hr}$) for all sizes. The population assessment indicated an "Excellent" redear sunfish fishery (Table 92). Age and growth studies on bluegill and redear sunfish showed that bluegill reach 6.0 in and redear sunfish reach 8.0 in between age 2 and 3 (Table 93-94). Relative weights for bluegill and redear sunfish were collected during the fall diurnal electrofishing sample. Overall, relative weight data for bluegill was fair to poor while the body condition of redear sunfish was good (Table 95). A total of 31,800 (201.3 fish/acre; 1.02.0 in) redear sunfish were stocked during September 2017.

Diurnal electrofishing studies to evaluate the crappie population were completed at Beaver Lake in October 2017. A total of 10 crappie (7 black crappie and 3 white crappie) were collected in 1.5 hr of electrofishing (Table 96).

Channel catfish were sampled in October 2017 using tandem hoop nets. Length frequency results for channel catfish showed a size distribution between the 12.0 and 24.0 -in size classes (Table 97). The PSD and RSD $_{24}$ for channel catfish was 65 and 1, respectively (Table 98). Relative weights indicated fair body condition for channel catfish $\left(\mathrm{W}_{\mathrm{r}}=87\right)$, which was lower than the average for the lake $\left(\mathrm{W}_{\mathrm{r}}=88\right)($ Table 99). Overall, catch rates at Beaver Lake remain lower than the lake average of 44.7 fish $/ \mathrm{hr}$ (Table 100).

Beaver Lake was scheduled to be lowered about 8 feet from November 2017-February 2018 in an effort to crowd the fish, assist with a habitat placement and allow for winter rye to be planted on the exposed shoreline. A total of $1,550 \mathrm{lbs}$ of winter rye was planted, which should assist in suspending nutrients and providing additional shoreline fish habitat. However, a malfunction occurred with the valve on the control structure resulting in the valve being closed in December 2017. At that point the lake was down 3.5 feet returning to normal pool by the first week of February.

No applications of aquatic herbicides were completed at Beaver Lake in 2017. No liquid fertilizer applications have been made since 2001. Finally, no gizzard shad were collected at Beaver Lake in 2017.

Benjy Kinman Lake (88 acres)

A spring nocturnal electrofishing sample was completed in April 2017 to assess the black bass population (Table 101). The CPUE for all sizes was 120.0 fish $/ \mathrm{hr}$, compared to the lake average of 124.5 fish $/ \mathrm{hr}$ (Table 102). The PSD and RSD_{15} for largemouth bass were 29 and 5, respectively (Table 103). The population assessment score indicated a "Fair" bass population (Table 104). Fall largemouth bass sampling was conducted for relative weights, age and growth, and index of year class strength at age-0 and age-1 in September 2017 (Tables 105-108). Relative weights indicated below average body condition for bass $\left(\mathrm{W}_{\mathrm{r}}=84\right)$ with larger fish exhibiting better condition compared to smaller length groups (Table 106). The better condition of larger fish is due to the gizzard shad forage
base. Age and growth studies on largemouth bass show that largemouth bass reach 12.0 in between age 3 and 4 (Table 107). CPUE for both age- 0 and age- $0 \geq 5.0$ in were collected for the fourth time at Benjy Kinman Lake (Table 108). Largemouth bass (140 fish; 11.0-13.0 in) removed from Beaver Lake were stocked into Benjy Kinman Lake in March 2017.

Diurnal electrofishing studies to evaluate the crappie population were completed in October 2017. A total of 24 crappie (2 white crappie and 22 black crappie) were collected in 1.5 hrs of electrofishing (Table 109). Age and growth studies of white crappie indicated they reach 9.0 in between age 3 and 4 (Table 110). Additionally, age and growth studies showed black crappie growth to be slow (Table 111). Relative weights indicated below average body condition for both white crappie $\left(\mathrm{W}_{\mathrm{r}}=87\right)$ and black crappie $\left(\mathrm{W}_{\mathrm{r}}=81\right)($ Table 112 $)$.

Benjy Kinman Lake was stocked with 880 (10.0 fish/acre; 5.0-15.0 in) channel catfish in February 2017.
A total of eighteen rough fish removal events took place from May 2017- March 2018 resulting in a total of 922 bigmouth buffalo, smallmouth buffalo, common carp, river carpsucker, and longnose gar being removed from Benjy Kinman Lake. The average weight of removed rough fish was 8.3 lbs . Therefore, it was estimated that 7,670 lbs of rough fish were removed from Benjy Kinman Lake. The four-year total for rough fish removed from Benjy Kinman Lake is 3,390 fish at an estimated weight of $24,226 \mathrm{lbs}$ (7.1 lbs average weight per fish).

A soil test was completed during the fall at Kinman Lake that resulted in a soil pH level of 5.3. Based on the pH it was recommended to apply 5 tons/acre of agricultural lime. Therefore, during December 121 tons of agricultural lime was washed into the upper third of Kinman Lake. Additional liming is planned for the remainder of the lake next year.

Kinman Lake was lowered 2 feet from October 2017-February 2018 in an effort to crowd the fish, assist with rough fish removal and allow for winter rye to be planted on the exposed shoreline. A total of 650 lbs of winter rye was planted, which should assist in suspending nutrients as it decomposes while providing additional shoreline fish habitat.

Boltz Lake (92 acres)

Spring nocturnal electrofishing was completed in April 2017 to assess the black bass population (Table 113). Results indicated largemouth bass catch rates (218.5 fish $/ \mathrm{hr}$) were higher than the lake's historical average (192.0 fish/hr; Table 114). The PSD for largemouth bass was 30 compared to the lake average of 43 (Table 115). The RSD_{15} was 9 , lower than the lake average of 17 . The population assessment indicated a "Good" bass population (Table 116). Fall diurnal electrofishing was conducted for length frequency, relative weights and index of age-0 year class strength in September (Tables 117-119). Relative weights indicated acceptable body condition $\left(\mathrm{W}_{\mathrm{r}}=91\right)$, higher than the lake's average relative weight of 90 (Table 118). Fall sampling indicated above average numbers of age- 0 bass, ($164.0 \mathrm{fish} / \mathrm{hr}$; average $=58.1 \mathrm{fish} / \mathrm{hr}$) and the average size (4.3 in) was comparable to the lake's average size of 4.2 in (Table 119). Largemouth bass were stocked in Boltz Lake from a bass removal project completed at Beaver Lake during March 2017. A total of 629 largemouth bass (6.8 fish/acre) were stocked that ranged from the 4.0 - to 10.0 -in size class.

Saugeye were collected during the spring largemouth bass sample (Table 113). Sampling yielded 23 saugeye (11.5 fish $/ \mathrm{hr}$) ranging in size from the 10.0 - to 15.0 -in size class. Saugeye were stocked into Boltz Lake for the third time during 2017. A total of 4,600 saugeye (50.0 fish/acre) were stocked at an average size of 1.8 in .

Fall relative weight index reflected average condition for bluegill $\left(\mathrm{W}_{\mathrm{r}}=89\right.$; lake average $\left.\mathrm{W}_{\mathrm{r}}=90\right)($ Table 120).

Redear sunfish (18,400 fish; 200.0 fish/acre) were stocked in September 2017 that averaged 1.0-2.0 in.
Boltz Lake was stocked with 2,158 (23.5 fish/acre; 5.0 - 10.0 in) channel catfish in 2017.

A total of 16 common carp averaging $9.63 \mathrm{lbs} /$ fish were removed from Boltz Lake in June 2017. In total, 573 common carp (estimated 4,654 lbs) have been removed from Boltz Lake since 2008.

Currently, Boltz Lake does not have a population of gizzard shad.

Bullock Pen Lake (134 acres)

Spring nocturnal electrofishing was completed in May 2017 to assess the black bass population (Table 121). The total catch rate of largemouth bass ($204.5 \mathrm{fish} / \mathrm{hr}$) was much higher than the lake's average catch rate of 140.2 fish $/ \mathrm{hr}$ (Table 122). The PSD for largemouth bass was 78, higher than the lake average of 70 (Table 123). The RSD_{15} for largemouth bass was 42 , higher than the lake average of 40 . The population assessment for largemouth bass was rated "Good"; the same rating since 2012 (Table 124). Fall diurnal electrofishing was conducted in September to determine for length frequency, relative weights and index of age-0 year class strength for largemouth bass (Tables 125-127). Relative weights indicated acceptable body condition for bass ($\mathrm{W}_{\mathrm{r}}=92$), but were lower than the lake's average $\left(\mathrm{W}_{\mathrm{r}}=94\right)$. Larger fish exhibited better condition compared to smaller length groups, which is a function of the shad forage base (Table 126). Age-0 CPUE ($32.7 \mathrm{fish} / \mathrm{hr}$) was higher than the lake average ($21.1 \mathrm{fish} / \mathrm{hr}$); therefore, no largemouth bass were stocked in 2017 (Table 127).

Saugeye were collected during the spring largemouth bass sample. Twelve saugeye ($6.0 \mathrm{fish} / \mathrm{hr}$) were collected ranging in size from the 15.0 - to 21.0 -in class (Table 121).

Bullock Pen Lake was stocked with 2,196 (16.4 fish/acre; 5-10 in) channel catfish in March 2017.

During 2017, KDFWR was able to purchase and take sole ownership of the property adjacent to the boat ramp at Bullock Pen Lake.

Corinth Lake (96 acres)

Spring nocturnal electrofishing was completed in April 2017 to assess the black bass population (Table 128). The total catch rate of largemouth bass ($380.5 \mathrm{fish} / \mathrm{hr}$) was higher than the lake's average catch rate of 241.9 fish $/ \mathrm{hr}$ (Table 129). The PSD for largemouth bass was 17 , lower than the lake average of 21 (Table 130). The RSD_{15} for largemouth bass was 8 , equal to the lake average. The population assessment for largemouth bass was rated "Good"; the average rating since 2005 (Table 131). Fall diurnal electrofishing for largemouth bass was conducted to determine length frequency, year class strength and relative weight (Tables 132-134). Relative weights of largemouth bass continue to be below average, except for largemouth bass ≥ 15.0 in. The overall relative weight in $2017\left(\mathrm{~W}_{\mathrm{r}}=82\right)$ was less than the average relative weight observed at Corinth Lake ($\mathrm{W}_{\mathrm{r}}=84$; Table 133). The year class strength model indicated that 2017 was a below average recruitment year for young-of-year largemouth bass (Table 134). Age-0 CPUE (35.3 fish/hr) remained below the lake average (87.9 fish $/ \mathrm{hr}$); however, largemouth bass were not stocked into Corinth Lake in 2017.

Spring diurnal electrofishing for bluegill and redear sunfish was completed in May 2017 to obtain length frequency, CPUE and population assessment data (Table 135). Bluegill PSD (65) was significantly higher than the lake average of 32 (Table 136). The bluegill catch rate ($264.0 \mathrm{fish} / \mathrm{hr)} \mathrm{continued} \mathrm{to} \mathrm{increase} \mathrm{and} \mathrm{was} \mathrm{higher} \mathrm{than} \mathrm{the}$ lake's average (239.6 fish $/ \mathrm{hr}$; Table 137). The population assessment indicated a "Good" population, which is the average rating (Table 138). The redear sunfish catch rate ($203.2 \mathrm{fish} / \mathrm{hr}$) continued to increase and was higher than the lake's average ($73.3 \mathrm{fish} / \mathrm{hr}$; Table 139). Redear sunfish PSD was 64 , higher than the lake average of 56 (Table 136). Catch rate for redear sunfish ≥ 8.0 in was 43.2 fish $/ \mathrm{hr}$; remaining higher than the lake average of $29.8 \mathrm{fish} / \mathrm{hr}$ (Table 139). The population assessment for redear sunfish continues to be rated as "Good" (Table 140). Relative weights indicated fair condition for bluegill (89) and good condition for redear sunfish (93; Table 141).

Channel catfish were sampled in October at Corinth Lake using tandem hoop nets. Length frequency results for channel catfish showed a size distribution between the 9.0 and 23.0-in size classes (Table 142). The PSD and RSD_{24} for channel catfish was 21 and 0 , respectively (Table 143). Relative weights indicated "Good" body condition for channel catfish $\left(\mathrm{W}_{\mathrm{r}}=92\right)($ Table 144). Overall, catch rates at Corinth Lake remain lower than the lake
average of 53.4 fish $/ \mathrm{hr}$ (Table 145). Corinth Lake was stocked with 1,275 (20.3 fish/acre; 5.0-10.0 in) channel catfish in March 2017.

One hundred gallons of fertilizer was applied in May 2017.

Elmer Davis Lake (149 acres)

Spring diurnal electrofishing studies were conducted in April 2017 for PSD, length frequency and CPUE for largemouth bass (Table 146). The total catch rate ($279.5 \mathrm{fish} / \mathrm{hr}$) was lower than the historical lake average of 306.4 fish $/ \mathrm{hr}$ (Table 147). Largemouth bass PSD and RSD_{15} were $59($ average $=30)$ and 14 (average $=8$), respectively (Table 148). The population assessment indicated an "Excellent" bass population, better than the tenyear average rating of "Good" (Table 149). Fall electrofishing evaluated largemouth bass relative weight and index of year class strength (Tables 150-152). Largemouth bass relative weight $\left(\mathrm{W}_{\mathrm{r}}=86\right)$ was less than the historical lake average $\left(\mathrm{W}_{\mathrm{r}}=87\right.$; Table 151). The year class strength model indicated that 2017 was an above average year for young-of-year largemouth bass. Age-0 CPUE ($366.4 \mathrm{fish} / \mathrm{hr}$) was higher than the lake average ($142.7 \mathrm{fish} / \mathrm{hr}$) (Table 152).

Diurnal spring electrofishing for length frequency, CPUE, and population assessment were conducted for bluegill and redear sunfish in May 2017 (Table 153). The total bluegill catch rate ($194.4 \mathrm{fish} / \mathrm{hr}$) remains lower than the lake average of $255.9 \mathrm{fish} / \mathrm{hr}$ (Table 155). The PSD value for bluegill (54) was higher than the lake average of 35 (Table 154). Likewise, the RSD_{8} (1) remains lower than the lake average of 2. The population assessment for bluegill was "Fair", the average rating since 2009 (Table 156). The total catch rate of redear sunfish ($48.0 \mathrm{fish} / \mathrm{hr}$) was lower than the lake average of $71.3 \mathrm{fish} / \mathrm{hr}$ (Table 157). The PSD for redear sunfish was 98 compared to the lake average of 55. The RSD_{9} was 18 compared to the lake average of 17 (Table 154). The redear sunfish population assessment indicated a "Good" population, which is equal to the average lake rating (Table 158). Relative weight index reflects average condition for both bluegill $\left(\mathrm{W}_{\mathrm{r}}=95\right)$ and redear sunfish $\left(\mathrm{W}_{\mathrm{r}}=96\right)$; however both species are below the lake averages of 96 and 102, respectively (Table 159). A total of 36,300 (243.6 fish/acre; 1.0-2.0 in) redear sunfish were stocked during September 2017

Elmer Davis Lake was stocked with 3,290 (22.1 fish/acre; 7.0-10.0 in) channel catfish in March 2017.
The shad eradication project completed in December 2016 appears to have been successful. Multiple shocking events have been completed specifically looking for gizzard shad, including standard sampling, which have resulted in no gizzard shad being detected. This will continue to be monitored during 2018.

KDFWR Engineering Division attempted to pump grout into the hillside at the site of a leak discovered in the cove adjacent to the dam ramp. After refilling, it appears that the grouting made little or no impact on the leak. This leak will continue to be monitored.

Kincaid Lake (183 acres)

Spring nocturnal electrofishing studies were conducted in April 2017 for PSD, length frequency and CPUE for largemouth bass (Table 160). Total catch rate (221.0 fish $/ \mathrm{hr}$) was higher than the lake average of $216.1 \mathrm{fish} / \mathrm{hr}$ (Table 161). Largemouth bass PSD and RSD_{15} were 79 (average $=68$) and 53 (average $=44$), respectively (Table 162). The population assessment indicated an "Excellent" bass population (Table 163). Fall diurnal electrofishing for relative weights, age and growth and index of year class strength at age 0 were conducted in September (Tables 164-167). Largemouth bass growth rates at Kincaid Lake indicated bass are reaching harvestable size (12.0 in) between age 3 and age 4 (Table 165). Additionally, largemouth bass were reaching 15.0 in between age 5 and age 6 . Relative weights of largemouth bass length groups were about average for Kincaid Lake ($2017 \mathrm{~W}_{\mathrm{r}}=93$; lake average $=92$) $($ Table 166). Age-0 CPUE ($29.3 \mathrm{fish} / \mathrm{hr)}$) was lower than the lake average ($37.3 \mathrm{fish} / \mathrm{hr}$) (Table 167). Largemouth bass were not stocked into Kincaid Lake in 2017.

Channel catfish were sampled in October using tandem hoop nets at Kincaid Lake. Channel catfish collected were distributed from the 8.0 - to 24.0 -in size classes (Table 168). Channel catfish were collected at 71.3
fish/set-night in 2017, which is higher than the lake average of 62.0 fish/set-night (Table 169). The PSD and RSD_{24} for channel catfish were 33 and 2, respectively (Table 170). Relative weights of channel catfish were acceptable $\left(\mathrm{W}_{\mathrm{r}}=90\right)($ Table 171). Kincaid Lake was stocked with 2,427 (13.3 fish/acre; 5.0-10.0 in) channel catfish in March 2017.

McNeely Lake (51 acres)

Diurnal fall electrofishing for largemouth bass in October 2017 was completed to collect length frequency and relative weight values (Table 172). Relative weights were at acceptable levels ($\mathrm{W}_{\mathrm{r}}=88$), just below the lake average ($\mathrm{W}_{\mathrm{r}}=89$; Table 173). CPUE for age-0 bass (177.6 fish $/ \mathrm{hr}$) was higher than the lake average of 123.2 fish $/ \mathrm{hr}$ (Table 174). Largemouth bass were not stocked into McNeely Lake in 2017.

Bluegill and redear sunfish were sampled in May 2017 for length frequency, CPUE and population assessment (Table 175). Catch rate for bluegill (260.8 fish $/ \mathrm{hr}$) was lower than the lake average catch rate of 336.0 fish $/ \mathrm{hr}$ (Table 177). The bluegill PSD was 66 compared the lake average of 40 (Table 176). RSD_{8} was 2 , compared to the lake average of 0.4. The population assessment for bluegill has remained "Excellent" since 2013 (Table 178). The total catch rate for redear sunfish ($74.4 \mathrm{fish} / \mathrm{hr}$) was higher than the lake average ($56.6 \mathrm{fish} / \mathrm{hr}$; Table 179). The PSD for redear sunfish was 61 compared to the lake average of 46 and the RSD_{9} was 9 compared to the lake average of 8 (Table 176). The redear sunfish fishery was rated "Good", which has been the average rating since 2005 (Table 180). Relative weights and age and growth for bluegill and redear sunfish were collected during the fall diurnal electrofishing sample. Age and growth studies showed that bluegill continue to reach 6.0 in between age 2 and 3 (Table 181). Redear sunfish reach 6.0 in between age 1 and 2, and 8.0 in by age 3 (Table 182). Overall, condition for both bluegill (96) and redear sunfish (98) was good (Table 183).

Channel catfish were not sampled at McNeely Lake in 2017. McNeely Lake was stocked with 1,275 (25.0 fish/acre; 5.0-10.0 in) channel catfish in March 2017.

Currently, McNeely Lake does not contain a population of gizzard shad.

Lincoln Homestead Lake

Length frequency, relative abundance and CPUE of fish collected by electrofishing at Lincoln Homestead Lake (Washington Co.) in April 2017 are shown in Table 184. Largemouth bass were collected from the 4.0- to 15.0 -in size classes and bluegill from the 3.0 - to 8.0 -in size classes. Trophy size ($\geq 10.0 \mathrm{in}$) redear sunfish were sampled, with crappie present up to 12.0 in .

Reformatory Lake

Length frequency, relative abundance and CPUE of fish collected by electrofishing at Reformatory Lake (Oldham Co.) in May 2017 are shown in Table 185. Largemouth bass were collected from the 3.0- to 20.0-in size classes, bluegill from the 3.0 - to 7.0 -in size classes and redear sunfish from the 4.0 - to 10.0 -in size classes. Other species observed included white crappie, black crappie, yellow bass, channel catfish and flathead catfish.

Reformatory Lake was stocked with 1,047 (19.4 fish/acre; 5.0-15.0 in) channel catfish in February 2017.

Table 1. Yearly summary of sampling conditions by waterbody, species sampled and date.

Water body	Species	Date	Time (24hr)	Gear	Weather	Water temp. F	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Beaver Lake	BLG/RES	3/29	1000	shock	Overcast/light breeze	55	Full	54	good	good sample
Lincoln Homestead	LMB/BLG/RES	4/5	1030	shock	---	--	Full	---	Good	good sample
Herrington Lake (Cane Run)	Black Bass	4/11	1030	shock	Cloudy/light breeze	61	733.34	42	good	good sample
Benjy Kinman Lake	LMB	4/11	1800	Shock	---	60	Full	38	good	nocturnal sample
Herrington Lake (Gwinn Island)	Black Bass	4/12	1000	shock	Mostly sunny/cool	62	733.34	30	good	good sample
Herrington Lake (Kings Mill)	Black Bass	4/17	1030	shock	Cloudy/calm winds	68	733.34	38	good	good sample
Guist Creek Lake	LMB/Saugeye	4/17	1030	shock	---	68	High	26	good	lake above normal/debris
Beaver Lake	LMB	4/18	1030	shock	Overcast/breezy	65	Full	73	good	good
Boltz Lake	LMB/Saugeye	4/18	1800	shock	Calm/clear	68	Full	60	good	nocturnal sample
Elmer Davis Lake	LMB	4/19	1030	shock	Partly sunny/breezy	69	$\sim 6 \mathrm{ft}$ low	39	good	lake level low due to drawdown for shad eradication complete in December, lake refilling
AJ Jolly Lake	LMB/Saugeye	4/19	1030	shock	Cloudy	66	Full	6	muddy	FINS sampled
Kincaid Lake	LMB	4/20	1100	shock	Mostly cloudy	70	Full	23	good	good sample
Taylorsville Lake (Van Buren)	LMB	4/24	1030	shock	Clear/sunny	68	547.2	27	good	good sample
Corinth Lake	LMB	4/25	1800	shock	Clear	66	Full	72	good	nocturnal sample/ filamentous algae very abundant
Taylorsville Lake (Ashes/Jacks)	LMB	4/25	1030	shock	Partly cloudy/light winds	65	547.0	60	good	good sample
Taylorsville Lake (Big Beech)	LMB	4/26	1030	shock	High clouds/breezy	69	547.0	40	good	good sample
Bullock Pen Lake	LMB/Saugeye	5/1	1030	shock	Mostly cloudy/very windy	69	Full/Spilling	22	good	good sample
Reformatory Lake	LMB/BLG/RES	5/2	1030	shock	Mostly sunny/very windy	64	Full/Spilling	22	stained	good sample
Beaver Lake	BLG/RES	5/15	1030	shock	Sunny/calm	74	Full	60	good	good sample
McNeely Lake	BLG/RES	5/15	1030	shock	Sunny/calm	71	Full	78	good	good sample
Elmer Davis Lake	BLG/RES	5/16	1030	shock	Sunny/breezy	75	Full/Spilling	---	good	good sample
Corinth Lake	BLG/RES	5/19	1030	shock	---	76	Full	72	good	good sample
Taylorsville Lake (Lower Lake)	Blue catish	7/11	1000	shock	Cloudy/light breeze	82	547.0	---	good	good sample
Taylorsville Lake (Upper Lake)	Blue catfish	7/12	1000	shock	---	82	547.0	---	good	good sample
Benjy Kinman Lake	LMB	9/6	1030	shock	Sunny/cool	72	Full	36	tea colored	good sample
Bullock Pen Lake	LMB	9/7	1000	shock	Partly cloudy	70	Full	36	good	good sample
Boltz Lake	LMB/BLG	9/8	1030	shock	Sunny/cool	70	Full/Spilling	40	good	good sample
Kincaid Lake	LMB	9/11	1100	shock	Overcast	70	Full	34	good	good sample
Guist Creek Lake	LMB	9/12	1030	shock	Cloudy/very breezy	67	Full	28	good	good sample
Beaver Lake	LMB/BG/RES	9/15	1030	shock	Mostly sunny	67	Full	31	good	good sample

Table 1 (cont.).

Water body	Species	Date	$\begin{aligned} & \hline \text { Time } \\ & (24 \mathrm{hr}) \end{aligned}$	Gear	Weather	Water temp. F	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Elmer Davis Lake	LMB/BG/RES	9/15	1030	shock	---	---	Full	---	good	good sample
Corinth Lake	LMB/BG/RES	9/18	1030	shock	Cloudy	72	Full	88	good	good sample
Taylorsville Lake (Ashes/Jacks)	LMB	9/20	1030	shock	Sunny/warm	79	547.0	31	good	good sample
Taylorsville Lake (Big Beech)	LMB	9/21	1030	shock	Sunny	80	547.0	30	good	good sample
Taylorsville Lake (Van Buren)	LMB	9/22	1030	shock	Sunny	77	547.0	24	good	good sample
Herrington Lake (Kings Mill)	Black bass	9/25	1030	shock	Sunny	78	740.1	35	good	good sample
Herrington Lake (Gwinn Island)	Black bass	9/26	1030	shock	Clear/hot	78	740.1	---	good	good sample
McNeely Lake	LMB/BLG/RES	9/27	1030	shock	Sunny/clear	72	Full	28	good	good sample
Herrington Lake (Cane Run)	Black bass	9/28	1030	shock	Sunny/clear	78	740.1	57	good	good sample
Benjy Kinman Lake	Crappie	10/3	1030	shock	Mostly sunny	71	Full	---	good	good sample
Beaver Lake	Crappie	10/4	1030	shock	Sunny	---	Full	---	good	good sample
AJ Jolly Lake	LMB/Saugeye	10/4	1030	Shock	Sunny	71	Full	25	Good	good sample
Corinth Lake	Channel catfish	10/9	1030	hoop net	---	---	Full	---	good	good sample
Guist Creek Lake	Saugeye	10/11	1030	shock	Cloudy	70	$\sim 2 \mathrm{ft}$ high	---	good	good sample
AJ Jolly Lake	$\begin{aligned} & \text { Channel/Blue } \\ & \text { catfish } \end{aligned}$	10/12	1000	hoop net	Cloudy	69	Full	18	good	FINS sampled
Kincaid Lake	Channel catfish	10/12	1100	hoop net	---	---	Full	---	good	good sample
Beaver Lake	Channel catfish	10/13	1100	hoop net	---	--	Full	---	good	good sample
Herrington	Morones	10/17	1000	gillnet	Mostly sunny	66	739.4	---	good	good sample
		10/18	1000		Mostly sunny	66	738.6			
		10/19	1000		Mostly sunny	66	737.5			
		10/20	1000		Mostly sunny	66	736.1			
Taylorsville	Morones/ crappie	$10 / 24$ $10 / 25$	1000 1000	gillnet trap net	Sunny Sunny	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & 547.1 \\ & 5471 \end{aligned}$	---	good	good sample
		$10 / 25$ $10 / 26$	1000		Sunny	$\begin{aligned} & 63 \\ & 63 \end{aligned}$	547.2			
		10/27	1000		Overcast	63	547.2			
Guist Creek Lake	Morones/ Saugeye	$\begin{aligned} & 11 / 8 \\ & 11 / 9 \end{aligned}$	1000	gillnet	Sunny/cool	58	Full	---	good	Good sample

Table 2. Length distribution and CPUE (fish/hr) of black bass and saugeye collected in 7.5 hours of 30 -minute electrofishing runs in Taylorsville Lake in April 2017; numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Van Buren																				
Largemouth bass	10	20	19	12	15	16	9	9	26	33	43	53	51	27	7	7	1	1	359	143.6 (11.0)
Smallmouth bass							1												1	0.4 (0.4)
Saugeye							1			3			1		1				6	2.4 (2.0)
Ashes Creek																				
Largemouth bass	8	9	12	14	18	9	3	19	39	75	81	56	47	28	17	10	6	2	453	181.2 (9.1)
Saugeye									2	1			3						6	2.4 (1.1)
Big Beech Creek																				
Largemouth bass	3	11	7	3	8	10	9	25	30	60	87	70	65	39	21	20	2	1	471	188.4 (14.7)
Saugeye									2				3	3					8	3.2 (1.2)
Total																				
Largemouth bass	21	40	38	29	41	35	21	53	95	168	211	179	163	94	45	37	9	4	1,283	171.1 (7.5)
Smallmouth bass							1												1	0.1 (0.1)
Saugeye							1		4	4			7	3	1				20	2.7 (0.8)

Table 3. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from
Taylorsville Lake from 1984-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1984	50.4 (1.8)	88.0 (6.0)	6.0 (2.2)	0.0 (0.0)	0.0 (0.0)	144.4 (5.6)
1985	0.8 (0.6)	43.8 (5.4)	74.8 (9.2)	3.4 (1.0)	0.0 (0.0)	122.2 (14.4)
1986	1.8 (0.2)	11.2 (1.4)	21.0 (1.8)	24.4 (3.0)	0.0 (0.0)	59.0 (5.4)
1987	3.6 (0.6)	5.4 (0.6)	9.2 (1.0)	29.2 (2.6)	0.3 (0.1)	48.0 (3.8)
1988	3.2 (0.8)	8.4 (1.2)	6.0 (1.0)	19.6 (3.0)	0.2 (0.1)	37.2 (4.8)
1989	58.6 (15.6)	33.4 (5.8)	22.2 (3.4)	13.8 (3.0)	0.0 (0.0)	128.2 (24.0)
1990	57.0 (8.4)	54.2 (6.8)	22.8 (2.6)	21.8 (3.4)	0.5 (0.2)	154.4 (15.0)
1991	26.0 (2.8)	37.2 (2.8)	22.8 (2.1)	11.8 (1.4)	0.1 (0.1)	98.6 (5.2)
1992	58.5 (5.5)	42.6 (2.5)	36.9 (2.9)	17.6 (1.6)	0.1 (0.1)	155.6 (7.3)
1993	21.0 (3.6)	53.2 (4.8)	36.4 (13.8)	14.8 (1.9)	0.1 (0.1)	128.3 (8.6)
1994	25.1 (3.0)	39.9 (3.6)	40.7 (5.1)	15.0 (1.5)	0.1 (0.1)	122.3 (9.8)
1995	28.2 (3.5)	69.6 (3.9)	20.3 (1.3)	11.6 (1.4)	0.0 (0.0)	129.6 (6.8)
1996	16.2 (2.4)	41.0 (3.9)	49.8 (3.2)	16.0 (3.2)	0.1 (0.1)	122.6 (9.8)
1997	33.2 (6.3)	43.4 (4.0)	46.4 (1.8)	15.2 (1.8)	0.1 (0.1)	138.3 (7.7)
1998	20.0 (3.0)	26.4 (2.7)	30.5 (2.6)	21.7 (2.6)	0.4 (0.2)	98.7 (7.2)
1999	19.1 (2.8)	38.7 (3.2)	20.9 (3.0)	22.7 (2.6)	0.4 (0.39)	101.3 (7.1)
2000	17.7 (3.3)	33.1 (3.9)	16.1 (2.6)	10.5 (1.5)	0.5 (0.2)	77.5 (6.1)
2001	32.4 (4.1)	44.1 (3.7)	27.6 (3.6)	15.5 (2.7)	0.3 (0.2)	119.6 (8.3)
2002	33.7 (4.4)	22.3 (2.2)	12.8 (2.2)	9.6 (1.8)	0.5 (0.2)	78.4 (7.0)
2003	19.5 (2.9)	58.5 (4.8)	24.9 (2.2)	15.2 (2.1)	0.8 (0.4)	118.1 (9.2)
2004	14.1 (2.5)	26.7 (2.7)	42.9 (3.4)	13.2 (1.6)	0.3 (0.3)	96.9 (5.2)
2005	35.5 (5.9)	35.7 (4.9)	40.3 (4.3)	34.3 (3.4)	0.5 (0.4)	145.7 (12.7)
2006	20.3 (4.0)	39.6 (3.7)	20.3 (3.7)	16.5 (2.7)	0.3 (0.2)	96.7 (11.0)
2007	13.5 (2.5)	35.5 (4.1)	33.7 (3.6)	14.4 (2.4)	0.3 (0.2)	97.1 (9.1)
2008	13.9 (2.9)	30.1 (2.8)	33.6 (3.1)	22.5 (3.2)	0.0 (0.0)	100.1 (8.9)
2009	15.9 (3.5)	32.9 (3.6)	22.3 (2.5)	13.6 (2.1)	0.1 (0.1)	84.7 (6.9)
2010	45.7 (8.3)	36.3 (2.7)	49.7 (5.1)	16.4 (1.8)	0.3 (0.2)	148.1 (12.4)
2011	Sampling was not conducted due to extreme weather and lake conditions.					
2012	27.9 (4.0)	59.1 (6.0)	36.9 (3.0)	14.5 (1.2)	0.3 (0.2)	138.4 (8.6)
2013	19.6 (2.1)	49.9 (4.6)	42.0 (4.5)	22.1 (2.9)	0.4 (0.2)	133.6 (10.5)
2014	17.1 (2.8)	40.5 (7.6)	35.1 (4.1)	21.3 (2.3)	0.5 (0.3)	114.0 (13.4)
2015	18.5 (3.9)	39.3 (5.3)	32.7 (3.2)	19.3 (2.7)	0.3 (0.2)	109.9 (11.7)
2016	15.9 (2.5)	59.2 (4.8)	98.8 (6.6)	44.8 (3.4)	0.9 (0.4)	218.7 (13.2)
2017	22.5 (2.7)	27.2 (2.5)	74.4 (4.7)	46.9 (3.6)	0.5 (0.3)	171.1 (7.5)

Dataset = cfdpstvl.d17-.d84

Table 4. PSD and RSD ${ }_{15}$ values obtained for largemouth bass from spring electrofishing samples in each area of Taylorsville Lake in 2017; confidence intervals are in parentheses.

Area	Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Big Beech	Largemouth bass	439	$83(\pm 4)$	$34(\pm 2)$
Ashes Creek	Largemouth bass	392	$82(\pm 4)$	$28(\pm 4)$
Van Buren	Largemouth bass	283	$79(\pm 5)$	$33(\pm 5)$
Total	Largemouth bass	1,114	$82(\pm 2)$	$32(\pm 3)$

Dataset = cfdpstvl.d17

Table 5. Population assessment for largemouth bass collected during spring electrofishing at Taylorsville Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 21.2 \\ 2 \end{gathered}$	$\begin{gathered} 74.4 \\ 4 \end{gathered}$	$\begin{gathered} 46.9 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 3 \end{gathered}$			16	Good
2016	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 24.6 \\ 3 \end{gathered}$	$\begin{gathered} 98.8 \\ 4 \end{gathered}$	$\begin{gathered} 44.8 \\ 4 \end{gathered}$	$\begin{gathered} 0.9 \\ 3 \end{gathered}$			17	Excellent
2015	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 16.8 \\ 2 \end{gathered}$	$\begin{gathered} 32.7 \\ 4 \end{gathered}$	$\begin{gathered} 19.3 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$			14	Good
2014	Value Score	$\begin{gathered} 12.9 \\ 3 \end{gathered}$	$\begin{gathered} 23.6 \\ 3 \end{gathered}$	$\begin{gathered} 35.1 \\ 4 \end{gathered}$	$\begin{gathered} 21.3 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 3 \end{gathered}$			17	Excellent
2013	Value Score	$\begin{gathered} 13.1^{*} \\ 3 \end{gathered}$	$\begin{gathered} 17.2 \\ 2 \end{gathered}$	$\begin{gathered} 42.0 \\ 4 \end{gathered}$	$\begin{gathered} 22.1 \\ 4 \end{gathered}$	$\begin{gathered} 0.4 \\ 2 \end{gathered}$			15	Good
2012	Value Score	$\begin{gathered} 13.1^{*} \\ 3 \end{gathered}$	$\begin{gathered} 28.1 \\ 3 \end{gathered}$	$\begin{gathered} 39.9 \\ 4 \end{gathered}$	$\begin{gathered} 14.5 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$			15	Good
2011	Value Score	Sampling was not conducted due to extreme weather and lake conditions.								
2010	Value Score	$\begin{gathered} 13.1 \\ 3 \end{gathered}$	$\begin{gathered} 49.5 \\ 4 \end{gathered}$	$\begin{gathered} 49.7 \\ 4 \end{gathered}$	$\begin{gathered} 16.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$	0.574	43.7	16	Good
2009	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 14.6 \\ 2 \end{gathered}$	$\begin{gathered} 22.3 \\ 2 \end{gathered}$	$\begin{gathered} 13.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$			11	Fair
2008	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 12.2 \\ 2 \end{gathered}$	$\begin{gathered} 33.6 \\ 4 \end{gathered}$	$\begin{gathered} 22.5 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$			14	Good
2007	Value Score	$\begin{gathered} 12.9^{*} \\ 3 \end{gathered}$	$\begin{gathered} 10.3 \\ 1 \end{gathered}$	$\begin{gathered} 33.7 \\ 4 \end{gathered}$	$\begin{gathered} 14.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$			13	Good
2006	Value Score	$\begin{gathered} 12.9 \\ 3 \end{gathered}$	$\begin{gathered} 17.5 \\ 2 \end{gathered}$	$\begin{gathered} 20.3 \\ 2 \end{gathered}$	$\begin{gathered} 16.5 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$	0.824	56.1	12	Fair
2005	Value Score	$\begin{gathered} 12.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 38.3 \\ 3 \end{gathered}$	$\begin{gathered} 40.3 \\ 4 \end{gathered}$	$\begin{gathered} 34.3 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 3 \end{gathered}$			17	Excellent
2004	Value Score	$\begin{gathered} 12.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 14.9 \\ 2 \end{gathered}$	$\begin{gathered} 42.9 \\ 4 \end{gathered}$	$\begin{gathered} 13.2 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$			14	Good
2003	Value Score	$\begin{gathered} 12.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 21.2 \\ 2 \end{gathered}$	$\begin{gathered} 24.9 \\ 3 \end{gathered}$	$\begin{gathered} 15.2 \\ 3 \end{gathered}$	$\begin{gathered} 0.8 \\ 3 \end{gathered}$			14	Good
2002	Value Score	$\begin{gathered} 12.6 \\ 3 \end{gathered}$	$\begin{gathered} 34.8 \\ 3 \end{gathered}$	$\begin{gathered} 12.8 \\ 1 \end{gathered}$	$\begin{gathered} 9.6 \\ 2 \end{gathered}$	$\begin{gathered} 0.5 \\ 3 \end{gathered}$	0.495	39.0	12	Fair
2001	Value Score	$\begin{gathered} 10.8 \\ 1 \end{gathered}$	$\begin{gathered} 20.5 \\ 2 \end{gathered}$	$\begin{gathered} 27.6 \\ 3 \end{gathered}$	$\begin{gathered} 15.5 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 2 \end{gathered}$	0.539	41.7	11	Fair
2000	Value Score	$\begin{gathered} 10.1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 14.1 \\ 2 \end{gathered}$	$\begin{gathered} 16.1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.5 \\ 3 \\ \hline \end{gathered}$	0.455	36.6	9	Fair

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 6. Length distribution and CPUE (fish/hr) of largemouth bass collected in 4.5 hours of 15-minute electrofishing runs for black bass in Taylorsville Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																	Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Van Buren																			
Largemouth bass		26	28	14	3	7	22	11	6	5	4	6	3	1	1			137	91.3 (9.0)
Ashes Creek																			
Largemouth bass	5	30	30	14	4	15	29	18	12	10	16	23	12	3	2		1	224	149.3 (15.4)
Big Beech Creek																			
Largemouth bass	6	23	22	10	8	12	19	11	9	1	3	10	14	4		3		155	103.3 (11.4)
Total																			
Largemouth bass	11	79	80	38	15	34	70	40	27	16	23	39	29	8	3	3	1	516	114.7 (9.0)

Table 7. Numbers of fish and the relative weight $\left(W_{r}\right)$ for each length group of largemouth bass collected at Taylorsville Lake on 19-22 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Van Buren	33	93 (1)	15	95 (2)	5	99 (6)	53	94 (1)
	Ashes	40	93 (1)	30	93 (2)	16	98 (3)	86	94 (1)
	Big Beech	37	89 (2)	14	87 (2)	17	84 (3)	68	87 (1)
	Total	110	92 (1)	59	92 (1)	38	92 (2)	207	92 (1)

Dataset = cfdwrtvl.d17

Table 8. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Taylorsville Lake. Age-1 CPUE and standard error could not be calculated in 2010 due to prolonged flood conditions in spring.

Year class	Area	Age-0		Age-0		Age- $0 \geq 5.0$ in		Age-1 (natural)	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2001	Total	4.6	1.3	63.6	11.7	13.3	1.0	34.8	4.3
2002	Total	5.3	0.1	29.1	4.8	18.7	3.5	21.2	2.8
2003	Total	5.4	0.1	32.2	5.4	19.1	3.4	14.9	2.5
2004	Total	4.4	0.1	50.0	6.2	15.1	3.6	38.3	6.2
2005	Total	4.9	0.1	31.8	4.2	15.3	2.5	17.5	3.8
2006	Total	4.9	0.1	54.7	4.9	25.8	2.9	10.3	2.0
2007	Total	4.4	0.1	22.4	3.2	6.7	1.8	12.2	2.6
2008	Total	5.5	0.1	20.9	3.9	16.7	3.5	14.6	3.1
2009	Total	4.9	0.1	90.2	14.5	39.8	6.5	49.5	8.7
2010	Total	5.2	0.1	45.2	4.9	27.7	3.3	*	*
2011	Total	4.8	0.1	40.4	2.8	17.8	1.6	27.5	3.8
2012	Total	5.1	0.1	54.4	5.3	27.8	3.3	17.2	2.2
2013	Total	4.9	0.1	50.0	6.0	23.8	4.3	23.6	3.7
2014	Total	5.5	0.1	21.1	4.3	15.4	3.0	16.8	3.7
2015	Total	6.0	0.1	14.4	2.1	12.7	2.1	24.6	3.0
2016	Total	5.0	0.1	49.3	7.1	21.3	2.7	25.1	2.6
2017	Total	5.2	0.1	46.2	3.9	26.2	3.7		

Dataset = cfdwrtvl.d17

Table 9. Length distribution and CPUE (fish/nn) of each species of crappie collected at Taylorsville Lake in 48 net-nights in October 2017.

Species	Inch class												Total	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12	13	14			
White crappie	1	8	3	1	85	266	175	63	9	2		1	614	12.8	2.2
Black crappie				1	16	72	67	16	5	4			181	3.8	1.4

Dataset = cfdtntvl.d17

Table 10. PSD and $R S D_{10}$ values calculated for crappie collected at Taylorsville Lake in 48 net-nights during October 2017.

Species	No. ≥ 5.0 in	PSD	RSD 10
White crappie	516	$85(\pm 3)$	$12(\pm 3)$
Black crappie	164	$91(\pm 4)$	$14(\pm 5)$
Daser $=$ cfdtntvl $d 17$			

Dataset = cfdtntvl.d17

Table 11. Mean back calculated lengths (in) at each annulus for otoliths from white crappie trap netted and gill netted at Taylorsville Lake in 2017.

		Age				
Year class	No.	1	2	3	4	
2016	18	5.1				
2015	72	5.0	8.0	10.3		
2014	4	5.3	8.9	11.2	12.5	
2013	2	5.7	9.2			
				10.6	12.5	
Mean	96	3.1	8.0	9.2	11.4	
Smallest		7.3	6.2	12.4	13.6	
Largest		0.1	0.6	0.5	1.1	
Std error		5.9	7.8	9.7	10.3	
95% ConLo			8.2	8.3	11.5	
95% ConHi					14.6	

Intercept value $=0.00$
Dataset $=$ cfdagtvl.d17

Table 12. Age frequency and CPUE (fish/nn) per inch class of white crappie trap netted for 48 net-nights at Taylorsville Lake in 2017.

Age	Inch class											Total	\%	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	14				
0+	1	8	3									12	2	0.3	0.1
1+				1	34	40	26	3				104	17	2.2	0.4
2+					51	226	149	57	7			490	80	10.2	1.7
3+								3	2	1		6	1	0.1	0.1
4+										1	1	2	0	0.1	0.1
Total	1	8	3	1	85	266	175	63	9	2	1	614	100	12.8	2.2
(\%)	0	1	0	0	14	43	29	10	1			100			

Dataset = cfdtntvl.d17 and cfdagtvl.d17
CPUE of ≥ 8.0 in white crappie $=10.8 \pm 1.8 \mathrm{fish} / \mathrm{nn} ; \geq 10.0 \mathrm{in}=1.6 \pm 0.2 \mathrm{fish} / \mathrm{nn}$

Table 13. Mean back calculated lengths (in) at each annulus for otoliths from black crappie trap netted at Taylorsville Lake in 2017.

		Age						
Year class	No.	1	2	3	4	5	6	
2016	24	5.0						
2015	22	4.8	7.9					
2014	14	4.4	7.7	8.8				
2013	9	4.4	7.9	9.4	10.2	10.6		
2012	1	3.9	7.5	9.0	10.0	10.5	11.0	
2011	6	4.4	7.4	9.2	9.9			
						10.5	11.0	
Mean	76	4.7	7.8	9.1	10.1	9.5	9.8	
Smallest		3.7	6.4	7.9	9.1	11.4	11.9	
Largest		0.4	10.9	10.8	12.1	0.2	0.3	
Std error		4.6	0.1	0.1	0.2	10.1	10.3	
95% ConLo		4.9	8.6	8.8	9.8	11.0	11.6	
95\% ConHi				9.3	10.5	11.0		

Intercept value $=0.00$
Dataset = cfdagtvl.d17

Table 14. Age frequency and CPUE (fish/nn) per inch class of black crappie trap netted for 48 net-nights at Taylorsville Lake in 2017.

Age	Inch class							Total	\%	CPUE	Std err
	6	7	8	9	10	11	12				
0+								0	0	0	
1+	1	16	14		1	1		33	18	0.7	0.2
2+			32	57	5		1	95	53	2.0	0.8
3+			25	10	3	1		39	22	0.8	0.3
4+					6	1	1	8	4	0.2	0.1
5+						1		1	0	0.1	0.1
6+					2	1	2	5	3	0.1	0.1
Total	1	16	71	67	17	5	4	181	100	3.8	1.4
\%	1	9	40	37	9	3	2	100			

Dataset $=$ cfdtntvl.d17 and cfdagtvl.d17
CPUE of ≥ 8.0 in black crappie $=3.4 \pm 1.4 \mathrm{fish} / \mathrm{nn} ; \geq 10.0$ in $=0.5 \pm 0.3 \mathrm{fish} / \mathrm{nn}$

Table 15. Population assessment for white crappie collected during fall trap netting at Taylorsville Lake from 2000-2017 (scoring based on statewide assessment).

Year		CPUE age-1 and older	Mean length age-2+ at capture	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	CPUE age-1+	CPUE age-0+	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 12.5 \\ 3 \end{gathered}$	$\begin{gathered} 9.3 \\ 2 \end{gathered}$	$\begin{gathered} 10.8 \\ 4 \end{gathered}$	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	12	Fair
2016	Value Score	$\begin{gathered} 16.8 \\ 4 \end{gathered}$	$\begin{gathered} 11.3 \\ 4 \end{gathered}$	$\begin{gathered} 7.9 \\ 4 \end{gathered}$	$\begin{gathered} 16.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	17	Excellent
2015	Value Score	$\begin{gathered} 5.6 \\ 2 \end{gathered}$	$\begin{gathered} 10.5 \\ 4 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	$\begin{gathered} 16.9 \\ 4 \end{gathered}$	16	Good
2014	Value Score	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	$\begin{gathered} 10.9 \\ 4 \end{gathered}$	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	11	Fair
2013	Value Score	$\begin{gathered} 1.7 \\ 1 \end{gathered}$	$\begin{gathered} 10.2 \\ 3 \end{gathered}$	$\begin{gathered} 1.4 \\ 1 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{gathered} 6.7 \\ 4 \end{gathered}$	11	Fair
2012	Value Score	$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{gathered} 10.1 \\ 3 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 1.1 \\ 2 \end{gathered}$	8	Poor
2011	Value Score	$\begin{gathered} 0.7 \\ 1 \end{gathered}$	$\begin{gathered} 11.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	9	Fair
2010	Value Score	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 9.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	7	Poor
2009	Value Score	$\begin{gathered} 0.02 \\ 1 \end{gathered}$	$\begin{gathered} 9.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 0.02 \\ 1 \end{gathered}$	$\begin{gathered} 0.02 \\ 1 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	7	Poor
2008	Value Score	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 9.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	7	Poor
2007	Value Score	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} 9.6^{*} \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	$\begin{gathered} 0.04 \\ 1 \end{gathered}$	7	Poor
2006	Value Score	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	$\begin{gathered} 9.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	$\begin{gathered} 0.04 \\ 1 \end{gathered}$	7	Poor
2005	Value Score	$\begin{gathered} 3.2 \\ 2 \end{gathered}$	$\begin{gathered} 9.6 \\ 3 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$	$\begin{gathered} 2.7 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Fair
2004	Value Score	$\begin{gathered} 1.7 \\ 1 \end{gathered}$	$\begin{gathered} 10.3 \\ 3 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	$\begin{gathered} 1.4 \\ 2 \end{gathered}$	$\begin{gathered} 1.4 \\ 2 \end{gathered}$	9	Fair
2003	Value Score	$\begin{gathered} 1.8 \\ 1 \end{gathered}$	$\begin{gathered} 10.1^{*} \\ 3 \end{gathered}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	10	Fair
2002	Value Score	$\begin{gathered} 1.6 \\ 1 \end{gathered}$	$\begin{gathered} 10.1 \\ 3 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 0.7 \\ 2 \end{gathered}$	9	Fair
2001	Value Score	$\begin{gathered} 4.5 \\ 2 \end{gathered}$	$\begin{gathered} 9.4 \\ 2 \end{gathered}$	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 2.6 \\ 2 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	10	Fair
2000	Value Score	$\begin{gathered} 6.5 \\ 2 \end{gathered}$	$\begin{gathered} 8.6 \\ 2 \end{gathered}$	$\begin{gathered} 6.3 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	11	Fair

* Age data not collected

Table 16. Population assessment for black crappie collected during fall trap netting at Taylorsville Lake from 2000-2017 (scoring based on statewide assessment).

Year		CPUE age-1 and older	Mean length age-2 at capture	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	CPUE age-1+	$\begin{aligned} & \text { CPUE } \\ & \text { age- } 0+ \end{aligned}$	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 3.8 \\ 3 \end{gathered}$	$\begin{gathered} 9.4 \\ 3 \end{gathered}$	$\begin{gathered} 3.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.7 \\ 2 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	12	Fair
2016	Value Score	$\begin{gathered} 4.8 \\ 3 \end{gathered}$	$\begin{gathered} 9.0 \\ 2 \end{gathered}$	$\begin{gathered} 3.0 \\ 3 \end{gathered}$	$\begin{gathered} 2.1 \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	12	Fair
2015	Value Score	$\begin{gathered} 8.6 \\ 3 \end{gathered}$	$\begin{gathered} 9.2 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 3 \end{gathered}$	$\begin{gathered} 6.0 \\ 4 \end{gathered}$	$\begin{gathered} 1.2 \\ 3 \end{gathered}$	16	Good
2014	Value Score	$\begin{gathered} 6.3 \\ 3 \end{gathered}$	$\begin{gathered} 9.3 \\ 3 \end{gathered}$	$\begin{gathered} 2.4 \\ 3 \end{gathered}$	$\begin{gathered} 5.2 \\ 4 \end{gathered}$	$\begin{gathered} 0.9 \\ 2 \end{gathered}$	15	Good
2013	Value Score	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	$\begin{gathered} 9.1 \\ 3 \end{gathered}$	$\begin{gathered} 4.1 \\ 4 \end{gathered}$	$\begin{gathered} 0.9 \\ 2 \end{gathered}$	$\begin{gathered} 2.2 \\ 4 \end{gathered}$	16	Good
2012	Value Score	$\begin{gathered} 9.8 \\ 4 \end{gathered}$	$\begin{gathered} 9.6 \\ 3 \end{gathered}$	$\begin{gathered} 1.7 \\ 3 \end{gathered}$	$\begin{gathered} 9.3 \\ 4 \end{gathered}$	$\begin{gathered} 0 . .9 \\ 2 \end{gathered}$	16	Good
2011	Value Score	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 9.8 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 2.5 \\ 4 \end{gathered}$	11	Fair
2010	Value Score	$\begin{gathered} 3.2 \\ 2 \end{gathered}$	$\begin{gathered} 8.4 \\ 2 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{gathered} 3.1 \\ 3 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	11	Fair
2009	Value Score	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{gathered} 9.8^{*} \\ 4 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{gathered} 0.4 \\ 2 \end{gathered}$	9	Fair
2008	Value Score	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 9.8 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	$\begin{gathered} 0.4 \\ 2 \end{gathered}$	9	Fair
2007	Value Score	$\begin{gathered} 1.7 \\ 1 \end{gathered}$	$\begin{gathered} 9.2 \\ 3 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	$\begin{gathered} 1.4 \\ 2 \end{gathered}$	$\begin{gathered} 0.02 \\ 1 \end{gathered}$	9	Fair
2006	Value Score	$\begin{gathered} 3.3 \\ 2 \end{gathered}$	$\begin{gathered} 9.5 \\ 3 \end{gathered}$	$\begin{gathered} 3.3 \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	11	Fair
2005	Value Score	$\begin{gathered} 5.8 \\ 3 \end{gathered}$	$\begin{gathered} 9.0 \\ 2 \end{gathered}$	$\begin{gathered} 4.5 \\ 4 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{gathered} 0.04 \\ 1 \end{gathered}$	12	Fair
2004	Value Score	$\begin{gathered} 12.0 \\ 4 \end{gathered}$	$\begin{gathered} 9.3 \\ 3 \end{gathered}$	$\begin{gathered} 1.2 \\ 2 \end{gathered}$	$\begin{gathered} 11.7 \\ 4 \end{gathered}$	$\begin{gathered} 1.2 \\ 3 \end{gathered}$	16	Good
2003	Value Score	$\begin{gathered} 1.3 \\ 1 \end{gathered}$	$\begin{gathered} 10.3 \\ 4 \end{gathered}$	$\begin{gathered} 1.1 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	$\begin{gathered} 1.3 \\ 3 \end{gathered}$	12	Fair
2002	Value Score	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	$\begin{gathered} 10.2 \\ 4 \end{gathered}$	$\begin{gathered} 1.6 \\ 3 \end{gathered}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	13	Good
2001	Value Score	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	$\begin{gathered} 10.1 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	12	Fair
2000	Value Score	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 9.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.7 \\ 2 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	8	Poor

* Age data not collected

Table 17. Number of fish and the relative weight (Wr) for each length group of crappie at Taylorsville Lake in October 2017.

Species	Area	Length group						Total	
		5.0-7.9 in		8.0-9.9 in		≥ 10.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
White crappie	Total	37	87 (1)	71	98 (1)	37	95 (1)	145	95 (1)
Black crappie	Total	17	83 (1)	40	90 (1)	25	86 (2)	82	87 (1)

Dataset $=$ cfdtntvl.d17

Table 18. Length distribution and CPUE (fish/nn) of white bass, hybrid striped bass, and saugeye collected during 10 net-nights of gill netting in Taylorsville Lake in October 2017: numbers in parentheses are standard errors.

Species	Inch class																					Total	CPUE
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26		
White bass	1	5	7		4	6	2		1													26	2.6 (1.0)
Hybrid striped bass	1	4	12	8			4	9	9	5	2	3	7	1	6	13	15	13	11	1	1	125	12.5 (3.6)
Reciprocal		3	8	4			1	4	5	2		1	3	1	5	11	12	13	10		1	84	8.4 (2.7)
Original	1	1	4	4			3	5	4	3	2	2	4		1	2	3		1	1		41	4.1 (1.1)
Saugeye				2	14	5			2	7	8	1		1								40	4.0 (2.4)

Dataset = cfdgntvl.d17

Table 19. Mean back calculated lengths (in) at each annulus for otoliths from hybrid striped bass gill netted at Taylorsville Lake in 2017.

Year class	No.	Age						
		1	2	3	4	5	6	7
2016	36	9.1						
2015	11	9.7	14.7					
2014	6	7.0	14.5	18.8				
2013	37	10.6	15.3	19.0	21.2			
2012	13	8.1	15.1	18.4	20.5	22.1		
2011	4	6.5	14.5	18.7	20.7	22.3	23.4	
2010	1	11.3	17.8	20.2	22.6	23.4	25.0	25.6
Mean	108	9.4	15.1	18.8	21.0	22.2	23.7	25.6
Smallest		5.6	11.0	15.4	17.9	19.4	22.9	25.6
Largest		12.1	17.8	20.9	23.3	24.3	25.0	25.6
Std error		0.2	0.1	0.2	0.2	0.3	0.4	
95\% ConLo		9.0	14.8	18.6	20.6	21.6	23.0	
95\% ConHi		9.7	15.4	19.1	21.3	22.8	24.4	

[^15]Dataset $=$ cfdagtvl.d17

Table 20. Age frequency and CPUE (fish/nn) per inch class of hybrid striped bass gill netted for 10 netnights at Taylorsville Lake in 2017.

Age	Inch class																			Total	\%	CPUE	Std err
	6	78	910	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26				
0+	1	412	8																	25	20	2.5	1.2
1+					4	9	9	4	2											28	22	2.8	1.5
2+								1		3	7									11	9	1.1	0.4
3+													1	5						6	5	0.6	0.3
4+												1	4	6	11	10	6			38	30	3.7	1.4
5+													1	2	4	2	3	1		13	10	1.3	0.5
6+																1	3			4	3	0.4	0.1
7+																			1	1	1	0.1	0.1
Total	1	412	8		4	9	9	5	2	3	7	1	6	13	15	13	12	1	1	126	100	12.5	3.6
\%	1	310	6		3	7	7	4	2	2	6	1	5	10	12	10	9	1	1	100			

Dataset = cfdagtvl.d17 and cfdgntvl.d17

Table 21. Number of fish and the relative weight $\left(W_{r}\right)$ for each length group of hybrid striped bass collected at Taylorsville Lake in October 2017.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Hybrid striped bass	Total	20	88 (1)	22	85 (1)	78	85 (1)	120	85 (1)

[^16]Table 22. Population assessment for hybrid striped bass collected during fall gill netting at Taylorsville Lake from 2000-2017 (scoring based on statewide assessment).

Year		$\begin{aligned} & \text { CPUE } \\ & \text { (excluding } \\ & \text { age-0) } \end{aligned}$	$\begin{gathered} \text { Mean length } \\ \text { age-2+ at } \\ \text { capture } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1+ } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 10.0 \\ 3 \end{gathered}$	$\begin{gathered} 18.0 \\ 3 \end{gathered}$	$\begin{gathered} 7.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.8 \\ 2 \end{gathered}$	-	-	11	Good
2016	Value Score	$\begin{gathered} 12.2 \\ 3 \end{gathered}$	$\begin{gathered} 16.8 \\ 2 \end{gathered}$	$\begin{gathered} 9.5 \\ 3 \end{gathered}$	$\begin{gathered} 3.2 \\ 2 \end{gathered}$	-	-	10	Good
2015	Value Score	$\begin{gathered} 5.1 \\ 2 \end{gathered}$	$\begin{gathered} 18.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.4 \\ 2 \end{gathered}$	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	-	-	9	Fair
2014	Value Score	$\begin{gathered} 10.9 \\ 3 \end{gathered}$	$\begin{gathered} 17.5 \\ 3 \end{gathered}$	$\begin{gathered} 3.0 \\ 2 \end{gathered}$	$\begin{gathered} 8.4 \\ 4 \end{gathered}$	-	-	12	Good
2013	Value Score	$\begin{gathered} 3.5 \\ 2 \end{gathered}$	$\begin{gathered} 18.3 \\ 3 \end{gathered}$	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	$\begin{gathered} 2.0 \\ 2 \end{gathered}$	-	-	8	Fair
2012	Value Score	$\begin{gathered} 2.2 \\ 1 \end{gathered}$	$\begin{gathered} 17.0 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	-	-	6	Poor
2011	Value Score	$\begin{gathered} 11.5 \\ 3 \end{gathered}$	$\begin{gathered} 16.4 \\ 2 \end{gathered}$	$\begin{gathered} 3.1 \\ 2 \end{gathered}$	$\begin{gathered} 7.9 \\ 3 \end{gathered}$	-	-	10	Good
2010	Value Score	$\begin{gathered} 3.8 \\ 2 \end{gathered}$	$\begin{gathered} 16.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	-	-	7	Fair
2009	Value Score	$\begin{gathered} 11.4 \\ 3 \end{gathered}$	$\begin{gathered} 15.7 \\ 1 \end{gathered}$	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	$\begin{gathered} 10.4 \\ 4 \end{gathered}$	1.104	66.9\%	9	Fair
2008	Value Score	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	$\begin{gathered} 17.1 \\ 2 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	0.370	30.9\%	5	Poor
2007	Value Score	$\begin{gathered} 16.8 \\ 3 \end{gathered}$	$\begin{gathered} 16.2 \\ 1 \end{gathered}$	$\begin{gathered} 10.8 \\ 3 \end{gathered}$	$\begin{gathered} 6.0 \\ 3 \end{gathered}$	0.798	55.0\%	10	Good
2006	Value Score	$\begin{gathered} 8.5 \\ 3 \end{gathered}$	$\begin{gathered} 16.8 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 8.0 \\ 3 \end{gathered}$	1.262	71.7\%	9	Fair
2005	Value Score	$\begin{gathered} 1.1 \\ 1 \end{gathered}$	$\begin{gathered} 15.2 \\ 1 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	0.437	35.4\%	4	Poor
2004	Value Score	$\begin{gathered} 4.6 \\ 2 \end{gathered}$	$\begin{gathered} 16.0 \\ 1 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	$\begin{gathered} 3.6 \\ 2 \end{gathered}$	0.964	61.9\%	6	Poor
2003	Value Score	$\begin{gathered} 9.4 \\ 3 \end{gathered}$	$\begin{gathered} 16.6 \\ 2 \end{gathered}$	$\begin{gathered} 6.6 \\ 3 \end{gathered}$	$\begin{gathered} 2.6 \\ 2 \end{gathered}$	1.522	78.2\%	10	Good
2002	Value Score	$\begin{gathered} 22.8 \\ 4 \end{gathered}$	15.8	$\begin{gathered} 10.1 \\ 3 \end{gathered}$	$\begin{gathered} 12.4 \\ 4 \end{gathered}$	0.658	48.2\%	12	Good
2001	Value Score	$\begin{gathered} 13.3 \\ 3 \end{gathered}$	$\begin{gathered} 16.0 \\ 1 \end{gathered}$	$\begin{gathered} 2.0 \\ 1 \end{gathered}$	$\begin{gathered} 11.1 \\ 4 \end{gathered}$	1.437	76.2\%	9	Fair
2000	Value Score	$\begin{gathered} 9.9 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 15.9 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 5.9 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 3.1 \\ 2 \\ \hline \end{gathered}$	1.263	71.1\%	9	Fair

Table 23. Mean back calculated lengths (in) at each annulus for otoliths from white bass gill netted at Taylorsville Lake in 2017.

		Age			
Year class	No.	1			
2016	10	7.5	2	3	4
2015	2	6.2	9.1		
2014	1	7.6	10.7	11.7	
2013	1	6.3	11.4	12.4	13.7
				12.0	13.7
Mean	7.3	10.1	11.7	13.7	
Smallest		4.6	7.4	12.4	13.7
Largest		0.9	11.4	0.3	
Std error		6.3	0.9	11.4	
95% ConLo		7.9	11.8	12.7	
95% ConHi					

Intercept Value $=0.00$
Dataset $=$ cfdagtvl.d17

Table 24. Age frequency and CPUE (fish/nn) per inch class of white bass gill netted for 10 netnights at Taylorsville Lake in 2017.

	Inch class												
	Age	6	7	8	9	10	11	12	13	14	Total	$\%$	CPUE
$0+$	1	5	6							12	46	1.2	0.7
$1+$			1		4	5	1			11	42	1.1	0.4
$2+$						1				1	4	0.1	0.0
$3+$							1			1	4	0.1	0.1
$4+$									1	1	4	0.1	0.1
Total	1	5	7		4	6	2		1	26	100	2.6	1.0
$\%$	4	19	27		15	23	8		4	100			

Dataset = cfdagtvl.d17 and cfdgntvl.d17

Table 25. Number of fish and the relative weight $\left(W_{r}\right)$ for each length group of white bass collected at Taylorsville Lake in October 2017.

Species	Area	Length group						Total	
		6.0-8.9 in		9.0-11.9 in		≥ 12.0 in			
		No.	W_{r}	No.	W_{r}	No.	Wr	No.	W_{r}
White bass	Total	13	94 (2)	10	93 (2)	3	85 (0.3)	26	93 (2)

Table 26. Population assessment for white bass collected during fall gill netting at Taylorsville Lake from 2000-2017 (scoring based on statewide assessment).

Year		CPUE (excluding age-0)	Mean length age-2+ at capture	$\begin{gathered} \text { CPUE } \\ \geq 12.0 \text { in } \end{gathered}$	CPUE age-1+	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 1.4 \\ 1 \end{gathered}$	$\begin{gathered} 10.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} 1.1 \\ 1 \end{gathered}$			4	Poor
2016	Value Score	$\begin{gathered} 3.4 \\ 2 \end{gathered}$	$\begin{gathered} 12.0 \\ 1 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$			6	Poor
2015	Value Score	$\begin{gathered} 3.2 \\ 1 \end{gathered}$	$\begin{gathered} 12.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 1.3 \\ 1 \end{gathered}$			5	Poor
2014	Value Score	$\begin{gathered} 4.5 \\ 2 \end{gathered}$	$\begin{gathered} 11.3^{*} \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 4.5 \\ 3 \end{gathered}$			7	Fair
2013	Value Score	$\begin{gathered} 1.4 \\ 1 \end{gathered}$	$\begin{gathered} 11.3^{*} \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	$\begin{gathered} 1.4 \\ 1 \end{gathered}$	-	-	4	Poor
2012	Value Score	$\begin{gathered} 3.3 \\ 2 \end{gathered}$	$\begin{gathered} 11.3 \\ 1 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	1.037	64.5	6	Poor
2011	Value Score	$\begin{gathered} 18.4 \\ 4 \end{gathered}$	$\begin{gathered} 11.9 \\ 1 \end{gathered}$	$\begin{gathered} 5.0 \\ 3 \end{gathered}$	$\begin{gathered} 8.9 \\ 4 \end{gathered}$	1.506	77.8	12	Good
2010	Value Score	$\begin{gathered} 11.0 \\ 3 \end{gathered}$	$\begin{gathered} 12.1 \\ 1 \end{gathered}$	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	$\begin{gathered} 7.8 \\ 4 \end{gathered}$	1.920	85.3	10	Good
2009	Value Score	$\begin{gathered} 1.3 \\ 1 \end{gathered}$	$\begin{gathered} \text { NS } \\ 1 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 1.1 \\ 1 \end{gathered}$	1.030	64.3	4	Poor
2008	Value Score	$\begin{gathered} 2.0 \\ 1 \end{gathered}$	$\begin{gathered} 12.1 \\ 1 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	$\begin{gathered} 1.6 \\ 2 \end{gathered}$	1.157	68.6	5	Poor
2007	Value Score	$\begin{gathered} 6.4 \\ 2 \end{gathered}$	$\begin{gathered} 11.7 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 4.6 \\ 3 \end{gathered}$	1.102	66.8	7	Fair
2006	Value Score	$\begin{gathered} 4.3 \\ 2 \end{gathered}$	$\begin{gathered} 11.7 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 3.0 \\ 2 \end{gathered}$	1.040	64.6	6	Poor
2005	Value Score	$\begin{gathered} 5.0 \\ 2 \end{gathered}$	$\begin{gathered} 11.6 \\ 1 \end{gathered}$	$\begin{gathered} 1.2 \\ 1 \end{gathered}$	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	1.054	65.2	6	Poor
2004	Value Score	$\begin{gathered} 8.6 \\ 3 \end{gathered}$	$\begin{gathered} 11.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	$\begin{gathered} 7.3 \\ 4 \end{gathered}$	2.030	86.9	9	Fair
2003	Value Score	$\begin{gathered} 6.9 \\ 2 \end{gathered}$	$\begin{gathered} 11.7 \\ 1 \end{gathered}$	$\begin{gathered} 2.0 \\ 2 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$	0.944	61.1	8	Fair
2002	Value Score	$\begin{gathered} 5.9 \\ 2 \end{gathered}$	$\begin{gathered} 11.8 \\ 1 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{gathered} 2.6 \\ 2 \end{gathered}$	1.113	67.1	7	Fair
2001	Value Score	$\begin{gathered} 23.5 \\ 4 \end{gathered}$	$\begin{gathered} 12.1 \\ 1 \end{gathered}$	$\begin{gathered} 6.8 \\ 3 \end{gathered}$	$\begin{gathered} 14.9 \\ 4 \end{gathered}$	0.971	62.1	12	Good
2000	Value Score	$\begin{gathered} 20.8 \\ 4 \end{gathered}$	$\begin{gathered} 12.2 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 8.1 \\ 4 \end{gathered}$	$\begin{gathered} 7.4 \\ 4 \end{gathered}$	0.766	53.5	13	Good

[^17]Table 27. Length distribution and CPUE (fish/hr) of blue catfish collected in 3.0 hours of 15 -minute electrofishing runs for blue catfish in Taylorsville Lake in July 2017; numbers in parentheses are standard errors.

Inch class																											
Area	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	26	29	31	34	35	37	38	Total	CPUE
Upper	2	16	41	33	31	60	68	31	34	15	14	20	9	6	8	5	1	1		1	1		2			399	266.0 (48.3)
Lower	2	33	42	27	35	27	28	18	12	7	5	3	3	1	1		1	1	1		1	1		1	1	251	167.3 (29.4)
Total	4	49	83	60	66	87	96	49	46	22	19	23	12	7	9	5	2	2	1	1	2	1	2	1	1	650	216.7 (30.8)

Dataset = cfdpstvl.d17

Table 28. Electrofishing CPUE (fish/hr) for each length group of blue catfish collected from Taylorsville Lake from 2007-2017; numbers in parentheses are standard errors.

Year	Length group				Total
	<12.0 in	12.0-19.9 in	20.0-29.9 in	≥ 30.0 in	
2007	32.8 (10.9)	188.8 (25.8)	14.4 (4.2)	0.0	236.0 (36.5)
2008	No Sample				
2009	6.8 (3.1)	96.1 (19.9)	16.3 (4.7)	0.0	119.1 (24.3)
2010	25.9 (12.2)	73.4 (13.5)	16.2 (4.2)	0.7 (0.4)	116.1 (21.2)
2011	3.9 (3.1)	14.0 (2.9)	8.1 (5.0)	1.1 (0.6)	27.1 (5.9)
2012	28.3 (9.1)	58.3 (15.7)	15.0 (4.7)	2.3 (1.2)	104.0 (22.8)
2013	4.0 (1.6)	42.0 (6.5)	11.0 (2.6)	3.0 (0.9)	60.0 (8.2)
2014	31.1 (11.3)	119.4 (21.1)	11.4 (2.5)	5.2 (1.7)	167.1 (27.5)
2015	31.4 (16.0)	47.1 (16.6)	4.6 (2.1)	1.9 (1.0)	84.9 (24.6)
2016	35.3 (15.4)	53.0 (21.5)	6.7 (2.7)	1.7 (1.2)	96.7 (31.5)
2017	87.3 (23.7)	118.0 (21.2)	9.0 (5.5)	2.3 (1.3)	216.7 (30.8)

Dataset = cfdpstvl.d17-.d07

Table 29. Numbers of fish and the relative weight $\left(\mathrm{W}_{\mathrm{r}}\right)$ for each length group of blue catfish collected at
Taylorsville Lake on 11 and 12 July 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		12.0-19.9 in		20.0-29.9 in		≥ 30.0 in			
Blue catfish		No.	Wr	No.	Wr	No.	Wr	No.	Wr
	Upper	175	96 (1)	22	93 (1)	3	112 (6)	200	96 (1)
	Lower	99	98 (1)	5	99 (5)	4	113 (8)	108	99 (1)
	Total	274	97 (1)	27	94 (1)	7	113 (5)	308	97 (1)

Dataset $=$ cfdpstvl.d17

Table 30. Dissolved oxygen and temperatures collected from Big Beech Creek, near Settler's Marina, at Taylorsville Lake during 2017.

	April 4		May 3		June 6		July 6		August 2		September 5		October 2		November 2	
Depth	DO	Temp														
Surface	9.56	57.6	12.64	69.2	12.59	78.3	11.24	81.4	11.51	85.9	6.39	75.6	8.47	73.9	2.61	61.8
2	9.58	57.5	12.80	69.0	12.84	78.5	11.13	81.6	11.03	84.5	6.35	75.7	8.47	73.9	2.56	61.7
4	9.58	57.5	12.85	68.6	12.78	78.6	10.93	81.6	10.21	84.1	6.32	75.7	8.22	73.5	2.46	61.6
6	9.58	57.4	12.61	68.1	12.48	78.6	9.94	81.5	9.26	83.7	6.25	75.8	7.87	73.5	2.37	61.5
8	9.52	57.2	11.28	67.8	12.40	78.6	9.32	81.4	8.59	83.5	6.23	75.8	7.57	73.4	2.36	61.4
10	9.51	56.9	10.85	67.4	11.62	78.5	5.53	81.0	8.37	83.5	6.24	75.8	7.39	73.3	2.36	61.4
12	9.50	56.6	10.63	67.2	0.54	75.7	4.02	80.5	6.59	83.3	6.17	75.8	7.30	73.2	2.34	61.4
14	9.54	56.4	10.10	67.1	0.24	73.0	0.91	79.3	3.24	82.5	6.13	75.8	7.26	73.2	2.35	61.4
16	9.48	56.3	9.40	66.8	0.20	71.0	0.37	78.2	2.89	82.3	5.91	75.8	6.88	73.1	2.34	61.4
18	9.31	56.0	9.16	66.7	0.18	69.6	0.23	76.4	1.06	80.6	5.75	75.8	6.90	73.0	2.32	61.4
20	8.87	55.8	7.72	65.7	0.16	68.1	0.20	75.1	0.28	78.2	4.26	74.8	5.02	72.9	2.33	61.4
22	8.87	55.5	5.00	61.6	0.15	66.7	0.18	73.6	0.20	75.8	3.64	73.2	3.74	72.4	2.33	61.4
24	8.60	55.1	4.67	60.5	0.14	65.4	0.17	73.0	0.18	74.6	0.63	72.0	2.73	72.1	2.33	61.4
26	8.07	54.5	4.39	59.2	0.14	64.7	0.16	72.6	0.17	73.5	0.37	71.4	1.40	71.8	2.33	61.4
28	7.30	52.9	4.25	58.5	0.16	63.8	0.15	72.1	0.16	72.7	0.25	70.9	0.2	71.4	2.34	61.3
30	6.80	51.2	4.12	57.8	0.14	63.1	0.15	71.6	0.14	71.7	0.22	69.6	0.17	70.5	2.34	61.3
35	6.45	50.3	3.97	57.1	0.12	62.3	0.14	70.3	0.14	69.6	0.19	68.8	0.15	68.4	2.34	61.3
40 45	6.00	49.7	2.64	55.9	0.11	61.6	0.12	66.4	0.12	66.9	$\begin{aligned} & 0.19 \\ & 0.17 \end{aligned}$	67.4 65.1			2.27	60.7

Table 31. Dissolved oxygen and temperatures collected from the mouth of Ashes and Jack's Creek at Taylorsville Lake during 2017.

	April 4		May 3		June 6		July 6		August 2		September 5		October 2		November 2	
Depth	DO	Temp														
Surface	12.27	57.8	12.69	68.4	15.25	78.3	10.80	81.2	10.90	85.6	6.37	75.5	7.57	73.9	2.22	61.6
2	12.27	57.7	12.61	68.4	15.36	78.6	10.77	81.3	10.56	84.6	6.33	75.6	7.58	74.0	2.11	61.6
4	11.46	56.8	12.93	68.1	15.28	78.6	10.31	81.2	10.13	84.7	6.19	75.6	7.62	73.8	2.04	61.5
6	11.38	56.8	12.79	67.8	14.90	78.6	8.48	81.0	9.92	83.8	6.00	75.7	7.51	73.6	1.95	61.5
8	10.90	56.3	11.78	67.1	14.78	78.6	4.77	80.8	9.41	83.7	5.83	75.7	7.28	73.6	1.91	61.5
10	10.21	55.8	11.64	66.7	14.67	78.6	2.12	80.3	8.60	83.5	5.51	75.7	7.19	73.6	1.88	61.5
12	9.86	55.5	11.15	66.1	5.02	76.7	0.98	79.2	3.97	83.0	4.76	75.5	6.57	73.4	1.85	61.5
14	9.56	55.2	10.32	65.6	0.67	73.9	0.52	78.2	1.68	82.2	3.23	75.2	6.50	73.3	1.83	61.4
16	9.58	54.9	9.67	65.0	0.30	73.3	0.26	76.7	0.63	81.7	2.56	75.0	5.15	73.0	1.80	61.4
18	9.20	54.4	9.31	64.9	0.22	71.6	0.22	75.7	0.37	81.0	1.65	7.43	3.58	72.6	1.76	61.4
20	8.45	54.0	9.08	64.8	0.19	70.9	0.20	74.9	0.29	78.9	1.22	74.0	1.06	72.4	1.77	61.4
22	8.40	53.8	8.81	64.7	0.16	67.5	0.19	74.0			0.51	73.4	0.25	72.0	1.76	61.4
24	7.99	53.1	8.70	64.6	0.15	66.5	0.18	73.0			0.28	73.0	0.16	71.2	1.76	61.4
26	7.68	52.6	7.24	63.7	0.19	65.0	0.18	72.4	0.21	76.3	0.21	72.5	0.15	71.0	1.76	61.4
28	7.70	52.1	5.40	59.8	0.27	64.1	0.16	72.0			0.19	71.8	0.15	70.6	1.78	61.4
30	7.58	51.7	5.21	59.3	0.34	63.5	0.16	71.2	0.18	71.9	0.18	71.2	0.14	70	1.79	61.4
35	7.35	50.9	5.11	57.8	0.16	62.5	0.15	69.2	0.16	69.9	0.16	69.5	0.14	69.0	1.28	61.3
40	6.60	50.2					0.13	64.7	0.15	66.9	0.15	67.7	0.13	69.6	0.24	60.9
45													0.12	65.6	1.12	60.5
50															1.68	60.1
55															0.47	59.6
60															0.24	59.4

Table 32. Dissolved oxygen and temperatures collected from the VanBuren/Chowning Lane
Area at Taylorsville Lake during 2017.

	April 4		May 3		June 6		July 6		August 2		September 5		October 2		November 2	
Depth	DO	Temp														
Surface	13.55	59.6	11.73	70.2	13.43	78.8	10.13	81.1	8.46	84.2	6.76	75.4	7.44	76.4	6.86	60.6
2	13.39	59.6	12.13	68.6	13.45	78.8	10.15	81.2	8.30	84.2	6.74	75.4	7.91	75.8	6.83	60.4
4	13.16	59.6	11.32	67.9	13.34	78.7.	9.94	81.2	8.20	84.2	6.72	75.4	7.27	74.8	6.78	60.2
6	12.60	59.3	7.86	67.1	9.16	78.0	9.68	81.2	7.32	84.3	6.57	75.4	4.59	73.1	6.65	60.0
8	11.83	59.0	6.74	66.9	3.06	77.2	8.45	81.2	3.04	82.3	6.36	75.4	4.77	72.9	6.56	59.8
10	11.40	58.8	6.88	66.7	1.11	76.1	5.92	80.7	3.77	82.4	6.75	74.4	4.76	72.8	6.15	59.4
12	11.15	58.7	7.33	66.6	0.32	75.4	1.58	79.9	3.87	82.4	6.97	74.1	3.18	72.7	6.18	59.1
14	10.55	58.3	7.36	66.6	0.27	75.1	0.52	79.3	3.64	82.4	7.20	73.6	1.23	72.5	6.40	58.8
16	9.96	57.8	7.31	66.5	0.27	75.1	0.32	78.3	2.77	82.3	7.06	73.5	0.19	72.2	7.38	57.5
18	9.55	57.6	6.58	66.4	0.18	74.3	0.26	77.3	0.85	81.8	6.51	72.9	0.16	71.6	8.55	55.7
20	6.83	55.8	6.51	66.3	0.14	73.6	0.23	76.1	0.35	80.7	5.30	70.3	0.15	71.3	7.28	54.3
22							0.20	74.9			5.02	69.9	0.15	71.1	9.56	53.5
24							0.19	74.4			4.89	59.6	0.14	70.9	9.51	53.4
26							0.18	73.7			4.76	59.2	0.14	70.6	9.44	53.1
28											4.30	57.9			9.33	52.8
30															9.28	52.7

Table 33. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected in 7.5 hours of 15-minute electrofishing runs in Herrington Lake, April 2017; numbers in parentheses are standard errors.

Location/Species	Inch class																				Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Upper																						
Largemouth bass		10	20	36	24	20	17	31	54	22	12	12	17	6	10	5	1	1			298	119.2 (9.3)
Spotted bass						1				1											2	0.8 (0.5)
Smallmouth bass								1													1	0.4 (0.4)
Middle																						
Largemouth bass		8	19	17	28	12	11	15	36	48	21	26	14	10	13	6	4	4	1		293	117.2 (15.6)
Spotted bass	1	1		1	1	1	1	7	10	6	2		1								32	12.8 (3.5)
Lower																						
Largemouth bass	1	6	8	12	9	3	19	38	48	52	27	11	4	5	6	5	7	2		1	264	105.6 (7.9)
Spotted bass		1					2	3	3	2	1										12	4.8 (1.6)
Total																						
Largemouth bass	1	24	47	65	61	35	47	84	138	122	60	49	35	21	29	16	12	7	1	1	855	114.0 (6.5)
Spotted bass	1	2		1	1	2	3	10	13	9	3		1								46	6.1 (1.6)
Smallmouth bass								1													1	0.1 (0.1)

Table 34. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Herrington Lake from 1994-2017; numbers in parentheses are standard errors.

Year	Length group					Total	
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in		
1994	4.9 (0.9)	30.1 (4.4)	21.5 (2.6)	17.9 (1.8)	2.1 (0.5)	74.4	(5.4)
1995	8.8 (2.3)	20.0 (4.4)	25.6 (4.0)	20.4 (1.4)	3.2 (0.7)	74.8	(9.6)
1996	9.5 (2.4)	24.4 (3.9)	20.3 (2.8)	26.5 (2.6)	3.1 (0.7)	80.9	(6.7)
1997	15.6 (2.3)	19.9 (3.4)	27.3 (2.6)	22.0 (1.7)	2.9 (0.6)	84.8	(6.1)
1998	37.2 (3.8)	45.3 (4.1)	30.9 (2.5)	21.3 (2.2)	1.9 (0.6)	134.8	(7.2)
1999	43.2 (5.2)	69.1 (6.6)	40.4 (3.9)	21.6 (2.4)	1.1 (0.3)	174.3	(14.3)
2000	15.6 (3.9)	53.5 (6.6)	26.9 (2.2)	12.3 (1.4)	0.3 (0.2)	108.3	(10.8)
2001	37.1 (6.7)	40.1 (6.3)	34.1 (4.5)	12.5 (1.5)	0.5 (0.3)	123.9	(15.3)
2002	19.5 (2.6)	32.1 (4.7)	25.5 (3.5)	24.0 (2.2)	1.6 (0.5)	101.1	(9.7)
2003	20.8 (4.4)	23.9 (2.4)	30.1 (2.8)	17.9 (1.7)	1.2 (0.4)	92.7	(4.2)
2004	29.6 (5.5)	64.8 (12.2)	38.7 (5.7)	29.7 (3.4)	1.5 (0.4)	162.8	(23.9)
2005	70.9 (9.7)	59.6 (7.1)	23.5 (3.0)	22.3 (3.4)	0.8 (0.4)	176.3	(15.4)
2006	24.7 (4.8)	36.7 (4.8)	38.4 (3.8)	19.3 (1.8)	0.4 (0.2)	119.1	(9.2)
2007	78.1 (10.4)	68.8 (7.3)	20.0 (2.5)	17.3 (2.3)	0.5 (0.3)	184.3	(17.1)
2008	31.3 (2.9)	39.7 (4.6)	29.5 (3.0)	22.1 (3.1)	1.5 (0.5)	122.7	(8.6)
2009	5.3 (1.2)	9.4 (1.1)	15.3 (2.2)	10.8 (1.4)	0.4 (0.2)	40.6	(4.4)
2010	41.5 (4.4)	34.0 (4.4)	28.7 (3.2)	25.1 (2.3)	0.9 (0.3)	129.2	(10.2)
2011	24.5 (3.7)	22.7 (2.0)	10.9 (1.3)	10.8 (1.5)	0.3 (0.2)	68.9	(1.4)
2012	69.6 (10.1)	70.7 (10.9)	40.9 (4.6)	14.8 (2.1)	1.1 (0.5)	196.0	(23.7)
2013	11.7 (2.2)	29.6 (4.0)	18.5 (2.7)	12.9 (1.9)	1.5 (0.6)	72.8	(7.0)
2014	30.1 (4.1)	20.5 (2.0)	28.5 (2.7)	18.0 (2.4)	1.3 (0.4)	97.2	(6.4)
2015	32.9 (3.4)	16.8 (2.2)	20.9 (1.9)	17.6 (2.5)	0.8 (03)	88.3	(6.1)
2016	32.8 (4.7)	43.1 (5.5)	16.4 (1.9)	17.7 (2.1)	1.1 (0.4)	110.0	(9.0)
2017	26.4 (3.0)	40.5 (4.4)	30.8 (3.6)	16.3 (1.6)	1.2 (0.4)	114.0	(6.5)

Dataset = cfdpsher.d17-.d94

Table 35. PSD and RSD_{15} values obtained for largemouth bass from spring electrofishing samples in each area of Herrington Lake in 2017; confidence intervals are in parentheses.

Area	Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Lower	Largemouth bass	228	$53(\pm 7)$	$13(\pm 4)$
Middle	Largemouth bass	221	$67(\pm 6)$	$24(\pm 6)$
Upper	Largemouth bass	208	$41(\pm 7)$	$19(\pm 5)$
Total	Largemouth bass	657	$54(\pm 4)$	$19(\pm 3)$

Dataset = cfdpsher.d17

Table 36. Population assessment for largemouth bass collected during spring electrofishing at Herrington Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	CPUE age-1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	13.4*	31.1	30.8	16.3	1.2			16	Good
	Score	4	3	3	3	3				
2016	Value	13.4*	59.2	16.4	17.7	1.1			16	Good
	Score	4	4	2	3	3				
2015	Value	13.4	36.8	20.9	17.6	0.8			15	Good
	Score	4	3	2	3	3				
2014	Value	13.8*	33.9	28.5	18.0	1.3			17	Excellent
	Score	4	3	3	3	4				
2013	Value	13.8*	15.1	18.5	12.9	1.5			14	Good
	Score	4	2	2	2	4				
2012	Value	13.8*	111.7	40.9	14.8	1.1			18	Excellent
	Score	4	4	4	3	3				
2011	Value	13.8	18.7	10.9	10.8	0.3	0.539	41.7\%	11	Fair
	Score	4	2	1	2	2				
2010	Value	13.7*	49.6^	28.7	25.1	0.9			18	Excellent
	Score	4	4	3	4	3				
2009	Value	13.7*	6.2^{\wedge}	15.3	10.8	0.4			10	Fair
	Score	4	1	1	2	2				
2008	Value	13.7*	34.6^{\wedge}	29.5	22.1	1.5			18	Excellent
	Score	4	3	3	4	4				
2007	Value	13.7	96.5	20.0	17.3	0.5	0.485	38.4\%	16	Good
	Score	4	4	2	3	3				
2006	Value	13.7*	$25.1{ }^{\wedge}$	38.4	19.3	0.4			16	Good
	Score	4	3	4	3	2				
2005	Value	13.7*	72.1^{\wedge}	23.5	22.3	0.8			18	Excellent
	Score	4	4	3	4	3				
2004	Value	13.7*	33.5^{\wedge}	38.7	29.7	1.5			19	Excellent
	Score	4	3	4	4	4				
2003	Value	13.7	20.9	30.1	17.9	1.2	0.498	39.2\%	15	Good
	Score	4	2	3	3	3				
2002	Value	11.7*	16.7^{\wedge}	25.5	24.0	1.6			15	Good
	Score	2	2	3	4	4				
2001	Value	11.7	28.2	34.1	12.5	0.5	0.455	36.6\%	14	Good
	Score	2	3	4	2	3				
2000	Value	11.0	13.1	26.9	12.3	0.3	0.620	46.2\%	10	Fair
	Score	1	2	3	2	2				

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 37. Length distribution and CPUE (fish/hr) of black bass collected in 4.5 hours of 15 -minute electrofishing runs in Herrington Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Lower																				
Largemouth bass	1	6	6		3	3	6		9	2	7	9	4	2		2			60	40.0 (9.7)
Spotted bass		1	2		4	3	2	3	3		1		1						20	13.3 (6.4)
Middle																				
Largemouth bass		10	8	11	3	1	5	8	9	14	10	6	5	1	2		1		94	62.7 (4.2)
Spotted bass				2				1	3		1	1							8	5.3 (1.7)
Smallmouth bass			1																1	0.7 (0.7)
Upper																				
Largemouth bass	1	6	19	20	17	5	5	14	11	6	12	5	10	5	1	2			139	92.7 (3.2)
Smallmouth bass		1				1								1					3	2.0 (0.9)
Total																				
Largemouth bass	2	22	33	31	23	9	16	22	29	22	29	20	19	8	3	4	1		293	65.1 (6.3)
Spotted bass		1	2	2	4	3	2	4	6		2	1	1						28	6.2 (2.51)
Smallmouth bass		1	1			1								1					4	0.9 (0.4)

Dataset = cfdwrher.d17

Table 38. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Herrington Lake on 25-28 September 2017. Standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Lower	17	89 (2)	20	95 (2)	4	95 (2)	41	92 (1)
	Middle	32	86 (1)	21	92 (2)	4	99 (2)	57	89 (1)
	Upper	32	90 (1)	25	92 (2)	8	98 (5)	65	92 (1)
	Total	81	89 (1)	66	93 (1)	16	98 (2)	163	91 (1)

[^18]Table 39. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Herrington Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1 (natural)	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2001	Total	4.5	0.1	18.3	2.9	5.9	0.9	16.7	2.2
2002	Total	4.6	0.2	9.8	2.0	4.9	1.2	20.9	4.3
2003	Total	4.6	0.1	51.1	6.0	27.3	5.3	33.5	6.0
2004	Total	4.9	0.1	15.6	3.0	9.0	2.1	72.1	9.5
2005	Total	5.3	0.1	24.2	5.1	16.9	4.5	25.1	4.9
2006	Total	4.8	0.1	40.9	5.8	20.4	4.3	96.5	11.6
2007	Total	5.1	0.1	8.0	2.5	5.3	1.9	34.6	3.0
2008	Total	5.1	0.1	25.8	4.9	13.8	3.7	6.2	1.2
2009	Total	4.7	0.1	109.8	16.2	55.1	15.5	49.6	5.4
2010	Total	5.8	0.1	22.0	3.4	17.6	3.3	26.6	3.6
2011	Total	5.8	0.1	54.5	7.8	43.8	6.7	111.7	17.7
2012	Total	5.4	0.1	33.6	6.2	21.8	4.9	11.3	2.1
2013	Total	4.5	0.1	49.1	4.9	19.3	3.1	33.9	4.3
2014	Total	4.7	0.1	36.9	6.0	20.0	3.5	38.4	3.9
2015	Total	5.2	0.1	67.8	10.3	44.8	7.9	59.7	7.8
2016	Total	5.4	0.1	24.9	3.6	16.7	2.8	39.1	4.2
2017	Total	5.0	0.1	26.0	4.2	13.3	3.5		

Dataset = cfdwrher.d17

Table 40. Length distribution and CPUE (fish/nn) of white bass and hybrid striped bass collected during 30 net-nights of gill netting in Herrington Lake in October and November 2017; numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
White bass	2	3	2		1	3	16	29	12	4	4								76	2.5 (0.5)
Hybrid striped bass	1	6	9	37	7	3					8	13	4	25	31	9	2	1	156	5.2 (1.0)
Reciprocal	1		4	23	5	1					6	9		18	25	9	1	1	103	3.4 (0.8)
Original		6	4	12	1	2					2	4	4	7	6		1		49	1.6 (0.3)

Dataset $=$ cfdgnher. d17

Table 41. Mean back calculated lengths (in) at each annulus for otoliths from hybrid striped bass gill netted at Herrington Lake in 2017.

Year class	No.	Age			
		1	2	3	4
2016	18	14.4			
2015	56	14.9	19.5		
2014	4	10.3	18.3	21.1	
2013	2	12.4	18.1	21.6	22.8
Mean	80	14.5	19.3	21.3	22.8
Smallest		7.2	17.3	20.5	22.5
Largest		16.5	21.7	22.0	23.1
Std error		0.2	0.1	0.2	0.3
95\% ConLo		14.2	19.1	20.8	22.2
95\% ConHi		14.8	19.6	21.7	23.5

Intercept Value $=0.00$
Dataset $=$ cfdagher.d17

Table 42. Age frequency and CPUE (fish/nn) per inch class of hybrid striped bass gill netted for 30 net-nights at Herrington Lake in 2017.

Age	Inch class																		Total	\% CPUE		Std err
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24				
0+	1	6	9	37	7	3													63	40	2.1	0.6
1+											8	13	1						22	14	0.7	0.2
2+													3	25	29	7	1		65	42	2.2	0.6
$3+$															2	2			4	3	0.1	0.0
4+																	1	1	2	1	0.1	0.0
Total	1	6	9	37	7	3					8	13	4	25	31	9	2	1	156	100	5.2	1.0
\%	1	4	6	24	4	2					5	8	3	16	20	6	1	1	100			

Table 43. Number of fish and the relative weight $\left(\mathrm{W}_{\mathrm{r}}\right)$ for each length group of hybrid striped bass collected at Herrington Lake in October and November 2017.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Hybrid striped bass	Total	59	96 (1)	3	96 (1)	93	94 (1)	155	95 (1)

Dataset = cfdgnher.d17

Table 44. Population assessment for hybrid striped bass collected during fall gill netting at Herrington Lake from 2000-2017 (scoring based on statewide assessments).

Year		$\begin{gathered} \text { CPUE } \\ \text { (excluding } \\ \text { age- } 0 \text {) } \end{gathered}$	$\begin{gathered} \text { Mean length } \\ \text { age- } 2+\text { at } \\ \text { capture } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1+ } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 3.1 \\ 1 \end{gathered}$	$\begin{gathered} 21.1 \\ 4 \end{gathered}$	$\begin{gathered} 3.1 \\ 2 \end{gathered}$	$\begin{gathered} 0.7 \\ 1 \end{gathered}$			8	Fair
2016	Value Score	$\begin{gathered} 4.3 \\ 2 \end{gathered}$	$\begin{gathered} 20.1 \\ 4 \end{gathered}$	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 4.0 \\ 3 \end{gathered}$			11	Good
2015	Value Score	$\begin{gathered} 2.8 \\ 1 \end{gathered}$	$\begin{gathered} 21.2 \\ 4 \end{gathered}$	$\begin{gathered} 1.9 \\ 1 \end{gathered}$	$\begin{gathered} 1.1 \\ 2 \end{gathered}$			8	Fair
2014	Value Score	$\begin{gathered} 2.8 \\ 1 \end{gathered}$	$\begin{gathered} 20.9 \\ 4 \end{gathered}$	$\begin{gathered} 2.8 \\ 2 \end{gathered}$	$\begin{gathered} 1.6 \\ 2 \end{gathered}$			9	Fair
2013	Value Score	$\begin{gathered} 1.8 \\ 1 \end{gathered}$	$\begin{gathered} 20.6 \\ 4 \end{gathered}$	$\begin{gathered} 1.8 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	-	-	7	Fair
2012	Value Score	$\begin{gathered} 1.1 \\ 1 \end{gathered}$	$\begin{gathered} 19.6 \\ 4 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	-	-	7	Fair
2011	Value Score	$\begin{gathered} 5.3 \\ 2 \end{gathered}$	$\begin{gathered} 19.7 \\ 4 \end{gathered}$	$\begin{gathered} 5.3 \\ 3 \end{gathered}$	$\begin{gathered} 3.7 \\ 3 \end{gathered}$	-	-	12	Good
2010	Value Score	$\begin{gathered} 5.3 \\ 2 \end{gathered}$	$\begin{gathered} 20.0 \\ 4 \end{gathered}$	$\begin{gathered} 4.7 \\ 2 \end{gathered}$	$\begin{gathered} 4.9 \\ 3 \end{gathered}$	1.211	70.2	11	Good
2009	Value Score	$\begin{gathered} 2.7 \\ 1 \end{gathered}$	$\begin{gathered} 19.3 \\ 4 \end{gathered}$	$\begin{gathered} 2.7 \\ 2 \end{gathered}$	$\begin{gathered} 2.1 \\ 2 \end{gathered}$	1.109	66.3	9	Fair
2008	Value Score	$\begin{gathered} 6.0 \\ 2 \end{gathered}$	$\begin{gathered} 20.2 \\ 4 \end{gathered}$	$\begin{gathered} 6.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.6 \\ 2 \end{gathered}$	0.912	59.8	11	Good
2007	Value Score	$\begin{gathered} 6.2 \\ 2 \end{gathered}$	$\begin{gathered} 20.6 \\ 4 \end{gathered}$	$\begin{gathered} 4.9 \\ 3 \end{gathered}$	$\begin{gathered} 5.6 \\ 3 \end{gathered}$	1.122	67.4	12	Good
2006	Value Score	$\begin{gathered} 1.3 \\ 1 \end{gathered}$	$\begin{gathered} 21.4 \\ 4 \end{gathered}$	$\begin{gathered} 1.3 \\ 1 \end{gathered}$	$\begin{gathered} 4.0 \\ 3 \end{gathered}$	0.633	46.9	9	Fair
2005	Value Score	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 19.5 \\ 4 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	NA	NA	7	Fair
2004	Value Score	$\begin{gathered} 2.5 \\ 1 \end{gathered}$	$\begin{gathered} 20.8 \\ 4 \end{gathered}$	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	NA	NA	8	Fair
2003	Value Score	$\begin{gathered} 3.1 \\ 1 \end{gathered}$	$\begin{gathered} 19.8 \\ 4 \end{gathered}$	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	$\begin{gathered} 1.1 \\ 2 \end{gathered}$	0.601	45.2	9	Fair
2002	Value Score	$\begin{gathered} 8.2 \\ 3 \end{gathered}$	$\begin{gathered} 20.8 \\ 4 \end{gathered}$	$\begin{gathered} 7.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.6 \\ 2 \end{gathered}$	0.770	53.7	12	Good
2001	Value Score	$\begin{gathered} 4.7 \\ 2 \end{gathered}$	$\begin{gathered} 20.1 \\ 4 \end{gathered}$	$\begin{gathered} 4.7 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	NA	NA	9	Fair
2000	Value Score	$\begin{gathered} 8.9 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 18.9 \\ 4 \end{gathered}$	$\begin{gathered} 8.9 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 5.5 \\ 3 \\ \hline \end{gathered}$	1.282	72.3	13	Good

Table 45. Mean back calculated lengths (in.) at each annulus for otoliths from white bass gill netted at Herrington Lake in 2017.

Year class	No.	Age					
		1	2	3	4	5	6
2016	11	10.4					
2015	14	9.1	12.5				
2014	28	8.2	12.6	14.0			
2013	6	9.5	12.0	13.7	15.3		
2012	2	9.0	12.6	14.9	16.0	16.9	
2011	1	8.6	12.2	13.7	15.1	16.1	17.0
Mean	62	9.0	12.5	14.0	15.4	16.6	17.0
Smallest		5.5	9.3	11.0	13.3	16.1	17.0
Largest		12.7	14.3	15.8	17.1	17.3	17.0
Std error		0.1	0.1	0.2	0.4	0.4	
95\% ConLo		8.5	12.3	13.6	14.6	15.9	
95\% ConHi		9.3	12.8	14.3	16.2	17.3	

Intercept Value $=0.00$
Dataset = cfdagher.d17

Table 46. Age frequency and CPUE (fish/nn) per inch class of white bass gill netted for 30 net-nights at Herrington Lake in 2017.

Age	Inch class											Total	\%	CPUE	Std err
	7	8	9	10	11	12	13	14	15	16	17				
0+	2	3	2									7	9	0.2	0.1
1+					1	2	8					11	14	0.4	0.1
2+						1	5	8	2			16	21	0.5	0.1
3+							3	19	8	2		32	43	1.1	0.2
4+								1	2	1	2	6	8	0.2	0.1
5+										1	1	2	3	0.1	0.0
6+											1	1	1	0.0	0.0
Total	2	3	2		1	3	16	28	12	4	4	75	100	2.5	0.5
\%	3	4	3		1	4	21	38	16	5	5	100			

Dataset $=$ cfdagher.d17 and cfdgnher.d17

Table 47. Population assessment for white bass collected during fall gill netting at Herrington Lake from 2000-2017 (scoring based on statewide assessment).

Year		$\begin{gathered} \text { CPUE } \\ \text { (excluding } \\ \text { age-0) } \end{gathered}$	$\begin{gathered} \text { Mean length } \\ \text { age- } 2+\text { at } \\ \text { capture } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 12.0 \text { in } \end{aligned}$	CPUE age-1+	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 2.3 \\ 1 \end{gathered}$	$\begin{gathered} 14.1 \\ 4 \end{gathered}$	$\begin{gathered} 2.3 \\ 2 \end{gathered}$	$\begin{gathered} 0.4 \\ 1 \end{gathered}$			8	Fair
2016	Value Score	$\begin{gathered} 5.2 \\ 2 \end{gathered}$	$\begin{gathered} 13.3 \\ 2 \end{gathered}$	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$			8	Fair
2015	Value Score	$\begin{gathered} 5.7 \\ 2 \end{gathered}$	$\begin{gathered} 13.9 \\ 4 \end{gathered}$	$\begin{gathered} 4.8 \\ 3 \end{gathered}$	$\begin{gathered} 5.3 \\ 3 \end{gathered}$			12	Good
2014	Value Score	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	$\begin{gathered} 14.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$			7	Fair
2013	Value Score	$\begin{gathered} 2.2 \\ 1 \end{gathered}$	$\begin{gathered} 14.1 \\ 4 \end{gathered}$	$\begin{gathered} 2.2 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	-	-	8	Fair
2012	Value Score	$\begin{gathered} 9.8 \\ 3 \end{gathered}$	$\begin{gathered} 13.7 \\ 4 \end{gathered}$	$\begin{gathered} 5.9 \\ 3 \end{gathered}$	$\begin{gathered} 5.4 \\ 3 \end{gathered}$	0.975	62.3	13	Good
2011	Value Score	$\begin{gathered} 10.8 \\ 3 \end{gathered}$	$\begin{gathered} 13.7 \\ 4 \end{gathered}$	$\begin{gathered} 9.2 \\ 4 \end{gathered}$	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	0.877	58.4	14	Excellent
2010	Value Score	$\begin{gathered} 7.9 \\ 3 \end{gathered}$	$\begin{gathered} 13.6 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 3 \end{gathered}$	$\begin{gathered} 6.2 \\ 3 \end{gathered}$	1.351	74.1	12	Good
2009	Value Score	$\begin{gathered} 3.4 \\ 2 \end{gathered}$	$\begin{gathered} 13.1 \\ 2 \end{gathered}$	$\begin{gathered} 2.3 \\ 2 \end{gathered}$	$\begin{gathered} 2.7 \\ 2 \end{gathered}$	0.900	59.3	8	Fair
2008	Value Score	$\begin{gathered} 6.7 \\ 2 \end{gathered}$	$\begin{gathered} 13.3 \\ 2 \end{gathered}$	$\begin{gathered} 5.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.1 \\ 2 \end{gathered}$	0.717	51.2	9	Fair
2007	Value Score	$\begin{gathered} 5.6 \\ 2 \end{gathered}$	$\begin{gathered} 13.6 \\ 3 \end{gathered}$	$\begin{gathered} 3.8 \\ 3 \end{gathered}$	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	0.722	51.4	10	Good
2006	Value Score	$\begin{gathered} 1.9 \\ 1 \end{gathered}$	$\begin{gathered} 13.9 \\ 4 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	*	*	8	Fair
2005	Value Score	$\begin{gathered} 2.1 \\ 1 \end{gathered}$	$\begin{gathered} 13.5 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 2 \end{gathered}$	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	0.371	31.0	7	Fair
2004	Value Score	$\begin{gathered} 10.1 \\ 3 \end{gathered}$	$\begin{gathered} 13.9 \\ 4 \end{gathered}$	$\begin{gathered} 6.7 \\ 3 \end{gathered}$	$\begin{gathered} 9.2 \\ 4 \end{gathered}$	0.726	51.6	14	Excellent
2003	Value Score	$\begin{gathered} 2.5 \\ 1 \end{gathered}$	$\begin{gathered} 14.1 \\ 4 \end{gathered}$	$\begin{gathered} 1.9 \\ 2 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	0.381	31.7	8	Fair
2002	Value Score	$\begin{gathered} 2.9 \\ 1 \end{gathered}$	$\begin{gathered} 14.1 \\ 4 \end{gathered}$	$\begin{gathered} 2.4 \\ 2 \end{gathered}$	$\begin{gathered} 2.0 \\ 2 \end{gathered}$	0.841	56.9	9	Fair
2001	Value Score	$\begin{gathered} 1.9 \\ 1 \end{gathered}$	$\begin{gathered} 14.0 \\ 4 \end{gathered}$	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	$\begin{gathered} 1.1 \\ 1 \end{gathered}$	0.418	34.2	8	Fair
2000	Value Score	$\begin{gathered} 3.5 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 13.9 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 2.8 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 2.0 \\ 2 \\ \hline \end{gathered}$	0.741	52.4	10	Good

Table 48. Number of fish and the relative weight (Wr) for each length group of white bass collected at Herrington Lake in October and November 2017.

Species	Area	Length group						Total	
		6.0-8.9 in		9.0-11.9 in		≥ 12.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
White bass	Total	5	99 (2)	3	103 (7)	68	92 (1)	76	93 (1)

Dataset = cfdgnher.d17

Table 49. Dissolved oxygen and temperatures collected at the mouth of Cane Run at Herrington Lake during 2017.

	April 4		May 3		June 7		July 5		August 9		September 7		October 5		November 14	
Depth	DO	Temp														
Surface	15.03	59.4	10.33	68.3	12.09	77.4	9.85	82.3	8.28	79.8	6.17	75.4	7.77	74.0	5.20	62.7
2	15.03	59.4	10.49	68.3	12.11	77.5	9.51	82.1	8.26	77.8	6.14	75.5	7.82	74.0	5.19	62.9
4	15.03	59.1	10.54	68.3	12.14	77.5	9.65	81.9	8.25	79.8	6.12	75.6	7.84	73.9	5.16	63.0
6	15.05	58.9	10.51	68.3	12.17	77.5	9.51	81.6	8.28	79.7	6.08	75.6	7.84	73.9	5.15	63.0
8	14.95	58.2	10.58	68.2	12.16	77.5	9.40	81.4	8.33	79.7	6.04	75.6	7.82	73.8	5.13	63.0
10	14.75	57.9	10.58	68.2	12.16	77.4	9.29	81.3	8.36	79.7	5.99	75.6	7.83	73.7	5.10	63.1
12	14.66	57.7	10.57	68.2	11.91	77.2	9.08	81.3	8.36	79.7	5.97	75.6	7.88	73.7	5.08	63.1
14	14.47	57.6	10.57	68.2	5.75	72.9	7.50	80.3	8.35	79.7	5.94	75.6	7.93	73.7	5.07	63.1
16	14.38	57.4	10.55	68.2	3.46	71.6	3.77	78.0	7.47	79.6	5.90	75.6	7.95	73.6	5.06	63.1
18	14.38	57.4	10.42	68.1	1.05	69.2	2.34	76.8	4.32	79.0	5.88	75.6	7.96	73.6	5.05	63.1
20	14.39	57.4	10.26	68.1	0.83	68.3	1.16	75.3	2.56	78.7	5.85	75.6	7.30	73.6	5.04	63.1
22	14.36	57.4	8.90	66.8	0.68	67.2	0.31	73.9	0.85	77.7	5.78	75.6	6.47	73.5	5.03	63.1
24	14.29	57.2	8.12	65.0	0.66	66.4	0.23	72.1	0.25	76.4	5.77	75.6	5.47	73.4	5.00	63.1
26	14.16	57.1	6.48	61.4	0.67	65.9	0.20	70.2	0.20	74.9	5.61	75.6	4.89	73.4	5.00	63.1
28	13.84	56.7	6.63	59.8	0.63	65.1	0.19	68.9	0.19	74.3	5.63	75.6	4.52	73.4	5.00	63.2
30	12.95	55.7	6.86	59.1	0.63	64.3	0.17	68.1	0.18	73.9	5.00	75.5	2.91	73.2	4.99	63.2
35	12.10	54.3	7.10	57.9	0.56	62.9	0.16	66.3	0.16	72.9	4.05	74.8	1.17	72.9	4.98	63.2
40	10.72	52.1	7.31	57.2	1.12	60.8	0.15	64.4	0.15	69.8	1.32	73.8	0.32	72.4	4.97	63.2
45	10.50	51.4	7.52	56.2	2.41	58.8	0.14	62.7	0.14	67.0	0.22	72.4	0.18	71.5	4.95	63.2
50	10.30	51.1	7.52	55.1	3.45	57.4	0.13	61.0	0.13	64.8	0.36	71.1	0.16	70.5	4.94	63.2
55	10.09	50.8	7.51	53.5	4.13	56.6	0.18	58.8	0.13	63.4	0.17	69.8	0.15	69.6	4.92	63.2
60	9.86	50.6	7.72	52.3	4.86	55.5	1.43	57.5	0.12	61.8	0.15	68.3	0.14	69.0	4.91	63.2
65	9.75	50.4	8.09	51.4	5.23	54.3	2.63	56.3	0.12	60.2	0.14	66.1	0.14	68.2	4.89	63.2
70	9.53	50.3	8.11	51.1	6.07	53.1	3.49	55.3	0.11	58.8	0.13	64.6	0.13	66.7	4.88	63.2
75	9.46	50.2	8.00	50.8	6.54	55.1	4.10	54.3	0.10	57.6	0.13	63.1	0.13	64.6	4.87	63.2
80	9.31	50.1	7.78	50.6	6.48	54.5	4.75	53.2	0.17	56.2	0.12	61.7	0.12	62.7	4.85	63.2
85	9.17	50.1	7.74	50.5	6.56	51.2	5.41	52.4	2.40	55.2	0.12	60.4	0.11	61.5	4.84	63.2
90	9.11	50.1	7.80	50.4	6.61	50.8	5.88	51.4	3.43	53.8	0.11	59.2	0.11	60.1	4.85	63.2
95	9.00	50.1	7.80	50.3	6.64	50.6	6.03	50.9	3.80	53.0	0.11	58.1	0.10	59.0	4.85	63.2
100	8.86	50.1	7.70	50.2	6.65	50.5	6.02	50.8	4.90	52.4	0.11	56.8	0.10	57.8	4.86	63.1
110	8.03	49.8	7.38	50.0	6.58	50.4	5.92	50.5	4.35	51.3	0.23	55.2	0.09	56.5	3.09	62.0
120	7.40	49.5	6.92	49.8	6.58	50.1	6.04	50.3	4.64	50.8	1.89	53.8	0.24	54.6	0.24	61.2
130	6.94	49.1	6.94	49.5	6.31	49.9	5.98	50.1	4.90	50.4	3.38	52.5	1.24	53.5	0.47	60.1
140	6.62	48.9	5.55	49.2	5.94	49.7	5.77	49.9	4.63	50.2	3.75	51.4	2.08	52.3	0.63	59.2
150	6.18	48.6	4.48	49.0	4.98	49.5	5.11	49.6	3.74	50.0	3.74	50.7	1.77	51.3	0.18	58.4
160	5.80	48.1	3.28	48.7	3.75	49.0	3.81	49.4	2.03	49.9	3.06	50.4	0.65	50.9	0.15	57.8

Table 50. Dissolved oxygen and temperatures collected near Gwinn Island Marina at Herrington Lake during 2017.

	April 4		May 3		June 7		July 5		August 9		September 7		October 5		November 16	
Depth	DO	Temp														
Surface	7.72	59.7	9.70	67.0	13.37	78.0	9.94	81.2	8.85	81.2	6.75	75.6	8.18	74.4	2.84	61.4
2	7.78	59.5	9.74	66.9	13.51	78.1	9.93	81.3	8.86	80.6	6.63	75.7	8.16	74.2	2.73	61.5
4	7.78	59.2	9.53	66.7	13.79	78.1	9.86	81.3	8.89	80.7	6.61	75.7	7.87	73.7	2.66	61.6
6	7.74	59.0	9.40	66.6	13.97	78.0	10.13	81.2	8.55	80.2	6.16	75.7	7.76	73.5	2.62	61.6
8	7.74	59.0	9.29	66.6	13.97	78.0	10.20	81.2	8.17	80.0	5.64	75.5	7.85	73.5	2.61	61.7
10	7.75	58.8	9.03	66.3	13.69	77.9	9.97	81.2	8.11	79.9	5.42	75.5	7.85	73.5	2.58	61.7
12	7.57	58.5	8.82	66.1	11.92	77.7	6.42	80.3	8.08	79.9	5.04	75.3	7.81	73.5	2.57	61.7
14	7.42	58.1	8.78	66.1	4.84	74.9	2.00	79.1	8.01	79.8	5.05	75.3	7.77	73.5	2.54	61.7
16	7.32	57.7	8.87	65.7	1.01	72.6	0.82	78.2	8.00	79.8	5.04	75.3	7.55	73.4	2.52	61.8
18	7.29	56.5	7.62	64.7	1.85	70.8	0.41	77.2	7.26	79.7	5.04	75.3	7.02	73.4	2.50	61.8
20	7.30	56.0	4.35	62.4	2.30	69.6	0.25	76.5	6.02	79.6	5.05	75.2	6.44	73.4	2.48	61.8
22	7.32	55.8	3.55	61.9	1.97	68.6	0.18	75.1	3.01	78.8	5.04	75.2	5.76	73.4	2.46	61.8
24	7.39	55.0	3.08	61.0	0.96	67.4	0.16	73.8	0.25	76.8	4.85	75.2	3.36	73.3	2.45	61.8
26	7.75	54.5	3.03	60.6	0.36	66.6	0.15	73.0	0.22	75.7	4.43	75.2	0.69	73.1	2.44	61.8
28	8.18	52.6	3.02	60.2	0.20	66.6	0.14	71.3	0.20	74.7	3.77	74.6	0.55	72.9	2.42	61.8
30	8.27	52.2	3.14	59.1	0.17	65.1	0.13	70.0	0.20	74.2	1.13	74.4	0.51	72.8	2.40	61.8
35	8.31	51.1	3.36	58.2	0.15	63.5	0.11	67.0	0.19	74.0	5.56	74.0	0.60	72.5	2.38	61.9
40	8.26	50.7	3.68	57.3	0.14	61.6	0.11	64.6	0.17	72.3	6.73	73.4	1.01	72.0	2.35	61.9
45	8.10	50.5	4.06	56.5	0.13	60.0	0.10	62.6	0.16	69.7	4.70	71.8	0.62	71.0	2.34	61.9
50	8.02	50.4	4.44	55.5	0.43	58.3	0.10	62.0	0.15	67.1	5.88	70.4	0.23	70.3	2.32	61.9
55	7.95	50.3	5.32	54.2	1.48	56.5	0.09	59.2	0.14	65.4	3.81	69.2	0.18	69.7	2.32	61.9
60	7.82	50.2	6.13	52.2	2.02	55.7	0.08	57.3	0.13	63.4	3.47	68.6	0.17	69.2	2.31	61.9
65	7.70	50.1	5.83	51.2	2.68	54.5	0.35	56.1	0.13	61.3	2.39	68.1	0.16	68.5	2.33	61.9
70	7.58	50.0	5.67	50.9	2.87	53.7	0.76	55.0	0.12	59.9	0.22	65.9	0.16	66.7	2.33	61.9
75	7.32	49.9	5.69	50.7	1.67	52.2	0.65	53.8	0.12	58.8	0.18	63.4	0.15	65.4	2.33	61.9
80	7.41	49.8	5.78	50.5	1.10	51.5	0.15	52.9	0.11	57.7	0.15	61.7	0.14	63.4	2.33	61.9
85	6.82	49.7	5.58	50.4	1.20	51.1	0.07	52.1	0.11	56.6	0.15	60.2	0.14	62.0	2.32	61.9
90	6.62	49.6	5.30	50.3	1.48	50.8	0.06	51.6	0.10	55.5	0.14	58.9	0.13	60.4	2.30	61.9
95	6.32	49.9	3.95	50.1	1.14	50.6	0.05	51.2	0.10	53.7	0.13	58.0	0.13	59.6	2.26	61.9
100			2.87	50.1	0.56	50.4	0.05	51.0	0.09	53.1	0.13	57.5	0.12	58.8	2.21	61.9
110					0.17	50.3	0.05	50.8	0.09	52.4	0.11	55.7	8.18	74.4	2.09	61.9

Table 51. Dissolved oxygen and temperatures collected near Kings Mill Marina at Herrington
Lake during 2017.

	April 4		May 3		June 7		July 5		August 9		September 7		October 5		November 16	
Depth	DO	Temp														
Surface	9.60	60.4	11.69	69.1	12.08	76.9	10.71	81.5	7.08	80.6	10.29	76.1	10.21	75.5	6.23	56.7
2	9.68	60.0	11.67	69.1	12.10	77.0	10.60	81.1	7.20	80.5	10.09	76.7	9.82	74.5	6.14	56.8
4	9.71	57.8	11.19	68.8	12.12	77.1	10.08	81.0	7.11	79.8	9.90	76.3	8.95	74.1	6.09	56.9
6	9.63	57.4	10.81	68.2	11.98	77.1	9.35	80.9	6.90	79.5	7.73	75.4	7.92	73.8	6.07	56.9
8	9.61	57.1	10.11	68.1	11.31	76.8	7.65	80.2	6.06	79.2	7.27	75.3	6.36	73.7	6.05	56.9
10	9.54	56.9	8.87	67.9	10.87	76.8	6.72	79.7	5.65	79.0	7.07	75.3	5.04	73.6	6.07	56.9
12	9.48	56.7	8.25	67.5	4.93	73.8	5.89	78.3	5.35	78.9	7.00	75.3	4.50	73.5	6.08	56.9
14	9.42	56.6	7.97	67.3	3.53	72.1	5.45	77.3	5.27	78.8	7.01	75.3	4.08	73.5	6.02	56.4
16	9.38	56.5	7.79	67.1	2.71	70.9	5.15	76.8	5.25	78.8	6.98	75.2	3.57	73.4	8.60	49.6
18	9.31	56.4	7.59	67.0	1.91	69.9	4.64	76.2	5.23	78.8	6.97	75.2	3.43	73.4	9.19	47.9
20	9.12	56.1	6.93	66.7	1.36	69.2	4.17	75.5	5.07	78.8	7.18	74.8	3.30	73.3	9.20	47.9
22	8.98	56.0	7.00	66.6	1.11	69.0	3.84	74.7	5.00	78.7	7.24	74.7	2.95	73.3	6.23	56.7
24	8.86	55.9	1.70	60.5	0.34	68.3	3.73	74.4	2.15	78.1	7.21	74.3	2.87	73.2		
26	8.42	55.7	1.69	58.9	0.22	67.7	3.54	74.1	0.40	76.9	7.28	73.5	3.03	73.2		
28			1.49	58.3	0.19	67.3	3.38	73.9	0.27	75.8	6.90	71.4	3.32	73.0		
30			1.12	58.0	0.18	66.7	2.85	73.5	0.23	75.0	6.04	69.7	3.10	72.9		
35					0.16	66.4	0.65	68.6	0.21	74.3	5.93	69.3				

Table 52. Species composition, relative abundance, and CPUE (fish/hr) of black bass and saugeye collected in 3.0 hours of 15-minute nocturnal electrofishing runs in Guist Creek Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																				Total	CPUE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
Largemouth bass	4	13	16	6	15	59	54	44	37	34	37	43	50	52	30	18	11	4	2		529	176.3 (21.8)
Saugeye					1	3	2	3		3	1	1	10	1	1	1	1	2		2	32	10.7 (1.9)

Dataset $=$ cfdpsgcl.d17

Table 53. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Guist Creek Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1992	12.0 (2.1)	16.8 (2.7)	38.4 (5.2)	41.2 (4.7)	3.2 (1.0)	108.4 (7.2)
1993	22.7 (2.6)	25.5 (2.7)	23.8 (2.7)	51.6 (5.0)	5.5 (1.1)	123.6 (9.1)
1994	19.2 (2.7)	29.8 (3.7)	19.6 (2.6)	40.2 (3.9)	2.0 (0.5)	108.8 (8.6)
1995	18.2 (3.0)	40.6 (3.8)	23.2 (2.4)	47.2 (5.5)	5.0 (1.3)	129.2 (9.2)
1996	32.6 (5.5)	28.8 (3.6)	44.8 (2.8)	58.2 (5.2)	5.8 (1.1)	164.4 (10.6)
1997	NS					
1998	20.3 (3.1)	45.3 (4.9)	18.7 (3.5)	72.7 (12.3)	5.0 (1.3)	157.0 (14.5)
1999	53.5 (6.9)	56.8 (10.2)	41.7 (6.3)	51.3 (3.4)	8.0 (1.3)	203.3 (19.4)
2000	26.7 (6.1)	19.3 (2.4)	23.0 (2.9)	41.3 (5.4)	3.0 (1.0)	110.3 (7.6)
2001	39.0 (5.3)	42.0 (3.6)	17.3 (2.7)	46.3 (5.2)	1.7 (0.6)	144.7 (10.1)
2002	43.3 (9.9)	32.3 (7.7)	23.3 (3.1)	41.3 (7.8)	2.0 (1.4)	134.3 (18.6)
2003	27.7 (6.7)	96.7 (9.9)	31.0 (4.6)	49.7 (4.0)	2.7 (0.9)	205.0 (19.7)
2004	30.7 (6.0)	62.7 (6.5)	58.0 (7.0)	54.3 (5.9)	3.7 (1.0)	205.7 (17.0)
2005	84.3 (12.2)	67.0 (6.3)	63.0 (5.6)	70.3 (7.5)	4.7 (1.4)	284.7 (25.6)
2006	30.0 (6.6)	69.3 (8.2)	30.3 (3.3)	68.7 (6.4)	3.3 (1.5)	198.3 (19.0)
2007	23.3 (3.0)	59.3 (6.3)	42.0 (4.3)	58.0 (5.5)	3.7 (1.2)	182.7 (11.6)
2008	24.0 (3.6)	19.7 (2.3)	41.3 (5.6)	73.0 (10.3)	4.7 (1.5)	158.0 (12.9)
2009	12.0 (2.7)	23.3 (4.7)	19.3 (3.7)	35.7 (6.0)	4.3 (1.0)	90.3 (11.3)
2010	46.8 (4.1)	25.3 (2.6)	26.3 (2.9)	47.3 (4.6)	3.0 (0.8)	145.8 (8.4)
2011	34.3 (2.6)	67.7 (7.0)	35.0 (3.9)	50.3 (4.7)	5.3 (1.6)	187.3 (9.7)
2012	19.7 (5.2)	81.7 (7.5)	30.0 (4.1)	36.7 (3.8)	4.7 (1.2)	168.0 (7.2)
2013	21.3 (7.0)	44.0 (5.1)	51.0 (5.4)	63.0 (7.4)	5.7 (2.0)	179.3 (11.6)
2014	13.3 (2.4)	43.3 (5.4)	32.7 (4.6)	49.3 (6.8)	4.3 (1.3)	138.7 (15.8)
2015	28.7 (8.4)	86.0 (6.5)	47.0 (4.9)	63.7 (10.2)	3.3 (1.2)	225.3 (22.2)
2016						
2017	13.0 (3.3)	57.3 (7.3)	36.0 (5.0)	70.0 (11.2)	5.7 (1.7)	176.3 (21.2)

Dataset = cfdpsgcl.d17-d92

Table 54. PSD and RSD_{15} values obtained for largemouth bass from spring nocturnal electrofishing samples in Guist Creek Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	490	$65(\pm 4)$	$43(\pm 4)$
Dataset $=$ cfdpsgcl.d17			

Table 55. Population assessment for largemouth bass collected during spring electrofishing at Guist Creek Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	12.5	12.7	36.0	70.0	5.7			17	Excellent
	Score	4	2	3	4	4				
2015	Value	12.2*	13.0	47.0	63.7	3.3			15	Good
	Score	4	1	3	4	3				
2014	Value	12.2^{*}	3.7	32.7	49.3	4.3			15	Good
	Score	4	1	2	4	4				
2013	Value	12.2	17.0	51.0	63.0	5.7			18	Excellent
	Score	4	2	4	4	4				
2012	Value	11.0*	13.3	30.0	36.7	4.7			14	Good
	Score	3	,	2	4	4				
2011	Value	11.0*	16.4	34.7	50.7	5.7			15	Good
	Score	3	2	2	4	4				
2010	Value	11.0*	31.5^{\wedge}	26.3	47.3	3.0	0.341	28.9	14	Good
	Score	3	2	2	4	3				
2009	Value	11.0	6.7	19.3	35.7	4.3			13	Good
	Score	3	1	1	4	4				
2008	Value	11.5*	8.1^{\wedge}	41.3	73.0	4.7			16	Good
	Score	4	1	3	4	4				
2007	Value	11.5*	15.5^{\wedge}	42.0	58.0	3.7			15	Good
	Score	4	1	3	4	3				
2006	Value	11.5*	15.2^{\wedge}	30.3	68.7	3.3			14	Good
	Score	4	1	2	4	3				
2005	Value	11.5	21.4	63.0	70.3	4.7	0.510	40.0	18	Excellent
	Score	4	2	4	4	4				
2004	Value	10.2*	$22.1{ }^{\wedge}$	58.0	54.3	3.7			15	Good
	Score	2	2	4	4	3				
2003	Value	10.2*	16.3^{\wedge}	31.0	49.7	2.7			13	Good
	Score	2	2	2	4	3				
2002	Value	10.2*	$23.8{ }^{\wedge}$	23.3	41.3	2.0			13	Good
	Score	2	2	2	4	3				
2001	Value	10.2	25.7	17.3	46.3	1.7	0.289	25.1	11	Fair
	Score	2	2	1	4	2				
2000	Value	10.0	16.8	23.0	41.3	3.0	0.161	14.9		
	Score	1	2	2	4	3			10	Good

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 56. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Guist Creek Lake in September 2017; numbers in parentheses are standard errors.

	Inch class																				Total	CPUE
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	7	51	27	23	7	13	36	37	17	32	30	24	14	15	16	8	4	4	5	1	371	247.3 (20.8)

Dataset $=$ cfdwrgcl.d17

Table 57. Mean back calculated lengths (in.) at each annulus for otoliths from largemouth bass collected in the fall from Guist Creek Lake in 2017.

	Age								
Year	No.	1	2	3	4	5	6	7	8
2016	31	6.0							
2015	18	6.1	10.0						
2014	13	5.3	9.5	12.5					
2013	8	5.0	8.8	12.2	14.2				
2012	1	4.0	7.7	9.9	11.4	12.8			
2011	4	5.7	9.2	12.5	14.2	15.7	16.6		
2010	3	6.3	10.4	13.4	15.4	17.0	18.4	19.1	
2009	1	5.5	9.8	13.2	15.5	16.2	16.7	17.3	17.8
Mean	79	5.8	9.6	12.4	14.3	15.9	17.3	18.7	17.8
Smallest		3.4	6.4	9.9	11.4	12.8	14.3	17.3	17.8
Largest		8.8	11.8	15.1	16.3	17.8	19.0	19.9	17.8
Std Error		0.1	0.2	0.2	0.4	0.6	0.6	0.6	
95\% ConLo		5.5	9.3	11.9	13.6	14.8	16.2	17.4	
95\% ConHi		6.0	9.9	12.9	15.1	17.0	18.4	19.9	

Intercept value $=0.00$
Dataset $=$ cfdaggcl. d 17

Table 58. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Guist Creek Lake on 12 September 2017. Standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	63	92 (1)	47	92 (1)	50	96 (1)	160	93 (1)

Table 59. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Guist Creek Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2000	Total	3.6	0.1	19.5	4.0	0.0		25.7	5.3
2001	Total	3.9	0.1	65.3	14.0	1.0	0.5	23.8	6.7
2002	Total	4.7	0.1	47.3	7.6	19.3	2.8	16.3	3.3
2003	Total	4.0	0.1	30.7	8.2	6.0	2.0	22.1	4.8
2004	Total	4.0	0.1	40.7	6.0	0.7	0.7	21.4	4.2
2005	Total	4.5	0.1	24.5	4.4	5.0	2.0	15.2	4.5
2006	Total	3.9	0.1	50.7	8.5	10.0	4.2	15.5	2.2
2007	Total	3.8	0.2	12.7	4.2	2.7	1.7	8.1	2.0
2008	Total	3.2	0.1	139.3	23.6	0.7	0.7	6.7	2.4
2009	Total	3.7	0.1	51.3	9.8	0.7	0.7	31.5	3.1
2010	Total	4.9	0.1	41.3	4.2	18.7	2.0	16.4	1.6
2011	Total	4.4	0.1	34.7	13.2	7.3	3.9	13.3	4.2
2012	Total	4.1	0.1	46.0	7.9	7.3	3.2	21.3	7.0
2013	Total	4.0	0.1	38.7	7.0	6.7	2.7	3.7	1.0
2014	Total	4.0	0.1	27.3	5.2	3.3	0.7	13.0	6.4
2015	Total	5.0	0.1	49.3	5.1	28.0	2.3	---	
2016	Total	5.0	0.1	56.0	8.6	29.3	7.4	11.0	3.0
2017	Total	4.1	0.1	75.3	20.3	18.7	4.3		

Table 60. Length distribution and CPUE (fish/nn) of hybrid striped bass collected during 8 net-nights of gill netting in Guist Creek Lake in November 2017: numbers in parentheses are standard errors.

Species	Inch class																							Total	CPUE
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29		
Hybrid striped bass	2	3	8	2							5	6	1	4	5	1	4	2	1	3			1	48	6.0 (1.3)
Saugeye			6	13	15	3	2	8	13	19	7	4	6	4	3	6	11	3						123	15.4 (4.3)

Dataset $=$ cfdgngcl.d17

Table 61. Mean back calculated lengths (in) at each annulus for otoliths from hybrid striped bass gill netted at Guist Creek Lake in 2017.

		Age								
Year class	No.	1	2	3	4	5	6	7	8	
2016	1	11.1								
2015	15	9.2	15.6							
2014	8	9.8	16.0	20.3						
2013	2	7.9	15.0	19.9	22.2					
2012	5	9.3	15.8	19.9	22.8	24.4				
2011	1	9.0	14.6	19.6	22.8	24.6	25.7			
2009	1	7.5	14.5	20.9	22.6	24.4	26.1	27.3	28.1	
Mean	33	9.3	15.6	20.1	22.6	24.4	25.9	27.3	28.1	
Smallest		6.6	12.7	18.3	21.8	23.8	25.7	27.3	28.1	
Largest		12.3	18.3	21.7	23.6	25.2	26.1	27.3	28.1	
Std Error		0.3	0.2	0.2	0.2	0.2	0.2			
95\% ConLo		8.7	15.2	19.7	22.3	24.1	25.5			
95\% ConHi		9.8	16.1	20.5	23.0	24.8	26.3			

Intercept Value $=0.00$
Dataset $=$ cfdaggcl.d17

Table 62. Age frequency and CPUE (fish/nn) per inch class of hybrid striped bass gill netted for 8 netnights at Guist Creek Lake in 2017.

Age	Inch class																						Total	\% CPUE		$\begin{aligned} & \hline \text { Std } \\ & \text { Err } \end{aligned}$
	7	8	9	10	11	12	13	14	15	16	17	1		19	20	21	22	23	24	25	26	29				
0+	2	3	8	2																			15	31	1.9	0.4
1+											1												1	2	0.1	0.1
2+											4		6	1	3								15	31	1.9	0.8
3+															1	4	1	3					9	18	1.1	0.3
4+																		1	1				2	4	0.3	0.1
5+																			1	1	2		4	9	0.5	0.3
6+																					1		1	2	0.1	0.1
8+																						1	1	2	0.1	0.1
Total	2	3	8	2							5		6	1	4	5	1	4	2	1	3	1	48	100	6.0	1.3
\%	4	6	17	4							10	13	3	2	8	10	2	8	4	2	6	2	100			

Dataset $=$ cfdaggcl.d17 and cfdgngcl.d17

Table 63. Number of fish and the relative weight (Wr) for each length group of hybrid striped bass collected at Guist Creek Lake in October 2017.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Hybrid striped bass	Total	13	85 (2)	0		33	82 (2)	46	83 (1)

Dataset = cfdgngcl.d17

Table 64. Population assessment for hybrid striped bass collected during fall gill netting at Guist Creek Lake from 2000-2017 (scoring based on statewide assessment).

Year		CPUE (excluding age 0)	Mean length age-2+ at capture	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \text { age 1+ } \end{aligned}$	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	15.6	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	0.1	6	Poor
2014	Value Score	$\begin{gathered} 3.6 \\ 2 \end{gathered}$	$\begin{gathered} 17.3 \\ 3 \end{gathered}$	$\begin{gathered} 3.0 \\ 2 \end{gathered}$	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	8	Fair
2011	Value Score	$\begin{gathered} 6.3 \\ 2 \end{gathered}$	$\begin{gathered} 17.6 \\ 3 \end{gathered}$	$\begin{gathered} 5.9 \\ 3 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	9	Fair
2010	Value Score	$\begin{gathered} 4.0 \\ 2 \end{gathered}$	$\begin{gathered} 13.2 \\ 1 \end{gathered}$	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	6	Poor
2009	Value Score	$\begin{gathered} 2.0 \\ 1 \end{gathered}$	$\begin{gathered} 18.5 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 1 \end{gathered}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	7	Fair
2008	Value Score	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	$\begin{gathered} 16.8 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	5	Poor
2007	Value Score	$\begin{gathered} 8.8 \\ 3 \end{gathered}$	$\begin{gathered} 18.4 \\ 3 \end{gathered}$	$\begin{gathered} 8.3 \\ 3 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	10	Good
2006	Value Score	$\begin{gathered} 3.4 \\ 1 \end{gathered}$	$\begin{gathered} 17.1 \\ 2 \end{gathered}$	$\begin{gathered} 3.1 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	6	Poor
2005	Value Score	$\begin{gathered} 3.3 \\ 1 \end{gathered}$	$\begin{gathered} 14.9 \\ 1 \end{gathered}$	$\begin{gathered} 2.9 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	5	Poor
2004	Value Score	$\begin{gathered} 3.6 \\ 2 \end{gathered}$	$\begin{gathered} 17.4 \\ 3 \end{gathered}$	$\begin{gathered} 2.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	8	Fair
2003	Value Score	$\begin{gathered} 3.5 \\ 2 \end{gathered}$	$\begin{gathered} 18.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.3 \\ 2 \end{gathered}$	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	8	Fair
2002	Value Score	$\begin{gathered} 4.3 \\ 2 \end{gathered}$	$\begin{gathered} 17.2 \\ 2 \end{gathered}$	$\begin{gathered} 3.5 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	7	Fair
2001	Value Score	$\begin{gathered} 2.3 \\ 1 \end{gathered}$	$\begin{gathered} 17.1 \\ 2 \end{gathered}$	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	5	Poor
2000	Value Score	$\begin{gathered} 15.6 \\ 3 \end{gathered}$	$\begin{gathered} 17.2 \\ 2 \end{gathered}$	$\begin{gathered} 9.0 \\ 3 \end{gathered}$	$\begin{gathered} 6.4 \\ 3 \end{gathered}$	11	Good

*Years not represented in table indicate that no sample was completed

Table 65. Length distribution and CPUE (fish/hr) of saugeye collected in 1.5 hours of 15 -minute electrofishing runs in Guist Creek Lake in October 2017; numbers in parentheses are standard errors.

Inch class																		Total	CPUE
Species	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
Saugeye	1	3	5				3	4	9	4	2		1		2	2	1	37	24.7 (5.0)

Dataset = cfdwrgcl.d17

Table 66. Mean back calculated lengths (in.) at each annulus for otoliths from saugeye collected in the fall from Guist Creek Lake in 2017.

		Age			
Year	No.	1	2	3	4
2016	36	11.0	15.4		
2015	24	10.9	17.7	21.3	
2014	5	11.0	15.4	19.7	22.1
2013	12	10.4			
Mean					
Smallest		15.5	11.7	18.1	22.1
Largest		10.0	19.0	22.2	20.3
Std Error		10.6	0.3	0.3	23.3
95% ConLo		11.1	15.2	19.2	0.2
95% ConHi			16.2	20.7	22.6

Intercept value $=0.00$
Dataset = cfdaggcl.d17
Table 67. Age frequency and CPUE (fish/nn) per inch class of saugeye gill netted for 8 net-nights at Guist Creek Lake in 2017.

Age	Inch class																Total	\%	CPUE	$\begin{aligned} & \text { Std } \\ & \text { Err } \end{aligned}$
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24				
0+	6	13	15	2													36	29	4.5	1.8
1+				1	2	7	12	12	6								40	32	4.9	1.7
2+						1	1	7	1	4	6	4	2	2			28	23	3.5	1.1
3+														3	2	1	6	5	0.8	0.2
4+													1	2	9	2	14	11	1.7	0.4
Total	6	13	15	3	2	8	13	19	7	4	6	4	3	7	11	3	123	100	15.4	4.3
\%	5	11	12	2	2	7	11	15	6	3	5	3	2	5	9	2	100			

Dataset $=$ cfdaggcl.d17 and cfdgngcl.d17

Table 68. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass and saugeye collected in 2.5 hours of $15-\mathrm{minute}$ electrofishing runs in A.J. Jolly Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																			Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	4	12	27	31	12	20	44	33	29	20	23	12	15	15	14	11	6	1		329	131.6 (10.5)
Saugeye					6	6	5	7	2	1	2		2	1	3	2	3		2	42	16.8 (2.7)

Dataset = cfdpsaji.d17

Table 69. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from A.J. Jolly Lake from 1996-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1996	18.5 (2.8)	13.5 (1.7)	24.0 (5.7)	9.5 (2.5)	0.0	65.5 (7.4)
1997	11.6 (1.9)	37.2 (3.8)	19.6 (2.1)	20.4 (2.6)	0.8 (0.5)	88.8 (4.7)
1998	11.5 (1.9)	42.5 (8.0)	24.5 (2.4)	25.5 (3.5)	2.0 (1.1)	104.0 (11.6)
1999	5.0 (2.4)	21.0 (6.1)	32.0 (6.5)	26.0 (4.5)	4.0 (1.3)	84.0 (13.7)
2000	27.0 (5.4)	25.0 (4.3)	9.5 (1.5)	20.0 (3.3)	1.5 (0.7)	81.5 (7.9)
2001	35.5 (5.9)	48.5 (5.7)	12.0 (2.4)	26.0 (5.2)	2.0 (1.1)	122.0 (13.5)
2002	10.0 (2.1)	44.5 (8.2)	9.5 (1.5)	18.0 (3.1)	0.5 (0.5)	82.0 (10.5)
2003	14.5 (4.3)	40.5 (4.2)	19.0 (4.3)	7.5 (2.2)	0.0	81.5 (7.7)
2004*						
2005	55.5 (10.4)	19.5 (4.0)	12.5 (1.8)	7.0 (2.0)	0.0	94.5 (14.9)
2006	28.0 (6.9)	23.5 (3.5)	5.5 (2.0)	2.5 (1.1)	0.0	59.5 (7.6)
2007	31.6 (4.4)	36.8 (5.9)	15.2 (2.3)	14.0 (2.8)	0.0	97.6 (11.2)
2008	7.2 (1.4)	14.8 (4.1)	14.8 (2.7)	8.0 (3.1)	0.0	44.8 (6.2)
2009	15.6 (2.4)	19.6 (2.6)	12.8 (2.9)	12.8 (2.7)	2.0 (0.9)	60.8 (7.7)
2010	12.4 (2.6)	22.8 (4.0)	20.8 (3.8)	21.2 (3.7)	1.6 (0.9)	77.2 (8.9)
2011	26.8 (5.0)	12.8 (3.3)	12.4 (2.9)	20.4 (3.4)	0.8 (0.8)	72.4 (10.1)
2012	35.6 (6.0)	32.4 (6.9)	19.6 (2.4)	20.0 (4.8)	0.4 (0.4)	107.6 (14.5)
2013	11.6 (2.6)	23.2 (3.7)	24.0 (5.1)	17.2 (2.9)	1.6 (0.9)	76.0 (9.9)
2014	13.6 (2.8)	21.2 (2.9)	16.0 (3.2)	24.0 (5.1)	2.0 (0.9)	74.8 (9.1)
2015	43.2 (6.8)	24.8 (5.1)	12.4 (2.2)	15.2 (4.2)	0.8 (0.5)	95.6 (7.4)
2016	18.0 (3.4)	30.0 (4.2)	19.6 (4.2)	27.2 (9.8)	1.2 (0.9)	94.8 (16.3)
2017	34.4 (3.9)	50.4 (6.7)	22.0 (3.6)	24.8 (2.4)	0.4 (0.4)	131.6 (10.5)

Dataset = cfdpsajj.d96 - d17

*No spring sample collected in 2004

Table 70. PSD and RSD ${ }_{15}$ values obtained for largemouth bass from spring electrofishing samples in A.J. Jolly Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	243	$48(\pm 6)$	$26(\pm 6)$

Dataset = cfdpsajj.d17

Table 71. Population assessment for largemouth bass collected during spring electrofishing at A.J. Jolly Lake from 2010-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	CPUE age-1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	12.3*	30.0	22.0	24.8	0.4				
	Score	4	3	2	3	2			14	Good
2016	Value	12.3*	5.2	19.6	27.2	1.2				
	Score	4	1	2	4	2			13	Good
2015	Value	12.3	38.8	12.4	15.2	0.8				
	Score	4	3	1	3	2			13	Good
2014	Value	11.9*	8.0	16.0	24.0	2.0				
	Score	4	2	2	3	3			14	Good
2013	Value	11.9*	10.4	24.0	17.2	1.6				
	Score	4	2	2	3	3			14	Good
2012	Value	11.9*	27.2	19.6	20.0	0.4				
	Score	4	3	2	3	2			14	Good
2011	Value	11.9	26.0	12.4	20.4	0.8				
	Score	4	3	1	3	2			13	Good
2010	Value	11.8*	4.0	20.8	21.2	1.6				
	Score	4	1	2	3	3			13	Good

* Age data not collected

Table 72. Length distribution and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute electrofishing runs for black bass in A.J. Jolly Lake in October 2017; numbers in parentheses are standard errors.

Dataset = cfdwrajj.d17

Table 73. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at A.J. Jolly Lake on 5 October 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	85	87 (1)	46	90 (2)	22	93 (1)	153	89 (1)

Dataset = cfdwrajj.d17

Table 74. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at A.J. Jolly Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2004	Total	3.5	0.1	36.7	5.2	2.0	0.9	49.8	9.2
2005	Total	4.3	0.1	16.0	3.7	2.7	1.3	23.7	5.7
2006	Total	4.1	0.2	8.7	2.8	0.7	0.7	28.5	4.5
2007	Total	4.4	0.3	5.6	1.8	2.0	0.9	3.6	1.1
2008	Total	4.6	0.1	29.7	4.4	7.4	2.2	12.0	2.0
2009	Total	4.2	0.2	8.4	2.5	1.3	0.7	4.0	1.9
2010	Total	5.2	0.1	42.4	5.2	26.8	4.1	26.0	4.6
2011	Total	4.9	0.1	22.0	3.6	13.5	4.2	27.2	4.8
2012	Total	4.9	0.1	22.0	3.6	12.0	2.9	10.4	2.2
2013	Total	4.5	0.1	23.0	3.4	6.0	2.3	8.0	2.0
2014	Total	4.5	0.2	19.5	5.9	8.0	2.8	38.8	6.4
2015	Total	4.3	0.1	21.5	5.7	5.5	2.8	5.2	2.1
2016	Total	5.1	0.1	44.0	4.5	25.5	4.8	28.0	2.5
2017	Total	5.4	0.1	37.5	5.4	27.0	3.7		

Table 75. Length composition, relative abundance, and CPUE (fish/set) of channel catfish at A.J. Jolly Lake was collected 9 October 2017. Channel catfish were collected using 5 sets of tandem baited hoop nets (72 hours soak time).

Species	Inch class															Total	Average per set
	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Channel catfish	9	40	19	17	7	10	5	7	5		1	3			2	125	25.0 (6.7)
Blue catfish			1	2	4	4	1			1		1		1		15	3.0 (0.7)

Dataset $=$ cfdhnajj.d17

Table 76. PSD and RSD_{24} values obtained for channel catfish from tandem hoop net samples in A.J. Jolly Lake in 2017; confidence intervals are in parentheses.

Species	No. \geq stock size	PSD	RSD $_{24}$
Channel catfish	57	$19(\pm 10)$	$0(\pm 0)$

Dataset = cfdhnajj.d17

Table 77. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at A.J. Jolly Lake in October 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		11.0-15.9 in		16.0-23.9 in		≥ 24.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Channel catfish	Total	48	94 (1)	11	99 (4)			57	95 (1)

Dataset = cfdhnajj.d17

Table 78. CPUE (fish/set) for each length group of channel catfish collected by hoop net from A.J. Jolly Lake from 2007-2017; numbers in parentheses are standard errors.

Year	Length group			Total
	≥ 12.0 in	≥ 15.0 in	≥ 20.0 in	
2007	3.4 (1.4)	0.6 (0.4)	0.0	68.0 (18.7)
2008	9.4 (2.8)	1.6 (0.6)	0.2 (0.2)	75.0 (7.7)
2010	5.6 (2.5)	1.6 (0.9)	0.0	18.0 (3.9)
2011	18.2 (6.1)	3.2 (1.7)	0.2 (0.2)	41.6 (10.0)
2012	2.8 (1.2)	0.2 (0.2)	0.0	8.6 (5.3)
2013	12.4 (3.6)	2.8 (1.0)	0.2 (0.2)	34.2 (13.9)
2014	16.8 (3.7)	7.0 (1.8)	0.0	35.8 (10.9)
2017	8.0 (1.3)	3.6 (0.7)	0.4 (0.2)	25.0 (6.7)

Dataset = cfdhnajj.d17

Kentucky Department of Fish and Wildlife Resources

AJ JOLLY LAKE ANGLER ATTITUDE SURVEY 2016 and 2017

(Based on 92 surveys)

1. Have you completed this survey this year? $\mathbf{1 4 . 1 \%}$ Yes 85.9% No
2. In general, what level of satisfaction or dissatisfaction do you have with fishing at AJ Jolly Lake? ($n=91$)
23.1\% Very satisfied $\mathbf{3 7 . 4 \%}$ Somewhat satisfied $\mathbf{2 5 . 3 \%}$ Neutral 9.9\% Somewhat dissatisfied 4.3\% Very dissatisfied

2a. If you responded with very or somewhat satisfied in question (2) - What is the single most important reason for your Satisfaction? ($\mathrm{n}=69$)
 18.8\% Other (close to home, campground, shoreline access, species variation, balanced lake, pleasant atmosphere)

2b. If you responded with somewhat or very dissatisfied in question (2) - What is the single most important reason for your Dissatisfaction? ($n=14$)
85.7\% Number of fish 14.3% Size of fish
3. Are you satisfied with the current size limits and creel limits at AJ Jolly Lake? ($n=85$)

94.1\% Yes $\mathbf{5 . 9 \%}$ No

If not, what would you prefer (not sure what the size limits are currently, just not great fishing)
4. In general, what level of satisfaction or dissatisfaction do you have with the current facilities, boat ramp and courtesy dock at AJ Jolly Lake? ($\mathrm{n}=87$)
44.8\% Very satisfied $\quad \underline{28.7 \%}$ Somewhat satisfied $\quad \underline{23.0 \%}$ Neutral \quad 3.5\% Somewhat dissatisfied 0\% Very dissatisfied
5. If you were able to choose the type of fisheries management at A.J. Jolly Lake, which of the following scenarios would be your number one choice? ($\mathrm{n}=89$)
11.2\% High numbers of small bluegill ($3-5$ inches) and low numbers of quality bass ($13-20$ inches), which could be hard to catch at times. (Quality Bass Management)
58.5\% Average numbers of quality bluegill (hand-sized) and average numbers of quality bass ($8-14$ inches)l (Balanced Bass and Bluegill Management)
11.2\% High numbers of smaller easily caught bass (generally under the 12 inch size limit) and lower numbers of quality bluegill (hand-size or bigger) (Quality Bluegill Management)
19.1\% Don't fish for bass or bluegill or No Opinion

Table 79. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute electrofishing runs in Beaver Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	6	217	251	84	34	92	90	105	40	22	9	4	2	1	2			1	960	480.0 (45.1)

Dataset = cfdpsbvr.d17

Table 80. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Beaver Lake from 1992-2017; numbers in parentheses are standard errors.

	Length group					
Year	<8.0 in	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in	≥ 20.0 in	Total
1992	$7.1(2.1)$	$105.3(8.6)$	$4.9(1.1)$	$19.1(4.8)$	$9.3(3.3)$	$136.4(5.6)$
1993	$22.5(3.9)$	$59.5(5.3)$	$76.0(7.9)$	$13.0(4.3)$	$8.5(2.8)$	$171.0(12.2)$
1994	$22.5(2.8)$	$5.5(2.5)$	$41.5(3.3)$	$28.5(4.5)$	$6.5(2.8)$	$96.5(6.9)$
1995	$73.0(8.4)$	$37.5(5.9)$	$10.0(3.8)$	$34.0(7.0)$	$6.0(2.3)$	$154.5(9.9)$
1996	$81.0(11.6)$	$47.0(6.3)$	$8.0(2.0)$	$37.5(2.9)$	$3.0(0.7)$	$173.5(17.8)$
1997	$84.5(12.2)$	$99.5(16.7)$	$8.5(2.1)$	$42.5(9.6)$	$6.0(3.2)$	$235.0(34.1)$
1998	$36.0(4.2)$	$206.5(17.6)$	$14.5(4.8)$	$30.5(6.6)$	$5.5(1.7)$	$287.5(22.8)$
1999	$42.0(11.0)$	$71.5(7.3)$	$17.0(2.6)$	$22.0(3.5)$	$7.5(1.6)$	$152.5(18.1)$
2000	$56.0(7.7)$	$26.5(5.6)$	$28.5(2.2)$	$24.5(2.9)$	$3.0(1.3)$	$137.0(9.8)$
2001	$142.5(8.6)$	$66.5(8.6)$	$25.5(1.5)$	$39.0(6.1)$	$4.0(1.5)$	$273.5(17.1)$
2002	$55.5(10.8)$	$97.0(13.6)$	$16.0(2.1)$	$32.0(4.9)$	$2.5(1.1)$	$200.5(26.8)$
2003	$142.5(9.1)$	$131.5(12.9)$	$20.0(3.0)$	$18.0(2.4)$	$2.0(0.8)$	$312.0(20.4)$
2004	$154.5(5.5)$	$198.0(15.1)$	$48.0(7.5)$	$17.0(3.7)$	$2.0(0.8)$	$417.5(20.3)$
2005	$68.5(11.4)$	$298.0(22.7)$	$42.0(7.7)$	$15.0(3.5)$	$4.5(1.4)$	$423.5(21.6)$
2006	$115.0(11.3)$	$217.5(36.5)$	$40.0(3.7)$	$10.0(2.3)$	$2.5(1.1)$	$382.5(34.9)$
2007	$30.5(4.8)$	$176.5(31.1)$	$42.5(9.6)$	$10.0(2.7)$	$3.0(1.0)$	$259.5(40.4)$
2008	$44.5(6.6)$	$203.5(22.4)$	$61.0(6.0)$	$8.5(1.8)$	$2.0(0.8)$	$317.5(29.4)$
2009	$14.5(2.8)$	$146.5(28.5)$	$84.5(15.6)$	$3.5(2.1)$	$0.5(0.5)$	$249.0(45.3)$
2010	$76.7(6.8)$	$99.8(8.5)$	$58.9(4.5)$	$2.9(0.7)$	$0.2(0.2)$	$238.2(14.3)$
2011	$23.5(5.8)$	$56.0(8.2)$	$70.5(5.9)$	$6.5(1.5)$	$0.0(0.0)$	$156.5(13.7)$
2012	$97.0(11.6)$	$81.5(6.4)$	$73.5(6.8)$	$14.0(2.9)$	$2.5(1.1)$	$266.0(12.5)$
2013	$60.0(8.8)$	$137.3(12.3)$	$48.7(9.3)$	$16.7(2.4)$	$1.3(0.8)$	$262.7(16.4)$
2014	$73.5(10.7)$	$116.0(12.5)$	$21.0(3.3)$	$14.5(2.7)$	$2.0(1.1)$	$225.0(21.2)$
2015	$64.8(9.5)$	$126.5(19.9)$	$22.8(4.1)$	$12.5(1.8)$	$2.8(0.8)$	$226.5(31.3)$
2016	$106.5(21.4)$	$104.0(13.2)$	$38.0(2.4)$	$15.0(2.9)$	$4.5(1.8)$	$263.5(31.0)$
2017	$279.0(37.2)$	$160.5(16.5)$	$35.5(5.1)$	$5.0(1.8)$	$0.5(0.5)$	$480.0(45.1)$
$D 2 a s e t=$	$c f d p s b v r d 17$	$d 92$				

Dataset = cfdpsbvr.d17-.d92

Table 81. PSD and RSD_{15} values obtained for largemouth bass from spring electrofishing samples in Beaver Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	402	$20(\pm 4)$	$2(\pm 2)$
Dataset $=$ cfdpsbvr.d17			

Table 82. Population assessment for largemouth bass collected during spring electrofishing at Beaver Lake from 2000-2017 (scoring based on statewide assessment).

* Age data not collected

Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 83. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Beaver Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																	Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Largemouth bass	18	197	121	10	10	118	101	67	51	30	14	6		2	2	2	2	751	501.3 (28.7)

Dataset = cfdwrbvr.d17

Table 84. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Beaver Lake on 14 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	99	82 (1)	47	82 (1)	9	92 (2)	155	83 (1)

Dataset = cfdwrbvr.d17

Table 85. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Beaver Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2000	Total	3.7	0.1	127.3	32.9	6.7	2.2	47.8	5.7
2001	Total	4.6	0.1	139.3	28.1	40.7	13.9	35.4	8.9
2002	Total	4.4	0.1	104.0	7.5	19.3	4.6	133.2	9.3
2003	Total	3.7	0.1	117.3	22.0	0.0		97.6	5.0
2004	Total	3.7	0.1	86.7	17.1	3.3	1.6	38.7	10.7
2005	Total	4.0	0.03	199.3	26.3	18.7	4.1	108.3	10.2
2006	Total	4.3	0.1	8.0	2.7	0.0		2.0	1.1
2007	Total	4.6	0.1	175.3	31.2	46.7	4.6	23.5	4.4
2008	Total	3.4	0.1	21.3	11.9	0.0		4.5	1.4
2009	Total	5.0	0.1	112.7	21.9	56.7	10.7	76.7	6.8
2010	Total	4.0	0.1	38.7	14.1	4.7	2.2	23.4	5.4
2011	Total	4.2	0.05	142.0	23.9	18.0	4.1	94.5	11.1
2012	Total	4.3	0.04	124.6	24.6	17.7	4.0	50.0	7.1
2013	Total	3.8	0.06	78.7	6.2	3.3	2.2	47.3	7.4
2014	Total	4.1	0.06	94.7	15.0	14.0	3.5	46.3	7.6
2015	Total	4.2	0.04	184.5	23.6	28.5	4.4	103.0	20.9
2016	Total	5.6	0.03	370.0	34.9	320.0	25.8	279.0	37.2
2017	Total	4.8	0.03	227.3	23.1	84.0	13.0		

Table 86. Species composition, relative abundance, and CPUE (fish/hr) of bluegill in 1.25 hours of 15-minute electrofishing runs in March 2017 and 1.25 hours of 7.5 -minute electrofishing runs in May 2017 at Beaver Lake; numbers in parentheses are standard errors.

	Inch class								
	2	3	4	5	6	7	8	Total	CPUE
Month	2	35	156	105	78	127	10	514	$411.2(56.0)$
March	5	13	87	71	109	200	18	503	$402.4(87.8)$
Total	8	48	243	176	187	327	28	1,017	$405.3(60.0)$

Dataset = cfdpsbvr.d17

Table 87. Species composition, relative abundance, and CPUE (fish/hr) of redear sunfish in 1.25 hours of 15-minute electrofishing runs in March 2017 and 1.25 hours of 7.5-minute electrofishing runs in May 2017 at Beaver Lake; numbers in parentheses are standard errors.

Month	Inch Class										Total	CPUE
	2	3	4	5	6	7	8	9	10	11		
March	1	1	2	2	6	6	9	1	1	1	30	24.0 (10.2)
May		1	3	1	1	5	2	2	3	2	20	16.0 (2.9)
Total	1	2	5	3	7	11	11	3	4	3	50	18.7 (3.8)

Dataset $=$ cfdpsbvr.d17

Table 88. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Beaver Lake during May 2017. Fish were collected in 7.5-minute runs.

Species	No. \geq stock size	PSD	RSD
Bluegill	498	$66(\pm 4)$	$4(\pm 2)$
Redear sunfish	19	$74(\pm 20)$	$37(\pm 22)$
aBluegill $=$ RSD $8 ;$ Redear $=$ RSD $_{9}$			
Dataset $=$ cfdpsbvr.d17			

Table 89. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Beaver Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group				Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	
1992	1.3 (0.9)	54.2 (10.2)	80.9 (15.1)	0.0	136.4 (24.0)
1993	2.5 (1.1)	47.0 (6.2)	79.5 (10.0)	0.0	129.0 (12.6)
1994	2.5 (1.1)	130.0 (21.0)	20.0 (4.0)	0.0	152.5 (24.2)
1995	2.0 (1.1)	174.0 (18.4)	16.5 (4.7)	0.0	192.5 (17.3)
1996	0.5 (0.5)	184.5 (27.3)	65.5 (11.5)	0.0	250.5 (34.5)
1997	2.5 (1.1)	58.0 (12.6)	86.5 (14.4)	0.5 (0.5)	147.5 (27.4)
1998	0.5 (0.5)	28.0 (4.3)	88.0 (15.0)	0.5 (0.5)	117.0 (19.0)
1999	14.0 (4.5)	13.0 (5.5)	10.5 (3.0)	0.0	37.5 (8.3)
2000	50.0 (12.7)	322.0 (23.1)	32.0 (13.6)	7.5 (3.8)	411.5 (41.2)
2001	19.0 (5.1)	211.5 (16.0)	122.0 (15.2)	0.0	352.5 (20.2)
2002	5.6 (1.7)	175.2 (22.9)	152.8 (27.7)	0.0	333.6 (44.7)
2003	33.6 (6.4)	141.6 (17.5)	128.8 (21.9)	0.0	304.0 (30.1)
2004	36.0 (16.0)	118.4 (32.4)	143.2 (29.3)	0.0	297.6 (56.4)
2005	21.6 (4.5)	109.6 (14.6)	97.6 (19.3)	4.0 (2.2)	232.8 (19.7)
2006	20.1 (4.9)	60.9 (8.6)	55.7 (13.5)	8.3 (2.9)	145.1 (24.7)
2007	12.0 (2.6)	34.4 (4.6)	53.6 (9.5)	2.4 (1.7)	102.4 (10.4)
2008	69.6 (11.1)	112.4 (13.3)	38.0 (6.3)	4.0 (1.4)	224.0 (24.6)
2009	17.2 (5.1)	60.4 (10.0)	40.4 (5.9)	1.6 (0.9)	119.6 (15.3)
2010	35.6 (8.2)	134.8 (10.6)	24.4 (5.9)	4.4 (1.5)	199.2 (17.5)
2011	68.4 (20.3)	299.2 (47.8)	51.6 (8.1)	5.2 (1.9)	424.4 (70.4)
2012	5.6 (2.1)	131.2 (26.1)	59.2 (15.1)	0.0	196.0 (32.1)
2013	1.6 (1.1)	192.8 (16.5)	77.6 (9.8)	1.6 (1.6)	273.6 (23.4)
2014	1.6 (1.6)	252.8 (33.4)	252.8 (56.6)	0.0	507.2 (37.4)
2015	0.0 (0.0)	160.8 (16.6)	212.0 (37.0)	0.0	372.8 (44.9)
2016	33.6 (12.0)	213.6 (30.6)	201.6 (45.1)	1.6 (1.1)	450.4 (81.4)
2017	4.0 (1.8)	136.8 (23.5)	247.2 (66.1)	14.4 (3.5)	402.4 (87.8)

Dataset = cfdpsbvr.d17-.d92

Table 90. Population assessment for bluegill collected during spring electrofishing at Beaver Lake from 2001-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	4.4	2-2+	261.6	14.4	-	-		
	Score	3	4	4	4			15	Excellent
2016	Value	4.7^{*}	3-3+*	203.2	1.6	-	-		
	Score	3	3	4	3			13	Good
2015	Value	4.7	3-3+	212.0	0.0	-	-		
	Score	3	3	4	1			11	Good
2014	Value	$4.7 *$	2-2+	252.8	0.0	-	-		
	Score	3	4	4	1			12	Good
2013	Value	4.7	2-2+	79.2	1.6	-	-		
	Score	3	4	3	3			13	Good
2012	Value	4.8	2-2+	59.2	0.0	-	-		
	Score	4	4	3	1			12	Good
2011	Value	4.7	2-2+	56.8	5.2	0.834	55.6		
	Score	3	4	3	4			14	Excellent
2010	Value	4.5	3-3+	28.8	4.4	0.594	44.8		
	Score	3	3	1	3			10	Good
2009	Value	4.8	3-3+	42.0	1.6	0.723	51.5		
	Score	4	3	2	3			12	Good
2008	Value	4.2	3-3+	42.0	4.0	0.497	39.2		
	Score	2	3	2	3			10	Good
2007	Value	3.7	3-3+	56.0	2.4	0.666	48.6		
	Score	1	3	3	3			10	Good
2006	Value	3.4	3-3+	64.1	8.3	*	*		
	Score	1	3	3	4			11	Good
2005	Value	4.0	3-3+	101.6	4.0	0.340	28.8		
	Score	2	3	4	3			12	Good
2004	Value	3.9	3-3+	143.2	0.0	*	*		
	Score	2	3	4	1			10	Good
2003	Value	3.9	3-3+	128.8	0.0	*	*		
	Score	2	3	4	1			10	Good
2002	Value	3.9	2-2+	152.8	0.0	*	*		
	Score	2	4	4	1			11	Good
2001	Value	4.5	2-2+	122.0	0.0	*	*		
	Score	3	4	4	1			12	Good

* Age data not collected

Table 91. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Beaver Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	≥ 10.0 in	
1992	0.4 (0.4)	10.2 (2.8)	90.2 (12.9)	1.8 (1.0)	0.4 (0.4)	102.7 (13.2)
1993	0.0	2.0 (1.5)	57.0 (10.7)	5.0 (2.0)	0.0	64.0 (12.2)
1994	0.0	6.5 (1.8)	8.0 (2.6)	2.5 (1.3)	0.0	17.0 (4.1)
1995	0.0	2.0 (1.1)	12.5 (3.6)	7.0 (2.7)	0.0	21.5 (5.2)
1996	0.0	6.0 (2.0)	5.5 (2.5)	8.0 (2.6)	0.0	19.5 (5.1)
1997	0.0	13.0 (1.8)	9.0 (2.1)	8.0 (1.7)	0.0	30.0 (1.5)
1998	0.0	3.5 (1.2)	9.0 (2.0)	9.5 (4.6)	0.0	22.0 (5.7)
1999	0.0	0.0	0.5 (0.5)	7.5 (1.8)	2.0 (1.1)	8.0 (2.0)
2000	1.0 (0.7)	5.5 (2.0)	3.5 (1.8)	6.0 (2.0)	1.5 (1.1)	16.0 (3.7)
2001	0.5 (0.5)	34.5 (6.9)	30.0 (6.8)	8.5 (2.9)	0.5 (0.5)	73.5 (10.5)
2002	0.0	49.6 (11.1)	77.6 (18.1)	7.2 (3.9)	0.8 (0.8)	134.4 (27.8)
2003	0.8 (0.8)	21.6 (6.1)	87.2 (15.0)	7.2 (3.3)	0.0	116.8 (20.0)
2004	0.0	38.4 (9.0)	44.0 (8.7)	26.4 (7.4)	0.0	108.8 (17.1)
2005	1.6 (1.1)	46.4 (7.0)	80.8 (12.4)	62.4 (10.8)	0.0	191.2 (22.6)
2006	0.4 (0.4)	46.1 (6.2)	82.2 (6.2)	35.7 (5.7)	0.0	164.4 (13.8)
2007	0.0	25.2 (6.1)	74.0 (13.5)	32.4 (6.6)	0.0	125.3 (23.2)
2008	10.0 (2.7)	15.2 (2.5)	58.4 (12.2)	90.4 (16.5)	0.0	174.0 (26.8)
2009	0.8 (0.6)	23.6 (4.8)	26.8 (4.8)	29.6 (5.8)	0.0	80.8 (11.5)
2010	0.4 (0.4)	21.6 (3.9)	27.6 (4.4)	33.6 (7.0)	1.2 (0.9)	83.2 (10.5)
2011	0.0	13.6 (3.4)	11.2 (2.0)	23.2 (4.9)	0.0	48.0 (6.3)
2012	0.0	5.6 (1.7)	28.8 (4.3)	68.0 (12.9)	9.6 (2.6)	102.4 (14.1)
2013	0.0	6.4 (2.6)	3.2 (1.3)	12.0 (4.7)	2.4 (1.7)	21.6 (5.2)
2014	0.0	3.2 (2.0)	6.4 (1.6)	12.8 (5.4)	4.8 (3.2)	22.4 (3.0)
2015	0.0	1.6 (1.1)	3.2 (1.3)	1.6 (1.1)	0.0	6.4 (1.6)
2016	0.8 (0.8)	4.8 (1.8)	3.2 (1.8)	2.4 (1.7)	0.0	11.2 (2.1)
2017	0.0	4.0 (2.2)	4.8 (2.1)	7.2 (2.8)	4.0 (2.2)	16.0 (2.9)

Dataset = cfdpsbvr.d17-.d92

Table 92. Population assessment for redear sunfish collected during spring electrofishing at Beaver Lake from 2001-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { Years to } \\ & 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	10.1	2-2+	7.2	4.0				
	Score	4	4	2	4			14	Excellent
2016	Value	7.0*	3-3+*	2.4	0.0				
	Score	2	4	1	1			8	Fair
2015	Value	7.0	3-3+	1.6	0.0				
	Score	2	4	1	1			8	Fair
2014	Value	8.8*	2-2+	12.8	4.8				
	Score	4	4	3	4			15	Excellent
2013	Value	8.8	2-2+	12.0	2.4				
	Score	4	4	3	4			15	Excellent
2012	Value	7.5	3-3+	68.0	9.6	0.342	29.0		
	Score	2	4	4	4			14	Excellent
2011	Value	7.6	3-3+	23.2	1.6	0.398	32.8		
	Score	3	4	4	3			14	Excellent
2010	Value	7.5	4-4+	33.6	1.2	0.435	35.3		
	Score	2	3	4	3			12	Good
2009	Value	6.7	4-4+	29.6	0.0	0.413	33.9		
	Score	2	3	4	1			10	Good
2008	Value	6.3	4-4+	90.4	0.0	0.243	21.6		
	Score	1	3	4	1			9	Fair
2007	Value	6.4	4-4+	32.4	0.0	0.898	59.3		
	Score	1	3	4	1			9	Fair
2006	Value	5.7	4-4+	35.7	0.0	0.410	33.6		
	Score	1	3	4	1			9	Fair
2005	Value	6.4	4-4+	62.4	0.0	0.373	31.1		
	Score	1	3	4	1			9	Fair
2004	Value	6.6*	4-4+*	26.4	0.0				
	Score	2	3	4	1			10	Good
2003	Value	6.6	4-4+	7.2	0.0				
	Score	2	3	2	1			8	Fair
2002	Value	$6.4 *$	3-3+*	7.2	0.8				
	Score	1	4	2	2			9	Fair
2001	Value	6.4	3-3+	8.5	0.5				
	Score	1	4	2	2			9	Fair

Table 93. Mean back calculated lengths (in) at each annulus for otoliths from bluegill collected in the fall from Beaver Lake in 2017.

		Age							
Year	No.	1	2	3	4	5	6	7	
2016	25	2.5							
2015	15	2.0	4.4						
2014	2	2.6	5.5	6.8					
2013	3	2.0	4.7	6.5	7.1				
2012	2	2.7	5.1	6.1	6.8	7.1	7.4		
2011	2	2.3	4.6	6.0	6.6	7.0	7.4	7.7	
2010	1	1.7	3.8	5.9	6.5	6.9		7.4	
							7.7		
Mean			1.4	4.6	6.3	6.5	7.0	7.7	
Smallest		3.6	5.3	5.7	6.5	6.9	7.3	7.7	
Largest		0.1	0.1	6.9	7.4	7.3	7.4	0.1	
Std Error		2.1	4.3	6.1	0.1	0.1	7.3	6.8	
95\% ConLo		2.4	4.8	6.6	7.0	7.1	7.4		
95\% ConHi									

Intercept value $=0.00$
Dataset = cfdagbvr.d17

Table 94. Mean back calculated lengths (in) at each annulus for otoliths from redear sunfish collected in the fall from Beaver Lake in 2017.

		Age							
Year	No.	1	2	3	4	5	6	7	
2016	14	2.9							
2015	4	5.6	7.8						
2014	1	4.2	8.6	10.1					
2010	1	2.9	5.4	7.0	8.0	9.2	10.0	10.5	
								10.0	
Mean	20	3.5	7.5	8.5	8.0	9.2	10.5		
Smallest		2.1	5.0	7.0	8.0	9.2	10.0	10.5	
Largest		6.7	8.9	10.1	8.0	9.2	10.0	10.5	
Std Error		0.3	0.7	1.5					
95% ConLo		2.9	6.1	5.6					
95% ConHi		4.1	9.0	11.5					

Intercept value $=0.00$
Dataset $=$ cfdagbvr.d17

Table 95. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Beaver Lake on 14 September 2017; standard errors are in parentheses.

Species	Length group							No.	Wr
	No. Wr	No.	Wr	No.	Wr	No.	Wr		
Bluegill	$3.0-5.9$ in	$6.0-7.9$ in		≥ 8.0 in				Total	
	$75 \quad 85$ (2)	50	81 (1)		62			126	83 (1)
	$1.0-3.9$ in		6.9 in		0 in				
Redear sunfish		18	94 (2)			5	96 (3)	23	94 (2)

Table 96. Length distribution and CPUE (fish/hr) of white and black crappie collected in 1.5 hours of 15 -minute electrofishing runs for crappie in Beaver Lake in October 2017; numbers in parentheses are standard errors.

	Inch class						
	8	9	10	11	12	Total	CPUE
Species			1	1	1	3	$2.0(2.0)$
White crappie	2	4		1		7	$4.7(1.9)$
Black crappie							

Dataset = cfdwrbvr.d17

Table 97. Length composition, relative abundance, and CPUE (fish/set-night) of channel catfish at Beaver Lake sampled on 13 October 2017. Channel catfish were collected using 3 set-nights of baited, tandem hoop nets (72 hours soak time).

Species	Inch class													Total	Average per set
	12	13	14	15	16	17	18	19	20	21	22	23	24		
Channel catfish	1		3	20	15	4	2	6	4	4	5	3	1	68	22.7 (12.2)

Dataset = cfdhnbvr.d17

Table 98. PSD and RSD $_{24}$ values obtained for channel catfish from tandem hoop net samples in Beaver Lake in 2017; confidence intervals are in parentheses.

Species	No. \geq stock size	PSD	RSD $_{24}$
Channel catfish	68	$65(\pm 11)$	$1(\pm 1)$
Dataset $=$ cfdhnbvr. 17			

Dataset = cfdhnbvr.d17

Table 99. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Beaver Lake in October 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		11.0-15.9 in		16.0-23.9 in		≥ 24.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Channel catfish	Total	24	87 (1)	43	87 (2)	1	105	68	87 (1)

Table 100. CPUE (fish/set-night) for each length group of channel catfish collected by hoop net from Beaver Lake from 2007-2017; numbers in parentheses are standard errors.

	Length group			
Year	≥ 12.0 in	≥ 15.0 in	≥ 20.0 in	Total
2007	$35.8(12.6)$	$6.2(2.8)$	$0.4(0.2)$	$36.4(12.8)$
2008	$14.0(4.1)$	$5.4(2.0)$	$0.8(0.6)$	$28.2(8.8)$
2009	$71.4(17.2)$	$21.6(5.1)$	$1.6(0.9)$	$94.8(29.1)$
2010	$40.0(8.2)$	$25.6(5.4)$	$0.6(0.2)$	$41.8(8.8)$
2011	$44.8(14.0)$	$28.0(8.7)$	$1.0(0.6)$	$72.8(24.5)$
2015	$16.0(3.5)$	$14.3(3.3)$	$1.7(0.3)$	$16.0(3.5)$
2017	$22.7(12.2)$	$21.3(11.0)$	$5.7(3.2)$	$22.7(12.2)$

Dataset = cfdhnbvr.d17-.d07

Table 101. Length distribution and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15 -minute electrofishing runs for black bass in Benjy Kinman Lake during April 2017; numbers in parentheses are standard errors.

	Inch class																			Total	CPUE
Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	1	14	22	11	6	33	38	26	35	27	9	9	4	1	1	1		1	1	240	120.0 (18.6)

Dataset = cfdpsbkl.d17

Table 102. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Benjy Kinman Lake during 2015-2017; numbers in parentheses are standard errors.

	Length group					
Year	<8.0 in	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in	≥ 20.0 in	Total
2017	$27.0(7.0)$	$66.0(10.7)$	$22.5(3.5)$	$4.5(1.8)$	$1.0(0.7)$	$120.0(18.6)$
2016	$23.0(7.0)$	$82.0(11.5)$	$15.0(2.9)$	$7.0(2.4)$	$1.0(0.7)$	$127.0(18.6)$
2015	$12.0(2.4)$	$84.2(5.1)$	$17.4(1.7)$	$12.9(1.8)$	$4.7(1.0)$	$126.6(7.8)$
Dataset $=$ cfdpsbkl.d17- d 15						

Dataset = cfdpsbkl.d17-.d15

Table 103. PSD and RSD_{15} values obtained for largemouth bass from spring electrofishing sample in Benjy Kinman Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	186	$29(\pm 7)$	$5(\pm 3)$
Dataset $=$ cfdpsbkl.d17			

Dataset $=$ cfdpsbkl.d17

Table 104. Population assessment for largemouth bass collected during spring electrofishing at Benjy Kinman Lake for 2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	10.7	24.0	22.5	4.5	1.0				
	Score	2	3	2	1	2			10	Fair
2016	Value	10.1*	51.1	15.0	7.0	1.0				
	Score	1	3	2	2	2			10	Fair
2015	Value	10.1*	11.1	17.4	12.9	4.7				
	Score	1	2	2	2	4			11	Fair

-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

* Age data not collected (data collected in 2014)

Table 105. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Benjy Kinman Lake in September 2017; numbers in parentheses are standard errors.

	Inch class																					
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Total	CPUE
Largemouth bass	3	12	66	56	2	7	38	27	19	7	8	4	3	2	1		1		1	1	258	172.0 (25.2)

[^19]Table 106. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Benjy Kinman Lake on 6 September 2017. Standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	75	83 (1)	15	87 (2)	6	92 (7)	96	84 (1)

Table 107. Mean back calculated lengths (in.) at each annulus for otoliths from largemouth bass collected in the fall from Benjy Kinman Lake in 2017.

		Age								
Year	No.	1	2	3	4	5	6	7	8	
2016	21	5.8								
2015	8	5.3	8.9							
2014	14	5.4	8.9	10.7						
2013	6	5.4	8.9	10.8	12.3					
2012	4	6.3	9.0	10.3	12.3	13.7				
2011	1	6.5	10.0	12.4	13.4	14.5	15.2			
2010	1	5.1	7.2	9.1	10.7	11.4	11.9	12.4		
2009	1	5.4	9.0	11.3	12.5	14.3	15.0	16.6	17.5	
Mean	56	5.6	8.9	10.7	12.3	13.6	14.1	14.5	17.5	
Smallest		4.3	7.2	9.1	10.7	11.4	11.9	12.4		
Largest		7.4	10.6	13.1	14.0	14.5	15.2	16.6		
Std Error		0.1	0.1	0.2	0.2	0.4	1.1	2.1		
95\% ConLo		5.4	8.7	10.3	11.8	12.8	12.0	10.4		
95\% ConHi		5.8	9.1	11.1	12.7	14.4	16.1	18.7		

Intercept value $=0.00$
Dataset $=$ cfdagbkl. d 17

Table 108. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Benjy Kinman Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2014	Total	4.2	0.1	16.0	5.4	2.5	1.3	11.1	2.2
2015	Total	4.0	0.1	78.0	16.2	8.7	2.4	51.1	9.1
2016	Total	4.7	0.1	43.3	6.0	15.3	3.2	24.0	5.9
2017	Total	4.7	0.1	92.7	13.8	38.7	7.4		

Table 109. Length distribution and CPUE (fish/hr) of white and black crappie collected in 1.50 hours of 15 -minute electrofishing runs for crappie in Benjy Kinman Lake in October 2017; numbers in parentheses are standard errors.

	Inch class						
	7	8	9	10	11	Total	CPUE
Species	2				2	$1.3(1.3)$	
White crappie	6	10	6		22	$14.7(6.0)$	
Black crappie							

Dataset = cfdwrbkl.d17

Table 110. Mean back calculated lengths (in.) at each annulus for otoliths from white crappie collected in the fall from Benjy Kinman Lake in 2017.

		Age				
Year	No.	1	2	3	4	
2016	30	4.5				
2015	7	4.6	7.9			
2014	4	3.7	7.2	8.7		
2013	2	3.8	6.8	8.5	9.3	
Mean	43	4.4	7.5	8.6	9.3	
Smallest		3.3	6.5	8.1	8.9	
Largest		5.6	8.3	8.9	9.6	
Std Error		0.1	0.2	0.1	0.3	
95\% ConLo		4.2	7.2	8.4	8.6	
95\% ConHi		4.6	7.8	8.9	9.9	
Intercept value $=0.00$						
Dataset = cfdagbkl.d17						

Table 111. Mean back calculated lengths (in.) at each annulus for otoliths from black crappie collected in the fall from Benjy Kinman Lake in 2017.

		Age														
Year	No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2016	6	4.4														
2015	19	4.7	7.5													
2014	2	4.3	7.4	8.7												
2013	1	3.5	6.4	7.4	8.7											
2012	1	4.2	6.3	7.6	8.6	9.2										
2009	1	3.9	6.2	7.4	8.1	8.5	8.8	9.3	9.6							
2006	1	3.8	5.7	6.4	6.8	7.3	7.7	8.1	8.4	8.8	9.1	9.4				
2004	1	3.4	5.3	6.8	7.6	7.8	8.02	8.1	8.3	8.5	8.7	8.9	9.1	9.3		
2002	1	2.9	4.3	5.2	5.5	5.7	6.0	6.2	6.5	6.8	7.0	7.3	7.5	7.8	8.1	8.3
Mean	33	4.4	7.1	7.3	7.5	7.7	7.6	7.9	8.2	8.0	8.3	8.5	8.3	8.6	8.1	8.3
Smallest		2.7	4.3	5.2	5.5	5.7	6.0	6.2	6.5	6.8	7.0	7.3	7.5	7.8	8.1	8.3
Largest		5.8	8.4	8.9	8.6	9.2	8.8	9.3	9.6	8.8	9.1	9.4	9.1	9.3	8.1	8.3
Std Error		0.1	0.2	0.4	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.8	0.8		
95\% ConLo		4.1	6.7	6.5	6.5	6.5	6.4	6.7	7.0	6.8	7.0	7.3	6.8	7.1		
95\% ConHi		4.7	7.5	8.1	8.4	8.9	8.8	9.2	9.5	9.3	9.6	9.8	9.9	10.0		

Intercept value $=0.00$
Dataset $=$ cfdagbkl.d17

Table 112. Number of fish and the relative weight (Wr) for each length group of crappie at Benjy Kinman Lake in October/November 2017

Species	Area	Length group						Total	
		5.0-7.9 in		8.0-9.9 in		≥ 10.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
White crappie	Total	22	82 (1)	19	80 (1)	1	79 (0)	42	81 (1)
Black crappie	Total	8	85 (2)	22	88 (1)	0		30	87 (1)

Dataset = cfdwrbkl.d17

Table 113. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute nocturnal electrofishing runs in Boltz Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	3	12	26	17	31	51	76	105	43	24	13	6	11	5	9	4		1	437	218.5 (13.0)
Saugeye							4	6		2	7	4							23	11.5 (2.2)

Dataset = cfdpsbol.d17

Table 114. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Boltz Lake from 1991-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1991		43.6 (4.9)	10.8 (2.0)	6.5 (1.2)	0.0 (0.0)	60.8 (6.6)
1993	25.2 (6.4)	70.0 (4.8)	12.0 (2.3)	7.3 (2.2)	0.7 (0.7)	114.8 (8.9)
1994	48.4 (9.5)	45.0 (5.7)	32.4 (6.5)	3.6 (1.4)	1.0 (0.7)	129.6 (9.6)
1995	155.2 (10.8)	50.0 (3.3)	31.5 (3.9)	6.0 (1.7)	1.5 (1.1)	242.4 (10.4)
1997	34.8 (8.6)	183.6 (29.4)	36.8 (4.6)	14.4 (2.2)	1.8 (1.0)	268.8 (38.6)
1998	43.2 (6.0)	172.0 (18.8)	22.4 (3.3)	9.6 (2.2)	2.5 (0.7)	247.2 (24.8)
1999	87.2 (16.6)	369.6 (42.4)	90.4 (16.0)	12.8 (6.8)	4.8 (2.3)	560.0 (31.2)
2000	92.0 (30.4)	148.0 (7.7)	226.4 (18.4)	8.8 (2.9)	0.8 (0.8)	475.2 (16.8)
2001	24.0 (5.2)	212.8 (15.8)	133.6 (13.0)	9.6 (3.5)	0.0 (0.0)	380.0 (26.3)
2002	5.6 (2.7)	101.6 (20.1)	67.2 (11.4)	45.6 (9.2)	0.8 (0.8)	220.0 (27.3)
2003	10.7 (2.9)	39.3 (10.4)	61.3 (12.9)	40.0 (5.0)	0.0 (0.0)	151.3 (25.1)
2004	64.0 (12.9)	38.5 (4.9)	19.5 (4.4)	25.5 (5.9)	2.0 (0.8)	147.5 (22.9)
2005	69.0 (10.1)	39.5 (4.0)	21.0 (2.4)	20.0 (6.2)	0.0 (0.0)	149.5 (8.4)
2006	11.5 (1.4)	48.0 (4.7)	17.0 (3.7)	18.0 (2.9)	1.0 (0.7)	94.5 (9.9)
2007	28.5 (3.8)	37.0 (2.4)	17.0 (3.9)	20.0 (3.9)	1.0 (0.7)	102.5 (11.8)
2008	19.0 (2.2)	43.5 (7.3)	18.5 (2.1)	17.5 (3.0)	4.0 (1.5)	98.5 (7.1)
2009	10.0 (2.5)	39.5 (3.2)	22.0 (3.9)	29.5 (5.1)	4.0 (1.5)	101.0 (8.1)
2010	50.5 (5.6)	51.0 (4.9)	32.5 (4.4)	24.5 (2.4)	4.0 (1.3)	148.5 (10.7)
2011	13.0 (3.8)	55.5 (4.6)	33.0 (5.7)	19.0 (4.2)	3.5 (1.2)	120.5 (7.4)
2012	4.5 (1.2)	35.0 (4.0)	15.5 (2.8)	11.0 (2.5)	2.5 (1.5)	66.0 (4.9)
2013	66.5 (14.6)	67.5 (6.7)	17.5 (2.0)	13.5 (2.6)	2.5 (1.1)	165.0 (13.6)
2014	68.5 (10.5)	73.0 (6.5)	18.5 (3.5)	16.0 (3.6)	2.5 (0.7)	176.0 (17.2)
2015	47.5 (6.9)	79.5 (8.4)	22.0 (4.3)	21.5 (3.5)	2.0 (1.1)	170.5 (14.1)
2016	No Sample					
2017	29.0 (5.5)	131.5 (9.1)	40.0 (4.3)	18.0 (1.5)	0.5 (0.5)	218.5 (13.0)

Dataset = cfdpsbol.d17-.d91

Table 115. PSD and RSD ${ }_{15}$ values obtained for largemouth bass from spring electrofishing samples in Boltz Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	379	$30(\pm 5)$	$9(\pm 3)$
Dataset $=$ cfdpsbol.d17			

Table 116. Population assessment for largemouth bass collected during spring electrofishing at Boltz Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 11.4^{*} \\ 3 \end{gathered}$	$\begin{gathered} 26.0 \\ 3 \end{gathered}$	$\begin{gathered} 40.0 \\ 3 \end{gathered}$	$\begin{gathered} 18.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			14	Good
2015	Value Score	$\begin{gathered} 11.4 \\ 3 \end{gathered}$	$\begin{gathered} 29.5 \\ 2 \end{gathered}$	$\begin{gathered} 22.0 \\ 2 \end{gathered}$	$\begin{gathered} 21.5 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 3 \end{gathered}$			13	Good
2014	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 57.0 \\ 3 \end{gathered}$	$\begin{gathered} 18.5 \\ 1 \end{gathered}$	$\begin{gathered} 16.0 \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$			11	Fair
2013	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 21.5 \\ 2 \end{gathered}$	$\begin{gathered} 17.5 \\ 1 \end{gathered}$	$\begin{gathered} 13.5 \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$			10	Fair
2012	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 3.5 \\ 1 \end{gathered}$	$\begin{gathered} 15.5 \\ 1 \end{gathered}$	$\begin{gathered} 11.0 \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$			9	Fair
2011	Value Score	$\begin{gathered} 10.7 \\ 2 \end{gathered}$	$\begin{gathered} 8.6 \\ 1 \end{gathered}$	$\begin{gathered} 33.0 \\ 2 \end{gathered}$	$\begin{gathered} 19.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$	0.378	31.5	11	Fair
2010	Value Score	$\begin{gathered} 10.3 \\ 2 \end{gathered}$	$\begin{gathered} 16.7 \\ 2 \end{gathered}$	$\begin{gathered} 32.5 \\ 2 \end{gathered}$	$\begin{gathered} 24.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 4 \end{gathered}$	0.290	25.2	13	Good
2009	Value Score	$\begin{gathered} 10.3^{*} \\ 2 \end{gathered}$	$\begin{gathered} 3.5^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 22.0 \\ 2 \end{gathered}$	$\begin{gathered} 29.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 4 \end{gathered}$			12	Good
2008	Value Score	$\begin{gathered} 10.3^{*} \\ 2 \end{gathered}$	$\begin{gathered} 4.0^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 18.5 \\ 1 \end{gathered}$	$\begin{gathered} 17.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 4 \end{gathered}$			11	Fair
2007	Value Score	$\begin{gathered} 10.3^{*} \\ 2 \end{gathered}$	$\begin{gathered} 20.5^{\wedge} \\ 2 \end{gathered}$	$\begin{gathered} 17.0 \\ 1 \end{gathered}$	$\begin{gathered} 20.0 \\ 3 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$			10	Fair
2006	Value Score	$\begin{gathered} 10.3 \\ 2 \end{gathered}$	$\begin{gathered} 7.0 \\ 1 \end{gathered}$	$\begin{gathered} 17.0 \\ 1 \end{gathered}$	$\begin{gathered} 18.0 \\ 3 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	0.358	30.1	9	Fair
2005	Value Score	$\begin{gathered} 10.6^{*} \\ 2 \end{gathered}$	$\begin{gathered} 15.5^{\wedge} \end{gathered}$	$\begin{gathered} 21.0 \\ 2 \end{gathered}$	$\begin{gathered} 20.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$			8	Fair
2004	Value Score	$\begin{gathered} 10.6^{*} \\ 2 \end{gathered}$	$\begin{gathered} 51.0^{\wedge} \\ 3 \end{gathered}$	$\begin{gathered} 19.5 \\ 1 \end{gathered}$	$\begin{gathered} 25.5 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 3 \end{gathered}$			12	Good
2003	Value Score	$\begin{gathered} 10.6 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	$\begin{gathered} 61.3 \\ 4 \end{gathered}$	$\begin{gathered} 40.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	0.377	31.4	10	Fair
2002	Value Score	$\begin{gathered} 10.7 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 67.2 \\ 4 \end{gathered}$	$\begin{gathered} 45.6 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	0.334	28.4	12	Good
2001	Value Score	$\begin{gathered} 9.0 \\ 1 \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	$\begin{gathered} 133.6 \\ 4 \end{gathered}$	$\begin{gathered} 9.6 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 0 \end{gathered}$	0.349	29.5	8	Fair
2000	Value Score	$\begin{gathered} 10.4 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 55.0 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 226.4 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 8.8 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.8 \\ 1 \\ \hline \end{gathered}$	0.550	42.3	12	Good

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 117. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15-minute electrofishing runs for black bass in Boltz Lake in September 2017; numbers in parentheses are standard errors.

	Inch class																					
Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Total	CPUE
Largemouth bass	106	79	51	10	2	3	18	25	28	36	15	8	7	3		4	1			1	397	264.7 (18.4)

Dataset $=$ cfdwrbol.d17

Table 118. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Boltz Lake on 8 September 2017. Standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	71	89 (1)	48	92 (1)	16	95 (2)	135	91 (1)

Dataset = cfdwrbol.d17

Table 119. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Boltz Lake.

Year class	No. of fish	Age-0		Age-0		Age- $0 \geq 5.0$ in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
1997	145	4.2	0.04	96.7	11.3	6.7	1.7	25.9	4.4
1998	147	5.0	0.05	98.0	12.0	48.0	5.8	77.7	31.0
1999	170	5.2	0.07	113.3	16.2	68.7	13.0	55.0	24.7
2000	19	3.0	0.27	12.7	6.7	1.3	1.	0.8	0.8
2001	46	3.2	0.09	30.7	6.9	0.7	0.7	0.8	0.8
2002	50	3.7	0.10	28.6	7.4	1.7	1.2	0.0	0.0
2003*	27	3.7	0.15	18.0	4.5	1.3	0.8	7.0	2.2
2004*	80	4.1	0.07	53.3	7.1	6.7	2.7	15.0	3.4
2005*	34	3.9	0.11	22.7	5.0	1.3	0.8	4.0	1.1
2006	90	4.6	0.06	60.0	7.5	18.7	3.7	20.5	3.6
2007	17	4.2	0.21	11.3	2.6	2.0	0.9	4.0	3.6
2008	108	3.6	0.07	72.0	11.9	5.3	1.7	3.5	1.6
2009	51	4.6	0.13	34.0	8.9	13.3	2.0	16.7	3.6
2010	54	4.9	0.11	36.0	5.8	18.0	5.2	8.6	2.7
2011	91	4.7	0.08	60.7	6.7	23.3	4.2	3.5	1.2
2012	127	4.4	0.07	84.7	12.2	18.7	5.6	21.5	4.3
2013*	102	4.4	0.09	68.0	16.2	20.0	6.7	4.0	0.8
2014	58	4.0	0.10	38.7	10.9	4.0	3.3	29.5	5.2
2015	71	4.1	0.07	47.3	3.6	6.0	1.4	---	
2016	104	4.1	0.1	69.3	7.8	15.3	2.8	20.5	5.3
2017	246	4.3	0.1	164.0	18.9	40.7	8.9	---	

[^20]Table 120. Number of fish and the relative weight (Wr) for each length group of bluegill collected at Boltz Lake on 8 September 2017 standard errors are in parentheses.

| | Length group | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | No. Wr | No. $\quad \mathrm{Wr}$ | No. Wr | No. | Wr | |
| | $3.0-5.9$ in | $6.0-7.9 \mathrm{in}$ | ≥ 8.0 in | Total | | |
| | 76 | $92(2)$ | 50 | $85(1)$ | 0 | $89(1)$ |

Dataset = cfdwrbol.d17

Table 121. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass and saugeye collected in 2.0 hours of 15-minute diurnal electrofishing runs in Bullock Pen Lake, May 2017; numbers in parentheses are standard errors.

Inch class																					Total	CPUE
Location/Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Largemouth bass	3	19	10	10	4	11	24	16	29	38	56	38	29	36	27	20	14	18	6	1	409	204.5 (13.9)
Saugeye													1			3	2	3	3		12	6.0 (2.1)

Dataset = cfdpsbpl.d17

Table 122. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Bullock Lake from 1991-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1991		36.6	22.8	16.4	1.7 (0.7)	75.2
1994	10.0 (2.3)	17.5 (2.8)	37.6 (3.6)	40.0 (9.9)	2.5 (1.1)	104.0 (12.4)
1995	7.0 (1.6)	36.4 (4.7)	33.2 (4.4)	40.8 (5.6)		117.6 (9.9)
1996	10.5 (2.5)	26.5 (4.6)	26.0 (6.0)	30.5 (6.1)		93.6 (11.6)
1997	18.0 (3.5)	71.6 (8.7)	34.4 (3.3)	34.4 (6.1)	2.0 (0.9)	158.4 (17.3)
1998	18.0 (4.4)	43.6 (4.8)	39.6 (9.2)	33.2 (7.2)	3.5 (1.6)	139.2 (19.2)
1999	14.0 (3.6)	40.4 (4.0)	35.2 (4.0)	38.4 (12.0)	0.5 (0.5)	128.0 (14.0)
2000	14.5 (4.8)	35.5 (5.0)	21.0 (3.1)	42.4 (9.8)	0.5 (0.5)	113.5 (6.5)
2001	9.0 (3.2)	33.5 (4.3)	38.5 (7.2)	66.0 (15.2)	2.5 (1.1)	147.2 (16.4)
2002	6.5 (1.7)	29.5 (3.0)	41.5 (7.2)	54.5 (10.4)	1.5 (0.7)	132.0 (16.5)
2003	9.0 (2.5)	19.5 (2.3)	32.5 (4.1)	56.5 (8.8)	0.5 (0.5)	117.5 (9.8)
2004	6.5 (1.3)	31.5 (3.7)	45.0 (8.5)	57.5 (11.4)	2.5 (1.5)	140.5 (13.4)
2005	9.5 (1.3)	17.0 (2.6)	38.0 (5.8)	63.0 (13.7)	3.5 (1.4)	127.5 (15.5)
2006	13.5 (4.3)	35.5 (6.0)	25.5 (3.9)	62.5 (8.4)	1.0 (0.7)	137.0 (8.7)
2007	17.5 (3.5)	44.5 (6.7)	32.0 (2.8)	44.0 (8.1)	0.5 (0.5)	138.0 (6.1)
2008	9.5 (2.9)	47.5 (5.8)	75.0 (5.7)	62.5 (9.3)	1.5 (1.1)	194.5 (11.7)
2009	5.5 (2.0)	45.5 (7.4)	42.5 (5.0)	54.0 (5.4)	7.5 (1.2)	147.5 (13.8)
2010	33.0 (7.1)	26.8 (3.7)	28.3 (3.4)	44.3 (6.2)	1.8 (0.6)	132.3 (13.9)
2011	22.0 (4.3)	39.0 (5.4)	31.0 (3.3)	43.0 (6.4)	0.5 (0.5)	135.0 (11.2)
2012	25.5 (2.4)	80.5 (7.9)	43.0 (4.1)	63.5 (10.0)	3.0 (1.3)	212.5 (9.4)
2013	No sample					
2014	13.0 (2.7)	61.5 (8.5)	57.0 (6.9)	58.0 (3.2)	4.5 (1.4)	189.5 (14.0)
2015			No s			
2016			No s			
2017	23.0 (4.7)	40.0 (4.9)	66.0 (5.9)	75.5 (7.7)	12.5 (3.9)	204.5 (13.9)

Dataset = cfdpsbpl.d17-.d91

Table 123. PSD and RSD ${ }_{15}$ values obtained for largemouth bass from spring electrofishing samples in Bullock Pen Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	363	$78(\pm 4)$	$42(\pm 5)$

Dataset = cfdpsbpl.d17

Table 124. Population assessment for largemouth bass collected during spring electrofishing at Bullock Pen Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Spring CPUE age-1	$\begin{gathered} \text { Spring } \\ \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { Spring } \\ & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { Spring } \\ & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z) \qquad	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 21.0 \\ 2 \end{gathered}$	$\begin{gathered} 66.0 \\ 4 \end{gathered}$	$\begin{gathered} 75.5 \\ 4 \end{gathered}$	$\begin{gathered} 12.5 \\ 4 \end{gathered}$			16	Good
2014	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 1 \end{gathered}$	$\begin{gathered} 57.0 \\ 4 \end{gathered}$	$\begin{gathered} 58.0 \\ 4 \end{gathered}$	$\begin{gathered} 4.5 \\ 4 \end{gathered}$			15	Good
2012	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 9.5 \\ 2 \end{gathered}$	$\begin{gathered} 43.0 \\ 3 \end{gathered}$	$\begin{gathered} 63.5 \\ 4 \end{gathered}$	$\begin{gathered} 3.0 \\ 3 \end{gathered}$			14	Good
2011	Value Score	$\begin{gathered} 10.5 \\ 2 \end{gathered}$	$\begin{gathered} 5.1 \\ 1 \end{gathered}$	$\begin{gathered} 31.0 \\ 3 \end{gathered}$	$\begin{gathered} 43.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	0.422	34.4	12	Fair
2010	Value Score	$\begin{gathered} 10.2^{\star} \\ 2 \end{gathered}$	$\begin{gathered} 6.4^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 28.3 \\ 3 \end{gathered}$	$\begin{gathered} 44.3 \\ 4 \end{gathered}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$			13	Good
2009	Value Score	$\begin{gathered} 10.2^{\star} \\ 2 \end{gathered}$	$\begin{gathered} 0.8^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 42.5 \\ 3 \end{gathered}$	$\begin{gathered} 54.0 \\ 4 \end{gathered}$	$\begin{gathered} 7.5 \\ 4 \end{gathered}$			14	Good
2008	Value Score	$\begin{gathered} 10.2^{*} \\ 2 \end{gathered}$	$\begin{gathered} 2.1^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 75.0 \\ 4 \end{gathered}$	$\begin{gathered} 62.5 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$			13	Good
2007	Value Score	$\begin{gathered} 10.2^{*} \\ 2 \end{gathered}$	3.4^{\wedge}	$\begin{gathered} 32.0 \\ 3 \end{gathered}$	$\begin{gathered} 44.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			12	Fair
2006	Value Score	$\begin{gathered} 10.2 \\ 2 \end{gathered}$	$\begin{gathered} 2.5 \\ 1 \end{gathered}$	$\begin{gathered} 25.5 \\ 3 \end{gathered}$	$\begin{gathered} 62.5 \\ 4 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	0.238	21.2	12	Fair
2005	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 1.3^{\wedge} \\ 1 \end{gathered}$	$\begin{gathered} 38.0 \\ 3 \end{gathered}$	$\begin{gathered} 63.0 \\ 4 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$			13	Good
2004	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\underbrace{0.0^{\wedge}}_{1}$	$\begin{gathered} 45.0 \\ 4 \end{gathered}$	$\begin{gathered} 57.5 \\ 4 \end{gathered}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$			14	Good
2003	Value Score	$\begin{gathered} 10.7 \\ 2 \end{gathered}$	$\begin{gathered} 1.8 \\ 1 \end{gathered}$	$\begin{gathered} 32.5 \\ 3 \end{gathered}$	$\begin{gathered} 56.5 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	0.323	27.6	12	Fair
2002	Value Score	$\begin{gathered} 10.9 \\ 3 \end{gathered}$	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{gathered} 41.5 \\ 3 \end{gathered}$	$\begin{gathered} 54.5 \\ 4 \end{gathered}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$	0.375	31.2	13	Good
2001	Value Score	$\begin{gathered} 10.0 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	$\begin{gathered} 38.5 \\ 3 \end{gathered}$	$\begin{gathered} 66.0 \\ 4 \end{gathered}$	$\begin{gathered} 2.5 \\ 3 \end{gathered}$	0.174	16.0	12	Fair
2000	Value Score	$\begin{gathered} 9.3 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 6.8 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} 21.0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 42.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \\ \hline \end{gathered}$	0.186	17.0	10	Fair

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 125. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Bullock Pen Lake in September 2017; numbers in parentheses are standard errors.

	Inch class																				Total	CPUE
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	5	20	15	9	1	10	12	5	8	21	16	34	27	16	12	12	6	7	8	2	246	164.0 (10.0)

Dataset = cfdwrblp.d17

Table 126. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Bullock Pen Lake on 7 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	46	86 (1)	66	90 (1)	63	98 (1)	175	92 (1)

Dataset = cfdwrblp.d17

Table 127. Indices of year class strength at age 0 and age 1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Bullock Pen Lake.

Year class	Area	Age 0		Age 0		Age $0 \geq 5.0$ in		Age 1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
1997	Total	3.6	(0.1)	34.0	(11.9)	0.7	(0.7)	3.0	(1.7)
1998	Total	3.5	(0.1)	28.0	(8.4)	1.3	(1.3)	4.0	(0.9)
1999	Total	3.7	(0.1)	30.0	(6.1)	2.0	(1.4)	6.8	(2.6)
2000	Total	3.8	(0.3)	6.3	(1.5)	0.0		0.0	
2001	Total	3.6	(0.2)	12.0	(2.7)	1.3	(0.8)	0.5	(0.5)
2002	Total	3.1	(0.1)	17.3	(4.6)	0.0		1.8	(0.7)
2003	Total	3.3	(0.1)	22.0	(8.1)	0.0		0.0	
2004	Total	4.1	(0.2)	16.0	(3.7)	4.0	(1.5)	*	
2005	Total	3.5	(0.1)	28.0	(8.1)	2.0	(0.9)	2.5	(1.3)
2006	Total	4.2	(0.2)	4.0	(1.5)	0.0		3.4	(1.1)
2007	Total	4.1	(0.2)	6.7	(2.0)	0.7	(0.7)	2.1	(1.1)
2008	Total	4.1	(0.2)	20.7	(5.6)	5.3	(1.7)	0.8	(0.5)
2009	Total	4.5	(0.4)	8.7	(2.4)	4.7	(1.9)	3.7	(1.4)
2010	Total	4.8	(0.1)	42.7	(8.0)	20.0	(3.7)	5.1	(1.6)
2011	Total	3.8	(0.1)	38.0	(4.2)	5.3	(2.0)	9.5	(1.1)
2012	Total	4.0	(0.1)	22.7	(5.2)	1.3	(0.8)	NS	NS
2013	Total	4.0	(0.2)	14.7	(2.0)	1.3	(0.8)	2.5	(0.7)
2014	Total	4.0	(0.2)	16.0	(3.1)	4.0	(1.5)	---	
2017	Total	4.0	(0.1)	32.7	(6.4)	6.0	(2.5)		

*Largemouth bass were stocked, and were not able to be distinguished from the wild age-1 largemouth bass

Table 128. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15 -minute nocturnal electrofishing runs in Corinth Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																					Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
Largemouth bass	2	26	11	14	161	170	81	119	83	24	18	10	13	7	4	6	2	8	1		1	761	380.5 (39.7)

Dataset = cfdpscor.d17

Table 129. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Corinth Lake from 1992-2017; numbers in parentheses are standard errors.

	Length group					
Year	<8.0 in	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in	≥ 20.0 in	Total
1992	$31.0(9.3)$	$22.5(5.3)$	$5.0(2.6)$	$0.0(0.0)$	$0.0(0.0)$	$58.5(9.8)$
1993	$34.0(8.2)$	$111.3(11.5)$	$7.3(2.4)$	$2.0(1.4)$	$0.0(0.0)$	$154.7(13.5)$
1996	$53.5(10.1)$	$174.5(16.7)$	$14.5(2.0)$	$4.5(1.6)$	$0.0(0.0)$	$247.0(18.1)$
1998	$15.5(3.2)$	$111.5(9.8)$	$19.0(3.0)$	$4.0(1.7)$	$0.5(0.5)$	$150.0(14.4)$
1999	$137.0(14.2)$	$56.5(5.2)$	$24.5(4.3)$	$3.5(1.2)$	$1.0(0.7)$	$221.5(16.4)$
2000	$312.8(47.0)$	$136.0(18.2)$	$22.4(6.5)$	$4.8(2.3)$	$1.6(1.0)$	$476.0(63.7)$
2001	$127.2(16.6)$	$231.2(8.0)$	$20.8(5.1)$	$9.6(3.2)$	$0.0(0.0)$	$388.8(13.5)$
2002	$40.7(8.1)$	$153.3(21.7)$	$13.3(2.9)$	$16.7(2.8)$	$1.3(1.3)$	$224.0(28.7)$
2003	$58.0(13.6)$	$146.0(16.4)$	$23.3(3.8)$	$6.0(2.0)$	$0.7(0.7)$	$233.3(28.2)$
2004	$23.0(4.8)$	$77.5(5.0)$	$40.0(4.3)$	$5.0(1.5)$	$1.0(1.0)$	$145.5(8.0)$
2005	$45.5(3.9)$	$115.0(9.3)$	$72.0(10.0)$	$20.5(3.0)$	$2.5(1.3)$	$253.0(16.0)$
2006	$15.0(2.7)$	$74.5(6.8)$	$29.0(1.3)$	$34.5(4.7)$	$1.5(0.7)$	$153.0(8.8)$
2007	$88.5(14.8)$	$106.0(7.0)$	$21.5(3.4)$	$22.5(3.5)$	$5.5(2.4)$	$238.5(17.6)$
2008	$52.0(9.7)$	$199.0(17.0)$	$69.5(4.8)$	$37.5(3.9)$	$7.5(1.9)$	$358.0(25.2)$
2009	$30.0(8.0)$	$82.5(11.2)$	$17.5(4.5)$	$27.5(4.4)$	$6.0(2.1)$	$157.5(23.4)$
2010	$77.5(7.0)$	$60.0(8.3)$	$8.5(1.6)$	$21.0(4.9)$	$4.0(1.3)$	$167.0(13.6)$
2011	$90.0(9.8)$	$177.0(11.2)$	$37.0(5.2)$	$33.0(3.9)$	$8.5(2.1)$	$337.0(19.3)$
2012	$32.5(6.1)$	$175.0(15.3)$	$37.0(4.9)$	$23.5(4.0)$	$8.5(2.3)$	$268.0(21.2)$
2013	$24.5(4.5)$	$161.0(15.3)$	$22.5(5.4)$	$24.5(6.6)$	$4.5(1.9)$	$232.5(17.3)$
2014	$33.0(5.5)$	$152.5(9.7)$	$17.0(3.8)$	$15.0(2.6)$	$3.0(1.5)$	$189.5(14.0)$
2015	$93.0(4.5)$	$141.0(3.8)$	$38.0(4.1)$	$16.0(3.1)$	$3.5(1.2)$	$288.0(9.0)$
2016			No Sample			
2017	$107.0(11.9)$	$226.5(24.0)$	$26.0(4.4)$	$21.0(4.6)$	$5.0(2.0)$	$380.5(39.7)$
Datasennnnn						

[^21]Table 130. PSD and RSD $_{15}$ values obtained for largemouth bass from spring electrofishing samples in Corinth Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	547	$17(\pm 3)$	$8(\pm 2)$
Dataset $=$ cfdpscor.d17			

Table 131. Population assessment for largemouth bass collected during spring electrofishing at Corinth Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	CPUE age-1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	10.8*	19.5	26.0	21.0	5.0			15	Good
	Score	3	2	3	3	4				
2015	Value	10.8	29.9	38.0	16.0	3.5			13	Good
	Score	3	2	3	2	3				
2014	Value	11.1*	29.0	17.0	15.0	3.0			11	Fair
	Score	3	2	1	2	3				
2013	Value	11.1*	13.0	22.5	24.5	4.5			13	Good
	Score	3	1	2	3	4				
2012	Value	11.1*	24.5	37.0	23.5	8.5			15	Good
	Score	3	2	3	3	4				
2011	Value	11.1	90.2	37.0	33.0	8.5	0.515	40.2	18	Excellent
	Score	3	4	3	4	4				
2010	Value	11.1*	46.2^{\wedge}	8.5	21.0	4.0			14	Good
	Score	3	3	1	3	4				
2009	Value	11.1*	$21.8{ }^{\wedge}$	17.5	27.5	6.0			13	Good
	Score	3	2	1	3	4				
2008	Value	11.1*	47.7^{\wedge}	69.5	37.5	7.5			18	Excellent
	Score	3	3	4	4	4				
2007	Value	11.1	86.7	21.5	22.5	5.5	0.498	39.3	16	Good
	Score	3	4	2	3	4				
2006	Value	10.1*	$11.1 \wedge$	29.0	34.5	1.5			11	Fair
	Score	2	1	2	4	2				
2005	Value	10.1*	$32.4{ }^{\wedge}$	72.0	20.5	2.5			14	Good
	Score	2	2	4	3	3				
2004	Value	10.1*	$21.1 \wedge$	40.0	5.0	1.0			11	Fair
	Score	2	2	3	2	2				
2003	Value	10.1*	$54.3{ }^{\wedge}$	23.3	6.0	0.7			10	Fair
	Score	2	3	2	2	1				
2002	Value	10.1	35.3	13.3	16.7	1.3	0.688	49.7	9	Fair
	Score	2	2	1	2	2				
2001	Value	8.7	63.4	20.8	9.6	0.0	0.805	55.3	8	Fair
	Score	1	3	2	2	0				
2000	Value	9.1	293.2	22.4	4.8	1.6	0.566	43.2	11	Fair
	Score	1	4	2	2	2				

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 132. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Corinth Lake on 18 September 2017 numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Largemouth bass	22	29	2	9	58	22	33	39	35	32	15	5	2	2		1	1	3	310	206.7 (15.7)

Dataset = cfdwrcor.d17

Table 133. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Corinth Lake on 18 September 2017; standard errors are in parentheses.

Species	Area	$8.0-11.9$ in		12.0-14.9 in		≥ 15.0 in		Total	
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	98	80 (1)	45	85 (1)	9	89 (3)	152	82 (1)

Dataset = cfdwrcor.d17

Table 134. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Corinth Lake.

Year class	Area	Age-0		Age-0		Age- $0 \geq 5.0$ in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
1999	Total	4.3	0.1	74.0	12.3	8.0	2.9	293.2	46.0
2000	Total	4.3	0.1	35.3	7.4	3.3	1.9	63.4	10.9
2001	Total	4.6	0.1	112.7	15.6	32.0	6.8	35.3	7.4
2002	Total	4.6	0.1	163.3	13.7	42.0	4.5	54.3	13.4
2003	Total	4.1	0.1	73.7	9.2	4.6	1.8	21.1	5.1
2004	Total	4.0	0.1	74.0	6.2	2.7	1.3	32.4	4.2
2005	Total	4.4	0.1	41.3	2.7	4.7	1.2	11.1	2.7
2006	Total	4.9	0.1	176.5	15.2	78.0	9.9	86.7	14.3
2007	Total	5.1	0.04	152.7	31.2	89.3	28.8	47.7	9.1
2008	Total	5.1	0.1	112.7	15.0	66.0	12.9	21.8	5.4
2009	Total	4.5	0.1	17.3	2.5	2.0	1.4	39.7	3.3
2010	Total	5.9	0.04	140.0	9.9	134.0	8.2	90.2	9.8
2011	Total	4.3	0.1	116.7	22.0	22.0	3.7	24.5	4.9
2012	Total	5.0	0.1	52.9	5.0	26.2	3.0	13.0	4.6
2013	Total	4.2	0.1	170.7	18.6	34.7	7.4	29.0	4.3
2014	Total	3.4	0.04	56.7	8.9	0.0		29.9	2.5
2015	Total	4.4	0.1	35.3	5.7	2.0	1.4	NS	
2016	Total	4.1	0.1	30.0	3.5	1.3	0.8	19.5	4.0
2017	Total	4.1	0.1	35.3	3.9	1.3	0.8		

Dataset = cfdwrcor.d17-.d99

Table 135. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5-minute electrofishing runs in Corinth Lake, May 2017; numbers in parentheses are standard errors.

	Inch class									
	Species	2	3	4	5	6	7	8	9	Total

[^22]Table 136. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Corinth Lake during May 2016. Fish were collected in 7.5 -minute runs.

Species	No. \geq stock size	PSD	RSD $^{\text {a }}$
Bluegill	293	$65(\pm 5)$	$4(\pm 2)$
Redear sunfish	248	$64(\pm 6)$	$2(\pm 2)$

aBluegill $=$ RSD 8 ; Redear $=$ RSD $_{9}$
Dataset $=$ cfdpscor.d17

Table 137. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Corinth Lake from 1992-2017; numbers in parentheses are standard errors.

	Length group				
Year	<3.0 in	$3.0-5.9$ in	$6.0-7.9$ in	≥ 8.0 in	Total
1992	$3.0(1.7)$	$36.0(24.9)$	$49.0(8.5)$	$10.0(5.5)$	$119.0(30.4)(26.2)$
1993	$2.7(1.3)$	$42.0(13.1)$	$54.0(10.9)$	$20.7(5.2)$	$137.0(25.9)$
1996	$6.0(3.9)$	$75.0(12.0)$	$54.5(14.5)$	$1.5(0.8)$	$135.5(23.7)$
1998	$2.0(1.1)$	$80.0(19.4)$	$50.5(10.3)$	$3.0(1.0)$	$204.5(26.6)$
1999	$42.0(17.1)$	$113.0(16.5)$	$32.5(7.2)$	$17.0(5.8)$	$400.8(25.9)$
2000	$8.8(2.5)$	$270.4(20.1)$	$100.8(12.0)$	$20.8(3.6)$	$338.4(23.5)$
2001	$7.2(4.0)$	$185.6(18.0)$	$140.0(14.8)$	$5.6(2.1)$	$199.2(26.6)$
2002	$2.4(1.2)$	$140.0(16.7)$	$56.8(12.1)$	0.0	$271.1(23.3)$
2003	$14.2(6.2)$	$164.4(14.1)$	$91.6(10.7)$	$0.9(0.9)$	$253.6(22.7)$
2004	$17.6(4.9)$	$174.4(15.9)$	$61.6(10.9)$	0.0	$356.8(47.8)$
2005	$12.0(4.2)$	$262.4(32.7)$	$82.4(22.2)$	0.0	$284.4(14.7)$
2006	$40.4(6.0)$	$211.2(17.9)$	$32.8(6.4)$	0.0	$260.0(17.9)$
2007	$13.2(2.6)$	$148.8(12.1)$	$98.0(10.2)$	0.0	$290.8(18.8)$
2008	$4.8(1.2)$	$180.4(13.7)$	$105.2(12.4)$	$0.4(0.4)$	$327.6(30.6)$
2009	$9.2(4.0)$	$151.6(15.3)$	$166.8(19.4)$	0.0	$191.1(15.5)$
2010	$9.4(2.6)$	$126.6(11.1)$	$55.1(6.9)$	0.0	$314.8(27.0)$
2011	$32.0(6.9)$	$222.8(16.4)$	$60.0(10.5)$	0.0	$299.2(27.7)$
2012	$2.4(1.2)$	$240.0(24.6)$	$56.8(6.1)$	0.0	$167.2(15.7)$
2013	$0.8(0.8)$	$60.0(4.7)$	$106.4(13.3)$	0.0	$163.2(23.1)$
2014	$4.8(2.1)$	$89.6(14.4)$	$64.8(10.4)$	$4.0(1.3)$	$230.4(16.5)$
2015	$4.0(1.3)$	$106.4(16.4)$	$115.2(24.1)$	$4.8(3.2)$	$204.8(11.2)$
2016	$5.6(1.7)$	$60.0(9.2)$	$135.2(13.4)$	$4.0(2.2)$	$264.0(32.6)$
2017	$29.6(14.9)$	$82.4(17.3)$	$142.4(22.8)$	$9.6(2.9)$	

Dataset = cfdpscor.d17-.d92

Table 138. Population assessment for bluegill collected during spring electrofishing at Corinth Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Total score	Assessment rating
2017	Value Score	3.8^{*}	$\begin{gathered} 2-2+^{*} \\ 4 \end{gathered}$	$\begin{gathered} 152.0 \\ 4 \end{gathered}$	9.6	13	Good
2016	Value Score	$\begin{gathered} 3.8 \\ 1 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 139.2 \\ 4 \end{gathered}$	$\begin{gathered} 4.0 \\ 3 \end{gathered}$	12	Good
2015	Value Score	$\begin{gathered} 5.5^{*} \\ 4 \end{gathered}$	$\begin{gathered} 3-3+* \\ 3 \end{gathered}$	$\begin{gathered} 120.0 \\ 4 \end{gathered}$	$\begin{gathered} 4.8 \\ 4 \end{gathered}$	15	Excellent
2014	Value Score	$\begin{gathered} 5.5 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 68.8 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 3 \end{gathered}$	13	Good
2013	Value Score	$\begin{gathered} 4.7^{*} \\ 3 \end{gathered}$	$\begin{gathered} 3-3^{*} \\ 3 \end{gathered}$	$\begin{gathered} 106.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	11	Good
2012	Value Score	$\begin{gathered} 4.7 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 56.8 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2011	Value Score	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 60.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2010	Value Score	$\begin{gathered} 4.0 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 55.1 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	8	Fair
2009	Value Score	$\begin{gathered} 4.8 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 166.8 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	12	Good
2008	Value Score	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 105.6 \\ 4 \end{gathered}$	$\begin{gathered} 0.4 \\ 2 \end{gathered}$	12	Good
2007	Value Score	$\begin{gathered} 4.6 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 98.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2006	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 32.8 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	8	Fair
2005	Value Score	$\begin{gathered} 4.0 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 82.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	9	Fair
2004	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 61.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2003	Value Score	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 92.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.9 \\ 2 \end{gathered}$	12	Good
2002	Value Score	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 56.8 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2001	Value Score	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 145.6 \\ 4 \end{gathered}$	$\begin{gathered} 5.6 \\ 4 \end{gathered}$	15	Excellent
2000	Value Score	$\begin{gathered} 5.3 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 121.6 \\ 4 \end{gathered}$	$\begin{gathered} 20.8 \\ 4 \end{gathered}$	16	Excellent

[^23]Table 139. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Corinth Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	≥ 10.0 in	
1992	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
1993	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	2.0 (2.0)	1.3 (1.3)	2.0 (2.0)
1996	0.5 (0.5)	7.0 (2.8)	5.5 (2.7)	10.5 (3.5)	4.0 (1.7)	23.5 (3.9)
1998	0.0 (0.0)	4.0 (0.8)	0.5 (0.5)	19.0 (4.3)	15.5 (3.3)	23.5 (4.0)
1999	0.0 (0.0)	3.7 (1.6)	2.7 (1.1)	5.3 (1.5)	3.2 (1.1)	21.5 (3.5)
2000	0.0 (0.0)	14.4 (4.1)	33.6 (15.8)	52.8 (6.6)	16.8 (4.2)	100.8 (21.9)
2001	1.6 (1.1)	20.8 (5.0)	54.4 (9.2)	72.8 (10.0)	44.0 (8.7)	149.6 (15.6)
2002	0.0 (0.0)	4.0 (1.8)	6.4 (2.0)	82.4 (15.4)	52.0 (8.7)	92.8 (15.9)
2003	0.9 (0.9)	11.6 (3.6)	11.6 (2.4)	28.4 (5.2)	24.9 (5.6)	52.4 (6.1)
2004	0.8 (0.8)	13.6 (1.7)	17.6 (5.2)	19.2 (5.2)	14.4 (3.3)	51.2 (6.8)
2005	0.0 (0.0)	38.4 (4.4)	28.8 (6.4)	31.2 (11.1)	3.2 (1.8)	98.4 (17.3)
2006	0.0 (0.0)	19.6 (3.9)	54.0 (6.6)	7.6 (1.5)	0.4 (0.4)	81.2 (7.2)
2007	0.0 (0.0)	5.2 (1.3)	37.6 (7.1)	21.2 (5.5)	0.0 (0.0)	64.0 (11.7)
2008	0.0 (0.0)	10.4 (2.2)	33.6 (4.5)	27.6 (5.0)	0.0 (0.0)	71.6 (7.9)
2009	0.0 (0.0)	2.4 (1.0)	65.2 (7.6)	38.0 (7.5)	0.4 (0.4)	105.6 (14.1)
2010	0.9 (0.5)	7.1 (1.5)	18.9 (3.0)	12.0 (2.5)	0.0 (0.0)	38.9 (5.0)
2011	1.6 (0.7)	26.0 (4.5)	36.8 (3.0)	20.0 (3.0)	0.0 (0.0)	84.4 (8.0)
2012	0.0 (0.0)	4.8 (2.1)	38.4 (8.4)	24.0 (5.1)	0.0 (0.0)	67.2 (14.2)
2013	0.0 (0.0)	1.6 (1.1)	25.6 (3.7)	29.6 (7.0)	0.8 (0.8)	56.8 (8.6)
2014	0.0 (0.0)	0.8 (0.8)	10.4 (3.8)	33.6 (15.2)	0.8 (0.8)	44.8 (16.0)
2015	0.0 (0.0)	22.4 (3.5)	53.6 (14.6)	42.4 (7.4)	1.6 (1.1)	118.4 (20.0)
2016	0.0 (0.0)	16.8 (4.7)	84.8 (15.5)	33.6 (7.1)	0.0 (0.0)	135.2 (21.4)
2017	0.0 (0.0)	44.8 (12.7)	115.2 (16.3)	43.2 (5.7)	0.0 (0.0)	203.2 (26.9)

Dataset $=$ cfdpscor.d17-.d92

Table 140. Population assessment for redear sunfish collected during spring electrofishing at Corinth Lake from 2002-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Years to 8.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Total score	Assessment rating
2017	Value	7.2*	4-4+*	43.2	0.0	10	Good
	Score	2	3	4	1		
2016	Value	7.2	4-4+	33.6	0.0	10	Good
	Score	2	3	4	1		
2015	Value	8.1*	3-3+*	42.4	1.6	15	Excellent
	Score	4	4	4	3		
2014	Value	8.1	3-3+	33.6	0.8	14	Excellent
	Score	4	4	4	2		
2013	Value	7.8*	3-3+*	29.6	0.8	13	Good
	Score	3	4	4	2		
2012	Value	7.8	3-3+	24.0	0.0	12	Good
	Score	3	4	4	1		
2011	Value	7.8	3-3+	20.0	0.0	11	Good
	Score	3	4	3	1		
2010	Value	7.1	3-3+	12.0	0.0	10	Good
	Score	2	4	3	1		
2009	Value	7.7	3-3+	38.0	0.4	13	Good
	Score	3	4	4	2		
2008	Value	8.0	3-3+	27.6	0.0	12	Good
	Score	3	4	4	1		
2007	Value	7.6	3-3+	21.2	0.0	12	Good
	Score	3	4	4	1		
2006	Value	7.3	3-3+*	7.6	0.4	10	Good
	Score	2	4	2	2		
2005	Value	7.6	3-3+	31.2	3.2	15	Excellent
	Score	3	4	4	4		
2004	Value	9.1*	2-2+*	19.2	14.4	15	Excellent
	Score	4	4	3	4		
2003	Value	9.1*	2-2+*	28.4	24.9	16	Excellent
	Score	4	4	4	4		
2002	Value	9.1	2-2+	82.4	52.0		
	Score	4	4	4	4	16	Excellent

* Age data not collected

Table 141. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Corinth Lake on 18 September 2017; standard errors are in parentheses.

Species	Length group								No.	Wr
	No.	Wr	No.	Wr	No.	Wr	No.	Wr		
	$3.0-5.9$ in		$6.0-7.9$ in		≥ 8.0 in				Total	
Bluegill	78	96 (5)	50	78 (1)	0				128	89 (2)
	1.0-3.9 in		$4.0-6.9$ in		7.0-9.0 in		≥ 9.0 in		Total	
Redear sunfish	24	101 (5)	65	93 (1)	31	86 (1)	0		120	93 (1)

Dataset = cfdwrcor.d17

Table 142. Length composition, relative abundance, and CPUE (fish/set-night) of channel catfish at Corinth Lake collected on 9 October 2017. Channel catfish were collected using 3 set-nights of baited tandem hoop nets (72 hours soak time).

Species	Inch class															Total	Average per set
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
Channel catfish	6	36	35	10	3	3	6	5	3	2	1		1	1	2	114	38.0 (12.2)

Dataset = cfdhncor.d17

Table 143. PSD and RSD_{24} values obtained for channel catfish from tandem hoop net samples in Corinth Lake in 2017; confidence intervals are in parentheses.

Species	No. \geq stock size	PSD	RSD $_{24}$
Channel catfish	72	$21(\pm 9)$	$0(\pm 0)$
Dataset $=$ cfdhncor $\mathbf{d 1 7}$			

Dataset = cfdhncor.d17

Table 144. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Corinth Lake in October 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		11.0-15.9 in		16.0-23.9 in		≥ 24.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Channel catfish	Total	57	92 (1)	15	95 (4)	0		72	92 (1)

Table 145. CPUE (fish/set) for each length group of channel catfish collected by hoop net from Corinth Lake from 2010-2017; numbers in parentheses are standard errors.

	Length group			
Year	≥ 12.0 in	≥ 15.0 in	≥ 20.0 in	Total
2010	$21.0(9.0)$	$1.7(0.3)$	0.0	$9.7(46.8)$
2011	$25.0(12.9)$	$5.7(4.2)$	$0.3(0.3)$	$95.7(59.4)$
2012	$41.0(13.6)$	$14.7(4.1)$	$0.3(0.3)$	$97.7(38.1)$
2013	$3.7(2.3)$	$2.3(1.5)$	0.0	$6.0(3.1)$
2015	0.0	0.0	0.0	0.0
2017	$12.3(6.6)$	$7.0(2.9)$	$1.3(1.3)$	$38.0(12.2)$

[^24]Table 146. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected in 2.0 hours of 15-minute electrofishing runs in Elmer Davis Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																				Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Largemouth bass	9	46	46	17	13	43	35	35	62	75	71	45	19	5	11	7	4	5	8	3	559	279.5 (14.4)

Dataset = cfdpselm.d17

Table 147. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Elmer Davis Lake from 1996-2017; numbers in parentheses are standard errors.

		Length group				
Year	<8.0 in	$8.0-11.9$ in	$12.0-14.9$ in	≥ 15.0 in	≥ 20.0 in	Total
1996	$102.0(15.3)$	$163.5(19.5)$	$37.0(6.2)$	$9.5(3.4)$	$4.5(1.4)$	$312.0(32.7)$
1997	$113.5(20.1)$	$252.0(27.2)$	$39.0(5.6)$	$19.0(3.7)$	$5.5(1.8)$	$423.5(43.9)$
1998	$52.5(9.5)$	$93.3(6.8)$	$16.8(2.3)$	$7.5(1.7)$	$3.2(1.1)$	$170.1(15.1)$
1999	$253.5(32.9)$	$47.0(8.3)$	$36.0(6.9)$	$17.5(5.5)$	$2.5(1.1)$	$354.0(45.4)$
2000	$134.5(14.7)$	$136.5(11.0)$	$31.5(6.0)$	$29.0(4.4)$	$2.0(1.3)$	$331.5(21.3)$
2001	$121.0(17.0)$	$220.0(21.2)$	$18.5(2.4)$	$21.0(4.1)$	$0.5(0.5)$	$380.5(24.9)$
2002	$99.0(16.3)$	$124.0(12.3)$	$4.0(1.3)$	$10.0(2.7)$	$0.5(0.5)$	$237.0(26.2)$
2003	$96.0(10.2)$	$189.5(16.5)$	$14.5(3.9)$	$15.0(2.7)$	$3.5(1.6)$	$315.0(25.1)$
2004	$107.5(10.0)$	$123.5(10.0)$	$22.0(3.5)$	$15.0(1.7)$	$3.5(1.6)$	$268.0(17.4)$
2005	$93.0(10.6)$	$197.0(11.2)$	$60.0(10.4)$	$15.0(2.4)$	$3.5(1.2)$	$365.0(27.2)$
2006	$74.5(11.5)$	$123.5(12.2)$	$40.5(7.9)$	$6.5(1.8)$	$1.0(0.7)$	$245.0(15.4)$
2007	$32.5(5.8)$	$137.0(16.4)$	$41.5(10.3)$	$8.0(2.8)$	$1.0(0.7)$	$219.0(28.9)$
2008	$149.0(17.9)$	$188.0(20.7)$	$45.0(5.6)$	$14.5(4.0)$	$2.0(1.3)$	$396.5(35.2)$
2009	$36.0(6.0)$	$192.5(19.0)$	$76.0(9.0)$	$28.0(3.8)$	$6.5(2.3)$	$332.5(30.2)$
2010	$41.0(5.0)$	$147.5(17.9)$	$71.5(12.3)$	$24.0(5.0)$	$3.0(1.3)$	$284.0(33.5)$
2011	$51.0(6.2)$	$152.5(20.4)$	$69.5(8.1)$	$23.0(4.5)$	$3.5(1.2)$	$296.0(30.9)$
2012	$83.5(8.8)$	$197.5(10.9)$	$85.5(7.3)$	$27.5(3.7)$	$4.5(1.2)$	$394.0(12.4)$
2013				No Sampl$)$		
2014	$27.5(4.1)$	$113.5(13.8)$	$75.0(14.2)$	$23.5(4.0)$	$4.5(1.4)$	$239.5(31.7)$
2015	$34.5(5.5)$	$119.0(7.0)$	$78.5(8.9)$	$19.5(4.9)$	$4.0(1.7)$	$251.5(18.3)$
2016	$57.5(6.3)$	$113.0(10.6)$	$126.0(7.9)$	$44.5(2.8)$	$8.0(1.3)$	$341.0(18.1)$
2017	$65.5(10.6)$	$87.5(5.5)$	$95.5(5.9)$	$31.0(2.8)$	$8.0(1.9)$	$279.5(14.4)$

Dataset = cfdpselm.d17-.d96

Table 148. PSD and RSD $_{15}$ values obtained for largemouth bass from spring electrofishing samples in Elmer Davis Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	428	$59(\pm 5)$	$14(\pm 3)$

Dataset = cfdpselm.d17

Table 149. Population assessment for largemouth bass collected during spring electrofishing at Elmer Davis Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Spring CPUE age-1	$\begin{gathered} \text { Spring } \\ \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	Spring CPUE ≥ 15.0 in	Spring CPUE ≥ 20.0 in	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 10.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 60.5 \\ 4 \end{gathered}$	$\begin{gathered} 95.5 \\ 4 \end{gathered}$	$\begin{gathered} 31.0 \\ 4 \end{gathered}$	$\begin{gathered} 8.0 \\ 4 \end{gathered}$			18	Excellent
2016	Value Score	$\begin{gathered} 10.7 \\ 2 \end{gathered}$	$\begin{gathered} 46.5 \\ 3 \end{gathered}$	$\begin{gathered} 126.0 \\ 4 \end{gathered}$	$\begin{gathered} 44.5 \\ 4 \end{gathered}$	$\begin{gathered} 8.0 \\ 4 \end{gathered}$			17	Excellent
2015	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 28.0 \\ 3 \end{gathered}$	$\begin{gathered} 78.5 \\ 4 \end{gathered}$	$\begin{gathered} 19.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.0 \\ 4 \end{gathered}$			16	Good
2014	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 8.0 \\ 2 \end{gathered}$	$\begin{gathered} 75.0 \\ 4 \end{gathered}$	$\begin{gathered} 23.5 \\ 3 \end{gathered}$	$\begin{gathered} 4.5 \\ 4 \end{gathered}$			15	Good
2013						Sample				
2012	Value Score	$\begin{gathered} 10.5 \\ 2 \end{gathered}$	$\begin{gathered} 78.0 \\ 4 \end{gathered}$	$\begin{gathered} 85.5 \\ 4 \end{gathered}$	$\begin{gathered} 27.5 \\ 4 \end{gathered}$	$\begin{gathered} 4.5 \\ 4 \end{gathered}$	0.392	32.5	18	Excellent
2011	Value Score	$\begin{gathered} 9.8^{*} \\ 1 \end{gathered}$	$\begin{gathered} 32.4 \\ 3 \end{gathered}$	$\begin{gathered} 69.5 \\ 4 \end{gathered}$	$\begin{gathered} 23.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$			14	Good
2010	Value Score	$\begin{gathered} 9.8^{*} \\ 1 \end{gathered}$	$\begin{gathered} 29.0^{\wedge} \\ 3 \end{gathered}$	$\begin{gathered} 71.5 \\ 4 \end{gathered}$	$\begin{gathered} 24.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.0 \\ 3 \end{gathered}$			14	Good
2009	Value Score	$\begin{gathered} 9.8^{*} \\ 1 \end{gathered}$	$\begin{gathered} 18.5^{\wedge} \\ 2 \end{gathered}$	$\begin{gathered} 76.0 \\ 4 \end{gathered}$	$\begin{gathered} 28.0 \\ 4 \end{gathered}$	$\begin{gathered} 6.5 \\ 4 \end{gathered}$			15	Good
2008	Value Score	$\begin{gathered} 9.8 \\ 1 \end{gathered}$	$\begin{gathered} 127.5 \\ 4 \end{gathered}$	$\begin{gathered} 45.0 \\ 4 \end{gathered}$	$\begin{gathered} 14.5 \\ 3 \end{gathered}$	$\begin{gathered} 2.0 \\ 3 \end{gathered}$	0.489	38.6	15	Good
2007	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	$\begin{gathered} 26.9^{\wedge} \\ 3 \end{gathered}$	$\begin{gathered} 41.5 \\ 3 \end{gathered}$	$\begin{gathered} 8.0 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$			12	Fair
2006	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	${ }_{4}^{68.1^{\wedge}}$	$\begin{gathered} 40.5 \\ 3 \end{gathered}$	$\begin{gathered} 6.5 \\ 2 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$			13	Good
2005	Value Score	$\begin{gathered} 10.5^{*} \\ 2 \end{gathered}$	${ }_{4}^{78.1^{\wedge}}$	$\begin{gathered} 60.0 \\ 4 \end{gathered}$	$\begin{gathered} 15.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$			16	Good
2004	Value Score	$\begin{gathered} 10.5 \\ 2 \end{gathered}$	$\begin{gathered} 94.4 \\ 4 \end{gathered}$	$\begin{gathered} 22.0 \\ 2 \end{gathered}$	$\begin{gathered} 15.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$	0.481	38.2	14	Good
2003	Value Score	$\begin{gathered} 10.3^{*} \\ 2 \end{gathered}$	$\begin{gathered} 57.5^{\wedge} \\ 4 \end{gathered}$	$\begin{gathered} 14.5 \\ 2 \end{gathered}$	$\begin{gathered} 15.0 \\ 3 \end{gathered}$	$\begin{gathered} 3.5 \\ 3 \end{gathered}$			14	Good
2002	Value Score	$\begin{gathered} 10.3^{*} \\ 2 \end{gathered}$	$\begin{gathered} 80.6^{\wedge} \\ 4 \end{gathered}$	$\begin{gathered} 4.0 \\ 1 \end{gathered}$	$\begin{gathered} 10.0 \\ 2 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$			11	Fair
2001	Value Score	$\begin{gathered} 10.3 \\ 2 \end{gathered}$	$\begin{gathered} 52.8 \\ 3 \end{gathered}$	$\begin{gathered} 18.5 \\ 2 \end{gathered}$	$\begin{gathered} 21.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	0.516	$40 . .3$	12	Fair
2000	Value Score	$\begin{gathered} 10.7 \\ 2 \end{gathered}$	$\begin{gathered} 73.8 \\ 4 \end{gathered}$	$\begin{gathered} 31.5 \\ 3 \end{gathered}$	$\begin{gathered} 29.0 \\ 4 \end{gathered}$	$\begin{gathered} 2.0 \\ 3 \end{gathered}$	0.618	46.1	16	Good

* Age data not collected
${ }^{\wedge}$ Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 150. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.25 hours of 15 -minute electrofishing runs for black bass in Elmer Davis Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																					Total	CPUE
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	1	124	126	118	72	17	1	8	24	23	33	21	31	17	2	2	1	1	2		1	625	500.0 (90.3)

Dataset $=$ cfdwrelm.d17

Table 151. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Elmer Davis Lake on 15 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	74	87 (1)	61	85 (1)	8	86 (4)	143	86 (1)

Dataset = cfdwrelm.d17

Table 152. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Elmer Davis Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. Error	CPUE	Std. error	CPUE	Std. error
2000	Total	3.8	(0.1)	269.6	(33.2)	14.4	(2.0)	52.8	(9.7)
2001	Total	4.5	(0.1)	210.7	(25.0)	47.3	(3.0)	80.6	(13.3)
2002	Total	4.3	(0.1)	67.3	(10.0)	13.3	(3.2)	57.5	(7.9)
2003	Total	4.2	(0.1)	179.0	(32.0)	27.0	(10.0)	94.4	(9.9)
2004	Total	4.3	(0.03)	180.0	(38.5)	24.7	(4.3)	78.1	(9.9)
2005	Total	4.4	(0.04)	190.0	(29.6)	33.3	(5.3)	68.1	(10.2)
2006	Total	3.7	(0.04)	166.0	(17.4)	8.0	(2.5)	26.9	(6.1)
2007	Total	4.3	(0.05)	114.0	(24.6)	17.3	(5.4)	127.5	(16.4)
2008	Total	3.9	(0.1)	73.3	(9.6)	0.7	(0.7)	18.5	(3.7)
2009	Total	4.2	(0.1)	108.0	(14.2)	20.0	(5.0)	29.0	(5.3)
2010	Total	4.7	(0.1)	108.0	(14.1)	34.7	(3.2)	32.4	(3.9)
2011	Total	4.0	(0.1)	74.0	(13.8)	14.7	(3.2)	78.0	(8.9)
2012	Total	3.4	(0.1)	56.0	(7.5)	6.0	(1.7)	NS	NS
2013	Total	3.5	(0.1)	20.0	(6.9)	0.0	(0.0)	8.0	(2.3)
2014	Total							28.0	(5.3)
2015	Total	4.0	(0.1)	77.3	(9.1)	11.3	(3.5)	46.5	(6.2)
2016	Total	4.4	(0.1)	80.0	(7.6)	24.7	(4.9)	60.5	(10.8)
2017	Total	3.9	(0.1)	366.4	(74.7)	71.2	(15.9)		

Dataset= cfdwrelm.d17

Table 153. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5-minute electrofishing runs in Elmer Davis Lake, May 2017; numbers in parentheses are standard errors.

Species	Inch class									Total	CPUE
	2	3	4	5	6	7	8	9	10		
Bluegill	15	10	52	44	55	65	2			243	194.4 (26.5)
Redear sunfish				1		5	43	10	1	60	48.0 (13.2)

Table 154. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Elmer Davis Lake during May 2017. Fish were collected in 7.5 -minute runs.

Species	No. \geq stock size	PSD	RSD $^{\text {a }}$
Bluegill	228	$54(\pm 6)$	$1(\pm 1)$
Redear sunfish	60	$98(\pm 2)$	$18(\pm 10)$

${ }^{\text {abluegill }}=$ RSD $_{8}$; Redear $=\mathrm{RSD}_{9}$
Dataset $=$ cfdpselm.d17

Table 155. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Elmer Davis Lake from 1994-2017; numbers in parentheses are standard errors.

	Length group				
Year	<3.0 in	$3.0-5.9$ in	$6.0-7.9$ in	≥ 8.0 in	Total
1994	$1.0(0.7)$	$12.0(3.0)$	$29.0(5.7)$	$1.5(1.1)$	$43.5(6.0)$
1995			NS		
1996	$42.0(7.9)$	$75.0(9.7)$	$55.0(11.2)$	$20.0(5.4)$	$192.0(22.5)$
1997	$0.5(0.5)$	$79.5(12.5)$	$59.0(16.3)$	$5.5(2.1)$	$144.5(28.6)$
1998	$2.7(1.1)$	$17.1(4.5)$	$7.7(1.6)$	$2.9(1.1)$	$30.4(5.8)$
1999	$579.5(74.5)$	$502.0(65.4)$	$23.0(7.6)$	$5.0(3.4)$	$1,109.5(130.9)$
2000			No Sample		
2001	$1.5(0.8)$	$109.5(28.0)$	$157.0(23.5)$	$0.5(0.5)$	$268.5(49.6)$
2002	$33.6(11.8)$	$78.4(19.3)$	$272.8(55.3)$	$0.8(0.8)$	$385.6(78.2)$
2003	$17.6(4.7)$	$89.6(12.9)$	$151.2(30.1)$	$2.4(1.7)$	$260.8(37.1)$
2004	$40.0(8.7)$	$100.8(13.7)$	$119.2(29.8)$	$8.8(3.9)$	$268.8(44.7)$
2005	$38.4(11.4)$	$92.8(16.1)$	$59.2(9.8)$	$8.8(3.0)$	$199.2(23.9)$
2006	$162.4(35.9)$	$115.2(20.1)$	$42.4(8.5)$	$16.0(4.5)$	$336.0(43.8)$
2007	$7.6(1.8)$	$81.2(7.4)$	$42.8(9.7)$	$9.2(2.4)$	$140.8(14.9)$
2008	$34.4(5.7)$	$133.2(24.7)$	$58.8(9.3)$	$6.8(2.3)$	$233.2(33.0)$
2009	$8.8(1.8)$	$58.1(6.5)$	$33.9(3.7)$	$1.1(0.5)$	$101.9(7.3)$
2010	$51.6(12.8)$	$126.8(16.2)$	$26.8(4.1)$	$0.0(0.0)$	$205.2(23.4)$
2011	$112.4(19.6)$	$226.0(18.9)$	$50.0(7.3)$	$5.6(2.5)$	$394.0(36.2)$
2012	$42.4(7.3)$	$254.4(39.6)$	$68.8(15.0)$	$0.8(0.8)$	$366.4(57.9)$
2013	$49.6(18.2)$	$179.2(28.4)$	$54.4(14.8)$	$0.8(0.8)$	$284.0(56.5)$
2014	$17.6(7.4)$	$117.6(25.5)$	$33.6(10.2)$	$0.0(0.0)$	$168.8(26.5)$
2015	$0.8(0.8)$	$27.2(5.0)$	$18.4(7.4)$	$0.0(0.0)$	$46.4(9.6)$
2016			No Sample		
2017	$12.0(3.4)$	$84.8(11.4)$	$96.0(19.6)$	$1.6(1.6)$	$194.4(26.5)$
D					

Dataset $=$ cfdpselm.d17

Table 156. Population assessment for bluegill collected during spring electrofishing at Elmer Davis Lake from 2001-2017 (scoring based on statewide assessments).

Year		Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 3.8^{*} \\ 1 \end{gathered}$	$\begin{gathered} 4-4+^{*} \\ 2 \end{gathered}$	$\begin{gathered} 97.6 \\ 3 \end{gathered}$	$\begin{gathered} 1.6 \\ 3 \end{gathered}$	-	-	9	Fair
2015	Value Score	$\begin{gathered} 3.8 \\ 1 \end{gathered}$	$\begin{gathered} 4-4+ \\ 2 \end{gathered}$	$\begin{gathered} 18.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	-		5	Poor
2014	Value Score	$\begin{gathered} 4.1^{*} \\ 2 \end{gathered}$	$\begin{gathered} 3-3+* \\ 3 \end{gathered}$	$\begin{gathered} 33.6 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	-	-	8	Fair
2013	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 55.2 \\ 2 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	-	-	9	Fair
2012	Value Score	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 69.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	1.305	72.9	11	Good
2011	Value Score	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 55.6 \\ 2 \end{gathered}$	$\begin{gathered} 5.6 \\ 4 \end{gathered}$	*	*	13	Good
2010	Value Score	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 26.8 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	1.471	77.0	9	Fair
2009	Value Score	$\begin{gathered} 4.4 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 34.9 \\ 2 \end{gathered}$	$\begin{gathered} 1.1 \\ 2 \end{gathered}$	*	*	11	Good
2008	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 65.6 \\ 3 \end{gathered}$	$\begin{gathered} 6.8 \\ 4 \end{gathered}$	0.748	52.7	13	Good
2007	Value Score	$\begin{gathered} 4.1 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 52.0 \\ 2 \end{gathered}$	$\begin{gathered} 9.2 \\ 4 \end{gathered}$	0.718	51.2	12	Good
2006	Value Score	$\begin{gathered} 5.1 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 58.4 \\ 3 \end{gathered}$	$\begin{gathered} 16.0 \\ 4 \end{gathered}$	0.464	37.1	15	Excellent
2005	Value Score	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 68.0 \\ 3 \end{gathered}$	$\begin{gathered} 8.8 \\ 4 \end{gathered}$	0.729	51.7	13	Good
2004	Value Score	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 128.0 \\ 4 \end{gathered}$	$\begin{gathered} 8.8 \\ 4 \end{gathered}$	*	*	15	Excellent
2003	Value Score	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 153.6 \\ 4 \end{gathered}$	$\begin{gathered} 2.4 \\ 3 \end{gathered}$	*	*	14	Excellent
2002	Value Score	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 273.6 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	*	*	13	Good
2001	Value Score	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 157.5 \\ 4 \end{gathered}$	$\begin{gathered} 0.5 \\ 2 \end{gathered}$	*	*	12	Good

* Age data not collected

Table 157. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Elmer Davis Lake from 1994-2017; numbers in parentheses are standard errors.

	Length group					
Year	<3.0 in	$3.0-5.9$ in	$6.0-7.9$ in	≥ 8.0 in	≥ 10.0 in	Total
1994	0.0	$0.5(0.5)$	$0.5(0.5)$	$2.5(2.0)$	$1.5(1.5)$	$3.5(1.9)$
1995				NS		
1996		$7.5(1.6)$	$23.5(3.3)$	$4.0(1.1)$	$1.0(0.7)$	$35.0(4.6)$
1997	0.0	$1.0(1.0)$	$0.5(0.5)$	$13.0(3.8)$	$0.5(0.5)$	$14.5(4.6)$
1998	0.0	$0.3(0.3)$	0.0	0.0	0.0	$0.3(0.3)$
1999	0.0	$19.0(4.4)$	$13.0(2.2)$	$20.5(5.3)$	0.0	$52.5(7.5)$
2000				NS		
2001	0.0	$3.5(2.1)$	$21.0(5.1)$	$3.5(1.6)$	$1.0(0.7)$	$28.0(4.8)$
2002	$0.8(0.8)$	$4.0(1.8)$	$8.8(4.7)$	$15.2(4.2)$	$0.8(0.8)$	$28.8(6.1)$
2003	$1.6(1.1)$	$7.2(5.5)$	$31.2(7.4)$	$19.2(6.2)$	$0.8(0.8)$	$59.2(13.5)$
2004	$4.0(2.7)$	$8.0(3.4)$	$66.4(18.4)$	$24.8(9.7)$	$3.2(2.4)$	$103.2(29.1)$
2005	0.0	$11.2(2.4)$	$54.4(16.7)$	$63.2(18.6)$	$4.8(1.8)$	$128.8(26.9)$
2006	0.0	$12.8(4.0)$	$4.8(1.8)$	$30.4(6.5)$	$4.0(1.3)$	$51.2(10.0)$
2007	$0.4(0.4)$	$1.6(0.7)$	$18.0(3.5)$	$15.6(3.4)$	$2.0(1.1)$	$35.6(5.6)$
2008	$1.2(0.7)$	$13.2(2.7)$	$40.8(9.2)$	$17.6(5.3)$	$2.8(1.5)$	$72.8(14.7)$
2009	$0.8(0.6)$	$5.6(1.3)$	$18.7(3.2)$	$6.4(1.8)$	$1.9(0.7)$	$31.5(4.3)$
2010	$1.2(0.9)$	$3.2(1.4)$	$23.6(2.7)$	$13.2(2.9)$	$0.8(0.6)$	$41.2(4.7)$
2011	$4.8(1.7)$	$22.4(4.5)$	$6.8(2.0)$	$58.0(8.5)$	$2.4(1.3)$	$92.0(10.3)$
2012	$5.6(2.6)$	$31.2(5.3)$	$44.0(9.3)$	$31.2(7.2)$	$4.8(1.3)$	$112.0(11.6)$
2013	$32.8(16.3)$	$149.6(40.1)$	$39.2(13.6)$	$20.8(5.6)$	$0.8(0.8)$	$242.4(67.2)$
2014	$0.8(0.8)$	$146.4(37.0)$	$56.8(19.7)$	$27.2(7.8)$	$0.8(0.8)$	$231.2(53.2)$
2015	0.0	$11.2(3.0)$	$61.6(8.9)$	$13.6(4.0)$	0.0	$86.4(13.1)$
2016				$N S$		
2017	0.0	$0.8(0.8)$	$4.0(1.8)$	$43.2(13.0)$	$0.8(0.8)$	$48.0(13.2)$

Dataset $=$ cfdpselm.d17

Table 158. Population assessment for redear sunfish collected during spring electrofishing at Elmer Davis Lake from 2001-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Years to 8.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Total score	Assessment rating
2017	Value	6.7^{*}	4-4+*	43.2	0.8	11	Good
	Score	2	3	4	2		
2015	Value	6.7	4-4+	13.6	0.0	9	Fair
	Score	2	3	3	1		
2014	Value	7.7*	3-3+*	27.2	0.8	13	Good
	Score	3	4	4	2		
2013	Value	7.7	3-3+	20.8	0.8	12	Good
	Score	3	4	3	2		
2012	Value	7.7	3-3+	31.2	4.8	15	Excellent
	Score	3	4	4	4		
2011	Value	8.7	2-2+	58.0	2.4	16	Excellent
	Score	4	4	4	4		
2010	Value	8.4	2-2+	13.2	1.2	14	Excellent
	Score	4	4	3	3		
2009	Value	8.0	3-3+	6.4	1.9	13	Good
	Score	3	4	2	4		
2008	Value	8.8	2-2+	17.6	2.8	15	Excellent
	Score	4	4	3	4		
2007	Value	8.6	2-2+	15.6	2.0	15	Excellent
	Score	4	4	3	4		
2006	Value	8.8	2-2+	30.4	4.0	16	Excellent
	Score	4	+	4	4		
2005	Value	8.7	2-2+	63.2	4.8	16	Excellent
	Score	4	4	4	4		
2004	Value	9.0*	2-2+*	24.8	3.2	16	Excellent
	Score	,	+		,		
2003	Value	9.0	2-2+	19.2	0.8	13	Good
	Score		4	3	2		
2002	Value	6.5^{*}	4-4+*	15.2	0.8	9	Fair
	Score	1	3	3	,		
2001	Value	6.5	4-4+	3.5	1.0		
	Score	1	3	2	3	9	Fair

* Age data not collected

Table 159. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Elmer Davis Lake on 15 September 2017; standard errors are in parentheses.

Species	Length group							
	No.	Wr	No.	Wr	No.	Wr	No.	Wr
	3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		Total	
Bluegill	72	95 (2)	45	96 (1)	1	78	118	95 (1)
	4.0-6.9 in		7.0-8.9 in		≥ 9.0 in		Total	
Redear sunfish	7	94 (4)	0		1	108	8	96 (4)

Dataset $=$ cfdwrelm.d17

Table 160. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected in 2.0 hours of 15-minute electrofishing runs in Kincaid Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																			Total	CPUE
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Largemouth bass	3	1	9	27	23	11	19	30	37	38	31	41	32	42	42	28	18	8	2	442	221.0 (10.4)

Dataset = cfdpskin.d17

Table 161. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Kincaid Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group					Total
	<8.0 in	8.0-11.9 in	12.0-14.9 in	≥ 15.0 in	≥ 20.0 in	
1992	4.0 (0.0)	34.0 (3.1)	13.3 (1.8)	53.3 (4.1)	11.3 (1.8)	104.7 (3.5)
1995	27.5 (3.4)	38.5 (4.5)	17.5 (2.9)	65.0 (6.5)	13.5 (3.0)	148.5 (11.9)
1997	13.5 (2.9)	59.0 (6.2)	53.0 (4.2)	92.0 (14.3)	16.0 (3.7)	217.5 (18.0)
1999	15.0 (4.3)	60.0 (8.6)	55.0 (3.7)	94.0 (6.8)	16.5 (3.4)	224.0 (8.6)
2000	15.3 (5.7)	64.5 (7.0)	36.5 (5.5)	70.0 (7.8)	6.5 (1.1)	186.0 (16.3)
2001	16.0 (2.9)	99.3 (13.7)	35.3 (5.8)	102.7 (10.6)	8.0 (1.0)	253.3 (23.5)
2002	10.0 (4.5)	35.3 (9.4)	36.7 (8.4)	110.0 (14.8)	6.7 (2.0)	192.0 (29.2)
2003	23.4 (5.8)	70.3 (12.1)	32.6 (4.0)	94.9 (15.8)	7.4 (2.0)	221.1 (22.8)
2004	7.0 (2.9)	76.0 (12.5)	38.5 (5.0)	71.0 (10.0)	9.5 (1.5)	192.5 (16.5)
2005	22.0 (3.7)	56.0 (8.2)	69.5 (9.3)	113.0 (18.5)	15.0 (2.8)	260.5 (30.7)
2006	14.5 (3.5)	82.0 (8.3)	43.0 (5.0)	112.5 (9.8)	16.5 (4.2)	252.0 (14.9)
2007	21.5 (5.3)	50.5 (6.1)	47.5 (5.3)	96.0 (6.7)	15.5 (2.4)	215.5 (13.6)
2008	16.0 (3.4)	92.5 (11.5)	48.0 (6.4)	112.0 (15.2)	12.0 (3.6)	268.5 (31.9)
2009	15.5 (2.4)	72.5 (13.7)	70.0 (9.6)	107.0 (11.0)	13.5 (1.5)	265.0 (24.4)
2010	14.8 (1.9)	72.0 (4.9)	61.5 (5.2)	69.3 (4.3)	7.8 (1.4)	217.5 (9.3)
2011	22.0 (3.2)	62.0 (7.9)	59.0 (8.4)	99.0 (4.9)	14.5 (2.1)	242.0 (16.9)
2012	12.0 (2.5)	52.0 (5.8)	41.0 (6.7)	63.0 (5.6)	8.5 (1.2)	168.0 (11.1)
2013	34.5 (4.3)	91.5 (11.0)	69.0 (6.3)	83.0 (6.3)	10.5 (2.5)	278.0 (19.6)
2014	No Sample					
2015	16.0 (5.8)	52.0 (5.9)	47.5 (7.4)	79.5 (6.3)	8.5 (11.9)	195.0 (22.3)
2016			No S	ple		
2017	20.0 (2.8)	41.5 (3.1)	53.0 (5.6)	106.5 (4.1)	14.0 (1.5)	221.0 (10.4)

[^25]Table 162. PSD and RSD_{15} values obtained for largemouth bass from spring electrofishing samples in Kincaid Lake in 2017; confidence intervals are in parentheses.

Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Largemouth bass	402	$79(\pm 4)$	$53(\pm 5)$
Dataset $=$ cfdpskin.d17			

Table 163. Population assessment for largemouth bass collected during spring electrofishing at Kincaid Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value	11.6	2.0	53.0	106.5	14.0			17	Excellent
	Score	4	1	4	4	4				
2015	Value	11.7*	0.5	47.5	79.5	8.5			16	Good
	Score	4	1	3	4	4				
2013	Value	11.7	1.0	69.0	83.0	10.5			17	Excellent
	Score	4	1	4	4	4				
2012	Value	9.9*	4.5	41.0	63.0	8.5			13	Good
	Score	1	1	3	4	4				
2011	Value	9.9*	5.0	59.0	99.0	14.5			14	Good
	Score	1	1	4	4	4				
2010	Value	9.9*	1.3^{\wedge}	61.5	69.3	7.8			14	Good
	Score	1	1	4	4	4				
2009	Value	9.9	2.5	70.0	107.0	13.5	0.401	33.1	14	Good
	Score	1	1	4	4	4				
2008	Value	10.5*	1.0^{\wedge}	48.0	112.0	12.0			14	Good
	Score	2	1	3	4	4				
2007	Value	10.5*	$0.0{ }^{\wedge}$	47.5	96.0	15.5			13	Good
	Score	2	0	3	4	4				
2006	Value	10.5*	1.5^{\wedge}	43.0	112.5	16.5			14	Good
	Score	2	,	3	4	4				
2005	Value	10.5	0.0	69.5	113.0	15.0	0.344	29.1	14	Good
	Score	2	0	4	4	4				
2004	Value	10.5*	1.0^{\wedge}	38.5	71.0	9.5			14	Good
	Score	2	1	3	4	4				
2003	Value	10.5	0.0	32.6	94.9	7.4	0.389	32.2	12	Good
	Score	2	0	2	4	4				
2002	Value	10.4	0.0	36.7	110.0	6.7	0.308	26.5	13	Good
	Score	2	0	3	4	4				
2001	Value	9.0	0.0	35.3	102.7	8.0	0.261	23.0	12	Good
	Score	1	0	3	4	4				
2000	Value	9.5	1.5	36.5	70.0	6.5	0.288	25.0		
	Score	1	1	3	4	4			13	Good

[^26]Table 164. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs in Kincaid Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																				Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass	10	25	9	3	9	26	14	20	20	15	11	21	15	22	15	10	6	8	3	2	264	176.0 (15.8)

Dataset $=$ cfdwrkin.d17

Table 165. Mean back calculated lengths (in.) at each annulus for otoliths from largemouth bass collected in the fall from Kincaid Lake in 2017.

		Age									
Year	No.	1	2	3	4	5	6	7	8	9	10
2016	27	4.4									
2015	28	4.1	8.3								
2014	11	4.6	9.0	11.6							
2013	14	5.2	9.1	12.1	14.0						
2012	6	4.5	8.6	10.7	12.9	14.5					
2011	2	6.1	10.2	11.9	13.4	14.7	15.6				
2010	3	4.6	8.6	11.8	13.5	14.5	15.6	16.3			
2009	1	5.6	10.4	14.8	16.6	17.5	18.3	19.1	20.0		
2007	1	5.7	9.5	12.7	14.4	15.4	16.3	17.1	17.7	18.2	18.6
Mean	93	4.5	8.7	11.8	13.8	14.8	16.1	17.0	18.8	18.2	18.6
Smallest		3.0	6.7	9.4	11.3	12.5	13.6	14.5	17.7		
Largest		6.8	11.2	14.8	16.6	17.7	18.3	19.1	20.0		
Std Error		0.1	0.1	0.2	0.3	0.5	0.7	0.9	1.1		
95\% ConLo		4.3	8.5	11.4	13.2	13.9	14.7	15.3	16.6		
95\% ConHi		4.7	9.0	12.2	14.4	15.8	17.4	18.8	21.1		

[^27]Table 166. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Kincaid Lake on 11 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	67	87 (1)	46	93 (1)	66	99 (1)	179	93 (1)

Table 167. Indices of year class strength at age 0 and age 1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Kincaid Lake.

Year class	No. of fish	Age 0		Age 0		Age $0 \geq 5.0$ in		Age 1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
1999	25	3.1	(0.2)	16.7	(5.7)	0.0		1.5	(1.10)
2000	11	3.1	(0.2)	4.7	(1.6)	0.0		0.0	
2001	36	2.9	(0.1)	20.6	(6.7)	0.0		0.0	
2002	76	2.6	(0.1)	43.4	(10.6)	0.0		0.0	
2003	33	2.8	(0.1)	22.0	(4.7)	0.0		1.0	(0.7)
2004	19	3.0	(0.1)	12.7	(4.3)	0.0		0.0	
2005	259	2.5	(0.03)	129.5	(19.3)	0.0		1.5	(0.7)
2006	64	2.7	(0.1)	42.7	(11.9)	0.0		0.0	
2007	29	3.2	(0.1)	19.3	(4.8)	0.7	(0.7)	1.0	(0.7)
2008	42	3.3	(0.1)	28.0	(2.1)	0.0		2.5	(1.1)
2009	47	2.7	(0.04)	31.3	(8.2)	0.0		1.3	(0.5)
2010	80	4.2	(0.1)	53.3	(12.0)	14.0	(3.4)	5.0	(1.7)
2011	112	3.8	(0.1)	74.7	(28.8)	7.3	(4.2)	4.5	(1.4)
2012	71	3.4	(0.1)	47.3	(9.1)	0.7	(0.7)	1.0	(0.7)
2013	56	3.6	(0.1)	37.3	(13.8)	0.0		NS	
2014	37	2.6	(0.1)	24.7	(7.4)	0.0			
2015				No Sampl					
2016	51	3.8	(0.1)	34.0	(6.4)	3.3	(1.9)	2.0	(1.3)
2017	44	3.5	(0.1)	29.3	(8.2)	0.0			

Table 168. Length composition, relative abundance, and CPUE (fish/set-night) of channel catfish at Kincaid Lake on 9 October 2017.
Channel catfish were collected using 3 set-nights of baited tandem hoop nets (72 hours soak time).

	Inch class																	Total	Average per set
Species	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
Channel catfish	8	46	44	21	12	21	12	12	9	6	3	2	2	4	4	6	2	214	71.3 (16.8)

Dataset = cfdhnkin.d17

Table 169. CPUE (fish/set-night) for each length group of channel catfish collected by hoop net from Kincaid Lake from 2009-2017; numbers in parentheses are standard errors.

	Length group			
Year	≥ 12.0 in	≥ 15.0 in	≥ 20.0 in	Total
2009	$44.7(19.3)$	$21.0(9.0)$	$9.7(4.8)$	$84.0(31.29)$
2010	$21.0(9.0)$	$9.0(4.6)$	$1.0(0.6)$	$131.0(53.5)$
2011	$8.3(4.3)$	$1.3(0.3)$	0.0	$48.7(23.3)$
2012	$20.7(4.7)$	$9.0(3.8)$	$3.3(1.5)$	$40.0(8.5)$
2013	$17.7(5.8)$	$5.3(2.3)$	$1.7(1.2)$	$42.0(14.6)$
2015	$10.0(4.7)$	$6.7(3.5)$	$1.7(0.7)$	$16.7(7.5)$
2017	$31.7(5.7)$	$16.7(3.7)$	$6.0(2.3)$	$71.3(16.8)$

Dataset = cfdhnkin.d17-.d09

Table 170. PSD and RSD_{24} values obtained for channel catfish from tandem hoop net samples in Kincaid Lake in 2017; confidence intervals are in parentheses.

Species	No. \geq stock size	PSD	RSD $_{24}$
Channel catfish	116	$33(\pm 9)$	$2(\pm 2)$
Dataset $=$ cfdhnkin.d17			

Dataset $=$ cfdhnkin.d17

Table 171. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Kincaid Lake in October 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		11.0-15.9 in		16.0-23.9 in		≥ 24.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Channel catfish	Total	78	90 (1)	36	90 (2)	2	106 (3)	116	90 (1)

Table 172. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.25 hours of 15 -minute electrofishing runs in McNeely Lake in September 2017; numbers in parentheses are standard errors.

Species	Inch class																	Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Largemouth bass	61	120	39	2	18	84	36	43	49	27	9	6	6	1	2		3	506	404.8 (10.8)

Dataset = cfdwrmcl.d17

Table 173. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at McNeely Lake on 27 September 2017; standard errors are in parentheses.

Species	Area	Length group						Total	
		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in			
		No.	Wr	No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Total	100	85 (1)	40	92 (1)	12	93 (3)	152	88 (1)

Table 174. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at McNeely Lake.

Year class	Area	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2000	Total	3.8	(0.1)	87.3	(16.1)	10.0	(2.3)	70.0	(9.4)
2001	Total	4.1	(0.9)	20.7	(1.6)	2.0	(1.4)	23.3	(2.4)
2002	Total	4.7	(0.1)	24.0	(5.8)	10.7	(3.8)	20.0	(2.5)
2003	Total	4.1	(0.1)	56.0	(14.0)	7.0	(1.9)	24.7	(3.5)
2004	Total	4.0	(0.1)	49.0	(2.4)	3.5	(0.9)	12.7	(2.4)
2005	Total	4.7	(0.1)	193.0	(17.2)	88.0	(12.1)	50.7	(7.2)
2006	Total	4.5	(0.1)	108.7	(23.3)	33.3	(5.7)	5.3	(1.7)
2007	Total	5.2	(0.04)	174.4	(49.0)	116.0	(28.3)	130.0	(6.7)
2008	Total	4.6	(0.1)	300.0	(34.5)	97.6	(16.6)	67.8	(11.7)
2009	Total	4.5	(0.04)	68.0	(5.7)	11.3	(1.2)	50.8	(2.2)
2010	Total	5.2	(0.04)	169.6	(15.1)	106.4	(12.2)	72.0	(14.2)
2011	Total	4.3	(0.05)	116.0	(12.8)	20.8	(6.6)	15.2	(6.4)
2012	Total	5.0	(0.04)	242.0	(10.0)	124.0	(11.0)	NS	NS
2013	Total	4.2	(0.04)	86.0	(11.5)	7.3	(2.8)	18.0	7.8
2014	Total	NS						109.0	27.8
2015	Total	4.2	(0.04)	126.4	(14.9)	12.0	(4.2)	38.0	13.1
2016	Total	5.0	(0.05)	96.0	(21.1)	56.8	(14.3)	---	---
2017	Total	4.4	(0.05)	177.6	(11.6)	32.8	(4.1)		

Dataset $=$ cfdwrmcl.d17-.d00

Table 175. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5 -minute electrofishing runs in McNeely Lake, May 2017; numbers in parentheses are standard errors.

	Inch class									
	2	3	4	5	6	7	8	9	Total	CPUE
Species	3	5	60	44	74	134	6		326	$260.8(29.5)$
Bluegill	3	4	5	26	17	30	8	93	$74.4(13.2)$	
Redear sunfish		3								

Dataset $=$ cfdpsmcl.d17

Table 176. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at McNeely Lake during May 2017. Fish were collected in 7.5 -minute runs.

Species	No. \geq stock size	PSD	RSD $^{\text {a }}$
Bluegill	323	$66(\pm 5)$	$2(\pm 2)$
Redear sunfish	90	$61(\pm 10)$	$9(\pm 6)$

abluegill = RSD8; Redear $=$ RSD9
Dataset $=$ cfdpsmcl.d17

Table 177. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from McNeely Lake from 1992-2017; numbers in parentheses are standard errors.

Year	Length group				Total
	<3.0 in	3.0-5.9 in	6.0-7.9 in	≥ 8.0 in	
1994	17.6 (3.7)	303.2 (59.6)	13.6 (2.4)	0.0	334.4 (59.1)
1995			No Sample		
1996	2.7 (1.3)	187.3 (52.6)	95.3 (20.5)	0.0	285.3 (68.3)
1997			No Sample		
1998	0.0	72.0 (31.8)	68.7 (15.4)	0.0	140.7 (44.8)
1999	8.0 (4.3)	108.0 (20.6)	108.0 (27.7)	0.0	224.0 (44.8)
2000	2.0 (0.9)	204.7 (36.6)	110.0 (23.3)	0.0	316.7 (46.3)
2001	73.6 (23.8)	152.0 (17.0)	200.8 (29.1)	1.6 (1.1)	428.0 (35.2)
2002	53.6 (11.7)	270.4 (33.2)	335.2 (33.8)	0.8 (0.8)	660.0 (41.9)
2003	12.0 (2.2)	132.0 (31.9)	30.4 (10.6)	0.0	174.4 (40.9)
2004	4.0 (1.8)	181.6 (25.2)	74.4 (8.6)	0.0	260.0 (27.3)
2005	22.0 (3.3)	159.0 (16.7)	174.0 (27.6)	0.0	355.0 (33.5)
2006	47.0 (11.1)	145.0 (23.7)	101.0 (27.6)	0.0	293.0 (40.6)
2007	8.0 (2.8)	114.4 (18.6)	118.4 (22.5)	0.0	241.6 (30.8)
2008	98.40 (11.8)	184.0 (17.8)	206.4 (21.5)	0.0	488.8 (37.7)
2009	4.8 (3.2)	152.8 (28.4)	225.6 (20.3)	0.8 (0.8)	384.0 (37.7)
2010	7.2 (2.2)	104.0 (17.5)	96.0 (12.3)	0.0	207.2 (27.6)
2011	9.6 (3.1)	318.4 (39.4)	156.8 (27.0)	1.6 (1.6)	486.4 (43.5)
2012	4.0 (2.1)	325.0 (47.6)	203.0 (21.5)	1.0 (1.0)	533.0 (61.8)
2013	5.6 (2.9)	137.6 (16.7)	276.8 (30.1)	0.8 (0.8)	420.8 (33.4)
2014			No Sample		
2015	1.6 (1.1)	97.6 (22.1)	118.4 (19.9)	8.0 (2.7)	225.6 (32.6)
2016			No Sample		
2017	2.4 (1.2)	87.2 (12.0)	166.4 (25.4)	4.8 (1.3)	260.8 (29.5)

Dataset = cfdpsmcl.d17-.d94

Table 178. Population assessment for bluegill collected during spring electrofishing at McNeely Lake from 2001-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (AM)	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 5.4^{*} \\ 4 \end{gathered}$	$\begin{gathered} 2-2+* \\ 4 \end{gathered}$	$\begin{gathered} 171.2 \\ 4 \end{gathered}$	$\begin{gathered} 4.8 \\ 4 \end{gathered}$	-		16	Excellent
2015	Value Score	$\begin{gathered} 5.4 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 126.4 \\ 4 \end{gathered}$	$\begin{gathered} 8.0 \\ 4 \end{gathered}$	-	-	16	Excellent
2014	Value Score		No S						
2013	Value Score	$\begin{gathered} 5.8 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 277.6 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	-	-	14	Excellent
2012	Value Score	$\begin{gathered} 4.6 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 204.0 \\ 4 \end{gathered}$	$\begin{gathered} 1.0 \\ 2 \end{gathered}$	0.922	60.2	13	Good
2011	Value Score	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 158.4 \\ 4 \end{gathered}$	$\begin{gathered} 1.6 \\ 3 \end{gathered}$	1.001	63.3	14	Excellent
2010	Value Score	$\begin{gathered} 4.7 \\ 3 \end{gathered}$	$\begin{gathered} 2-2+^{*} \\ 4 \end{gathered}$	$\begin{gathered} 96.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	0.610	46.0	11	Good
2009	Value Score	$\begin{gathered} 4.9^{*} \\ 4 \end{gathered}$	$\begin{gathered} 2-2+* \\ 4 \end{gathered}$	$\begin{gathered} 226.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	0.763	53.4	14	Excellent
2008	Value Score	$\begin{gathered} 4.9 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 206.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$			13	Good
2007	Value Score	$\begin{gathered} 4.8 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 118.4 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	0.963	61.8	13	Good
2006	Value Score	$\begin{gathered} 5.1 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 101.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	0.597	45.0	12	Good
2005	Value Score	$\begin{gathered} 4.0 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 174.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$			10	Good
2004	Value Score	$\begin{gathered} 3.9 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 74.4 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	1.111	67.1	9	Fair
2003	Value Score	$\begin{gathered} 3.9 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 30.4 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	1.117	67.3	8	Fair
2002	Value Score	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 336.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$			12	Good
2001	Value Score	$\begin{gathered} 4.8 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 202.4 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 1.6 \\ 3 \end{gathered}$	0.926	60.4	15	Excellent

* Age and growth data was not collected.

Table 179. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from McNeely Lake from 1998-2017; numbers in parentheses are standard errors.

	Length group					
Year	<3.0 in	$3.0-5.9$ in	$6.0-7.9$ in	≥ 8.0 in	≥ 10.0 in	Total
1998	0.0	$0.7(0.7)$	$5.3(2.2)$	$1.3(1.3)$	0.0	$7.8(3.4)$
1999	0.0	$10.0(3.8)$	$3.0(1.9)$	$1.0(1.0)$	0.0	$14.0(3.5)$
2000	0.0	$3.3(2.6)$	$14.7(2.5)$	$0.7(0.7)$	0.0	$18.7(3.4)$
2001	$2.4(1.7)$	$8.8(3.0)$	$15.2(4.8)$	$8.0(4.8)$	0.0	$34.4(7.8)$
2002	$1.6(1.1)$	$49.6(10.6)$	$22.4(5.8)$	$6.4(2.0)$	0.0	$80.0(13.4)$
2003	$0.8(0.5)$	$5.2(1.2)$	$20.4(3.8)$	$2.4(1.2)$	0.0	$28.8(5.4)$
2004	0.0	$4.8(1.8)$	$24.8(6.5)$	$25.6(7.0)$	0.0	$55.2(9.9)$
2005	$1.0(1.0)$	$25.0(5.9)$	$16.0(6.6)$	$33.0(11.8)$	0.0	$75.0(17.0)$
2006	$1.0(1.0)$	$15.0(3.8)$	$20.0(4.0)$	$16.0(2.6)$	0.0	$52.0(6.2)$
2007	0.0	$2.4(1.7)$	$29.6(6.8)$	$6.4(2.3)$	0.0	$38.4(8.8)$
2008	$6.4(2.9)$	$22.4(4.4)$	$38.4(3.8)$	$36.0(4.8)$	$1.6(1.1)$	$103.2(9.4)$
2009	0.0	$4.8(3.2)$	$55.2(11.3)$	$38.4(9.5)$	$2.4(1.2)$	$98.4(21.8)$
2010	0.0	$9.6(4.1)$	$16.0(4.1)$	$8.8(3.3)$	$0.8(0.8)$	$34.4(6.4)$
2011	$0.8(0.8)$	$20.8(5.9)$	$16.8(3.0)$	$21.6(4.6)$	0.0	$60.0(9.0)$
2012	0.0	$21.0(5.4)$	$62.0(7.1)$	$34.0(6.0)$	0.0	$117.0(13.2)$
2013	0.0	$13.6(3.8)$	$27.2(6.3)$	$52.8(10.6)$	$2.4(1.7)$	$93.6(14.3)$
2014			No Sample			
2015	0.0	$3.2(2.4)$	$16.8(4.4)$	$13.6(4.6)$	$2.4(1.7)$	$33.6(6.7)$
2016			No Sample			
2017	0.0	$9.6(3.5)$	$34.4(5.1)$	$30.4(8.3)$	0.0	$74.4(13.2)$
Dataset $=$ cfdpsmcl.d17 - d 98						

Table 180. Population assessment for redear sunfish collected during spring electrofishing at McNeely Lake from 2001-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Years to 8.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 10.0 \text { in } \end{gathered}$	Total score	Assessment rating
2017	Value Score	$\begin{gathered} 8.2^{*} \\ 4 \end{gathered}$	$\begin{gathered} 3-3+* \\ 4 \end{gathered}$	$\begin{gathered} 30.4 \\ 4 \end{gathered}$	0.0	13	Good
2015	Value Score	$\begin{gathered} 8.2 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 13.6 \\ 3 \end{gathered}$	$\begin{gathered} 2.4 \\ 4 \end{gathered}$	15	Excellent
2014	Value Score	No Sample					
2013	Value Score	$\begin{gathered} 8.2 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 52.8 \\ 4 \end{gathered}$	$\begin{gathered} 2.4 \\ 4 \end{gathered}$	16	Excellent
2012	Value Score	$\begin{gathered} 8.1 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 34.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	13	Good
2011	Value Score	$\begin{gathered} 8.0 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 21.6 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	11	Good
2010	Value Score	$\begin{gathered} 8.1 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 8.8 \\ 3 \end{gathered}$	$\begin{gathered} 0.8 \\ 2 \end{gathered}$	13	Good
2009	Value Score	$\begin{gathered} 8.5^{*} \\ 4 \end{gathered}$	$\begin{gathered} 2-2+* \\ 4 \end{gathered}$	$\begin{gathered} 38.4 \\ 4 \end{gathered}$	$\begin{gathered} 2.4 \\ 4 \end{gathered}$	16	Excellent
2008	Value Score	$\begin{gathered} 8.5 \\ 4 \end{gathered}$	$\begin{gathered} 2-2+ \\ 4 \end{gathered}$	$\begin{gathered} 36.0 \\ 4 \end{gathered}$	$\begin{gathered} 1.6 \\ 3 \end{gathered}$	15	Excellent
2007	Value Score	$\begin{gathered} 8.0 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 6.4 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	10	Good
2006	Value Score	$\begin{gathered} 7.9 \\ 3 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 16.0 \\ 3 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	11	Good
2005	Value Score	$\begin{gathered} 8.3 \\ 4 \end{gathered}$	$\begin{gathered} 3-3+ \\ 4 \end{gathered}$	$\begin{gathered} 33.0 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	13	Good
2004	Value Score	$\begin{gathered} 7.7^{*} \\ 3 \end{gathered}$	$\begin{gathered} 4-4+^{*} \\ 3 \end{gathered}$	$\begin{gathered} 25.6 \\ 4 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	11	Good
2003	Value Score	$\begin{gathered} 7.7 \\ 3 \end{gathered}$	$\begin{gathered} 4-4+{ }^{*} \\ 3 \end{gathered}$	$\begin{gathered} 2.4 \\ 1 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	8	Fair
2002	Value Score	$\begin{gathered} 6.7^{*} \\ 2 \end{gathered}$	$\begin{gathered} 4-4+^{\star} \\ 3 \end{gathered}$	$\begin{gathered} 6.4 \\ 2 \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	8	Fair
2001	Value Score	$\begin{gathered} 6.7 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 4-4+ \\ 3 \end{gathered}$	$\begin{gathered} 8.0 \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} 0.0 \\ 1 \end{gathered}$	8	Fair

Table 181. Mean back calculated lengths (in.) at each annulus for otoliths from bluegill collected in the fall from McNeely Lake in 2017.

		Age			
Year	No.	1	2	3	4
2016	28	2.8			
2015	14	2.8	5.3		
2014	6	2.6	5.0	6.9	
2013	2	2.3	4.8	6.5	6.9
Mean	50	2.7	5.2	6.8	6.9
Smallest		1.6	4.4	6.4	6.8
Largest		4.2	6.2	7.3	7.0
Std Error		0.1	0.1	0.1	0.1
95\% ConLo		2.5	5.0	6.6	6.7
95% ConHi		2.9	5.5	7.0	7.1

Intercept value $=0.00$
Dataset $=$ cfdagmcl.d17

Table 182. Mean back calculated lengths (in.) at each annulus for otoliths from redear sunfish collected in the fall from McNeely Lake in 2017.

		Age							
	No.	1	2	3	4	5	6	7	
2016	31	3.0							
2015	14	3.5	6.8						
2014	6	3.6	7.0	8.4					
2013	1	2.7	6.5	8.3	9.1				
2011	1	3.2	6.8	8.5	9.2	10.2	10.4		
2010	1	2.6	5.1	7.0	8.0	8.8	9.2	9.9	
Mean	54	3.2	6.7	8.2	8.8	9.5	9.8	9.9	
Smallest		2.1	5.1	7.0	8.0	8.8	9.2	9.9	
Largest		4.8	7.8	8.6	9.2	10.2	10.4	9.9	
Std Error		0.1	0.1	0.2	0.4	0.7	0.6		
95% ConLo		3.0	6.5	7.9	8.0	8.1	8.6		
95% ConHi		3.4	7.0	8.6	9.5	10.9	11.0		

Intercept value $=0.00$
Dataset = cfdagmcl.d17

Table 183. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at McNeely Lake on 27 September 2017; standard errors are in parentheses.

Species	Length group							
	No.	Wr	No.	Wr	No.	Wr	No.	Wr
	3.0-5.9 in		$6.0-7.9$ in		≥ 8.0 in		Total	
Bluegill	77	100 (1)	51	91 (1)	1	94	129	96 (1)
	4.0-6.9 in		7.0-8.9 in		≥ 9.0 in		Total	
Redear sunfish	76	97 (1)	21	101 (2)	7	95 (2)	104	98 (1)

[^28]Table 184. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 0.5 hours of electrofishing in Lincoln Homestead Lake, April 2017; numbers in parentheses are standard errors.

Species	Inch class																			Total	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Largemouth bass		1	21	34	29	13	30	25	11	7	8	5	2					2	1	189	378.0 (54.0)
Bluegill	11	6	15	38	39	7														116	232.0 (64.0)
Redear sunfish		3	7	1		1	1	1												14	28.0 (4.0)
White crappie							2	7	2	1										12	24.0 (8.0)
Black crappie						1	5													6	12.0 (12.0)

Dataset = cfdpslhl.d17
Table 185. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 1.0 hours of electrofishing in Reformatory Lake, May 2017; numbers in parentheses are standard errors.

Species	Inch class																			Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Largemouth bass			3	5	6	4	1	9	27	10	15	17	15	3	6	1	1	2	2	127	127.0 (28.9)
Bluegill	4	22	46	26	56	58														212	212.0 (33.4)
Redear sunfish			2	1	12	14	21	18	1											69	69.0 (16.1)

Dataset = cfdpsref.d17

NORTHEASTERN FISHERY DISTRICT

Project 1: Lake and Tailwaters Fishery Surveys

FINDINGS

All sampling conditions can be found in Table 1. This includes dates, temperatures, secchi depths and any other pertinent sampling information during the sampling events.

Cave Run Lake (8,720a)

Muskellunge sampling
On March 27-29, the upper, middle and lower sections of Cave Run Lake were sampled for an assessment of the muskellunge fishery. In total, 170 fish were collected; of those, 69 (41%) came from the lower section, 62 (36%) came from the middle section, and 39 (23%) came from the upper section (Table 2). Relative weights continue to be in the upper 80% to lower 90% range and show very little statistical difference to relative weights obtained prior to the implementation of the 36.0 -in minimum size limit (Table 3). Once again, average length and weight of knownage fish was determined from marked members of the population. In Cave Run Lake, the fish tend to reach the minimum size limit of 36.0 inches in their fourth year (Table 4). In 2017, the fishery overall was rated as "Excellent" with a score of 17 ; this brings us back to more normal levels after a slight drop in 2016 (Table 5). In October of 2016, Cave Run Lake was stocked with 2,700 young-of-year muskellunge. Stocked fish continue to be marked to indicate their spawning year as noted in the table below.

Year	Marking	Number stocked	Average length
2017	Caudal wire tag	2,700	12.0 in
2016	Right cheek wire tag	2,800	11.8 in
2015	Dorsal fin wire tag	1,307	13.0 in
2014	Left cheek wire tag	2,900	13.3 in
2013	Right pectoral fin clip	2,800	12.6 in
2012	Left pelvic fin clip	1,923	12.4 in
2011	Right pelvic fin clip	2,800	12.8 in
2010	Left pectoral fin clip	2,811	12.5 in

Black bass sampling (Spring/Fall)
On April 17-19, the upper, middle and lower sections of Cave Run Lake were nocturnally electrofished for assessment of the black bass population. In total, 1,710 fish were captured. The majority of these fish were largemouth bass (64%), followed by spotted bass (33%), and smallmouth bass (3%; Table 6). As is normally the case, the percentage of the population represented by spotted and smallmouth bass increases as you head from the upper sections of the lake to the lower sections of the lake. Catch rates were higher than the 1990-2016 average for all length groups of largemouth bass with the exception of the fish over 20.0 in, which was statistically identical to the 1990-2016 average (Table 7). PSD and RSD_{15} values for largemouth bass demonstrate that the majority of the fish in the lake are below 12.0 in (Table 8). PSD and RSD_{15} values were very similar to values obtained in 2016 (2016 values: $\mathrm{PSD}=47, \mathrm{RSD}_{15}=13$). Overall, the largemouth bass population was rated as "Excellent"; boosted by continued high scores for catch rates of fish in the 12.0 - to 14.9 -in range, the greater than 15.0 -in range, the greater than 20.0 -in range and the catch rates of age- 1 fish (Table 9).

In October, spotted bass were collected for determination of age and growth characteristics, which allows for an assessment of this fishery in the lake. Spotted bass in Cave Run Lake show slow growth rates with an average length of age-3 fish of 9.7 in (Table 10). Furthermore, some individuals can reach 12.0 in by their sixth year at the earliest, but most are later than that. The overall assessment of this fishery is "Fair" (Table 11). The spotted bass fishery on Cave Run Lake tends to exhibit similar characteristics as the largemouth bass population (i.e.: slow growth and high recruitment).

White Bass sampling

Over the last week of October, white bass were sampled in the middle and upper reaches of Cave Run Lake with 3panel, 150 -foot experimental gill nets. In 15 net-nights, 288 white bass were collected ranging in size from 6.0 to 15.0 in (Table 12). Relative weights range in the upper 80 to lower 90 percent range, and were slightly lower (but with minimal statistical difference) than the average of the last 4 sampling attempts (2007, 2008, 2011, and 2014; Table 13). White bass were collected for determination of age and growth characteristics and exhibit reasonable growth rates with a mean length at age-2 of 12.2 in and the potential of reaching 15.0 in by their third year (Table 14). The majority of the fish collected were in the 12.0 - to 14.0 -in range and were primarily in their second year (Table 15). The overall assessment of the white bass fishery at Cave Run Lake was "Good" with excellent numbers of fish over 12.0 in (Table 16).

Grayson Lake (1,512a)

Black bass sampling (Spring/Fall)

The black bass population of Grayson Lake was nocturnally electrofished from April 24-26. In total, 1,202 fish were collected ranging in size from 3.0 to 20.0 in (Table 17). The majority of these fish (85%) were largemouth bass and the remainder were spotted bass (15\%). Catch rates by length group were either higher than or not statistically different than the average from 1999-2016 (Table 18). The majority of the population of largemouth bass over 8.0 in is under 12.0 in as demonstrated by PSD values (Table 19). However, PSD and RSD 15 values were very similar to what was obtained in 2016. The overall assessment of the largemouth bass fishery at Grayson Lake was "Good" (Table 20).

In September, Grayson Lake was nocturnally electrofished for collection of fish to determine age and growth characteristics and spawning strength of largemouth bass. Growth rates show slight improvement but remain fair. Generally speaking, it takes a fish 6 years of growth to reach a harvestable size of 15.0 in (Table 21). Growth rates were very similar between different sections of the lake (Table 22). During the sampling period in September, 1,375 total fish were collected ranging in size from 3.0 to 21.0 in (Table 23). Overall, relative weights were in the middle 80 percent range for largemouth bass and the middle section of the lake exhibited some of the better scores (Table 24). Indices of year class strength for largemouth bass continue to be on the high end (Table 25) and the lake was once again not stocked with young of year largemouth bass in 2017

Lake Carnico (114 a)

Black bass sampling (Spring/Fall)

On April 12, Lake Carnico was diurnally electrofished to assess the largemouth bass population. A total of 182 fish were collected ranging from 2.0 to 22.0 in (Table 26). The fish in the 12.0 - to 14.9 -in and greater than 15.0 inch classes posted high values and should lead to good numbers of big fish for years to come (Table 27). The PSD and RSD_{15} values are at an all-time high reflecting the low recruitment the lake has experienced over the last several years (Table 28). The overall largemouth bass assessment was rated as "Good" but has poor catch rates of age-1 fish and fish over 20.0 in (Table 29).

On October 4, Lake Carnico was diurnally electrofished to assess age and growth and relative weights of the largemouth bass population. This sample showed that most bass reached harvestable size (15.0 in) by age 5 with some reaching it at 4 years of age (Table 30). The overall catch rate on this date was $57.3 \mathrm{fish} / \mathrm{hr}$ and largemouth bass caught ranged in size from 2.0 to 20.0 in (Table 31). Relative weights have held steady for the last ten years in the upper 80s to low 90s and this year was not an exception (Table 32).

Sunfish sampling (Summer)

On May 16, Lake Carnico was diurnally electrofished to assess the sunfish population. A total of 153 bluegill were collected ranging in size from 1.0 to 6.0 in and redear sunfish ranged in size from 3.0 to 7.0 in (Table 33). Bluegill overall numbers are low (nearly a quarter of the 2003-2012 average) and nearly all of the fish caught were in the 3.0 - to 5.9 -in class (Table 34). PSD values also reflected the fact that the majority of the fish in the population were smaller size (Table 35). A subsample of bluegill and redear sunfish were collected from this sampling event to obtain information about the age and growth structure of the populations. Data showed that bluegill growth is slow,
with fish barely exceeding 6.0 in by their $5^{\text {th }}$ year (Table 36). Age frequency shows us that the majority of the fish collected were 2 years old and ranged in size from 3.0 to 5.0 in (Table 37). The bluegill assessment was rated at "Poor" (Table 38). Overall, catch rates of redear sunfish were low (as they historically have been) and data should be interpreted with caution (Table 39). Similar to the bluegill, the majority of the redear collected were smaller (Table 40) and growth rates were slow (Table 41). The majority of the fish collected were 2 and 3 years old (33% and 47%, respectively; Table 42). The overall redear assessment was rated as "Poor" this year (Table 43). Both bluegill and redear are scheduled to be stocked in 2018 in an attempt to rebuild this population.

Greenbo Lake (181a)

Black bass sampling (Spring)

On April 20, Greenbo Lake was nocturnally electrofished to assess the largemouth bass population. A total of 301 fish were collected ranging in size from 2.0 to 22.0 in (Table 44). The catch rates of fish in the 12.0 - to $14.9-\mathrm{in}$, over 15.0 -in, and over 20.0 -in classes were all still well above the ten year average (Table 45). PSD and RSD 15 values are still well within the range needed for a balanced population (Table 46). The overall largemouth bass assessment was rated as "Good" with high numbers in the 12.0 - to 14.9 -in and over 20.0-in fish groups (Table 47).

Sunfish sampling (Spring)

On May 16, Greenbo Lake was diurnally electrofished to assess the sunfish population. A total of 544 bluegill were collected ranging in size from 1.0 to 9.0 in and 61 redear sunfish were captured ranging in size from 2.0 to 11.0 in (Table 48). Overall catch rates of bluegill were on track with the 2007-2016 average (Table 49). PSD and RSD 8 values for bluegill continue to show a balanced population; similar to the largemouth bass population (Table 50). A subsample of bluegill and redear sunfish were collected from this sampling event to obtain information about the age and growth structure of the populations. Data shows bluegill are reaching 8.0 in as early as 3 years, and overall growth rates are good (Table 51). The majority of the fish collected were 1 and 2 years old (51% and 27%, respectively) and ranged in size up to 6.0 in (Table 52). The bluegill assessment was "Fair" (Table 53). Redear sunfish showed a record high for both fish over 6.0 in and over 8.0 in (Table 54) and a good proportion of the fish collected were over 7.0 and 9.0 in ($\mathrm{PSD}=45$ and $\mathrm{RSD}=25$; Table 55). Growth rates of the redear sunfish collected were excellent (Table 56) and the majority of the fish collected were 2 and 3 years old (56% and 29%, respectively; Table 57). The overall redear assessment was "Good" (Table 58).

Miscellaneous

Hydrilla continues to be a problem at Greenbo Lake. The fall largemouth bass sample was not attempted due to excessive weed coverage. In an effort to reduce the amount of vegetation, grass carp were stocked for a third straight year. Fifty-seven grass carp averaging fifteen inches were stocked this year.

Mill Creek Lake (41 a)

Black bass sampling (Spring/Fall)

On April 24, Mill Creek Lake was diurnally electrofished for an assessment of the largemouth bass population. In total, 229 fish were sampled ranging in size from 2.0 to 20.0 in (Table 59). Catch rates were right at or above average for all size classes (Table 60). PSD values were among the highest obtained on the lake, but RSD_{15} values were amongst the lowest (Table 61). In October, fish were collected for determination of age and growth characteristics. Largemouth bass generally exhibit slower growth rates, struggling to reach a harvestable size (15.0 in) before their eighth year (Table 62). Overall, the assessment of largemouth bass in Mill Creek Lake was "Good", boosted by higher catch rates of fish in the 12.0- to 14.9-in range and catch rates of fish over 20.0 in (Table 63).

Also in October, Mill Creek Lake was sampled for determination of relative weights of largemouth bass. In total, 108 fish were collected ranging in size from 2.0 to 15.0 in (Table 64). Relative weights were all at 90 percent (Table 65). These values were above the average for the 8.0 - to 11.9 -in and 12.0 - to 14.9 -in categories, but were slightly below average for the greater than 15.0 -in category.

Sunfish sampling (Summer)

On May 18, Mill Creek Lake was diurnally electrofished for assessment of the bluegill fishery. In total, 189 bluegill were collected ranging in size from 3.0 to 9.0 in (Table 66). Catch rates by size class were all well above the 2005 to 2016 average (Table 67). PSD values showed a decrease over the last couple of samples (2015 and 2012) but remained close to the average since $2005 . \mathrm{RSD}_{8}$ values are spot on the average since 2005 (Table 68). The overall assessment of the bluegill fishery remains as "Good" (Table 69).

Lake Reba (76a)

Black bass sampling (Spring/Fall)
On April 17, Lake Reba was diurnally electrofished for assessment of the largemouth bass fishery. In total, 831 fish were collected ranging in size from 3.0 to 21.0 in (Table 70). This exceptionally high catch rate was nearly three times the 1995 to 2016 average and was driven almost exclusively by catch rates of fish less than 8.0 in; although all categories were at or above the average (Table 71). Echoing abundance of smaller size classes of fish, PSD and RSD_{15} values were at (PSD) and below (RSD_{15}) the 1995 to 2016 average (Table 72). The overall assessment of the largemouth bass fishery at Lake Reba was "Excellent" (Table 73).

Lake Reba was once again diurnally electrofished in the fall to collect indices related to spawning class strength, and based on these values, the lake was not stocked in 2017 (Table 74).

Sunfish sampling (Summer)

On May 3, Lake Reba was diurnally electrofished for assessment of the bluegill and redear sunfish populations. In total, 366 bluegill and 83 redear sunfish were sampled (Table 75). For bluegill, there was a pretty significant drop in overall catch rates over previous years, but more fish over 8.0 in were collected than in any other year (Table 76). Furthermore, PSD and RDS_{8} values were among the highest collected on the lake (Table 77). Otoliths were also kept from a subsample of 10 fish per inch class and those have demonstrated an improvement in growth rates (Table 78). Otoliths have also shown a more normal distribution of age classes of fish (Table 79). Overall, the bluegill fishery was rated as "Good" which is a dramatic improvement from previous years (Table 80). As was the case with the bluegill, redear sunfish catch rates by size class were also down overall, but more larger fish were collected than in previous years (Table 81). PSD and RDS 9 values were among the highest collected on the lake (Table 82), growth rates have improved (Table 83), and there is a normal distribution of age classes (Table 84). Overall, the assessment of the redear sunfish fishery was "Good" and as with bluegill, was a dramatic improvement from previous years (Table 85).

Creel Survey

From 01 April to 31 October, a roving creel survey was conducted on Lake Reba. In 2017 there were significantly more trips and man hours spent on the lake than the previous creel survey (2005), which is most likely a reflection of the population growth in Richmond and the surrounding areas (Table 86). The majority of the users on Lake Reba are male residents who spend time still fishing from the bank. The most fished for species on the lake was panfish ($6,299.8$ trips), followed by black bass ($2,341.2$ trips), crappie (451.7 trips), and catfish (422.3 trips; Table 87). The most harvested species were panfish and crappie (58,713 and 5,428 , respectively), but the most caught species were panfish and black bass (64,565 and 8,8682 , respectively). Anglers had the most success fishing for crappie (71.2% success) and the least for black bass species (2.9% success). Table 88 shows the number of fish harvested and released by inch class. This table shows the very low (3% overall) harvest rate for largemouth bass, but high harvest rates for bluegill, and both species of crappie. Several illegal-sized largemouth bass and channel catfish were also harvested. May and June are the peak months for largemouth bass fishing on the lake, and they are also the months with the highest catch rates (catch per angler hour $=2.04$ and 1.43 , respectively; Table 89). April and October are the peak months for crappie fishing but May and August posted the highest catch rates (catch per angler hour $=3.14$ and 5.47 , respectively; Table 90). Finally, May and June were the peak months for panfish fishing on the lake, but anglers posted healthy catch rates pretty much the whole summer (mean catch per angler hour $=2.94$ fish; Table 91).

Angler Attitude Survey

In conjunction with the creel survey anglers were asked a series of questions pertaining to their attitudes towards fishing on Lake Reba (Table 92). Anglers were only surveyed once in the year. Of the surveyed anglers, 36% of
them came from Madison County, another 42% came from either Estill, Fayette or Clark counties and the remaining 22% came from a mixture of 24 different Kentucky counties and several surrounding states. Overall, the most fished for species were bluegill, bass, and redear sunfish. Seventy-six percent of anglers fishing for bass were satisfied and those who were not satisfied (17.8\%) were disappointed in the size of the fish caught (45.8% or 22 individuals) or the number of fish caught (43.8% or 21 individuals). Similarly, the majority of the anglers who fished for bluegill, redear sunfish, or catfish were also satisfied ($71.7 \%, 74.5 \%$ and 80.9%, respectively). The majority of anglers fished 1-4 or 5-8 times a month (55.7% and 28.1%, respectively). Support for the 15.0 -in minimum size limit on largemouth bass was 85.0%. Of those that did not support the regulation (only 13.8% or 56 anglers), the majority of them wanted to see a 12.0 -in minimum size limit (50 individuals). Comically, 3.6% of the anglers that opposed the 15.0 -in minimum size limit preferred it to be changed to a 15.0 -in minimum size limit.

Lake Wilgreen (131a)

Creel Survey

From 01 April to 31 October, a roving creel survey was conducted on Lake Wilgreen and it represents potentially the first creel survey ever conducted on the lake. In total, there were 4,198 trips on the lake (30 trips per acre), and anglers spent a total of 16,226 hours on the lake (114 hours per acre; Table 93). While these overall numbers are much lower than many of our larger lakes, the trips per acre and hours per acre comparisons demonstrate that these smaller lakes receive proportionally much more pressure than our larger lakes. The majority of the users on Lake Wilgreen are male residents who spend time casting from a boat. The most fished for species on the lake was panfish ($1,632.7$ trips), followed by black bass ($1,206.8$ trips), catfish (713.6 trips), and crappie (573.4 trips; Table 94). The most harvested species were panfish and crappie (10,780 and 9,754 , respectively) and they were also the most caught species (16,187 and 11,977 , respectively). Anglers had the most success fishing for crappie (70.0% success) and the least success fishing for black bass species (21.9% success). Table 95 shows the number of fish harvested and released by inch class. This table shows the very low (19% overall) harvest rate for largemouth bass, but high harvest rates for bluegill, both species of crappie, and blue and channel catfish. There likely is some overlap between the channel and blue catfish with creel clerk and angler difficulties differentiation between these two species; for this reason data should be used with caution. There were consistent numbers of trips made for largemouth bass from April through July but the month with the highest catch rate was May (catch per angler hour = 1.57; Table 96). April was the peak month for crappie fishing but May and June posted the highest catch rates (catch per angler hour $=5.02$ and 5.84 , respectively; Table 97). Finally, June and July were the peak months for panfish fishing on the lake, but anglers posted healthy catch rates from May through August (Table 98).

Angler Attitude Survey

In conjunction with the creel survey, anglers were asked a series of questions pertaining to their attitudes towards fishing on Lake Wilgreen (Table 99). Anglers were only surveyed once in the year. Of the surveyed anglers, 34% came from Madison County, another 36% came from either Fayette, Clark or Estill counties and the remaining 30\% came from a mixture of 26 different Kentucky counties and several surrounding states. Overall, the most fished for species were bass, bluegill and channel catfish. Seventy-one percent of those that fished for bass were satisfied, while those who were not satisfied (22.7\%) were disappointed in the size and the number of fish caught (43.9% or 25 individuals for both). Similarly, the majority of the anglers who fished for bluegill, redear sunfish, or catfish were also satisfied ($64.6 \%, 47.6 \%$ and 82.8% respectively). The majority of anglers fish 1-4 or 5-8 times a month (55.1% and 26.3%, respectively). Most anglers support the 12.0 -in minimum size limit on largemouth bass (93.1%). Of those that did not support it (only 5.5% or 20 anglers), the majority wanted to see a 15.0 -in minimum size limit (15 individuals). Similar to Lake Reba, 5.0% of the anglers that opposed the 12.0 -in minimum size limit preferred it to be changed to a 12.0 -in minimum size limit.

Table 1: Yearly summary of sampling conditions by waterbody, species sampled and date.

Water body	Species	$\begin{gathered} \text { Date } \\ (2017) \end{gathered}$	Time 24hr	Gear	Weather	Water Temp (${ }^{\circ} \mathrm{F}$)	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Cave Run Lake	Muskie	3/27	900	electro	overcast	53	724.51	18	fair	upper section (Poppin Rock/Bangor)
Cave Run Lake	Muskie	3/28	900	electro	overcast	53	724.93	18	good	middle section (Beaver Creek)
Cave Run Lake	Muskie	3/29	900	electro	overcast	52	725.27	36	good	low er section (Dam/Scott's Creek)
Cave Run Lake	LMB	4/17	2000	electro	clear / calm	68	726.95	26	good	upper section (Bangor)
Cave Run Lake	LMB	4/18	2000	electro	clear / calm	63	727.06	52	good	middle section (Clay Lick/Warix)
Cave Run Lake	LMB	4/19	2000	electro	clear / calm	65	727.16	64	good	low er section (Scott's Creek)
Cave Run Lake	SPB	10/16	800	electro	-	-	727.09	-	-	sample for otoliths only
Cave Run Lake	WB	10/24	800	gill net	overcast	65	727.96	-	good	middle and upper section; w indy conditions
Cave Run Lake	WB	10/25	800	gill net	overcast	63	725.97	-	good	middle and upper section
Cave Run Lake	WB	10/26	800	gill net	overcast	59	725.82	-	good	middle and upper section
Grayson Lake	LMB	4/24	2000	electro	clear / calm	61	645.60	44	good	upper section (Caney)
Grayson Lake	LMB	4/25	2000	electro	clear / calm	66	645.55	-	good	middle section (Bruin)
Grayson Lake	LMB	4/26	2025	electro	clear / calm	67	645.50	82	good	low er section (Dam/Deer Creek)
Grayson Lake	LMB	9/25	2000	electro	clear / calm	75	645.61	-	good	middle section (Bruin)
Grayson Lake	LMB	9/26	2000	electro	clear / calm	77	645.58	-	good	upper section (Caney)
Grayson Lake	LMB	9/27	2000	electro	clear / calm	77	645.55	-	good	lower section (Dam/Deer Creek)
Lake Carnico	LMB	4/12	900	electro	sunny/w arm	58	normal	72	good	
Lake Carnico	BG/RE	5/4	930	electro	sunny/w arm	64	normal	69	good	
Greenbo Lake	LMB	4/20	2000	electro	clear	68	normal	88	good	
Greenbo Lake	BG/RE	5/11	945	electro	sun/w arm	65	normal	162	good	
Mill Creek Lake	LMB	4/24	1000	electro	sunny	62	normal	84	good	
Mill Creek Lake	BG/RE	5/18	930	electro	sunny	71	normal	60	good	
Mill Creek Lake	LMB	10/2	930	electro	clear	-	normal	-	good	
Lake Reba	LMB	4/17	1000	electro	sunny	67	normal	38	good	
Lake Reba	BG/RE	5/3	930	electro	sunny	66	normal	48	good	
Lake Reba	LMB	9/25	1000	electro	clear	78	normal	-	good	
S. Fk. Licking R.	"game"	5/31	800	j. electro	sunny	70	$5.45{ }^{\prime}$	12	good	w ater level at Cynthania Gauge; Lair
S. Fk. Licking R.	"game"	5/31	1030	j. electro	sunny	78	5.45	20	good	w ater level at Cynthania Gauge; Airport
S. Fk. Licking R.	"game"	5/31	1300	j. electro	sunny	76	5.45	22	good	w ater level at Cynthania Gauge; Cynthania
S. Fk. Licking R.	"game"	9/7	900	j. electro	sunny	74	-	14	good	above Robinson
Stoner Creek	"game"	9/7	1100	j. electro	sunny	73	normal	22.5	good	Fryman's

Table 2. Relative abundance and CPUE (fish/hour) of muskellunge collected in the upper, middle and lower sections during 17.5 hours of $30-\mathrm{minute}$ runs spread across each area of Cave Run Lake (27-29 March).

nedmuscr.d17

Table 3. Number of fish and mean relative weight $\left(W_{r}\right)$ values for length groups of muskellunge collected across all lake units in Cave Run Lake from 2003-2016.

Table 4. Average length and weight of known-age muskellunge (standard error in parentheses) in comparison to historical averages (collected from known-age muskie from 1989-2003)

	Age class						
	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7
2011	$\begin{array}{lcc} \mathrm{N}= & 33 & \\ \mathrm{~L}= & 14.9 & (0.2) \\ \mathrm{W}= & 0.6 & (0.0) \end{array}$						
2012	$\begin{array}{lcl} \mathrm{N}= & 61 & \\ \mathrm{~L}= & 14.4 & (0.1) \\ \mathrm{W}= & 0.5 & (0.0) \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{N}= & 15 & \\ \mathrm{~L}= & 23.4 & (0.5) \\ \mathrm{W}= & 2.8 & (0.2) \end{array}$					
2013	$\begin{array}{lll} \mathrm{N}= & 74 \\ \mathrm{~L}= & 13.9 & \\ \mathrm{~W}= & 0.5 & (0.1) \\ \hline \end{array}$	$\begin{array}{ccc} \mathrm{N}= & 2 & \\ \mathrm{~L}= & 22.3 & (2.8) \\ \mathrm{W}= & 2.6 & (1.4) \end{array}$	$\begin{array}{lcc\|} \mathrm{N}= & 7 \\ \mathrm{~L}= & 31.0 & (0.4) \\ \mathrm{W}= & 7.5 & (0.5) \end{array}$				
2014	$\begin{array}{lll} \mathrm{N}= & 73 & \\ \mathrm{~L}= & 14.7 & (0.1) \\ \mathrm{W}= & 0.6 & (0.0) \end{array}$	$\begin{array}{lll} N= & 23 & \\ L= & 23.4 & (0.4) \\ W= & 2.9 & (0.2) \end{array}$	$\begin{array}{ccc} \mathrm{N}= & 9 & \\ \mathrm{~L}= & 31.7 & (0.4) \\ \mathrm{W}= & 8.1 & (0.4) \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{N}= & 15 \\ \mathrm{~L}= & 34.0 & (0.8) \\ \mathrm{W}= & 10.2 & (0.9) \end{array}$			
2015							
2016	$\begin{array}{lll} \mathrm{N}= & 40 & \\ \mathrm{~L}= & 14.0 & (0.1) \\ \mathrm{W}= & 0.6 & (0.1) \\ \hline \end{array}$	$\begin{array}{lll} N= & 18 & \\ L= & 23.2 & (0.2) \\ W= & 2.8 & (0.1) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 15 & \\ \mathrm{~L}= & 31.0 & (0.4) \\ \mathrm{W}= & 7.3 & (0.3) \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{N}= & 13 \\ \mathrm{~L}= & 34.2 & (0.5) \\ \mathrm{W}= & 10.2 & (0.6) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 1 \\ \mathrm{~L}= & 39.1 & (--) \\ \mathrm{W}= & 16.0 & (--) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 5 \\ \mathrm{~L}= & 38.5 & (1.0) \\ \mathrm{W}=15.0 & (2.2) \end{array}$	
2017	$\begin{array}{lcl} \mathrm{N}= & 59 \\ \mathrm{~L}= & 13.5 & \\ \mathrm{~W}= & 0.4 & (0.1) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 17 & \\ \mathrm{~L}= & 24.1 & (0.7) \\ \mathrm{W}= & 3.4 & (0.5) \end{array}$	$\begin{array}{lcc} \mathrm{N}= & 23 & \\ \mathrm{~L}= & 29.0 & (0.9) \\ \mathrm{W}= & 6.1 & (0.4) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 17 \\ \mathrm{~L}= & 34.3 & (0.4) \\ \mathrm{W}= & 10.2 & (0.4) \end{array}$	$\begin{array}{ccc} \mathrm{N}= & 9 & \\ \mathrm{~L}= & 37.3 & (0.5) \\ \mathrm{W}= & 13.5 & (0.9) \end{array}$	$\begin{array}{lll} \mathrm{N}= & 5 \\ \mathrm{~L}= & 37.5 & (0.5) \\ \mathrm{W}= & 12.8 & (0.7) \end{array}$	$\begin{array}{rccc} \mathrm{N}= & 4 \\ \mathrm{~L}= & 37.6 & \\ \mathrm{~W}= & 13.4 & (0.8) \end{array}$
Average (Present)	$\begin{array}{\|lll\|} \hline L= & 14.3 & (0.2) \\ W= & 0.5 & (0.0) \\ \hline \end{array}$	$\begin{array}{lll} \hline L= & 23.3 & (0.3) \\ W= & 2.9 & (0.2) \\ \hline \end{array}$	$\begin{array}{\|lcc\|} \hline L= & 30.7 & (0.5) \\ W= & 7.2 & (0.5) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline L=24.2 & (0.1) \\ W= & 10.2 \\ \hline \end{array}$	$\begin{array}{\|cc\|} \hline L=38.2 & (0.9) \\ W=314.8 & (1.8) \\ \hline \end{array}$	$\begin{array}{\|ccc\|} \hline L=38.0 & (0.5) \\ W=313.9 & (1.6) \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{L}=37.6(--) \\ & \mathrm{W}=33.2(--) \\ & \hline \end{aligned}$
Historical	$\mathrm{L}=15.1$	$\mathrm{L}=23.8$	$\mathrm{L}=30.5$	$\mathrm{L}=35.0$	$\mathrm{L}=37.3$	$\mathrm{L}=38.3$	$\mathrm{L}=42.6$
Average	$\mathrm{W}=0.7$	$\mathrm{W}=3.8$	$\mathrm{W}=\quad 7.8$	$W=11.3$	$\mathrm{W}=15.7$	W = 15.3	$W=20.7$

Table 5. Muskellunge assessment for Cave Run Lake spring electrofishing from 1995-2017.

Year		CPUE age-1	Spring CPUE ≥ 20.0 in	Spring CPUE ≥ 30.0 in	Spring CPUE ≥ 36.0 in	Spring CPUE ≥ 40.0 in	Total score	Assessment rating
2017	Value	3.8	5.9	4.1	2.2	0.7	17	Excellent
	Score	3	3	3	4	4		
2016	Value	2.4	3.8	2.4	0.9	0.2	9	Fair
	Score	1	2	2	2	2		
2015*								
2014	Value	4.1	6.1	4.8	2.8	1.1	18	Excellent
	Score	3	3	4	4	4		
2013	Value	4.2	3.4	3.2	1.6	0.6	13	Good
	Score	3	1	3	3	3		
2012	Value	3.5	5.9	4.3	1.9	0.6	16	Good
	Score	2	3	4	4	3		
2011	Value	1.9	5.3	3.7	2.2	0.9	14	Good
	Score	1	2	3	4	4		
2010	Value	6.8	7.4	3.9	1.9	0.6	18	Excellent
	Score	4	4	3	4	3		
2009	Value	2.6	3.9	3.3	1.7	0.7	14	Good
	Score	2	2	3	3	4		
2008	Value	2.7	5.5	3.3	1.3	0.3	13	Good
	Score	2	3	3	3	2		
2007	Value	3.6	2.5	1.8	1.2	0.4	9	Fair
	Score	2	1	1	2	3		
2006	Value	2.4	2.9	2.2	1.2	0.4	9	Fair
	Score	1	1	2	2	3		
2005	Value	2.9	5.5	4.0	2.0	0.8	16	Good
	Score	2	3	3	4	4		
2004	Value	1.3	3.2	2.6	1.3	0.4	10	Fair
	Score	1	1	2	3	3		
2003	Value	1.9	3.2	2.3	1.0	0.3	8	Poor
	Score	1	1	2	2	2		
2002*								
2001	Value	2.3	4.4	3.1	1.5	0.6	11	Fair
	Score	1	2	2	3	3		
2000	Value	1.7	2.8	1.8	0.9	0.3	7	Poor
	Score	1	1	1	2	2		
1999	Value	1.6	3.2	2.3	0.7	0.2	7	Poor
	Score	1	1	2	1	2		
1998	Value	3.8	2.8	2.8	1.0	0.3	10	Fair
	Score	3	1	2	2	2		
1997	Value	2.3	1.7	0.8	0.2	0.5	8	Poor
	Score	1	1	1	2	3		
1996	Value	5.2	4.2	2.4	0.8	0.4	11	Fair
	Score	3	2	2	1	3		
1995	Value	2.9	4.5	2.8	1.6	0.6	12	Fair
	Score	2	2	2	3	3		

nedmuscr.d16-09; nedMS2cr.d08; nedMK1cr.d07; nedmuscr.d06-95

* = Lake was not sampled due to high water

Table 6. Length frequency and CPUE (fish/hr) of black bass collected in 2.0 hours (6.0 hours total) of 30 -minute nocturnal electrofishing runs in each area of Cave Run Lake from 17-19 April.

Area Species		Inch class																			Total	CPUE	Std. error
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Upper	Smallmouth bass																				0		
	Spotted bass	2	1	3	1	5	3	3		4											22	11.0	7.8
	Largemouth bass	8	31	54	37	6	14	28	25	14	35	12	20	26	14	8	5	2	2	1	342	171.0	20.1
Middle	Smallmouth bass		2	4	1												1				8	4.0	2.2
	Spotted bass	3	43	49	22	11	45	53	39	13	4		1		1						284	142.0	13.7
	Largemouth bass	2	13	64	71	20	22	37	33	13	27	27	24	9	6	7	3	2			380	190.0	22.9
Lower	Smallmouth bass	6	16	4	1		1	6	4	2	2		1	4	3						50	25.0	12.0
	Spotted bass	15	39	30	34	37	41	30	14	6	2	1		1							250	125.0	41.1
	Largemouth bass	1	27	46	39	22	31	58	39	18	16	21	12	15	21	4	3	1			374	187.0	40.2
Total	Smallmouth bass	6	18	8	2		1	6	4	2	2		1	4	3		1				58	9.7	5.0
	Spotted bass	20	83	82	57	53	89	86	53	23	6	1	1	1	1						556	92.7	22.0
	Largemouth bass	11	71	164	147	48	67	123	97	45	78	60	56	50	41	19	11	5	2	1	1,096	182.7	15.4

nedpsdcr.d17

Table 7. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Cave Run Lake from 1990-2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. error										
2017	73.5	8.0	55.3	7.4	32.3	3.0	21.5	2.8	0.5	0.3	182.7	15.4
2016	83.8	12.7	99.7	9.2	64.3	8.4	25.5	2.9	1.3	0.6	273.3	22.8
2015*												
2014	59.0	7.5	69.3	10.6	23.8	3.4	20.0	3.1	2.0	0.7	172.0	12.9
2013	93.0	6.1	56.7	5.0	20.7	2.3	17.7	2.3	1.5	0.4	188.0	10.1
2012	46.0	6.7	88.0	4.9	25.5	3.6	18.3	2.4	1.3	0.4	177.8	10.7
2011*												
2010*												
2009*												
2008	25.8	6.2	23.3	2.6	8.3	1.8	3.5	1.0	0.5	0.5	61.0	8.5
2007	67.5	7.2	43.3	3.5	19.9	2.8	7.9	1.3	0.3	0.2	138.7	10.7
2006	50.7	10.1	48.5	7.7	14.7	2.0	10.2	1.4	0.2	0.2	124.0	19.1
2005	75.0	13.1	41.7	6.4	14.7	2.7	7.2	1.6	0.7	0.4	138.5	22.2
2004	29.0	3.0	60.7	5.9	26.0	3.0	14.1	13.5	0.3	0.2	129.8	10.1
2003	41.0	6.0	64.6	5.2	24.8	2.3	20.3	2.9	0.8	0.3	150.6	13.0
2002*												
2001	22.8	3.7	54.7	5.4	27.6	2.3	12.6	1.6	0.3	0.2	117.7	8.6
2000	45.1	4.9	78.3	6.5	26.8	2.9	9.0	1.5	0.4	0.3	159.3	10.7
1999	67.6	7.2	51.3	3.5	21.6	1.8	8.6	1.5			149.0	8.7
1998	18.7	3.5	17.9	2.9	20.6	2.1	6.9	1.5			64.0	7.6
1997	37.1	3.6	50.4	5.2	24.6	2.6	4.4	0.8	0.1	0.1	116.5	10.4
1996	58.9	6.5	42.4	4.0	15.3	1.5	4.0	0.7			116.1	9.5
1995	27.8	5.3	80.5	11.5	36.6	3.9	6.4	0.7	0.1	0.1	151.3	17.9
1994	62.5	7.0	54.7	7.9	38.8	3.1	3.7	0.6	0.3	0.2	159.6	15.5
1993	47.1	5.4	110.7	10.3	36.2	4.8	4.9	0.8	0.3	0.1	198.8	15.3
1992	52.0	4.3	77.9	5.1	21.9	1.8	2.8	0.6	0.2	0.1	152.8	6.8
1991	32.5	4.7	64.5	4.9	31.0	2.1	6.3	1.0	0.4	0.2	134.3	7.2
1990	23.3	2.7	43.0	2.7	18.5	2.2	3.4	0.9	0.2	0.1	88.2	5.8

Table 8. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples in each area of Cave Run Lake; 95\% confidence intervals are in parentheses.

Area	Species	No. ≥ 8.0 in	PSD ($\pm 95 \%$)		$\mathrm{RSD}_{\mathrm{a}}(\pm 95 \%)$	
Upper	Smalllmouth bass	0				
	Spotted bass	15	27	(± 23)		
	Largemouth bass	206	61	(± 7)	28	(± 6)
Middle	Smalllmouth bass	1	100	(± 100)		
	Spotted bass	167	11	(± 5)		
	Largemouth bass	210	50	(± 7)	1	(± 2)
Lower	Smalllmouth bass	23	52	(± 21)	35	(± 20)
	Spotted bass	132	8	(± 5)	1	(± 1)
	Largemouth bass	239	39	(± 6)	18	(± 5)
Total	Smallmouth bass	24	54	(± 20)	38	(± 20)
	Spotted bass	314	11	(± 3)	1	(± 1)
	Largemouth bass	655	49	(± 4)	20	(± 3)

a: Largemouth bass $=R_{\text {RS }}^{15}$, spotted and smallmouth bass $=R_{14}$
nedpsdcr.d17

Table 9. Population assessment of largemouth bass based on samples collected at Cave Run Lake 2000-2017.

* = Lake was not sampled due to high water
nedpsdcr.d00-d17

Table 10. Mean back calculated lengths (in) at each annulus for spotted bass collected from Cave Run Lake in November 2017, includes 95% confidence interval (CI) for mean length for each age class.

Year	No.	Age						
		1	2	3	4	5	6	7
2017	0							
2016	28	4.3						
2015	16	4.8	7.5					
2014	7	3.9	7.1	8.7				
2013	6	4.2	6.4	8.2	9.3			
2012	2	4.3	6.9	8.6	9.9	10.9		
2011	1	4.3	7.5	9.4	10.6	11.6	12.0	
2010	1	4.8	7.8	9.4	9.8	10.3	10.6	10.9
Mean		4.4	7.2	8.6	9.6	10.9	11.3	-
Number		61	33	17	10	4	2	1
Smallest		2.9	5.8	6.9	8.1	10.1	10.6	
Largest		6.2	8.7	9.6	11.0	11.8	12.0	
Std. error		0.1	0.1	0.2	0.3	0.4	0.7	
95\% Cl (\pm)		0.4	0.5	0.7	1.1	1.7	2.6	

Table 11. Population assessment of spotted bass based on samples collected at Cave Run Lake 2000-2017. (Scoring for "Mean Length at age-3" is based on the 2017 age and growth samples and is reflective of previous studies done by the now-defunct Black Bass Research Section.)

Year		$\begin{aligned} & \hline \text { Mean Length } \\ & \text { age-3 } \end{aligned}$	$\begin{gathered} \hline \text { Spring CPUE } \\ 11.0-13.9 \end{gathered}$	$\begin{aligned} & \hline \text { Spring CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Spring CPUE age-1	Total score	Assessment rating			
2017	Value	9.7	5.0	0.5	27.2	8	Fair			
	Score	1	1	2	4					
2016	Value	(1)	5.3	0.8	24.8	8	Fair			
	Score		1	2	4					
2015*	Value									
2014	Value	(1)	1.8	0.3	10.8	7	Fair			
	Score		1	1	4					
2013	Value	(1)	4.2	0.3	11.8	7	Fair			
	Score		1	1	4					
2012	Value	(1)	7.0	0.2	20.0	8	Fair			
	Score		2	1	4					
2011*										
	Score									
2010*	Value									
	Score									
2009*	Value									
	Score									
2008	Value	(1)	0.7	0.0	7.8	7	Fair			
	Score		1	1	4					
2007	Value	(1)	2.3	0.2	13.6	7	Fair			
	Score		1	1	4					
2006	Value	(1)	2.8	0.3	15.3	7	Fair			
	Score		1	1	4					
2005	Value	(1)	1.7	0.3	9.2	7	Fair			
	Score		1	1	4					
2004	Value	(1)	2.9	0.4	5.9	8	Fair			
	Score		1	2	4					
2003	Value	(1)	3.0	0.4	13.3	8	Fair			
	Score		1	2	4					
2002*	Value									
	Score									
2001	Value	(1)	2.5	0.3	9.0	7	Fair			
	Score		1	1	4					
2000	Value		2.7	0.0	13.6	7	Fair			
	Score	(1)	1	1	4					

Table 12. Length frequency and CPUE (fish/nn) for white bass collected in 15 net-nights of sampling at Cave Run Lake from 24-26 October.

Species	Inch class										Total	CPUE	Std. error
	6	7	8	9	10	11	12	13	14	15			
White bass	2	29	4		1	24	47	102	74	5	288	19.2	3.5

nedwtbcr.d17

Table 13. Number of fish and mean relative weight (Wr) values for length groups of white bass collected in Cave Run Lake by gill netting. Standard errors are in parentheses.

Year	Length group											
	6.0-8.9 in			9.0-11.9 in			≥ 12.0 in			Overall		
	No.	W_{r}	s.e.									
2017	35	89	1	25	86	1	228	91	0	288	90	0
2014				7	81	2	25	85	1	34	85	1
2011	19	88	2	40	89	1	173	96	1	232	94	1
2008	22	93	2	19	90	2	94	92	1	135	92	1
2007	8	95	3	32	88	1	98	93	1	138	92	1

nedwtbcr.d17, d14, d11, d08, d07

Table 14. Mean back calculated lengths (in) at each annulus for white bass collected from Cave Run Lake in October 2017, includes
95\% confidence interval (Cl) for mean length for each age class.

		Age			
Year	No.	1	2	3	4
2017	0				
2016	12	8.3			
2015	103	8.8	12.2		
2014	3	8.4	12.2	13.8	
2013	1	8.8	12.9	14.3	15.2
Mean		8.8	12.2	13.9	15.2
Number		119	107	4	1
Smallest		6.3	10.4	13.1	
Largest	10.6	13.4	14.4		
Std. error		0.1	0.1	0.3	
95\% Cl (\pm)	0.3	0.3	1.1		
nedaagcr.d17					

nedaagcr.d17

Table 15. Age frequency and CPUE (fish/nn) of white bass sampled using gill nets for 15 net-nights at Cave Run Lake in October 2017.

Age	Inch class										Total	\%	CPUE	Std. error
	6	7	8	9	10	11	12	13	14	15				
0	2	29	4								35	12	2.3	0.8
1					1	24	4	2			31	11	2.1	0.6
2							43	100	72	2	217	75	14.4	2.6
3									2	2	4	2	0.3	0.1
4										1	1	0	0.1	0.0
Total	2	29	4		1	24	47	102	74	5	288	100		
\%	1	10	1		0	8	16	35	26	2	100			

Table 16. Population assessment using statewide criteria for white bass based on fall sampling from 1993 through 2017 at Cave Run Lake.
$\left.\begin{array}{llcccccc}\hline & & \begin{array}{c}\text { CPUE } \\ \text { age-1 } \\ \text { and older }\end{array} & \begin{array}{c}\text { Mean length } \\ \text { age-2 } \\ \text { at capture }\end{array} & \begin{array}{c}\text { CPUE } \\ \geq 12.0 \text { in }\end{array} & \begin{array}{c}\text { CPUE } \\ \text { age-1 }\end{array} & \begin{array}{c}\text { Total } \\ \text { score }\end{array} & \begin{array}{c}\text { Assessment } \\ \text { rating }\end{array} \\ \hline 2017 & \text { Value } & 16.8 & 13.6 & 15.2 & 2.1 & 12 & \text { Good } \\ & \text { Score } & 3 & 3 & 4 & 2\end{array}\right)$
nedwtbcr.d17, d14, d11, d07, d05, d03, d98, d93

Table 17. Length frequency and CPUE (fish/hr) of black bass collected in 4.5 hours (1.5 hours in each area; 3-30-minute runs) of nocturnal electrofishing for black bass in Grayson Lake from 24 to 26 April.

Area/Species	Inch class																		Total	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Upper																					
Spotted bass		1					3	1	2										7	4.7	2.4
Largemouth bass	4	21	34	21	3	20	22	23	16	20	8	4	3	2	3		2	1	207	138.0	22.7
Middle																					
Spotted bass	1	8	7	2	2	5	8	3	2										38	25.3	6.4
Largemouth bass	1	55	93	40	16	75	35	16	26	24	2	4	3	2	2	3	3	1	401	267.3	33.1
Lower																					
Spotted bass	8	43	15	6	15	18	17	7	6	2									137	91.3	7.5
Largemouth bass	2	42	48	16	13	113	53	49	34	15	9	3	4	2	1	2	4	2	412	274.7	17.3
Total																					
Spotted bass	9	52	22	8	17	23	28	11	10	2									182	40.4	13.4
Largemouth bass	7	118	175	77	32	208	110	88	76	59	19	11	10	6	6	5	9	4	1020	226.7	25.5

nedpsdgl.d17

Table 18. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Grayson Lake from 1999-2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. err.										
2017	90.9	13.7	107.1	17.9	19.8	2.3	8.9	1.3	0.9	0.5	226.7	25.5
2016	178.3	15.4	93.7	7.4	15.7	2.4	11.0	1.5	1.7	1.0	298.7	16.1
2015	55.1	14.2	90.9	12.5	18.9	4.0	14.9	2.6	3.3	0.9	179.8	27.8
2014	53.5	10.7	97.3	11.3	12.7	1.6	13.5	2.0	2.2	0.7	176.9	18.3
2013	75.2	11.3	78.2	5.7	13.2	1.5	16.3	2.1	1.5	0.4	182.8	14.4
2012	67.0	11.4	91.0	6.5	16.8	2.2	13.3	2.8	0.3	0.3	188.0	16.1
2011*												
2010*												
2009	22.8	4.0	41.0	4.2	17.0	2.7	12.7	2.0	0.8	0.3	93.5	10.3
2008	25.7	7.2	22.5	4.4	11.5	2.5	3.7	0.9	0.3	0.2	63.3	11.5
2007	48.0	8.0	46.8	3.8	16.0	2.1	5.0	0.8	0.2	0.2	115.8	11.6
2006	18.8	2.9	55.5	7.4	23.7	3.9	5.3	1.1	0.3	0.2	103.3	10.1
2005	50.1	8.0	70.2	7.9	25.1	3.7	2.9	0.5	0.2	0.2	148.3	15.9
2004	162.3	22.0	77.8	10.1	12.9	1.4	2.9	0.6	0.3	0.2	255.9	31.9
2003	128.3	10.7	79.5	6.5	6.3	0.8	2.2	0.6	0.7	0.4	216.3	15.1
2002	132.5	17.9	54.5	5.5	4.8	1.4	3.0	0.8	0.8	0.4	194.8	22.7
2001	220.8	30.6	54.2	3.2	6.7	0.9	2.2	0.5	0.2	0.2	283.9	30.2
2000	143.3	20.6	65.7	5.9	13.4	1.5	6.7	1.0	0.3	0.2	229.1	25.9
1999	172.7	21.6	102.4	10.1	24.1	2.1	4.6	0.7	0.2	0.2	303.8	31.3

[^29]Table 19. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples in each area of Grayson Lake; 95% confidence intervals are in parentheses.

Area	Species	No. ≥ 8.0 in	PSD ($\pm 95 \%)$	$R_{\text {RSD }}(\pm 95 \%)$		
Upper	Spotted bass	6	33	(± 41)		
	Largemouth bass	124	35	(± 8)	9	(± 5)
Middle	Spotted bass	20	10	(± 13)		
	Largemouth bass	196	22	(± 6)	7	(± 4)
Lower	Spotted bass	65	12	(± 8)		
	Largemouth bass	291	14	(± 4)	5	(± 3)
Total	Spotted bass	91	13	(± 7)		
	Largemouth bass	611	21	(± 3)	7	(± 2)

a:Largemouth bass $=$ RSD $_{15}$, spotted bass $=$ RSD $_{14}$
nedpsdgl.d17

Table 20. Population assessment of largemouth bass based on samples collected at Grayson Lake from 2000-present (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{gathered} \text { Spring } \\ \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	Spring CPUE ≥ 15.0 in	Spring CPUE ≥ 20.0 in	Spring CPUE age-1	Total score	Assessment rating	Instantaneous mortality (z)	Annual mortality (A)\%
2017	Value	12.2	19.8	8.9	0.9	85.1	13	Good	-0.659	48.30\%
	Score	2	2	2	3	4				
2016	Value	2	15.7	11.0	1.7	169.3	12	Fair		
	Score		1	2	3	4				
2015	Value	2	18.9	14.9	3.3	53.8	15	Good		
	Score		2	3	4	4				
2014	Value	2	12.7	13.5	2.2	46.9	14	Good		
	Score		1	3	4	4				
2013	Value	2	13.2	16.3	1.5	73.2	14	Good		
	Score		1	3	4	4				
2012	Value	2	16.8	13.3	0.3	48.5	13	Good		
	Score		2	3	2	4				
2011	Value									
	Score									
2010	Value									
	Score									
2009	Value		17.0	12.7	0.8	19.9	11	Fair	-0.361	30.30\%
	Score	2	2	2	3	2				
2008	Value	11.6	11.5	3.7	0.3	21.3	8	Poor	-0.445	35.90\%
	Score	2	1	1	2	2				
2007	Value	1	16.0	5.0	0.2	45.9	9	Fair	-0.538	41.60\%
	Score		1	1	2	4				
2006	Value	1	23.7	5.3	0.3	17.3	9	Fair	-5.350	41.50\%
	Score		3	1	2	2				
2005	Value	1	25.1	2.9	0.2	46.8	11	Fair	-0.731	51.90\%
	Score		3	1	2	4				
2004	Value	1	12.9	2.9	0.3	40.4	8	Poor		
	Score		1	1	2	3				
2003	Value	1	6.3	2.2	0.7	125.2	10	Fair		
	Score		1	1	3	4				
2002	Value		4.8	3.0	0.8	127.2	10	Fair		
	Score	1	1	1	3	4				
2001	Value	10.7	6.7	2.2	0.2	218.1	9	Fair		
	Score	1	1	1	2	4				
2000	Value	10.5	13.4	6.7	0.3	130.8	10	Fair		
	Score	1	1	2	2	4				

nedpsdgl.d00-d17; nedaaggl.d03,d08,d17

Table 21. Mean back-calculated lengths (in) at each annulus for largemouth bass collected from Grayson Lake from 25 to 27 September 2017, including the range of length of bass at each age and the 95% confidence intervals for each age class.

		Age										
Year	No.	0	1	2	3	4	5	6	7	8	9	10
2017	32	4.9										
2016	36		5.7									
2015	25		5.5	8.8								
2014	19		5.7	9.1	11.0							
2013	17		5.9	9.2	11.0	12.4						
2012	9		5.6	8.6	10.6	12.0	13.4					
2011	6		6.2	9.9	11.8	12.9	14.1	15.4				
2010	4		5.9	9.1	11.3	13.0	14.0	14.9	15.6			
2009	2		5.4	9.3	11.0	12.3	13.5	14.4	14.8	15.4		
2008	1		5.7	9.0	11.0	12.7	13.9	15.8	17.0	17.8	18.2	
2007	1		6.5	10.1	12.2	13.8	15.3	16.3	17.1	17.4	17.7	18.3
Mean		4.9	8.9	10.6	12.2	13.2	14.9	15.4	17.7	18.3	17.7	18.3
Number		32	120	84	59	40	23	14	8	4	2	1
Smallest		3.6	3.9	7.2	9.0	10.5	11.1	13.2	13.8	15.1	17.7	
Largest		6.3	7.5	11.0	13.2	15.1	16.9	18.3	18.0	17.8	18.2	
Std error		0.1	0.1	0.1	0.1	0.2	0.3	0.4	0.5	0.7	0.3	
$\underline{95 \% ~ C I ~(+) ~}$			0.2	0.3	0.5	0.7	1.2	1.6	2.1	2.6	1.0	

Otoliths were used for age-determinations; Intercept=0
nedaaggl.d17

Table 22. Comparison of mean back-calculated lengths (in) for largemouth bass collected from different locations of Grayson Lake in 2017.

		Age					
Location	Year	1	2	3	4	5	6
	Number	44	28	21	13	9	4
Upper	Mean	5.5	8.9	10.8	12.1	13.7	16.0
Lake	Smallest	3.9	7.2	9.0	10.5	11.5	13.7
	Largest	7.3	11.0	13.2	14.7	16.9	18.3
	Std error	0.1	0.2	0.2	0.4	0.6	1.0
	Number	37	26	18	10	4	1
Middle	Mean	5.7	8.9	11.0	12.4	13.5	14.7
Lake	Smallest	4.5	7.8	9.4	10.5	11.1	
	Largest	7.0	10.6	12.7	14.5	16.2	
	Std error	0.1	0.2	0.2	0.4	0.1	
	Number	31	22	12	9	2	1
Lowery	Mean	6.0	9.3	11.4	12.7	14.0	13.7
Lake	Smallest	4.8	8.2	10.2	11.6	12.9	
	Largest	7.0	10.9	12.7	14.1	15.1	
	Std error	0.1	0.1	0.2	0.3	1.1	
	Number	112	76	51	32	15	6
Total	Mean	5.7	9.0	11.0	12.4	13.7	15.4
Lake	Smallest	3.9	7.2	9.0	10.5	11.1	13.7
	Largest	7.3	11.0	13.2	14.7	16.9	18.3
	Std error	0.1	0.1	0.1	0.2	0.4	0.7

Table 23. Length frequency and CPUE (fish/hr) of black bass collected in 4.5 hours (1.5 hours in the upper, middle and lower areas) of nocturnal electrofishing (3-30-minute runs) for black bass in Grayson Lake from 25 through 27 September.

Area/Species	Inch class																			Total	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Upper																						
Smallmouth bass																				0		
Spotted bass					1			1												2	1.3	1.3
Largemouth bass	4	12	1	11	54	15	18	15	14	9	4	9	3	2	2	1	2	1	1	178	118.7	24.8
Middle																						
Smallmouth bass		2																		2	1.33	0.67
Spotted bass		25	20	4	8	1	5	6	4		1									74	49.3	13.7
Largemouth bass		26	127	25	33	125	45	49	23	7	5	6		2		2				475	316.7	10.1
Lower																						
Smallmouth bass		6											1							7	4.7	4.7
Spotted bass	9	84	13	31	41	10	18	6	1	2										215	143.3	45.4
Largemouth bass		84	116	18	14	50	44	50	25	12	2	3	3	1						422	281.3	14.9
Total																						
Smallmouth bass		8											1							9	2.0	1.5
Spotted bass	9	109	33	35	50	11	23	13	5	2	1									291	64.7	24.9
Largemouth bass	4	122	244	54	101	190	107	114	62	28	11	18	6	5	2	3	2	1	1	1075	238.9	31.7

Table 24. Number of fish and mean relative weight $\left(\mathrm{W}_{\mathrm{r}}\right)$ values for length groups of black bass collected in Grayson Lake sampled by nocturnal electrofishing.

Species	Area	Length group											
		8.0-11.9 in			12.0-14.9 in			≥ 15.0 in			Overall		
Largemouth bass		No.	Wr	s.e.	No.	W_{r}	s.e.	No.	W_{r}	s.e.	No.	Wr	s.e.
	Lower	166	81	0.8	17	78	1.7	4	83	2.7	187	81	0.7
	Middle	238	86	3.2	18	82	1.8	4	97	2.6	260	86	2.9
	Upper	60	81	1.1	22	90	2.1	12	90	2.0	94	84	0.9
	Total	464	84	1.7	57	84	1.3	83	90	1.7	541	84	1.5
Spotted bass		7.0-10.9 in			11.0-13.9 in			≥ 14.0 in			Overall		
		No.	W_{r}	s.e.									
	Lower	33	96	4.7	3	87	2.7				36	95	4.3
	Middle	12	96	4.1	5	92	2.6				17	95	3.0
	Upper	1	90	-							1	90	-
	Total	46	96	3.5	8	90	2.0				54	95	3.0
Smallmouth bass		7.0-10.9 in			11.0-13.9 in			≥ 14.0 in			Overall		
		No.	W_{r}	s.e.									
	Lower Middle	1	72	-							1	72	-
	Upper Total	1	72	-							1	72	-

Table 25. Indices of year class strength at age 0 and age 1 and mean lengths (in) of largemouth bass collected in September while nocturnal electrofishing at Grayson Lake.

Year class	Area	Age 0		Age 0		Age $0 \geq 5.0$ in		Age 1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2017	Total	5.2	0.0	91.1	20.1	63.1	15.3		
2016	Total	4.7	0.0	116.4	24.1	38.9	9.7	85.1	12.7
2015	Total	4.8	0.0	126.0	16.7	48.7	8.6	169.3	15.1
2014	Total	4.6	0.0	101.8	15.7	31.8	8.3	53.8	14.3
2013	Total	4.3	0.0	81.3	11.2	15.3	3.3	46.9	9.5
2012	Total	4.5	0.0	139.1	23.0	41.8	6.1	65.7	9.1
2011	Total	4.0	0.0	83.6	15.0	11.1	2.6	48.5	12.0
2010	Total	4.8	0.0	98.2	17.3	42.0	6.9	*	*
2009	Total	4.1	0.1	33.1	5.7	4.2	1.4	*	*
2008	Total	4.1	0.0	66.0	16.4	8.7	2.8	19.9	3.8
2007	Total	4.3	0.1	44.9	9.2	12.9	2.8	29.8	10.0
2006	Total	4.1	0.0	87.1	17.9	12.0	2.6	45.9	8.0
2005	Total	4.0	0.0	72.3	17.0	11.7	2.2	17.3	2.8
2004	Total	4.3	0.1	40.4	5.7	11.3	2.1	46.8	7.8
2003	Total	4.3	0.0	59.1	6.8	10.4	1.7	158.9	21.7

* No sample collected due to high water
nedwrsgl.d17; nedbsigl.d16-d13; nedwrsgl.d12-d03; nedpsdgl.d17-d12, d09-d04
nedaaggl.d03, d08

Table 26. Length frequency and CPUE (fish/hr) of black bass collected in 1.5 hours ($6-15$-minute runs) of diurnal electrofishing for largemouth bass in Lake Carnico on 12 April.

	Inch class																					Total	CPUE	Std. error
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	1	1	2	2	6	3	5	7	6	9	11	19	28	36	20	14	5	6			1	182	121.3	13.8

nedpsdlc.d17

Table 27. Spring electrofishing CPUE (fish/hr) for various length groups of largemouth bass collected at Lake
Carnico from 2000 to 2017.

Year	Length group											
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in		Total	
	CPUE	s.e.										
2017	10.0	0.9	18.0	3.7	38.7	6.1	54.7	5.5	0.7	0.7	121.3	13.8
$2016{ }^{\text {a }}$												
2015	7.3	1.6	21.3	2.2	22.0	3.5	22.0	4.2	2.7	1.3	72.7	8.2
$2014{ }^{\text {a }}$												
2013	40.0	6.2	77.3	8.6	34.7	4.7	22.0	4.7	2.0	1.4	174.0	13.4
2012	52.0	7.9	44.7	10.8	23.3	3.3	14.7	2.5	0.0		134.7	15.9
2011	22.0	3.7	24.0	5.8	24.0	2.3	9.3	2.0	0.0		79.3	8.9
2010	20.0	5.9	26.7	4.0	28.0	4.7	12.0	3.4	1.3	0.8	86.7	9.2
2009	38.7	7.0	29.3	5.2	18.7	2.9	8.7	1.6	1.3	0.8	95.3	10.8
2008	2.7	0.8	16.0	4.5	9.3	2.5	8.0	2.1	1.3	0.8	36.0	7.3
2007	40.0	8.1	108.7	9.0	31.3	3.9	14.7	2.5	1.3	1.3	194.7	10.3
2006	28.7	5.1	41.3	8.6	18.0	3.7	9.3	2.9	0.7	0.7	97.3	18.1
2005	24.0	5.6	64.7	8.5	24.7	3.3	14.0	1.7	0.7	0.7	127.3	12.6
2004	56.7	13.4	121.3	15.6	36.0	5.2	19.3	3.0	0.7	0.7	233.3	34.7
2003	42.7	9.5	47.7	6.3	34.0	4.7	13.3	4.1	1.3	0.8	164.7	15.8
2002	49.0	9.4	51.0	17.1	30.0	7.8	9.0	1.9	0.0		139.0	29.6
2001	35.0	5.0	51.0	8.5	28.0	5.9	6.0	2.6	0.0		123.0	11.3
2000	28.0	6.3	41.0	3.0	16.0	5.7	9.0	3.0	1.0	1.0	94.0	15.9
$\begin{aligned} & \text { nedpsdlc.d17-d00 } \\ & \mathrm{a}=\text { sample not collected } \end{aligned}$												

Table 28. Largemouth bass PSD and RSD_{15} values from spring electrofishing at Lake Carnico.

Year	No. ≥ 8.0 in	PSD ($\pm 95 \% \mathrm{Cl})$		$\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})$	
2017	167	84	± 06	49	± 08
2016^{a}					
2015	24	67	± 09	34	± 09
$2014^{\text {a }}$					
2013	201	42	± 07	16	± 05
2012	124	46	± 09	18	± 07
2011	86	58	± 10	16	± 08
2010	100	60	± 19	18	± 15
2009	85	48	± 11	15	± 08
2008	50	52	± 14	24	± 12
2007	232	30	± 06	10	± 04
2006	103	40	± 10	14	± 07
2005	155	37	± 08	14	± 06
2004	265	31	± 06	11	± 04
2003	183	39	± 07	11	± 05
2002	90	43	± 10	10	± 06
2001	85	40	± 11	7	± 06
2000	66	38	± 12	14	± 08
nedpsdlc.d17-d00					
a 20					

Table 29. Population assessment of largemouth bass based on samples collected at Lake Carnico from 2004-2017 (scoring based on statewide assessment).

nedpsdlc.d17-d04; nedaaglc.d03,d08, d17
${ }^{\mathrm{a}}=$ sample not collected

Table 30. Mean back-calculated lengths (in) at each annulus for largemouth bass collected from Lake Carnico, including size range at each age and 95% confidence intervals.

		Age							
Year	No.	1	2	3	4	5	6	7	
2017	0								
2016	29	4.2							
2015	10	4.6	8.6						
2014	3	4.9	9.3	11.5					
2013	1	4.2	8.3	10.6	12.2				
2010	1	5.5	9.7	13.8	16.3	18.0	18.7	19.4	
Mean		4.4	8.8	11.8	14.3	18.0	18.7	19.4	
Number		44	15	5	2	1	1	1	
Smallest		3.0	7.0	10.0	12.2				
Largest		6.1	10.3	13.8	16.3				
Std Error		0.1	0.2	0.7	2.1				
95\% Cl (\pm)		0.4	1.0	2.7	8.1				
Otilns									

Otoliths were used for age determination; Intercept $=0$
nedaaglc.d17

Table 31. Length frequency and CPUE (fish/hr) of black bass collected in 1.5 hour (6-15-minute runs) of diurnal electrofishing for largemouth bass in Lake Carnico on 4 October.

	Inch class																			Total	CPUE	Std. error
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	11	5	16	9	8	7	3	4	3	4	2	4	1	2	2	2	1		2	86	57.3	9.3

[^30]Table 32. Number of fish and mean relative weight $\left(W_{r}\right)$ values for length groups of largemouth bass collected in Lake Carnico.

Year	Length group											
	8.0-11.9 in			12.0-14.9 in			≥ 15.0 in			Overall		
	No.	W ${ }_{\text {r }}$	s.e.	No.	W_{r}	s.e.	No.	W	s.e.	No.	Wr	s.e.
2017	14	96	16	7	89	4	9	90	5	30	93	8
2011	45	90	1	21	90	1	6	99	2	72	90	1
2010	33	89	1	31	90	1	13	98	1	77	91	1
2009	41	86	2	22	88	2	7	92	3	70	87	1
2008	48	85	1	19	86	2	10	80	8	77	85	1
2007	101	96	7	31	88	1	8	90	2	140	94	8
2006	87	83	1	41	85	1	13	91	2	141	84	1

nedwrslc.d06-d17

Table 33. Length frequency and CPUE (fish/hr) for sunfish collected in 1 hour of electrofishing (4-15-minute runs) at Lake Carnico (Nicholas Co.) on 4 May.

	Inch class							Total	CPUE	Std. error
	1	2	3	4	5	6	7			
Bluegill	4	36	52	33	23	5		153	153.0	20.9
Redear sunfish			11	3	14	4	1	33	33.0	5.3

nedsungb.d17

Table 34. Spring electrofishing CPUE (fish/hr) for various length groups of bluegill collected at Lake Carnico in 2003, 2006-2017.

Year	Inch class										Total		Total (excluding < 3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in				
	CPUE	s.e.											
2017	40.0	14.0	108.0	10.7	5.0	1.0	5.0	1.0			153.0	20.9	113.0
2012			74.0	11.9	8.0	2.1	8.0	2.1			82.0	12.6	82.0
2011	338.0	49.5	177.0	37.9	4.0	4.0	4.0	4.0			519.0	35.6	181.0
2010	446.0	71.4	520.0	65.4	60.0	26.1	57.7	25.1			1026.0	121.9	580.0
2009	214.0	42.6	109.0	23.2	59.0	20.9	59.0	20.9			382.0	79.9	168.0
2008	292.0	42.1	58.0	14.9	7.0	2.8	7.0	2.8			357.0	38.0	65.0
2007	140.8	27.4	54.4	14.0	0.8	0.8	55.2	13.8	0.8	0.8	196.0	38.3	56.0
2006	540.0	73.1	382.4	31.0	47.2	11.2	47.2	11.2			969.6	93.6	429.6
2003	160.8	23.8	134.4	22.4	24.0	6.9	24.0	6.9			319.2	39.5	158.4

nedsunlc.d17, d12-d06, d03

* In 2012 <3.0-in fish were not collected.

Table 35. Bluegill PSD and RSD_{8} values from spring
electrofishing at Lake Carnico; 95\% confidence limits are in parentheses.

Year	No. ≥ 3.0 in	PSD $(\pm 95 \% \mathrm{Cl})$	$\mathrm{RSD}_{8}(\pm 95 \% \mathrm{CI})$	
2017	113	4	(± 4)	
2012	82	10	(± 6)	
2011	181	2	(± 2)	
2010	580	10	(± 5)	
2009	168	35	(± 7)	
2008	65	11	(± 8)	
2007	245	15	(± 5)	
2006	537	11	(± 3)	
2003	198	28	(± 6)	0.4

nedsunlc.d17, d12-d06, d03

Table 36. Mean back-calculated lengths (in) at each annulus for bluegill collected from Lake Carnico, including size range at each age and 95% confidence intervals.

		Age					
Year	No.	1	2	3	4	5	
2017	0						
2016	10	2.7					
2015	14	2.4	3.5				
2014	5	2.4	3.2	4.0			
2013	14	2.5	3.8	4.7	5.4	6.2	
2012	5	2.4	4.0	4.9	5.6	6.2	
Mean		2.5	3.6	4.6	5.5	6.2	
Number		48	38	24	19	5	
Smallest		1.7	2.6	3.4	4.4	5.6	
Largest		3.2	4.4	5.3	6.2	6.6	
Std error		0.1	0.1	0.1	0.1	0.2	
95\% CI (\pm)		0.2	0.3	0.4	0.4	0.7	

Otoliths were used for age determination; Intercept $=0$
nedaaglc.d17

Table 37. Age frequency and CPUE of bluegill sampled in 2017.

	Inch class								
Age	3	4	5	6	7	Total	$\%$	CPUE	Std. error
1	30					30	20	30.0	10.3
2	6	47	10			63	42	62.7	11.8
3		5	13			18	12	18.4	3.3
4			10	21	1	32	21	31.8	3.5
5				2	4	6	4	6.1	1.1
Total	36	52	33	23	5	149	100		
$\%$	24	35	22	15	3	100			
nedsunlc.d17; nedaaglc.d17									

Table 38. Population assessment for bluegill based on samples collected at Lake Carnico from 2006-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Total score	Assessment rating	Instantaneous mortality (z)	Annual mortality (A)\%
2017	Value	3.5	$5+$	5.0	0.0	4	Poor	-0.648	47.70\%
	Score	2	1	1	0				
2012	Value			8.0	0.0				
	Score			1	0				
2011	Value	4.1	3+	4.0	0.0	6	Poor	-1.221	70.50\%
	Score	2	3	1	0				
2010	Value	4.1	3+	60.0	0.0	8	Fair	-1.088	66.30\%
	Score	2	3	3	0				
2009	Value	5.3	3+	59.0	0.0	10	Fair	-0.506	39.70\%
	Score	4	3	3	0				
2008	Value	5.3	3+	7.0	0.0	8	Fair	-0.759	53.20\%
	Score	4	3	1	0				
2007	Value	5.3	4+	0.8	0.0	7	Fair	-0.561	42.90\%
	Score	4	2	1	0				
2006	Value	5.3	4+	47.2	0.0	8	Fair	-0.037	31.10\%
	Score	4	2	2	0				

nedsunlc.d06-17; nedaaglc.d06, d10, d17

Table 39. Spring electrofishing CPUE (fish/hr) for various length groups of redear collected at Lake Carnico in 2003, 2006-2017.

Year	Inch class														Total (excluding < 3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in		≥ 10.0 in		Total		
	CPUE	s.e.													
2017	28.0	4.0	5.0	1.9			5.0	1.9					33.0	5.3	5.0
2012	*	*	5.0	2.1	7.0	5.1	7.0	5.1					12.0	6.4	12.0
2011	3.0	2.1	12.0	7.4	2.0	2.0	2.0	2.0					17.0	10.4	14.0
2010	3.0	1.5	8.0	4.0	4.0	2.1	3.9	2.1					15.0	3.8	12.0
2009			2.0	1.3	5.0	2.1	7.0	3.8	2.0	2.0			9.0	4.9	9.0
2008			1.0	1.0	3.0	2.1	5.0	3.0	2.0	1.3			6.0	2.9	6.0
2007			4.0	1.8	1.6	1.1	1.6	1.1					5.6	2.4	5.6
2006	2.4	1.2	4.8	2.7	8.8	3.9	8.8	3.9					22.9	5.9	13.6
2003	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8					4.0	1.8	1.6

nedsunlc.d17, d12-d06, d03

* In 2012 <3.0-in fish were not collected.

Table 40. Redear PSD and RSD_{9} values from spring electrofishing
at Lake Carnico; 95\% confidence limits are in parentheses.

Year	No. ≥ 3.0 in	PSD $(\pm 95 \% \mathrm{Cl})$	$\mathrm{RSD}_{9}(\pm 95 \% \mathrm{Cl})$	
2017	22	4	(± 9)	
2012	12			
2011	9	11	(± 20)	
2010	11	18	(± 24)	
2009	8	75	(± 32)	
2008	6	50	(± 44)	
2007	5			
2006	13	62	(± 28)	
nedsunlc.d17,d12-d06				

Table 41. Mean back-calculated lengths (in) at each annulus for redear collected from Lake Carnico, including size range at each age and 95% confidence intervals.

		Age					
Year	No.	1	2	3	4	5	
2017	0						
2016	0						
2015	10	2.3	3.5				
2014	12	2.6	3.9	5.0	6.3		
2013	5	2.8	4.3	5.3	6.4	6.2	
2012	1	2.9	5.3	6.0	6.4		
Mean		2.5	3.9	5.1	6.3	6.2	
Number		28	28	18	6	1	
Smallest		1.9	3.0	4.3	5.1		
Largest		3.6	5.3	6.0	7.4		
Std error		0.1	0.1	0.1	0.3		
95% CI (\pm)		0.3	0.4	0.5	1.2		
O							

Otoliths were used for age determination; Intercept $=0$
nedaaglc.d17

Table 42. Age frequency and CPUE of redear sampled in 2017.

	Inch class								
Age	3	4	5	6	7	Total	$\%$	CPUE	Std. error
1						0			
2	11					11	33	11.0	1.0
3		3	12			15	47	15.4	3.4
4			2	3	1	6	17	5.6	1.6
5				1		1	3	1.0	0.6
Total	11	3	14	4	1	33	100		
$\%$	33	9	42	12	3	100			
nedsunlc.d17; nedaaglc.d17									

Table 43. Population assessment for redear based on samples collected at Lake Carnico from 2006-2012 (scoring based on statewide assessment).

Year		```Mean length age-3 at capture```	$\begin{gathered} \text { Years to } \\ 8.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Total score	Assessment rating	Instantaneous mortality (z)	Annual mortality (A)\%
2017	Value	5	6-6+	0.0	0.0	2	Poor	-0.811	55.60\%
	Score	1	1	0	0				
2012	Value			0.0	0.0				
	Score			0	0				
2011	Value	6.1	6-6+	38.0	0.0	8	Fair		
	Score	3	1	4	0				
2010	Value	6.1	6-6+	6.0	0.0	6	Poor		
	Score	3	1	2	0				
2009	Value	6.1	5-5+	1.6	0.0	6	Poor	-1.495	77.60\%
	Score	3	2	1	0				

nedsunlc.d06-12, d17; nedaaglc.d06, d10,d17

Table 44. Length frequency and CPUE (fish/hr) of black bass collected in 1.5 hour (6-15-minute runs) of nocturnal electrofishing for largemouth bass in Greenbo Lake on 20 April.

	Inch class																				22	Total	CPUE	Std. error
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21				
Largemouth bass	4	2	1		6	23	12	18	41	46	69	36	19	7	5	4	2		2	2	2	301	200.7	17.2

nedpsdgb.d17

Table 45. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Greenbo Lake.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		>20.0 in			
	CPUE	s.e.										
2017	24.0	5.6	78.0	13.1	82.7	10.7	16.0	2.3	4.0	1.5	200.7	17.2
2016	40.7	7.8	103.3	5.5	76.7	7.6	18.0	5.5	6.0	2.9	238.7	15.0
2015	38.7	4.8	68.0	7.7	58.0	8.1	12.7	3.0	2.0	1.4	177.3	16.8
2014	28.0	7.2	52.7	3.0	116.0	16.1	7.3	1.6	3.3	1.2	204.0	16.0
2013	14.0	1.7	78.7	7.4	75.3	17.3	8.7	2.2	1.3	0.8	176.7	22.4
2012	25.3	4.8	111.3	11.8	64.7	8.0	8.7	2.8	2.0	0.9	210.0	21.1
2011	46.0	13.1	91.3	9.3	58.0	8.9	6.7	3.2	1.3	0.8	202.0	14.8
2010	78.0	12.9	87.3	3.5	45.3	9.3	13.3	5.8	2.0	1.4	224.0	11.3
2009	44.7	9.4	60.0	8.7	50.0	8.0	18.0	3.4	2.7	1.3	172.7	16.7
2008a	24.0	7.2	27.3	5.8	19.3	2.8	9.3	3.0	2.7	1.3	80.0	15.2
2007	0.0	0.0	39.3	11.8	48.7	13.3	8.7	2.4	1.3	1.3	164.7	21.5

nedpsdgb.d07-d17
a: Malfunctioning electrofishing boat this year.

Table 46. Largemouth bass PSD and RSD_{15} values from spring electrofishing at Greenbo Lake; confidence limits are in parentheses.

Year	No. ≥ 8.0 in	$\mathrm{PSD}(\pm 95 \% \mathrm{Cl})$		$\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})$	
2017	265	56	(± 6)	9	(± 3)
2016	297	48	(± 6)	8	(± 3)
2015	208	51	(± 7)	9	(± 4)
2014	264	70	(± 6)	4	(± 2)
2013	244	52	(± 6)	5	(± 3)
2012	277	40	(± 6)	5	(± 3)
2011	234	51	(± 6)	4	(± 3)
2010	219	40	(± 7)	9	(± 4)
2009	192	53	(± 7)	14	(± 5)
2008 a	84	51	(± 11)	17	(± 8)
2007	188	46	(± 7)	7	(± 4)

nedpsdgb.d07-d17
a: Malfunctioning electrofishing boat this year.

Table 47. Population assessment of largemouth bass based on samples collected at Greenbo Lake from 2007-2017 (scoring based on statewide assessment).

nedpsdgb.d07-d17
a: Malfunctioning electrofishing boat this year.

Table 48. Length frequency and CPUE (fish/hr) for sunfish collected in 1.25 hours of diurnal electrofishing (5-15minute runs) at Greenbo (Greenup Co.) on 11 May.

	Inch class													
	1	2	3	4	5	6	7	8	9	10	11	Total	CPUE	Std. error
Bluegill	96	121	121	87	64	23	20	11	1			544	435.2	62.5
Redear sunfish		8		9	18	2	1	10	11	1	1	61	48.8	7.3
Green sunfish				2	1		2	1				6	4.8	1.5
Longear sunfish	2	8	8	11	4	1						34	27.2	10.9

nedsungb.d17

Table 49. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Greenbo Lake.

Year	Inch class										Total		Total (excluding < 3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in				
	CPUE	s.e.											
2017	173.6	58.04	217.6	27.85	34.4	11.77	44.0	14.6	9.6	3.71	435.2	62.5	261.6
$2016{ }^{\text {a }}$													
2015			92.0	6.3	28.0	12.7	41.6	17.8	13.6	5.3	133.6	12.4	133.6
$2014{ }^{\text {a }}$													
2013			96.8	21.9	97.6	19.2	121.6	23.3	24.0	5.2	218.4	31.6	218.4
2012			276.0	65.6	70.4	5.9	77.6	4.8	7.2	2.5	353.6	66.7	353.6
2011	693.6	115.6	340.8	60.2	37.6	7.2	51.2	11.3	13.6	4.8	1085.6	164.2	392.0
2010	721.6	226.2	176.8	40.4	68.0	10.0	92.0	15.9	24.0	6.3	990.4	255.8	268.8
2009	103.2	35.9	194.4	35.6	35.2	9.6	40.8	10.4	5.6	2.7	338.4	76.8	235.2
2008	80.0	15.2	196.8	51.3	40.8	7.6	47.2	8.1	6.4	2.0	324.0	56.6	244.0
2007	286.4	50.8	191.2	47.4	45.6	15.1	52.8	17.5	7.2	2.8	530.4	80.4	244.0

nedsungb.d17, d15, d13-d05

* Beginning in 2012-2016, <3.0 in were not collected.
${ }^{\mathrm{a}}=$ sample not collected

Table 50. Bluegill PSD and RSD_{8} values from spring electrofishing at Greenbo Lake; confidence limits are in parentheses.

Year	No. ≥ 3.0 in	PSD $(\pm 95 \% \mathrm{CI})$		$\mathrm{RSD}_{8}(\pm 95 \% \mathrm{CI})$	
2017	327	17	± 04	4	± 02
$2016^{\text {a }}$					
2015	167	31	± 07	10	± 04
$2014^{\text {a }}$					
2013	273	56	± 06	11	± 04
2012	442	22	± 04	2	± 01
2011	490	13	± 03	3	± 02
2010	336	34	± 10	9	± 06
2009	294	17	± 04	2	± 02
2008	305	19	± 04	2	± 02
2007	305	22	± 05	3	± 02

nedpsdgb.d07-d17
${ }^{a}=$ sample not collected

Table 51. Mean back-calculated lengths (in) at each annulus for bluegill collected from Greenbo Lake, including size range at each age and 95\% confidence intervals.

		Age					
Year	No.	1	2	3	4	5	
2017	0						
2016	14	3.0					
2015	18	3.0	4.7				
2014	16	2.7	4.6	6.2			
2013	13	3.0	4.9	6.7	7.8	8.1	
2012	5	2.5	4.7	6.5	7.5	8.1	
Mean		2.9	4.7	6.4	7.8	8.1	
Number		66	52	34	18	5	
Smallest		2.1	3.4	4.6	6.6	7.4	
Largest		4.1	6.8	8.6	8.6	8.6	
Std error		0.1	0.1	0.1	0.1	0.2	
95\% Cl (\pm)		0.2	0.4	0.6	0.5	1.0	
Otoins							

Otoliths were used for age determination; Intercept $=0$
nedaaggb.d17

Table 52. Age frequency and CPUE of bluegill sampled in 2017.

	Inch class										
Age	2	3	4	5	6	7	8	Total	$\%$	CPUE	Std. error
1	121	106						227	51	181.5	47.4
2		15	74	29	5			123	27	98.0	14.7
3			13	35	14	6	1	69	16	55.6	11.8
4					5	11	6	22	5	17.2	6.6
5						3	4	7	2	5.4	2.2
Total	121	121	87	64	24	20	11	448	100		
$\%$	27	27	19	14	5	4	2	100			
nedsungb.d17; nedaaggb.d17											

Table 53. Population assessment of bluegill based on samples collected at Greenbo Lake from 2005-2017 (scoring based on statewide assessment).

nedsungb.d05-17; nedaaggb.d11, d08,d17
${ }^{\mathrm{a}}=$ sample not collected

Table 54. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Greenbo Lake.

Year	Inch class												Total		Total (excluding < 3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in		≥ 10.0 in				
	CPUE	s.e.													
2017	6.4	4.7	21.6	7.2	2.4	1.0	20.8	5.9	18.4	6.3	1.6	1.0	48.8	7.3	50.4
$2014{ }^{\text {a }}$															
2015			11.2	2.3	6.4	2.0	14.4	6.0	8.0	5.1	1.6	1.6	25.6	7.1	25.6
$2014{ }^{\text {a }}$															
2013			1.6	1.1	3.2	1.8	6.4	3.1	3.2	2.4	2.4	2.4	8.0	2.9	8.0
2012			4.8	4.8	0.8	0.8	1.6	1.1	0.8	0.8	0.8	0.8	6.4	4.7	6.4
2011	0.8	0.8	3.2	1.8	6.4	2.0	10.4	3.6	4.0	2.5			14.4	4.1	13.6
2010	4.8	2.1	11.2	4.2	8.0	2.4	12.0	3.2	4.0	2.2	0.8	0.8	28.0	7.3	23.2
2009	0.8	0.8	0.8	0.8	2.4	1.2	2.4	1.2					4.0	1.8	3.2
2008			7.2	3.7	5.6	3.4	6.4	3.3	0.8	0.8			13.6	5.7	13.6
2007	2.4	1.2	12.0	6.1	1.6	1.1	1.6	1.1					16.0	6.9	13.6

nedsungb.d17-d07

* In 2012, <3.0-in fish were not collected.
${ }^{a}=$ sample not collected

Table 55. Redear sunfish PSD and RSD $_{9}$ values from spring electrofishing at Greenbo Lake; confidence limits are in parentheses.

Year	No. ≥ 4.0 in	PSD $(\pm 95 \% \mathrm{Cl})$		$\mathrm{RSD}_{9}(\pm 95 \% \mathrm{Cl})$	
2017	53	45	± 14	25	± 12
$2016^{\text {a }}$					
2015	26	54	± 20	23	± 17
$2014^{\text {a }}$					
2013	8	63	± 36	50	± 37
2012	5	20	± 39	20	± 39
2011	17	41	± 24	12	± 16
2010	22	32	± 20	23	± 18
2009	4	25	± 49	0	± 00
2008	13	23	± 24	0	± 00
2007	11	9	± 18	0	± 00

nedsungb.d17, d15, d13-d05
${ }^{\mathrm{a}}$ = sample not collected

Table 56. Mean back-calculated lengths (in) at each annulus for redear collected from Greenbo Lake, including size range at each age and 95% confidence intervals.

		Age					
Year	No.	1	2	3	4	5	
2017	0						
2016	0						
2015	19	2.8	5.0				
2014	14	3.6	6.3	8.5	9.4		
2013	5	3.7	6.1	8.2	9.8	10.5	
2012	2	3.0	6.2	8.8			
					9.5	10.5	
Mean		3.2	5.7	8.4	9	2	
Number		40	40	21	7	9.2	
Smallest		2.1	3.9	7.7	10.0		
Largest		4.3	0.1	9.5	10.3	10.9	
Std error		0.1	0.1	0.1	0.1	0.5	
95% Cl (\pm)		0.3	0.5	0.5	0.6	1.7	
O							

Otoliths were used for age determination; Intercept $=0$
nedaaggb.d17

Table 57. Age frequency and CPUE of redear sunfish sampled in 2017.

Age	Inch class							Total	\%	CPUE	Std. error
	4	5	6	7	8	9	10				
1								0			
2	9	18	2					29	56	23.2	6.6
3				1	10	4		15	29	12.1	3.7
4						7		7	13	5.5	2.4
5							1	1	2	0.8	0.8
Total	9	18	2	1	10	11	1	52	100		
\%	17	35	4	2	19	21	2	100			

Table 58. Population assessment of redear sunfish based on samples collected at Greenbo Lake from 2007-2017 (scoring based on statewide assessment).

Table 59. Length frequency and CPUE (fish/hr) of black bass collected in 0.88 hours ($3-0.25$ hour runs and 1- 0.13 hour run) of diurnal electrofishing in Mill Creek Lake on 24 April.

	Inch class																			Total	CPUE	Std. error
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	3	9	10	5	3	14	20	14	24	47	46	23	6	2			1		2	229	257.6	13.9

nedpsdmc.d17

Table 60. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Mill Creek Lake.

Year	Inch class										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		>20.0 in			
	CPUE	s.e.										
2017	46.8	10.3	118.9	13.4	85.2	11.1	6.9	4.0	2.9	1.9	257.6	13.9
$2016{ }^{\text {a }}$												
$2015{ }^{\text {a }}$												
2014	27.0	3.8	155.0	14.3	32.0	7.8	18.0	2.6	5.0	1.9	232.0	11.9
$2013{ }^{\text {a }}$												
2012	27.0	11.5	97.0	12.4	20.0	5.4	14.0	2.6	7.0	3.0	158.0	27.8
$2011^{\text {a }}$												
2010	43.0	8.1	65.0	6.6	41.0	10.3	12.0	3.7	1.0	1.0	161.0	10.0
2009	9.0	3.8	52.0	5.4	44.0	3.3	12.0	4.6	4.0	1.6	117.0	3.4
2008	10.0	3.5	89.0	10.8	38.0	3.5	12.0	3.7	3.0	1.9	149.0	11.0
2007	31.0	5.3	84.0	15.9	31.0	9.0	7.0	2.5			153.0	22.3
2006	45.0	18.5	108.0	11.0	22.0	2.0	7.0	4.4			182.0	28.7
$2005^{\text {a }}$												
2004	50.4	16.1	68.0	4.6	17.6	2.0	5.6	1.6	1.6	1.6	283.0	35.9
$2003{ }^{\text {a }}$												
$2002^{\text {a }}$												
2001	36.0	8.5	59.0	10.6	13.0	3.0	7.0	2.5	1.0	1.0	115.0	17.5
2000	39.0	11.4	70.0	11.5	12.0	3.3	4.0	0.0			125.0	21.6
1999	29.0	6.8	4.0	11.4	70.0	3.4	2.0	1.2			78.0	20.9
$1998{ }^{\text {a }}$												
1997	27.0	6.6	44.0	6.7	22.0	3.5	6.0	2.6	3.0	1.9	99.0	13.9
$1996{ }^{\text {a }}$												
$1995{ }^{\text {a }}$												
1994	91.0	21.0	178.0	4.0	8.0	4.0	5.0	1.0	2.0	0.0	282.0	12.0
$1993{ }^{\text {a }}$												
1992	90.0	0.0	44.0	6.0	12.0	2.0	4.0	0.0			150.0	4.0
1991	86.1	6.1	31.5	2.5	19.2	0.8	2.3	0.3			176.0	40.0
$1990{ }^{\text {a }}$												
nedpsd ${ }^{\mathrm{a}}=\text { Lak }$	$\begin{aligned} & \text { nc.d17- } \\ & \text { not san } \end{aligned}$	$\begin{aligned} & d 04 ; r \\ & \text { npled } \end{aligned}$	dlmbm	d03								

Table 61. Largemouth bass PSD and RSD_{15} values from spring electrofishing at Mill Creek Lake; confidence limits are in parentheses.

Year	No. ≥ 8.0 in	PSD ($\pm 95 \% \mathrm{Cl}$)		$\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})$	
2017	185	43	± 07	3	± 04
$2016{ }^{\text {a }}$					
$2015{ }^{\text {a }}$					
2014	205	24	± 06	9	± 04
$2013{ }^{\text {a }}$					
2012	131	26	± 08	11	± 05
$2011^{\text {a }}$					
2010	118	45	± 09	10	± 05
2009	108	52	± 09	11	± 06
2008	139	36	± 08	9	± 05
2007	122	31	± 08	6	± 04
2006	137	21	± 07	5	± 04
$2005^{\text {a }}$					
2004	114	25	± 08	6	± 04
$2003{ }^{\text {a }}$					
$2002^{\text {a }}$					
2001	79	25	± 10	9	± 06
2000	86	19	± 08	5	± 04
1999	49	18	± 11	4	± 06
$1998{ }^{\text {a }}$					
1997	72	39	± 11	8	± 06
1996 ${ }^{\text {a }}$					
$1995{ }^{\text {a }}$					
1994	191	7	± 04	3	± 02
$1993{ }^{\text {a }}$					
1992	60	27	± 11	7	± 06
1991	47	40	± 14	4	± 06
$1990{ }^{\text {a }}$					

nedpsdmc.d17-d04; nedlmbmc.d03-d90
${ }^{\mathrm{a}}=$ Lake not sampled

Table 62. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Mill Creek Lake in October 2017, includes 95\% confidence interval (CI) for mean length for each age class

		Age							
Year	No.	1	2	3	4	5	6	7	8
2017	0								
2016	18	4.5							
2015	13	4.5	8.1						
2014	5	4.6	8.2	9.9					
2013	11	4.5	7.7	9.9	11				
2012	4	4.7	7.7	9.8	11.1	12			
2011	7	5.0	8.3	9.9	10.9	11.8	12.4		
2010	1	5.1	8.3	10.8	12.1	13.1	13.7	14.1	
2009	1	5.3	8.8	10.6	12.0	12.5	13.0	13.4	13.8
Mean		4.6	8.0	9.9	11.1	12.0	12.6	13.8	-
Number		60	42	29	24	13	9	2	1
Smallest		3.3	6.4	9.1	9.7	11.2	11.7	13.4	
Largest		6.7	9.2	10.8	12.1	13.1	13.7	14.1	
Std. error		0.1	0.1	0.1	0.1	0.1	0.2	0.4	
95\% CI (\pm)		0.4	0.4	0.4	0.5	0.6	0.7	1.4	

nedaagmc.d17

Table 63. Population assessment of largemouth bass based on samples collected at Mill Creek Lake from 2001-2017 (scoring based on statewide assessment).

nedpsdmc.d12-d04; nedlmbmc.d03-d00

Table 64. Length frequency and CPUE (fish/hr) of black bass collected in 0.96 hours (3-0.25 hour runs and 1-0.21 hour run) of diurnal electrofishing in Mill Creek Lake on 02 October.

Species	Inch class														Total	CPUE	Std. error
	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
Largemouth bass	7	18	6	1	6	15	6	7	6	14	12	6	2	2	108	111.8	28.5

nedwrsmc.d17

Table 65. Number of fish and relative weights $\left(W_{r}\right)$ for each length group of largemouth bass captured at Mill Creek Lake.

Year	Length group											
	8.0-11.9 in			12.0-14.9 in			≥ 15.0 in			Overall		
	No.	W_{r}	s.e.									
2017	33	90	1	20	90	1	2	90	2	55	90	1
2010	60	85	1	16	84	1	3	93	4	79	85	1
2009	36	84	1	18	86	2	6	96	3	60	86	1
2008	34	84	1	18	88	1	2	98	12	54	86	1
2007	58	87	1	12	85	2	3	90	1	73	87	1

Table 66. Length frequency and CPUE (fish/hr) of bluegill collected in 0.75 hours ($3-0.25$ hour runs) of diurnal electrofishing in Mill Creek Lake on 18 May.

	Inch class										Std.		
	Species	3	4	5	6	7	8	9		Total	CPUE		
error													
Bluegill	47	59	24	18	20	18	3		189	252.0	18.0		

nedsunmc.d17

Table 67. Spring electrofishing CPUE (fish/hr) for various length groups of bluegill collected at Mill Creek Lake from 2005-2017.

Year	Length group										Total		CPUE (excluding <3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in				
	CPUE	s.e.											
2017			173.3	15.5	50.7	6.7	78.7	13.1	28.0	6.9	252.0	18.0	252.0
$2016{ }^{\text {a }}$													
2015			54.0	4.8	39.0	17.1	55.0	23.3	16.0	10.7	109.0	22.1	109.0
$2014{ }^{\text {a }}$													
$2013^{\text {a }}$													
2012			161.0	37.4	74.0	8.7	98.0	12.4	24.0	7.1	259.0	42.4	259.0
$2011^{\text {a }}$													
2010	254.0	11.9	153.0	23.2	35.0	8.7	46.0	6.2	11.0	3.0	453.0	37.3	199.0
2009	519.0	219.0	193.0	15.3	19.0	7.0	23.0	6.0	4.0	1.6	735.0	234.1	216.0
2008			164.0	49.9	20.0	10.1	28.0	13.7	8.0	4.6	192.0	55.6	192.0
2007			76.0	14.7	18.0	6.2	25.0	7.9	7.0	3.2	101.0	14.0	101.0
2006	124.6	48.9	74.3	16.2	33.1	8.1	42.3	13.0	9.1	7.9	241.1	73.9	116.6
2005	42.3	8.1	98.3	16.2	77.2	12.3	100.6	16.6	22.9	7.5	241.1	17.6	198.9
$\begin{aligned} & \text { nedsur } \\ & \mathrm{a}=\text { Lak } \end{aligned}$	$\overline{\mathrm{mc} . \mathrm{d} 17}$ e not sa	$\mathrm{d} 15, \mathrm{~d}$ mpled	$-\mathrm{d} 05$										

Table 68. Bluegill PSD and RSD_{8} values from spring electrofishing at Mill Creek Lake.

Table 69. Population assessment of bluegill based on samples collected at Mill Creek Lake from 2005-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	Spring CPUE ≥ 6.0 in	Spring CPUE ≥ 8.0 in	Total score	Assessment rating	Instantaneous mortality (z)	Annual mortality (A)\%
2017	Value			78.7	28.0				
	Score			3	4				
$2016{ }^{\text {a }}$	Value Score								
2015	Value	$\begin{gathered} 4.67 \\ 3 \end{gathered}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\begin{gathered} 55.0 \\ 3 \end{gathered}$	$\begin{gathered} 16.0 \\ 4 \end{gathered}$	13	Good	-0.458	36.80\%
$2014{ }^{\text {a }}$	Value								
$2013{ }^{\text {a }}$	Value								
2012	Value			98.0	24.0				
	Score			4	4				
$2011{ }^{\text {a }}$	Value Score								
2010	Value	$\begin{gathered} 3.9 \\ 2 \end{gathered}$	$\begin{gathered} 3-3+ \\ 3 \end{gathered}$	$\begin{gathered} 46.0 \\ 2 \end{gathered}$	$\begin{gathered} 11.0 \\ 3 \end{gathered}$	10	Fair	-1.503	77.80\%
2009	Value			23.0 1	$\begin{gathered} 4.0 \\ 1 \end{gathered}$				
2008	Value			28.0	8.0				
	Score			2	2				
2007	Value	4.4 2	4-4+	25.0 2	7.0 2	8	Fair	-1.391	75.10\%
2006	Value			42.3	9.1				
	Score			2	2				
2005	Value			100.6	22.9				
	Score			4	4				

nedsunmc.d17, d15, d12-d05
${ }^{a}=$ Lake not sampled

Table 70. Length frequency and CPUE (fish/hr) of black bass collected in 1.25 hour (5 - 15 -minute runs) of diurnal electrofishing for largemouth bass in Lake Reba on 17 April

Species	Inch class																			Total	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Largemouth bass	2	32	175	193	65	12	32	81	94	70	37	11	11	6	2	2		2	4	831	664.8	53.0

Table 71. Spring electrofishing CPUE (fish/hr) for various length groups of largemouth bass collected at Lake Reba from 1995-2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	S.E.										
2017	373.6	51.5	175.2	19.9	94.4	21.2	21.6	2.4	4.8	0.8	664.8	53.0
2016	108.0	15.8	102.0	23.7	41.0	10.0	13.0	1.9	2.0	1.2	264.0	19.5
2015	103.2	26.5	84.0	9.2	96.8	12.9	33.6	5.7	4.0	1.8	317.6	23.0
2014	56.0	11.0	144.0	12.4	95.0	10.8	75.0	18.1	7.0	5.7	370.0	22.7
2013	60.1	7.8	102.4	7.7	63.3	11.0	27.1	8.7	0.0		252.9	26.9
2012	103.3	16.5	90.7	9.0	68.0	8.2	16.7	4.2	1.3	0.8	278.7	13.5
2011	66.0	11.4	108.7	16.8	106.0	18.6	25.3	6.1	2.0	1.4	306.0	35.8
2010	67.7	8.1	118.3	19.4	57.7	8.0	6.8	1.7	0.7	0.7	246.0	26.8
2009	47.3	7.6	238.7	12.9	92.7	7.3	26.0	3.2	0.7	0.7	404.7	23.4
2008	77.3	18.4	208.0	28.4	34.0	6.3	12.7	2.6	0.0		332.0	47.1
2007	134.7	20.9	216.7	45.9	60.7	5.2	18.7	4.1	0.7	0.7	430.7	52.2
2006	189.3	18.9	70.7	13.5	26.0	4.9	6.0	2.3	0.0		292.0	27.1
2005	53.3	9.3	57.3	8.1	45.3	4.3	13.3	2.2	0.7	0.7	169.3	16.4
2004	30.0	8.9	125.3	21.5	51.3	9.2	6.7	2.2	0.0		213.3	26.0
2003	110.0	17.9	126.0	10.9	52.0	6.1	8.0	2.5	0.7	0.7	296.0	27.3
2002	138.0	33.6	140.0	31.3	31.0	6.6	5.0	1.0	0.0		314.0	67.0
2001	196.0	25.0	32.0	15.1	9.3	5.3	4.0	2.3	0.0		241.3	32.4
2000	104.1	17.3	35.1	6.6	4.6	0.6	8.0	3.3	0.0		151.7	11.3
1999	122.7	29.4	10.0	3.5	8.0	2.1	18.0	4.7	0.7	0.7	158.7	27.3
1998	76.0	23.7	10.0	2.6	23.0	5.5	21.0	3.4	2.0	1.2	130.0	28.5
1997												
1996	104.0	32.2	7.0	3.4	15.0	5.7	14.0	2.6	0.0		140.0	28.8
1995	160.0	52.9	21.0	7.7	74.0	7.4	3.0	1.9	0.0		258.0	61.5

Table 72. Largemouth bass PSD and RSD_{15} values from spring electrofishing at Lake Reba; confidence limits are in parentheses.

Year	No. ≥ 8.0 in	PSD $(\pm 95 \% \mathrm{CI})$		$\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})$	
2017	364	40	(± 5)	7	(± 3)
2016	156	35	(± 7)	8	(± 4)
2015	268	61	(± 6)	16	(± 4)
2014	314	54	(± 6)	24	(± 5)
2013	243	47	(± 6)	14	(± 4)
2012	263	48	(± 6)	10	(± 4)
2011	360	55	(± 5)	11	(± 3)
2010	270	35	(± 6)	4	(± 2)
2009	536	33	(± 4)	7	(± 2)
2008	382	18	(± 4)	5	(± 2)
2007	444	27	(± 4)	6	(± 2)
2006	154	31	(± 7)	6	(± 4)
2005	174	51	(± 7)	11	(± 5)
2004	275	32	(± 6)	4	(± 2)
2003	279	32	(± 5)	4	(± 2)
2002	176	20	(± 6)	3	(± 2)
2001	33	30	(± 16)	9	(± 10)
2000	43	28	(± 14)	19	(± 12)
1999	98	72	(± 12)	50	(± 13)
1998	26	81	(± 10)	39	(± 13)
1997					
1996	54	96	(± 8)	62	(± 19)
1995	54	79	(± 8)	3	(± 3)
nedpsdlr.d17 -d98, d96-d95					

Table 73. Population assessment of largemouth bass based on samples collected at Lake Reba from 2001-2017 (scoring based on

nedpsdlr.d17

Table 74. Indices of year class strength at age 0 and age 1 and mean lengths (in) of largemouth bass while diurnal electrofishing at Lake Reba

Year class	Area	Age 0		Age 0		Age $0 \geq 5.0$ in		Age 1	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2017	Total	4.8	0.1	501.3	123.3	196.0	34.2		
2016	Total	5.1	0.1	490.0	43.9	279.0	8.1	321.6	48.5
2015	Total	4.5	0.6	116.0	34.5	35.2	10.2	101.0	15.2
2014	Total	4.1	0.1	375.0	29.6	74.0	16.5	100.0	27.3
2013	Total	3.9	0.1	80.0	16.4	12.0	4.4	50.0	8.9
2012	Total	4.5	0.1	129.1	16.8	37.2	6.0	54.6	9.4
2011	Total	4.4	0.0	334.9	44.8	84.4	19.5	76.0	14.9
2010	Total	3.9	0.1	58.7	18.9	10.7	4.8	57.3	10.5
2009	Total	4.0	0.1	58.7	15.6	11.3	8.1	47.1	7.0
2008	Total	4.2	0.1	58.7	15.6	11.3	8.1	65.3	7.1
2007	Total	4.3	0.1	44.0	11.2	5.3	2.2	113.0	27.2
2006	Total	4.3	0.0	175.3	35.9	30.0	8.7	183.7	22.1
2005	Total	5.2	0.1	225.0	48.6	133.0	30.2	192.0	19.5
2004	Total	4.2	0.1	76.7	9.6	15.3	1.9	61.0	10.4
2003	Total	3.7	0.2	23.3	4.8	0.7	0.7	47.3	14.0

nedbsilr.d17-d16, nedwrslr.d15, nedbsilr.d14-d12, nedwrslr.d11-d03, nedpsdlr.d17-d02

Table 75. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hour (10-7.5minute runs) of diurnal electrofishing for sunfish at Lake Reba on 03 May.

	Inch class													
		1	2	3	4	5	6	7	8	9	10	Total	CPUE	Std. error
Species	3	85	74	79	57	34	30	4			366	281.5	46.7	
Bluegill	2	4	6	5	4	12	31	18	1	83	63.9	9.9		
Redear sunfish		2												

nedpsdIr.d17

Table 76. Spring electrofishing CPUE (fish/hr) for various length groups of bluegill collected at Lake Reba from 1995-2017.

Year	Length group										Total		Total CPUE (excluding $<3.0 \mathrm{in}$)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in				
	CPUE	s.e.											
2017			161.5	24.1	49.2	7.7	52.3	7.8	3.1	1.7	281.5	46.7	213.9
$2016{ }^{\text {a }}$													
2015			418.0	83.2	83.0	25.1	84.0	25.1	1.0	1.0	502.0	78.8	502.0
$2014{ }^{\text {a }}$													
2013			371.0	84.6	44.0	15.3	44.0	15.3			415.0	415.0	415.0
2012			151.0	26.4	38.0	14.7	38.0	14.7			189.0	36.6	189.0
2011	2169.0	361.1	919.0	141.7	98.0	26.5	99.0	26.7	1.0	1.0	3187.0	448.7	1018.0
2010	514.4	138.5	375.2	35.5	21.6	4.8	21.6	4.8			911.2	144.8	396.8
2009	527.0	93.0	200.0	19.7	22.0	6.4	22.0	6.4			749.0	100.5	222.0
2008	188.0	41.9	194.0	41.1	71.0	11.6	71.0	11.6			453.0	59.1	265.0
2007			73.0	10.8	29.0	7.7	29.0	7.7			102.0	10.9	102.0
2006	843.2	140.7	228.8	22.9	79.2	20.3	79.2	20.3			1151.2	158.5	308.0
2005	279.2	37.0	308.0	42.7	97.6	19.4	97.6	19.4			684.8	74.4	405.6
2004	199.2	39.4	187.2	27.0	23.2	7.0	23.2	7.0			409.6	58.2	210.4
2003	178.4	27.9	356.0	49.7	49.5	20.1	49.5	20.1			584.0	75.3	405.6
2002	266.0	39.7	703.0	102.0	29.0	10.4	29.0	10.4			998.0	138.3	732.0
2001			1210.7	207.6	89.3	16.7	89.3	16.7			1300.0	220.3	1300.0
2000	7.0	4.7	1181.3	152.3	303.5	13.0	303.5	13.0			1327.0	124.5	1320.0
1999	74.0	74.0	700.0	120.0	48.0	16.0	48.0	16.0			822.0	30.0	748.0
1998			1032.0		4.0		4.0				1036.0	0.0	1036.0
$1997{ }^{\text {a }}$													
1996	16.0	12.0	722.0	110.0	22.0	18.0	22.0	18.0			760.0	140.0	744.0
1995			338.0	54.0	32.0	0.0	32.0	0.0			1370.0	54.0	1370.0

[^31]${ }^{a}=$ Sample not collected

Table 77. Bluegill PSD and RSD_{8} values from spring electrofishing at Lake Reba.

Year	No. ≥ 3.0 in	PSD $(\pm 95 \% \mathrm{Cl})$		$\mathrm{RSD}_{8}(\pm 95 \% \mathrm{CI})$	
2017	278	24	(± 5)	1	(± 1)
2016^{a}					
2015	502	17	(± 3)	0	(± 0)
$2014^{\text {a }}$					
2013	415	11	(± 3)		
2012	189	20	(± 6)		
2011	1018	10	(± 2)	0	(± 0)
2010	496	5	(± 2)		
2009	222	10	(± 4)		
2008	265	27	(± 5)		
2007	102	28	(± 9)		
2006	385	26	(± 4)		
2005	507	24	(± 4)		
2004	263	11	(± 4)		
2003	507	12	(± 3)		
2002	732	4	(± 1)		
2001	975	7	(± 2)		
2000	1320	21	(± 2)		
1999	374	6	(± 2)		
1998	259	0	(± 1)		
$1997^{\text {a }}$			3	(± 2)	
1996	372	2	(± 1)		
1995	685	2			

nedsunlr.d17, d15, d13-d98, d96-d95
${ }^{a}=$ Sample not collected

Table 78. Mean back calculated lengths (in) at each annulus for bluegill collected from Lake Reba in May 2017, includes 95% confidence interval (Cl) for mean length for each age class.

		Age					
Year	No.	1	2	3	4	5	6
2017	0						
2016	34	3.7					
2015	12	3.6	6.1				
2014	9	3.2	5.7	7.3			
2013	2	2.9	4.8	6.2	7.3	6.1	
2012	2	3.3	5.4	6.6	7.3	6.9	7.4
2011	1	2.8	4.5	5.6	6.4		
						6.4	-
Mean		3.5	5.7	6.9	7.1	3	
Number		60	26	14	5	3.2	
Smallest		2.1	4.5	5.6	6.4	4.2	
Largest		5.5	7.0	8.2	7.6	8.1	
Std. error		0.1	0.1	0.2	0.2	1.2	
95\% Cl (\pm)		0.5	0.5	0.8	0.9	4.6	

nedaaglr.d17

Table 79. Age frequency and CPUE (fish/nn) of bluegill electrofished from Lake Reba in May 2017.

Age	Inch class							Total	\%	CPUE	Std. error
	2	3	4	5	6	7	8				
0											
1	85	74	79	25				263	73	202.6	37.4
2				32	21	5		58	16	44.9	7.6
3					9	16	2	27	7	20.7	2.8
4					4	3		7	2	5.4	1.0
5						3	2	5	1	3.6	1.0
6						3		3	1	2.1	0.4
Total	85	74	79	57	34	30	4	363	100		
\%	23	20	22	16	9	8	1	100			

Table 80. Population assessment of bluegill based on samples collected at Lake Reba from 1995-2017 (scoring based on statewide assessment).

Year		Mean length age-2 at capture	Years to 6.0 in	Spring CPUE ≥ 6.0 in	Spring CPUE ≥ 8.0 in	Total score	Assessment rating	Instantaneous mortality (z)	Annual mortality (A) \%
2017	Value	6.1	$3+$	52.3	3.1	12	Good	-0.956	61.50\%
	Score	4	3	2	3	12	Good	-0.956	61.50\%
$2016^{\text {a }}$	Value								
	Score								
2015	Value			84.0	1.0				
	Score			4	1				
$2014{ }^{\text {a }}$	Value								
	Score								
2013	Value			44.0	0.0				
	Score			2	0				
2012	Value	4.0	3+	38.0	0.0	7	Fair	-0.112	10.60\%
	Score	2	3	2	0				
2011	Value			99.0	1.0				
	Score			4	1				
2010	Value			21.6	0.0				
	Score			1	0				
2009	Value			22.0	0.0				
	Score			1	0				
2008	Value	4.0	$3+$	71.0	0.0	8	Fair	-0.719	51.30\%
	Score	2	3	3	0				
2007	Value			29.0	0.0				
	Score			2	0				
2006	Value			79.2	0.0				
	Score			4	0				
2005	Value			97.6	0.0				
	Score			4	0				
2004	Value			23.2	0.0				
	Score			1	0				
2003	Value	4.1	$3+$	49.6	0.0	7	Fair	-0.422	34.40\%
	Score	2	3	2	0				
2002	Value			29.0	0.0				
	Score			2	0				
2001	Value			89.3	0.0				
	Score			4	0				
2000	Value	5.0	4+	303.5	0.0	10	Fair		
	Score	4	2	4	0				
1999	Value			48.0	0.0				
	Score			2	0				
1998	Value			4.0	0.0				
	Score			1	0				
$1997{ }^{\text {a }}$	Value								
	Score								
1996	Value			22.0	0.0				
	Score			1	0				
1995	Value			32.0	0.0				
	Score			2	0				

nedsunlr.d15, d13-d98, d96-d95
${ }^{\mathrm{a}}=$ Sample not collected

Table 81. Spring electrofishing CPUE (fish/hr) for various length groups of redear sunfish collected at Lake Reba from 1995-2017.

Year	Length group												Total		Total CPUE (excluding <3.0 in)
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 6.0 in		≥ 8.0 in		≥ 10.0 in				
	CPUE	s.e.													
2017			11.5	4.3	12.3	4.0	50.8	7.6	38.5	5.6	0.8	0.8	63.9	9.9	62.3
$2016{ }^{\text {a }}$															
2015			54.0	7.7	198.0	56.5	231.0	56.9	33.0	6.3			285.0	58.6	285.0
$2014{ }^{\text {a }}$															
2013			98.0	26.2	143.0	23.6	145.0	23.5	2.0	1.3			243.0	21.2	243.0
2012			79.0	15.2	94.0	24.5	95.0	25.2	1.0	1.0			174.0	33.5	174.0
2011	31.0	12.6	146.0	19.6	204.0	57.8	210.0	59.4	6.0	3.3			387.0	48.7	356.0
2010	14.4	5.8	101.6	19.2	28.0	7.4	28.8	7.9	0.8	0.8			144.8	28.2	130.4
2009	184.0	52.9	150.0	22.9	60.0	4.5	60.0	4.5					394.0	65.7	210.0
2008	10.0	5.0	134.0	18.3	225.0	18.0	226.0	18.5	1.0	1.0			370.0	33.0	360.0
2007			122.0	16.3	33.0	5.9	35.0	5.0	2.0	1.3			157.0	20.3	157.0
2006	111.2	30.7	121.6	17.2	205.6	44.7	206.4	44.8	0.8	0.8			439.2	51.5	328.0
2005	16.8	5.9	39.2	5.5	196.0	33.4	196.0	33.4					252.0	30.7	235.2
2004	17.6	4.6	59.2	18.3	67.2	13.7	67.2	13.7					144.0	30.4	126.4
2003	13.6	5.7	119.2	19.8	178.4	68.8	178.4	68.8					311.2	82.9	297.6
2002	11.0	1.9	424.0	124.1	151.0	47.9	152.0	48.7	1.0	1.0			587.0	160.3	576.0
2001			220.0	46.1	84.0	32.7	85.3	32.4	1.3	1.3			305.3	39.4	305.3
2000			125.8	39.3	134.9	39.6	134.9	39.6					245.0	74.9	245.0
1999	2.0	2.0	92.0	36.0	122.0	22.0	122.0	22.0					216.0	60.0	214.0
1998			80.0		44.0		44.0						124.0	0.0	124.0
$1997{ }^{\text {a }}$															
1996			44.0	20.0	14.0	10.0	14.0	10.0					58.0	30.0	58.0
1995															

nedsunlr.d17, d15, d13-d98, d96-d95
${ }^{a}=$ Sample not collected

Table 82. Redear sunfish PSD and RSD_{9} values from spring electrofishing at Lake Reba.

Year	No. ≥ 3.0 in	PSD $(\pm 95 \% \mathrm{Cl})$		$\mathrm{RSD}_{9}(\pm 95 \% \mathrm{Cl})$	
2017	77	81	(± 10)	25	(± 10)
2016^{a}					
2015	265	62	(± 6)		
$2014^{\text {a }}$					
2013	237	26	(± 6)		
2012	139	21	(± 7)	0	(± 0)
2011	310	22	(± 5)		
2010	118	8	(± 5)		
2009	175	4	(± 3)		
2008	342	11	(± 3)		
2007	141	10	(± 5)		
2006	297	49	(± 6)		
2005	264	19	(± 5)		
2004	146	4	(± 3)		
2003	359	4	(± 2)		
2002	452	6	(± 2)		
2001	158	9	(± 4)		
2000	216	29	(± 6)		
1999	91	4	(± 4)		
1998	27	4	(± 7)		
$1997^{\text {a }}$					
1996	28	4	(± 7)		
1995					

nedsunlr.d17, d15, d13-d98, d96-d95
${ }^{a}=$ Sample not collected

Table 83. Mean back calculated lengths (in) at each annulus for redear sunfish collected from Lake Reba in May 2017, includes 95\% confidence interval (CI) for mean length for each age class.

Year	No.	Age							
		1	2	3	4	5	6	7	8
2017	0								
2016	16	4.2							
2015	16	4.3	7.3						
2014	7	3.7	6.4	8.3					
2013	9	3.8	6.2	7.9	9.1				
2012	3	3.3	5.4	7.0	8.1	8.9			
2011	2	3.3	5.0	6.6	7.6	8.4	9.2		
2010	0								
2009	2	2.6	4.5	5.6	9.7	7.4	7.8	8.4	8.9
Mean		3.9	6.5	7.6	8.4	8.3	8.5	8.4	8.9
Number		55	39	23	16	7	4	2	2
Smallest		2.3	4.4	5.2	6.3	7.0	7.6	8.1	8.6
Largest		5.9	8.8	9.5	10.1	9.2	9.6	8.6	9.1
Std. error		0.1	0.2	0.2	0.2	0.3	0.4	0.2	0.3
95\% Cl (\pm)		0.5	0.7	0.8	1.0	1.1	1.7	0.9	0.9

Table 84. Age frequency and CPUE (fish/nn) of redear sunfish electrofished from Lake Reba in May 2017.

Age	Inch class									Total	\%	CPUE	Std. error
	2	3	4	5	6	7	8	9	10				
0										0			
1	2	4	6	5						17	20	13.1	4.7
2					4	11	8			23	27	17.4	4.1
3						1	16			17	20	12.9	2.0
4							3	11	1	15	17	10.8	2.0
5							3	3		6	7	4.3	0.7
6								3		3	4	2.3	0.5
7										0	0	0.0	
8							3	2		5	5	3.1	0.5
Total	2	4	6	5	4	12	33	19	1	86	100		
\%	2	5	7	6	5	14	37	22	1	100			

Table 85. Population assessment of redear sunfish based on samples collected at Lake Reba from 19952017 (scoring based on statewide assessment).

Table 86. Fishery statistics derived from a daytime creel survey (752 individual angler interviews) at Lake Reba during April through October 2017 compared to findings from 2005.

	$\mathbf{2 0 1 7}$	$\mathbf{2 0 0 5}$
Fishing trips		
No. of fishing trips (per acre)	$9,753(125.04)$	$7,772(99.64)$

Fishing pressure

Total man-hours (S.E.)	30,448 (891)	19,302 (746)
Man hours/acre	390.00	248
Catch/harvest		
No. of fish caught (S.E.)	81,363 (8,129)	36,240 (3,735)
No. of fish harvested (S.E.)	66,293 (7,385)	9,249 (1,410)
Lbs. of fish harvested	17,304	1,984
Harvest rate		
Fish/hour	2.1	0.4
Fish/acre	849.9	N/A
Lbs/acre	221.8	N/A
Catch rates		
Fish/hour	2.58	1.85
Fish/acre	1043.1	464.6
Misc. characteristics (\%)		
Male	80.7	76.5
Female	19.3	23.5
Resident	96.8	98.0
Non-resident	3.2	2.0
Method (\%)		
Still fishing	56.7	77.0
Casting	42.3	17.9
Trot Line/ Jugging	0.9	0.0
Trolling	0.1	2.6
Fly Fishing	0.0	2.5
Mode (\%)		
Boat	23.4	14.9
Bank	76.2	85.1
Dock	0.4	0.0

(S.E.) = Standard error

Table 87. Fish harvest statistics derived from the 2017 creel survey at Lake Reba.

	Bluegill	Redear Sunfish	Warmouth	Rock Bass	Green Sunfish	Longear Sunfish	Panfish Group	Largemouth Bass	Illegal Bass	Black Bass Group	Black Crappie	White Crappie	Crappie Group	Channel Catfish	Flathead Catfish	Illegal Catfish	Catfish Group	Anything
Number caught	57,777	6,398	267	84	31	8	64,565	8,682	481	8,682	5,001	981	5,982	1,546	51	56	1,653	
(per acre)	740.7	82.0	3.4	1.1	0.4	0.1	827.8	111.3	6.2	111.3	64.1	12.6	76.7	19.8	0.7	0.7	21.2	
Number harvested	52,383	6,016	199	84	31	0	58,713	275	481	275	4,514	914	5,428	1,318	23	56	1,396	
(per acre)	671.6	77.1	2.6	1.1	0.4		753	3.5	6.2	3.5	58.9	11.7	69.6	16.9	0.3	0.7	7.9	
\% of total number harvested	79.0	9.1	0.3	0.1	0.0		88.6	0.4	0.7	0.4	6.8	1.4	8.2	2.0	0.0	0.1	2.1	
Pounds harvested	8152.4	3457.3	62.3	31.5	6.5		1710.0	626.4	313.5	626.4	1948.1	446.5	2,394.6	2079.0	178.4	-	2257.4	
(per acre)	104.5	44.3	0.8	0.4	0.1		150.1	8.0	4.0	8.0	25.0	5.7	60.7	26.7	2.3	-	28.9	
\% of total pounds harvested	47.1	20.0	0.4	0.2	0.0		67.7	3.6	1.8	3.6	11.3	2.6	13.8	12.0	1.0	-	13.0	
M ean length (in)	6.3	9.23	7.5	7.3	7.0			16.4	12.1		9.4	10.2		16.7	27.0	7.0		
M ean weight (lbs)	0.16	0.5	0.34	0.35	0.21			2.31	0.93		0.44	0.5		1.53	7.79	-		
Number fishing trips for that species							6299.8			2,341.2			451.7				422.3	238.0
\% of all trips							64.6			24.1			4.6				4.3	2.4
Hours fished for that species (per acre)							$\begin{aligned} & 19,667.3 \\ & (252.4) \end{aligned}$			$\begin{aligned} & 7,309.1 \\ & (93.71) \end{aligned}$			$\begin{aligned} & 1,410.0 \\ & (18.08) \end{aligned}$				$\begin{aligned} & 1,318.5 \\ & (16.90) \end{aligned}$	$\begin{aligned} & 742.9 \\ & (9.52) \end{aligned}$
Number harvested fishing for that species							55			196			4				778	
Pounds harvested fishing for that species							11169.0			424.8			1.587 .3				12.9	
Number harvested per hour fishing for that species							2693.0			0.0			2.1				0.2	
\%success fishing for that species							58.1			2.9			71.2				37.0	17.4

Table 88. Length distribution (length of released fish are estimates) for each species of fish harvested (H) and/or released (R) at Lake Reba from April through October 2017.

Table 89. Monthly black bass angling success at Lake Reba during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	1472.3		309.9	967.5	1236	1.08		
May	2679.5	183.2	442.2	1380.5	2084	2.04	137	0.13
Jun	2450.4	51.0	494.9	1545.1	2068	1.43	26	0.02
Jul	646.6	22.3	375.5	1172.3	334	0.29	22	0.02
Aug	413.2	10.6	277.2	865.3	308	0.47	11	0.02
Sep	584.0		169.0	572.5	392	0.78		
Oct	436.1	7.7	272.6	851.0	329	0.41		
Total	8682.0	274.8	2341.2	7309.1	6751		196	
Mean						0.82		0.02

Table 90. Monthly crappie angling success at Lake Reba during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	1840.4	1434.5	144.6	451.5	1038	1.79	840	1.45
May	458.0	435.1	31.6	98.6	252	3.14	252	3.14
Jun	25.5							
Jul	167.2	156.1	20.9	65.1	11	0.22	11	0.22
Aug	1281.9	1281.9	35.8	111.6	868	5.47	868	5.47
Sep	839.4	766.4	76.0	237.4	539	1.93	593	1.93
Oct	1369.6	1354.3	142.8	445.8	1140	2.22	1125	2.19
Total	5982.1	5428.4	451.7	1410.0	3848		3635	
Mean						2.26		2.14

Table 91. Monthly panfish angling success at Lake Reba during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	6238.3	5247.4	919.4	2870.3	5615	1.95	4776	1.66
May	21894.4	21413.4	1737.2	54233.3	21895	3.79	21414	3.70
Jun	9291.0	7249.0	1328.4	4147.3	9061	2.23	7121	1.75
Jul	7992.8	6867.2	740.6	2312.0	5964	2.59	5384	2.34
Aug	10594.0	9852.4	599.0	1870.1	9578	4.65	8974	4.35
Sep	6587.7	6131.5	735.0	2294.7	6423	2.83	5976	2.64
Oct	1966.4	1851.7	240.1	749.7	1822	2.53	1729	2.40
Total Mean	64564.6	58712.6	6299.8	19667.3	60358	2.94	55374	2.69

Table 92. Angler attitude survey carried out in conjunction with 2017 creel survey on Lake Reba.

3. Which species do you fish for at Lake Reba (check all that apply)? ($\mathrm{N}=414$)					
Bluegill $=77.1 \%$; Bass $=67.1 \%$; Redear Sunfish $=62.1 \%$; Channel $\mathbf{C a t f i s h}=50.0 \% ;$ Crappie					
4. Which species do you fish for most at Lake Reba (check only one)?					
Bluegill $=52.5 \%$; Bass $=30.4 \%$; Channel Catfish $=11.1 \% ;$ Crappie $=4.0 \%$; Redear Sunfish					
Bass Anglers					
5. What level of satisfaction do you have with bass fishing at Lake Reba? ($\mathrm{N}=275$)					
Very Satisfied	71.6\%	Somewhat Satisfied	4.4\%	Total	76.0\%
Very Dissatisfied	2.2\%	Somewhat Dissatisfied	15.6\%	Total	17.8\%
Neutral	5.8\%	No Opinion	0.4\%		

5a. If angler responds with somewhat or very dissatisfied in question 5: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (17.8\%)

Size of fish	45.8%	Number of fish	43.8%	Regulations	4.2%
Too many	4.2%	Unfamiliar with lake	2.1%		

Bluegill Anglers

6. What level of satisfaction do you have with bluegill fishing at Lake Reba? (N=318)

Very Satisfied	63.5%	Somewhat Satisfied	8.2%	Total	71.7%
Very Dissatisfied	2.2%	Somewhat Dissatisfied	17.9%	Total	20.1%
Neutral	7.2%	No Opinion	90.0%		

6a. If angler responds with somewhat or very dissatisfied in question 6: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (20.1\%)

Number of fish	53.2%	Size of fish	43.5\%	Too many anglers

Redear Sunfish Anglers

7. What level of satisfaction do you have with redear sunfish fishing at Lake Reba? ($\mathrm{N}=255$)

Very Satisfied	71.0%	Somewhat Satisfied	3.5%	Total	74.5%
Very Dissatisfied	40.0%	Somewhat Dissatisfied	8.6%	Total	48.6%
Neutral	14.5%	No Opinion	2.0%		

7a. If angler responds with somewhat or very dissatisfied in question 7: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (48.6\%)
$\begin{array}{lllll}\text { Number of fish } & 72.7 \% & \text { Size of fish } & 22.7 \% & \text { Too many anglers }\end{array}$

Catfish Anglers

8. What level of satisfaction do you have with catfish fishing at Lake Reba? ($\mathrm{N}=204$)

Very Satisfied	77.0%	Somewhat Satisfied	3.9%	Total	80.9%
Very Dissatisfied	0.0%	Somewhat Dissatisfied	8.3%	Total	8.3%
Neutral	7.8%	No Opinion	2.9%		

8a. If angler responds with somewhat or very dissatisfied in question 8: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (8.3\%)
Number of fish $\quad 82.4 \% \quad$ Size of fish $\quad 17.6 \%$

All Anglers

9. On average, how many times do you fish Lake Reba each month? $(\mathrm{N}=409)$
$\leq \mathbf{1}=13.4 \% \quad \mathbf{1 - 4}=\quad 55.7 \% \quad \mathbf{5 - 1 0}=\quad 28.1 \% \quad \geq \mathbf{1 0}=\quad 2.7 \%$
10. Do you support or oppose the current regulation on largemouth bass at Lake Reba? ($N=412$)
Support 85.0\%
Oppose 13.8\%
No Opinion
1.2\%

10a. If you oppose, what largemouth bass size limit do you prefer at Lake Reba? ($\mathrm{N}=56$)
12" MSL (89.3\%); $\mathbf{1 5 "}^{\prime \prime}$ MSL (3.6\%); C\&R Only (3.6\%); 10" MSL (1.8\%); 19" MSL (1.8\%)

Table 93. Fishery statistics derived from a daytime creel survey (588 individual angler interviews) at Lake Wilgreen during April through October 2017.

	2017
Fishing trips	
No. of fishing trips (per acre)	$4,198(29.56)$

Fishing pressure

Total man-hours (S.E.)
Man hours/acre

16,226 (374.15)
Man hours/acre 114.27

Catch/harvest
No. of fish caught (S.E.)
36,079 (3,622.10)
No. of fish harvested (S.E.) 24,183 (2,930.92)
Lbs. of fish harvested
12,082

Harvest rate
Fish/hour
1.4

Fish/acre 170.3
Lbs/acre 85.1
Catch rates

Fish/hour	2.05
Fish/acre	254.1

Misc. characteristics (\%)
Male 85.5

Female 14.5
Resident 97.8
Non-resident 2.2

Method (\%)
Still fishing 31.5

Casting 59.4
Trot Line/ Jugging 8.5
Trolling
0.7

Mode (\%)

Boat	79.4
Bank	17.2
Dock	3.4

(S.E.) = Standard error

Table 94. Fish harvest statistics derived from the 2017 creel survey at Lake Wilgreen.

	Bluegill	Green Sunfish	Rock Bass	Warmouth	Panfish Group	Black Crappie	White Crappie	Crappie Group	$\begin{gathered} \hline \text { Largemouth } \\ \text { Bass } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Black Bass } \\ \text { Group } \\ \hline \end{gathered}$	Channel Catfish	$\begin{gathered} \text { Blue } \\ \text { Catfish } \end{gathered}$	Flathead Catfish	Catfish Group	Anything
Number caught	16,030	69	47	41	16,187	7,054	4,923	11,977	4,708	4,708	3,103	58	46	3,207	16,187
(per acre)	12.9	0.5	0.3	0.3	14.0	49.7	34.7	84.3	33.2	33.2	21.9	0.4	0.3	22.6	14.0
Number harvested	10,674	59	47	0	10,780	5,893	3,862	9,754	890	891	2,659	52	46	2,758	10,780
(per acre)	75.2	0.4	0.3		76	41.5	27.2	68.7	6.3	6.3	18.7	0.4	0.3	19.4	76
\% of total number harvested	44.3	0.2	0.2		44.6	24.4	16.0	40.3	3.7	3.7	11.0	0.2	0.2	11.4	44.6
Pounds harvested	921.1	4.0	12.9		938.0	2833.3	924.7	3758.0	1470.4	1,470.4	5142.6	596.5	176.2	5915.3	938.0
(per acre)	6.5	0.0	0.1		6.6	20.0	6.5	26.5	10.4	10.4	36.2	4.2	1.2	41.7	6.6
\% of total pounds harvested	7.6	0.0	0.1		7.8	23.5	7.7	31.1	12.2	12.2	42.6	4.9	1.5	49.0	7.8
M ean length (in)	5.3	4.6	7.8			9.3	8.2		14.6		17.8	33.1	20.0		
M ean weight (lbs)	0.10	0.10	0.30			0.40	0.30		1.6		1.80	22.50	3.30		
Number fishing trips for that species					1632.7			573.4		1206.8				713.6	71.6
\% of all trips					38.9			13.7		28.7				17.0	1.7
Hours fished for that species (per acre)					$\begin{aligned} & 6,310.4 \\ & (44.44) \end{aligned}$			$\begin{aligned} & 2,216.3 \\ & (15.61) \end{aligned}$		$\begin{aligned} & 4664.4 \\ & (32.85) \end{aligned}$				$\begin{aligned} & 2,758.1 \\ & (28.75) \end{aligned}$	$\begin{gathered} 276.6 \\ (1.95) \end{gathered}$
Number harvested fishing for that species					9,605			7,077		871				1972	
Pounds harvested fishing for that species					804.4			3370.0		1440.5				1440.5	
Number harvested per hour fishing for that species					1.5			2.6		0.2				0.6	
\% success fishing for that species					41.5			70.0		21.9				61.7	15.4

Table 95. Length distribution (length of released fish are estimates) for each species of fish harvested (H) and/or released (R) at Lake Wilgreen from April through October 2017.

Table 96. Monthly black bass angling success at Lake Wilgreen during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	559.8	113.9	210.2	812.5	535	0.57	109	0.12
May	1288.5	257.7	213.6	825.4	1235	1.57	258	0.33
Jun	701.3	113.5	209.5	809.7	701	0.86	113	0.14
Jul	696.8	215.7	200.2	773.6	547	0.68	207	0.26
Aug	788.0	135.9	97.0	375.0	435	0.95	129	0.28
Sep	379.0	22.6	173.2	669.4	357	0.51	23	0.03
Oct	294.9	31.6	103.2	398.8	269	0.71	32	0.08
Total Mean	4708.2	890.8	1206.8	4664.4	4079	0.74	871	0.15

Table 97. Monthly crappie angling success at Lake Wilgreen during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	3868.8	2764.1	295.4	1141.9	3117	2.54	2487	2.03
May	3295.8	2848.2	106.8	412.7	2211	5.02	1967	4.46
Jun	1588.3	1433.6	31.4	121.5	753	5.84	753	5.84
Jul	199.1	199.1	7.1	27.6	66	2.00	66	2.00
Aug	1936.0	1766.2	53.9	208.3	1161	4.75	1161	4.75
Sep	282.8	237.6	14.8	57.4	158	3.11	158	3.11
Oct	805.7	505.6	63.9	246.9	785	3.17	485	1.96
Total	11976.5	9754.4	573.4	2216.3	8215		7077	
Mean						3.14		2.62

Table 98. Monthly panfish angling success at Lake Wilgreen during the 2017 creel survey period.

Month	Total no. caught	Total no. harvested	Total no. of trips for	Hours fished for	Catch fishing for	Catch / hour fishing for	No. harvested fishing for	No. harvested / hour fishing for
Apr	460.7	257.6	73.9	285.5	223	1.22	94	0.51
May	2970.3	2048.0	280.3	1083.4	2672	2.40	1750	1.57
Jun	6631.7	4610.2	471.4	1821.8	6075	3.60	4167	2.47
Jul	2944.6	1982.4	378.9	1464.3	2720	1.95	1924	1.38
Aug	2065.1	1297.5	221.0	854.1	1915	2.66	1175	1.63
Sep	741.0	226.3	138.6	535.5	724	1.42	221	0.43
Oct	373.9	358.1	68.8	265.9	274	1.55	274	1.55
Total Mean	16187.3	10780.1	1632.7	6310.4	14603	2.38	9605	1.54

Table 99. Angler attitude survey carried out in conjunction with 2017 creel survey on Lake Wilgreen.
3. Which species do you fish for at Lake Wilgreen (check all that apply)? ($N=362$)

Bass $=67.1 \%$; Bluegill $=66.0 \%$; Channel Catfish $=61.9 \%$; Redear Sunfish $=34.8 \%$; Crappie $=33.1 \%$
4. Which species do you fish for most at Lake Wilgreen (check only one)?

Bluegill $=37.0 \% ;$ Bass $=35.3 \% ;$ Channel Catfish $=23.2 \% ;$ Crappie $=4.5 \%$

Bass Anglers

| 5. What level of satisfaction do you have with bass fishing at Lake Wilgreen? | $(N=255)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Very Satisfied | 64.3% | Somewhat Satisfied | 6.7% | Total | 71.0% |
| Very Dissatisfied | 3.9% | Somewhat Dissatisfied | 18.8% | Total | 22.7% |
| Neutral | 5.5% | No Opinion | 0.8% | | |

5a. If angler responds with somewhat or very dissatisfied in question 5: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (22.7\%)

Size of fish	43.9%	Number of fish	43.9%	Too many anglers	5.3%
Unfamiliar with lake	5.3%	Regulations	1.8%		

Bluegill Anglers

6. What level of satisfaction do you have with bluegill fishing at Lake Wilgreen? ($N=237$)

Very Satisfied	55.3%	Somewhat Satisfied	9.3%	Total	64.6%
Very Dissatisfied	4.6%	Somewhat Dissatisfied	19.4%	Total	24.0%
Neutral	11.0%	No Opinion	0.4%		

6a. If angler responds with somewhat or very dissatisfied in question 6: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (24.0\%)

Size of fish	72.7%	Number of fish	20.0%	Too many anglers	3.6%
Unfamiliar with lake	3.6%				

Redear Sunfish Anglers

7. What level of satisfaction do you have with redear sunfish fishing at Lake Wilgreen? ($N=124$)

Very Satisfied	46.0%	Somewhat Satisfied	1.6%	Total	47.6%
Very Dissatisfied	8.1%	Somewhat Dissatisfied	10.5%	Total	18.6%
Neutral	30.6%	No Opinion	3.2%		

7a. If angler responds with somewhat or very dissatisfied in question 7: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (18.6%)

Number of fish	66.7%	Size of fish	23.8%	Too many anglers	4.8%
Unfamiliar with lake	4.8%				

Catfish Anglers

8. What level of satisfaction do you have with catfish fishing at Lake Wilgreen? $(N=221)$

Very Satisfied	80.1%	Somewhat Satisfied	2.7%	Total	82.8%
Very Dissatisfied	0.9%	Somewhat Dissatisfied	8.6%	Total	9.5%
Neutral	5.4%	No Opinion	2.3%		

8a. If angler responds with somewhat or very dissatisfied in question 8: what is the single most important reason
for your dissatisfaction? *Note: These numbers are percentages ONLY of those who were dissatisfied (9.5\%)

Number of fish	77.3%	Size of fish	9.1%	Unfamiliar with lake	9.1%
Regulations	4.5%				

All Anglers

9. On average, how many times do you fish Lake Wilgreen each month? $(N=361)$

$$
\leq \mathbf{1}=\quad 17 . .2 \% \quad \mathbf{1 - 4}=\quad 55.1 \% \quad \mathbf{5 - 1 0}=\quad 26.3 \% \quad \geq \mathbf{1 0}=\quad 1.4 \%
$$

10. Do you support or oppose the current regulation on largemouth bass at Lake Wilgreen? ($N=362$)

Support 93.1% Oppose $5.5 \% \quad$ No Opinion 1.4%
10a. If you oppose, what largemouth bass size limit do you prefer at Lake Wilgreen? ($N=56$)
15" MSL (75.0\%); C\&R Only (15.0\%); 12" MSL (5.0\%); No Size Limit (5.0\%)

SOUTHEASTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Conditions encountered during sampling at southeastern district lakes are listed in Table 1.

Lake Cumberland (50,250 acres)

Lake levels in Lake Cumberland rose to 705 msl in 2013 and 723 msl in 2014 with the completion of repairs to Wolf Creek Dam. Sampling completed after 2013 was conducted in areas that were sampled prior to 2007. Samples from 2007-2012 were conducted in areas farther downstream in the embayments due to reduced water levels; therefore, any comparisons of the 2007-2012 data should be interpreted accordingly.

Black Bass Sampling (Spring)

Diurnal electrofishing studies were conducted at Wolf Creek dam, and in the Faubush Creek, Fishing Creek, and Lily Creek embayments of Lake Cumberland during May 2017 to assess the black bass populations. The lengthfrequency and catch-per-unit-effort (CPUE) of the black bass species collected in each area is shown in Table 2, and the catch-per-hour (by area and length group) of the three black bass species are shown in Tables 3-6. Catch rates for largemouth and spotted bass were higher in 2017 than in previous sampling years. Table 7 compares the catch-per-hour by length group of black bass in Lake Cumberland to other SEFD lakes sampled in 2017.

Largemouth bass catch rates met two of the four CPUE management objectives (Table 8), and spotted bass met two of the three management objectives (Table 9). The smallmouth bass population did not meet any of the CPUE management objectives (Tables 10).

Largemouth bass populations exhibited excellent size structure, with a PSD value of 90 and an RSD_{15} value of 57 (Table 11). Smallmouth bass and spotted bass populations had a good size structure, with a PSD value of 74 and an RSD_{14} value of 53 for smallmouth bass and a PSD value of 70 and an RSD_{14} value of 20 for spotted bass (Table 11). Table 12 compares the size structure of black bass populations in Lake Cumberland to other SEFD lakes sampled in 2017.

Black Bass Sampling (Fall)

Diurnal electrofishing was conducted in the Fishing Creek embayment during September to index the largemouth bass year class strength (Tables 13 and 14). Catch rates of age-0 largemouth bass were lower in 2017 than rates observed the last two years (Table 14). Table 15 compares the CPUE of age-0 largemouth bass in Lake Cumberland to other SEFD lakes sampled in fall 2017. Relative weight (Wr) values for largemouth bass and spotted bass collected during September sampling are shown in Table 16. Table 17 compares Wr values for black bass in Lake Cumberland to other SEFD lakes sampled in fall 2017.

Crappie Sampling

Fall trap netting was conducted in the Fishing Creek and Wolf Creek embayments of Lake Cumberland during October and November 2017 to assess the crappie population. Length frequency and CPUE for black and white crappie from each area are shown in Table 18. The PSD and RSD_{10} values for white and black crappie are shown in Table 19. Age-growth data from white and black crappie collected in 2017 are shown in Tables 20 and 21, respectively. Age-2 white crappie (73\%) dominated the white crappie catch (Table 22). Age-2 black crappie (2015 year class) comprised 55% of the black crappie catch (Table 23). The crappie population assessments (white and black) are shown in Table 24. Both black and white crappie rated poor (Table 24). The crappie population met one of the five management objectives (Table 25). Relative weight (Wr) values for black and white crappie are shown in Table 26. Based on crappie caught during striped bass netting and angler reports, our sampling may not be indicative of how good the crappie population actually is.

Striped Bass Sampling

Gill nets were used in late November and early December 2017 to evaluate the striped bass population in Lake Cumberland. Twenty-five net-nights captured 108 striped bass for a catch rate of 4.3 fish $/ \mathrm{nn}$. Length-frequency and CPUE of striped bass are shown in Table 27. Striped bass ranged from 9.0 to 32.0 in with the mode being the 19.0in class (25 fish). All of the management objectives were met for the striped bass population (Table 28). The agegrowth data for striped bass collected during 2017 is shown in Table 29. Eight year-classes were represented in the catch (Table 30). The 2016 (age-1) year class was the most abundant year class collected (51\%), which coincides with the increased (pulsed) stocking rate of approximately 14.6 fish/acre in 2016. Mean length of age- $2+$ fish at capture (2015 year class) was 24.3 in , which exceeded the growth objective (21.0 in) for the striped bass fishery (Table 28). The striped bass assessment score was 13 (rating=good; Table 31). Striped bass relative weight (Wr) values are shown in Table 32.

Cumberland Tailwater

Trout Sampling (Fall)

Nocturnal electrofishing sampling was conducted November 6 and 7, 2017 to assess the trout population in the Lake Cumberland tailwater. Electrofishing was completed in seven different areas of the tailwater. Table 33 has the length-frequency and CPUE for the three trout species collected in each area. Although catch rates of rainbow trout 15.0-17.9 inches increased dramatically in 2017, the increase is due to stocking 15.0 inch rainbow trout in August and September in addition to the average 9.0 inch trout (Table 34). Brown trout catch rates continue to be low and remain at or below the 21-year average for the tailwater (Table 35). Relative weight (Wr) values for each trout species is shown in Table 36.

2017 Daytime Creel Survey

A roving daytime creel survey was conducted on the Cumberland Tailwater from Wolf Creek Dam downstream to Highway 61 Bridge from 1 April-30 November 2017. The tailwater was split into two geographic stratums (upper and lower), and the survey was designed so each stratum could be independently assessed. The upper stratum covered the section from Wolf Creek Dam downstream to Helm's Landing, and the lower section covered the tailwater from Helm's Landing to Highway 61 Bridge. The survey was conducted 18 days per month (10 weekdays and 8 weekend days), and each day consisted of a 6 -hour time period. Boat and bank angler counts were averages based on counts taken twice during the 6 -hour period. Creel data will be presented for the tailwater as a whole, as well as each stratum (upper and lower).

Cumberland Tailwater Creel Survey (entire tailwater)

Results from the tailwater creel survey are shown in Tables 37-44. Fishing pressure on the tailwater declined for the third consecutive creel. During the 2017 survey, the catch rates for both trout and all species of fish combined increased over previous creel surveys on the tailwater. Trout anglers spent 209,336 hours on the tailwater, which accounted for 91% of the total hours fished. The number of brown trout caught declined in 2017 and was less than half of the observed catch in 2009. The number of rainbow trout caught increased in 2017 and was consistent with the number of trout caught in 2006 before the Lake Cumberland drawdown, which began in 2007. Trout anglers were generally successful, with catch rates of 1.21 fish $/ \mathrm{hr}$ for bank anglers and $1.59 \mathrm{fish} / \mathrm{hr}$ for boat anglers.

Upper Cumberland Tailwater Creel Survey (4.5 river miles)

Results from the upper tailwater creel survey are shown in Tables 45-49. Anglers fished a total of 103,828 hours during 29,391 fishing trips, for an average trip length of 3.5 hours in the upper portion. Anglers harvested a total of 12,388 trout per river mile in the upper portion of the tailwater in 2017. Trout anglers in the upper section caught $1.38 \mathrm{fish} / \mathrm{hr}$ and harvested $0.48 \mathrm{fish} / \mathrm{hr}$. Although trout anglers fishing by boat had a slightly higher catch rate, trout anglers who were fishing from the bank had a slightly higher harvest rate than boat anglers.

Lower Cumberland Tailwater Creel Survey (34.3 river miles)

Results from the lower tailwater creel survey are shown in Tables 50-54. Anglers fished a total of 126,167 hours during 27,981 fishing trips, for an average trip length of 4.5 hours in the lower portion. Anglers harvested a total of 692 trout per river mile in the lower portion of the tailwater in 2017. Trout anglers in the lower section had a slightly higher catch rate ($1.62 \mathrm{fish} / \mathrm{hr}$) than trout anglers in the upper section ($1.38 \mathrm{fish} / \mathrm{hr}$). Trout anglers fishing by
boat in the lower section caught 1.68 fish $/ \mathrm{hr}$, and trout anglers who were fishing from the bank had catch rate of 1.19 fish/hr.

Cumberland Tailwater Angler Attitude Survey

An angler attitude survey was conducted in conjunction with the creel survey to gather angler opinions about the various fisheries in the Cumberland tailwater (Figure 1). A total of 162 anglers were interviewed in the tailwater. Ninety-six percent of rainbow trout anglers were satisfied with fishing on the tailwater. Brown trout and brook trout anglers had a much lower satisfaction level (57% and 60%, respectively), and the number of fish was listed as the main reason for angler dissatisfaction. In general, anglers were satisfied with the current size and creel limits on the tailwater (87%). Fifty-nine percent of anglers preferred to fish under low flows (1 turbine or less), and 33% of anglers preferred a moderate flow (1-3 turbine) scenario.

Laurel River Lake (6,060 acres)

Black Bass Sampling (Spring)

Electrofishing sampling was conducted during April and May 2017 to assess the black bass population in Laurel River Lake. Electrofishing was conducted in four areas of the lake: 1) dam, 2) Spruce Creek, 3) Laurel River arm, and 4) upper Craigs Creek. Length-frequency and CPUE of the three black bass species collected in each area is shown in Table 55. The catch-per-hour (by area and length group) of the three black bass species are shown in Tables 56-59. Table 7 compares the catch-per-hour by length group of black bass in Laurel River Lake to other SEFD lakes sampled in 2017.

The largemouth bass population met two of the four catch rate objectives (Table 60). Spotted bass met one of the three catch rate management objectives (Table 61). The smallmouth bass population did not meet any of the catch rate management objectives (Table 62).

Smallmouth bass exhibited an excellent size structure, having a PSD value of 90 and an RSD_{14} value of 50 (Table 63). Largemouth and spotted bass had a good size structure, with largemouth bass having a PSD value of 65 and an RSD_{15} value of 34 and spotted bass population having a PSD of 57 and an RSD_{14} of 18 (Table 63). Table 12 compares the size structure values of black bass populations in Laurel River Lake to other SEFD lakes sampled in 2017.

Black Bass Sampling (Fall)

Diurnal electrofishing was conducted in the Laurel River arm on 18 September 2017 to index largemouth bass year class strength (Tables 64 and 65). Although the CPUE of age-0 largemouth bass in 2017 was low, no additional age-0 bass were stocked due to low success of attempted stockings in previous years (Table 65). Relative weight (Wr) values for largemouth and spotted bass collected during September sampling are shown in Table 66.

Walleye Sampling

Gill nets were used in November 2017 to evaluate the walleye population in Laurel River Lake. A total of 177 walleye were captured in 8 net-nights for a catch rate of 22.1 fish $/ \mathrm{nn}$. Length frequency and CPUE of walleye is shown in Table 67. Walleye ranged from 9.0-24.0 in with the mode being the 11.0-in class (32 fish). Two of the three catch rate management objectives for walleye were met in 2017 (Table 68). Age-growth data for male and female walleye are shown in Tables 69 and 70, respectively. The age-growth for both sexes combined is shown in Table 71. Ten year-classes were represented in the catch, with age-0 (2017 year class) and age-2 (2015 year class) walleye comprising 69% of the catch (Table 72). The walleye assessment score was 14 (rating=excellent; Table 73). Mean length of age-2+ walleye at capture (19.2 in) surpassed the growth objective of 18.0 in (Table 68). Relative weight (Wr) values for walleye are shown in Table 74.

Cedar Creek Lake (784 acres; Lincoln Co.)

Black Bass Sampling (Spring)

Diurnal electrofishing was conducted on 30 May 2017 to assess the largemouth bass population in Cedar Creek Lake. The length-frequency and CPUE of largemouth bass is shown in Table 75. Size structure of largemouth bass
was good (PSD=66, $\mathrm{RSD}_{15}=45$; Table 76). The catch-per-hour (by length group) of largemouth bass for 2003-2017 is shown in Table 77. Two of the four CPUE management objectives for the largemouth bass population were met or exceeded (Table 78).

Black Bass Sampling (Fall)

Diurnal electrofishing was conducted on 15 September 2017 to index the largemouth bass year-class strength (Tables 79 and 80). Catch rates of age- 0 bass in 2017 were lower than 2016 catch rates but were still high in relation to the 14 year average (Table 80). Relative weight (Wr) values for largemouth bass are found in Table 81.

Chenoa Lake (35 acres; Bell Co.)

Largemouth Bass Sampling (Spring)
Diurnal electrofishing was conducted on 11 April 2017 at Chenoa Lake to assess the largemouth bass population. Length frequency and CPUE for largemouth bass is shown in Table 82. Catch-per-hour (by length group) for largemouth bass is shown in Table 83. The largemouth bass size structure was fair, with a PSD value of 42 $\left(\mathrm{RSD}_{15}=13\right.$; Table 84).

Largemouth Bass Sampling (Fall)
Diurnal electrofishing was conducted on 5 October 2017 at Chenoa Lake to collect largemouth bass to determine age-growth. Age-growth data from largemouth bass collected in 2017 is shown in Table 85. Relative weight values for largemouth bass are in Table 86.

Lake Linville (358 acres; Rockcastle Co.)

Black Bass Sampling (Spring)

Diurnal electrofishing was conducted on 31 May 2017 at Lake Linville to assess the black bass population. Length frequency and CPUE for the black bass populations are shown in Tables 87-89. Although overall catch rates for largemouth bass have declined over the years, there has been an increase in catch rates of larger-sized bass (Table 88). A population assessment for largemouth bass is shown in Table 90. All of the catch rate management objectives were met (Table 90). The size structure for the largemouth bass population was fair with a PSD value of $48\left(\mathrm{RSD}_{15}=16\right)$, and the spotted bass population is comprised of small individuals ($\mathrm{PSD}=26, \mathrm{RSD}_{14}=2$; Table 91$)$.

Largemouth Bass Sampling (Fall)

Diurnal electrofishing was conducted on 4 October 2017 at Linville Lake to collect largemouth bass to determine age-growth. Age-growth data from largemouth bass collected in 2017 is shown in Table 92. Relative weight values for largemouth bass are in Table 93.

Wood Creek Lake (625 acres; Laurel Co.)

Black Bass Sampling (Spring)

Diurnal electrofishing was conducted on 4 May 2017 in the Pump Station and Dock areas of Wood Creek Lake to assess the black bass population. Length frequency and CPUE for black bass are shown in Table 94. The size structure for largemouth bass was poor, having a PSD value of $25\left(\mathrm{RSD}_{15}=4\right.$; Table 95$)$. The spotted bass population also had a poor size structure ($\mathrm{PSD}=34, \mathrm{RSD}_{14}=3$; Table 95). Catch-per-hour (by length group) for largemouth and spotted bass are shown in Tables 96 and 97, respectively. The largemouth bass catch rates have been increasing the last few years, due in large part to increasing numbers of bass less than 12.0 in . A largemouth bass population assessment is shown in Table 98. Two of the four catch rate management objectives were met for the largemouth bass population (Table 98).

Black Bass Sampling (Fall)

Diurnal electrofishing was conducted on 26 September 2017 in the Pump Station and Dock areas of Wood Creek Lake to index largemouth bass year class strength (Tables 99 and 100). Catch rates of age-0 largemouth bass in

2017 were lower than average (Table 100); thus, additional age-0 bass were stocked in the lake during the fall. Relative weight values for largemouth and spotted bass are shown in Table 101.

Table 1. Summary of sampling conditions by waterbody, species sampled, and date for the Southeastern Fisheries District in 2017.

Water body Location	Species	Date	$\begin{gathered} \text { Time } \\ (24 \mathrm{hr}) \\ \hline \end{gathered}$	Gear	Weather	Water temp. F	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Lake Cumberland										
Dam	Black bass	5/2/2017	900	shock	sunny, windy, 50s	60	727	60-120	fair	w ind, trees, and debris hampered sampling
Faubush Creek	Black bass	5/8/2017	1015	shock	sunny, 60s	63	727	54	fair	lots of trash, high w ater w as in the trees
Fishing Creek	Black bass	5/8/2017	1345	shock	sunny, 60s	67	727	42	fair/poor	high w ater made sample difficult due to trees
Lily Creek	Black bass	5/2/2017	1200	shock	sunny, windy, 60s	69	727	96	fair	w ater clearish green
Fishing Creek	Black bass	9/28/2017	830	shock	sunny, 70s, breezy	77	706	24	good	
Wolf Creek	Crappie	10/24-10/27		trap net	mostly clear, 40s and 60s, w indy	65	704	36	good	
Fishing Creek	Crappie	10/30-11/2		trap net	sun and rain, 60s	60	705	48	good	
Beaver Creek	Striped bass	12/4-12/6		gill net	v indy 10-20 mph, heavy rains, 40s, 50	56	702	-	good	
Lily/Wolf	Striped bass	11/27-11/30		gill net	mostly clear, 60s	57	704	96	good	
Cumberland Tailw ater										
Above Helms	Trout	11/6/2017	1800	shock	coudy	-	5580 cfs			
Below Helms	Trout	11/6/2017	1750	shock	cloudy, north winds at 5-10 mph	61	5580 cfs	36		
Rainbow Run	Trout	11/6/2017	1745	shock		62	5580 cfs			
Big Willis	Trout	11/6/2017	1700	shock	overcast, cool, 50s	61	5580 cfs			
Crocus Creek	Trout	11/6/2017		shock	overcast, 50s	61	5580 cfs			
Hw y 61 Traces	Trout	11/7/2017	1715	shock	cloudy, overcast, light drizzle, 40s	61	5580 cfs			
Cloyds	Trout	11/7/2017		shock	overcast, 50s	61	5580 cfs			
Laurel River Lake										
Dam	Black bass	4/13/2017	845	shock	sunny, 50s, 60s	60	1014	120	good	very clear w ater
Spruce Creek	Black bass	4/18/2017	900	shock	cloudy, light rain, 60s	65	1014	108	good	some areas with thick pollen on w ater surface
Craig's Creek	Black bass	4/13/2017	1100	shock	sunny, nice 60s	62	1014	120	good	
312 Bridge	Black bass	5/23/2017	830	shock	cloudy, 60s, 70s	73	1015	24	fair	w ater murky, dark brow n ; 1 dipper
312 Bridge	Black bass	9/18/2017	940	shock	sunny, 70s	74	1011	48	good	
Entire lake	Walleye	11/13-11/14		gill net	mostly sunny, 40s	58	1009		good	
Cedar Creek Lake	LMB	5/30/2017	745	shock	sunny, breezy, 70s	72	full	36	good	w ater dark, more brow n than green
	LMB	9/15/2017	940	shock	Foggy early, clearing and sunny, 70s	68	full	42	good	vegetation thick in some areas
Chenoa Lake	LMB	4/11/2017	1000	shock	sunny, 60 s and 70 s	58	full	36	good	
	LMB	10/5/2017		shock		67			good	fish collected for age-grow th and condition
Lake Linville	Black bass	5/31/2017	730	shock	sunny, 60s	71	full	24	fair	murky, brow n w ater
	LMB	10/4/2017		shock		71				fish collected for age-grow th and condition; 1 dipper
Wood Creek Lake	Black bass	5/4/2017	1000	shock	cloudy, 60s	67	full	84	fair	thick vegetation hampered sample
	Black bass	9/26/2017	830	shock	sunny and warm 70s and 80s	75	full	96	fair	thick vegetation hampered sample

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours of 15 -minute nocturnal electrofishing runs for black bass in Lake Cumberland during May 2017; standard error is in parentheses.

Area	Species	Inch class																		Total	CPUE
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Dam	Largemouth bass			2	1	3	2	6	3	3	5	9	7	14	10	10	8	4	1	88	58.7 (15.9)
	Spotted bass	1	1	6	5	2	1	4	1	7	17	17	17	7						86	57.3 (10.3)
	Smallmouth bass			1	1		1	2		1	1	1		1	1	3		1	1	15	10.0 (4.6)
Faubush	Largemouth bass	1		1			2	3		1	2	9	20	27	17	9	2	3		97	64.7 (7.9)
Creek	Spotted bass	1		3	2	2	4	5	1	2	3	3								26	17.3 (6.3)
	Smallmouth bass													1						1	0.7 (0.7)
Fishing	Largemouth bass	1			2	2	1	1	3	1	2	11	10	10	5	1				50	33.3 (6.5)
Creek	Spotted bass						1	1		5	5	2								14	9.3 (5.7)
	Smallmouth bass																			0	0.0 (0.0)
Lily	Largemouth bass			1	3		1				3	1	7	10	9	2	6	4		47	31.3 (6.9)
Creek	Spotted bass	1		3	5	7	9	9	4	4	9	10	6	3						70	46.7 (2.7)
	Smallmouth bass					1		1				1				1	1			5	3.3 (1.2)
Total	Largemouth bass	2		4	6	5	6	10	6	5	12	30	44	61	41	22	16	11	1	282	47.0 (5.6)
	Spotted bass	3	1	12	12	11	15	19	6	18	34	32	23	10						196	32.7 (5.2)
	Smallmouth bass			1	1	1	1	3		1	1	2		2	1	4	1	1	1	21	3.5 (1.4)

Table 3. Comparison of catch-per-hour of black bass (by area) captured during spring electrofishing on Lake Cumberland during the period of 2013-2017.

Species/Area	Stock					Quality					Preferred				
	2013	2014	2015	2016	2017	2013	2014	2015	2016	2017	2013	2014	2015	2016	2017
Largemouth bass															
Dam	4.0	18.7	12.0	46.7	54.7	3.3	17.3	11.3	28.0	45.3	2.7	10.0	8.0	23.3	31.3
Faubush Creek	-	-	-	14.7	63.3	-	-	-	14.0	59.3	-	-	-	8.0	38.7
Fishing Creek	45.3	25.3	61.3	41.3	30.0	21.3	19.3	41.3	25.3	26.0	5.3	6.7	11.3	8.7	10.7
Lily Creek	25.3	72.0	44.0	25.3	28.7	18.7	28.7	32.0	23.3	28.0	6.7	14.0	10.0	11.3	20.7
Mean	21.0	30.7	31.5	32.0	44.2	12.8	17.8	22.2	22.7	39.7	4.7	8.2	8.0	12.8	25.3
Spotted bass															
Dam	26.0	44.7	26.0	41.3	48.7	17.3	24.7	16.7	26.7	43.3	3.3	6.7	6.0	10.0	16.0
Faubush Creek	-	-	-	22.0	13.3	-	-	-	12.0	5.3	-	-	-	1.3	0.0
Fishing Creek	2.7	5.3	12.7	8.0	9.3	0.0	1.3	6.0	1.3	8.0	0.0	0.0	0.7	0.0	0.0
Lily Creek	35.3	44.7	42.0	19.3	40.7	17.3	13.3	31.3	12.7	21.3	2.0	2.7	6.7	2.7	6.0
Mean	20.2	25.0	22.0	22.7	28.0	11.3	10.0	13.8	13.2	19.5	1.5	2.3	3.5	3.5	5.5
Smallmouth bass															
Dam	10.7	21.3	2.7	8.0	8.7	3.3	10.7	2.0	3.3	6.7	2.7	6.0	2.0	2.0	4.7
Faubush Creek	-	-	-	8.7	0.7	-	-	-	6.0	0.7	-	-	-	4.0	0.7
Fishing Creek	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lily Creek	1.3	1.3	18.0	4.7	3.3	1.3	0.0	16.0	4.7	2.0	0.7	0.0	12.7	4.0	1.3
Mean	4.5	7.5	7.8	5.3	3.2	2.0	3.7	6.8	3.5	2.3	1.7	2.0	5.2	2.5	1.7

Largemouth bass - ≥ 8.0 in = stock, ≥ 12.0 in = quality, ≥ 15.0 in = preferred.
Smallmouth bass and spotted bass $-\geq 7.0$ in $=$ stock, ≥ 11.0 in $=$ quality,≥ 14.0 in $=$ preferred.
sedpsdcb.d17

Table 4. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Lake Cumberland May 2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std. err.										
2017	2.8	0.7	4.5	1.4	14.3	2.4	25.3	3.5	0.2	0.2	47.0	5.6
2016	5.0	1.8	9.3	3.3	9.8	1.5	12.8	2.4	0.5	0.4	37.0	6.4
2015	6.3	2.3	9.3	2.6	14.2	3.4	8.0	1.7	0.0	0.0	37.8	7.8
2014	9.5	3.7	12.8	4.4	9.7	2.4	8.2	2.0	0.3	0.2	40.2	8.5
2013	1.8	1.1	8.2	2.6	8.2	1.8	4.7	1.1	0.2	0.2	22.8	5.0
2012	15.3	3.8	21.0	3.7	21.7	4.9	11.7	2.4	0.2	0.2	69.7	13.0
2011	5.7	2.7	6.5	2.2	5.2	1.7	3.7	1.1	0.2	0.2	21.0	6.3
2010	12.3	3.0	23.3	5.3	13.7	3.3	10.7	2.0	0.5	0.3	60.0	11.7
2009	20.3	6.5	9.7	3.5	8.5	2.8	8.2	2.3	0.5	0.3	46.7	12.5
2008	7.3	2.3	11.0	2.8	20.2	5.7	18.0	4.0	0.2	0.2	56.5	13.2
2007	8.4	3.2	14.1	4.5	20.9	7.1	15.3	4.1	0.5	0.3	58.6	18.1
2006	0.8	0.4	6.2	2.2	8.8	3.1	10.2	2.6	0.5	0.3	26.0	7.6
2005	0.8	0.5	1.6	0.7	9.9	3.6	5.5	1.3	0.0	0.0	17.7	5.2
2004	0.8	0.3	5.2	1.5	6.9	1.4	6.5	1.6	0.0	0.0	19.5	4.0
2003	2.0	0.8	5.7	1.4	6.1	1.9	8.3	1.9	0.1	0.1	22.1	4.3
2002	0.4	0.2	1.9	0.6	7.7	2.5	6.3	1.0	0.1	0.1	16.3	3.3

sedpsdcb.d17

Table 5. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Lake Cumberland during May 2017.

Year	Length group										Total	
	<8.0 in		8.0-10.9 in		11.0-13.9 in		≥ 14.0 in		≥ 17.0 in			
	CPUE	Std. err.										
2017	6.5	1.3	6.7	1.4	14.0	2.4	5.5	2.2	0.0	0.0	32.7	5.2
2016	4.8	1.9	7.2	1.2	9.7	2.4	3.5	1.2	0.0	0.0	25.2	4.5
2015	4.2	1.2	6.0	1.2	10.3	2.5	3.5	1.0	0.0	0.0	24.0	4.2
2014	7.2	1.9	11.2	2.5	7.7	2.4	2.3	1.2	0.0	0.0	28.3	6.0
2013	1.8	0.6	7.7	1.6	9.8	2.4	1.5	0.7	0.0	0.0	20.8	3.8
2012	27.3	4.7	20.5	3.9	8.8	2.6	0.7	0.5	0.0	0.0	57.3	10.1
2011	8.7	1.7	12.2	2.1	5.7	2.4	0.3	0.2	0.0	0.0	26.8	4.6
2010	28.3	4.0	26.7	5.5	12.2	2.6	0.8	0.4	0.0	0.0	68.0	9.2
2009	22.7	4.3	20.5	5.1	10.0	2.1	1.0	0.4	0.0	0.0	54.2	10.3
2008	34.7	4.5	26.7	3.7	15.3	4.0	5.0	2.1	0.0	0.0	81.7	11.1
2007	27.1	6.8	27.5	5.0	13.6	3.6	7.0	2.7	0.4	0.2	75.1	13.5
2006	12.0	2.5	16.5	2.3	13.8	3.0	8.0	2.1	0.2	0.2	50.3	7.1
2005	16.3	3.6	9.5	1.4	11.2	2.0	3.1	1.2	0.0	0.0	40.0	6.3
2004	15.6	2.7	25.5	3.9	10.5	2.1	1.9	0.7	0.0	0.0	53.5	7.8
2003	32.6	5.5	31.6	3.8	9.1	1.5	2.9	0.8	0.0	0.0	76.1	8.6
2002	8.1	1.8	10.3	1.7	5.2	1.1	1.5	0.5	0.0	0.0	25.1	3.7

sedpsdcb.d17

Table 6. Spring electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected at Lake Cumberland during May 2017.

Year	Length group										Total	
	<8.0 in		8.0-10.9 in		11.0-13.9 in		≥ 14.0 in		≥ 17.0 in			
	CPUE	Std. err.										
2017	0.5	0.3	0.7	0.3	0.7	0.4	1.7	0.9	1.2	0.7	3.5	1.4
2016	4.2	2.2	1.2	0.6	1.0	0.4	2.5	0.8	1.0	0.4	8.8	2.6
2015	1.2	0.7	1.0	0.4	1.7	0.6	5.2	1.8	2.0	0.8	9.0	2.4
2014	1.2	0.6	3.2	1.5	1.7	0.7	2.0	1.1	0.8	0.4	8.0	2.8
2013	1.0	0.6	2.3	0.6	0.3	0.2	1.7	0.5	0.3	0.2	5.3	1.3
2012	4.3	1.4	2.3	0.7	0.3	0.2	1.7	0.7	0.5	0.3	8.7	2.1
2011	0.5	0.4	0.3	0.2	0.7	0.3	0.2	0.2	0.2	0.2	1.7	0.5
2010	2.8	0.7	2.5	0.8	1.2	0.4	3.7	1.2	2.3	1.0	10.2	1.9
2009	3.5	1.3	1.5	0.6	0.2	0.2	0.7	0.3	0.2	0.2	5.8	1.5
2008	5.2	1.8	2.0	0.8	1.2	0.5	2.7	1.0	0.8	0.4	11.0	2.8
2007	6.8	2.6	7.1	2.4	3.8	1.3	1.4	0.6	0.5	0.4	19.1	5.4
2006	2.5	0.9	1.2	0.4	0.3	0.3	0.3	0.2	0.2	0.2	4.3	1.2
2005	2.3	0.9	0.8	0.6	1.3	0.5	3.9	1.5	1.3	0.7	8.3	2.3
2004	2.9	1.8	1.9	0.9	1.2	0.5	1.3	0.7	0.0	0.0	7.3	3.1
2003	2.1	1.0	3.9	1.1	1.6	0.6	3.4	1.1	1.0	0.4	11.0	2.7
2002	2.9	1.1	3.5	1.3	2.4	0.8	0.9	0.5	0.1	0.1	9.7	2.9

sedpsdcb.d17

Table 7. Catch-per-hour of black bass captured during spring electrofishing on lakes in the Southeastern Fishery District during 2017.

Species/Lake	Stock *	Quality *	Preferred *
Largemouth bass			
Lake Cumberland	44.2	39.7	25.3
Laurel River Lake	70.5	46.0	24.0
Cedar Creek Lake	78.7	52.0	35.3
Chenoa Lake	53.0	22.0	7.0
Lake Linville	121.3	58.7	20.0
Wood Creek Lake	120.7	30.7	5.3
Spotted bass			
\quad Lake Cumberland	28.0	19.5	5.5
Laurel River Lake	16.5	9.3	3.0
Lake Linville	72.7	18.7	1.3
Wood Creek Lake	21.3	7.3	0.7
Smallmouth bass	3.2	2.3	1.7
\quad Lake Cumberland	1.7	1.5	0.8
Laurel River Lake			

[^32]Table 8. Population assessment for largemouth bass based on spring electrofishing at Lake Cumberland from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{array}{r} \text { CPUE } \\ \text { age-1 } \end{array}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \mathrm{in} \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { score } \end{aligned}$	Assessement rating
Management objective		≥ 13.0 in	$\geq 5.0 \mathrm{fish} / \mathrm{hr}$	≥ 10.0 fish/hr	≥ 8.0 fish/hr	$\geq 0.5 \mathrm{fish} / \mathrm{hr}$		
2017	Value		3.8	14.3	25.3	0.2		
	Score	4	1	1	4	2	12	F
2016	Value	13.7	9.2	9.8	12.8	0.5		
	Score	4	1	1	2	3	11	F
2015	Value		8.3	14.2	8.0	0.0		
	Score	4	1	1	2	1	9	F
2014	Value		12.8	9.7	8.2	0.3		
	Score	4	2	1	2	2	11	F
2013	Value		6.6	8.2	4.7	0.2		
	Score	4	1	1	1	2	9	F
2012	Value	14.0	21.0	21.7	11.7	0.2		
	Score	4	2	2	2	2	12	F
2011	Value		6.8	5.2	3.7	0.2		
	Score	4	1	1	1	2	9	F
2010	Value		11.5	13.7	10.7	0.5		
	Score	4	1	1	2	3	11	F
2009	Value		25.7	8.5	8.2	0.5		
	Score	4	3	1	2	3	13	G
2008	Value		10.0	20.2	18.0	0.2		
	Score	4	1	2	3	2	12	F
2007	Value	13.4	10.3	20.9	15.3	0.5		
	Score	4	1	2	3	3	13	G
2006	Value		1.2	8.8	10.2	0.5		
	Score	4	1	1	2	3	11	F
2005	Value		1.2	9.9	5.5	0.0		
	Score	4	1	1	1	1	8	P
2004	Value		1.1	7.0	6.5	1.0		
	Score	4	1	1	2	3	11	F
2003	Value		3.0	6.1	8.3	0.1		
	Score	4	1	1	2	1	9	F
2002	Value	13.6	0.4	7.6	6.4	0.1		
	Score	4	1	1	2	1	9	F
2001	Value		2.9	7.7	5.2	0.3		
	Score	4	1	1	1	2	9	F
2000	Value		2.8	9.5	5.2	0.3		
	Score	4	1	1	1	2	9	F

sedpsdcb.d17

Table 9. Population assessment for spotted bass based on spring electrofishing at Lake Cumberland from 2000-2017 (scoring based on statewide assessment).

Year		```Mean length age-3 at capture```	CPUE age-1	$\begin{gathered} \text { CPUE } \\ 11.0-13.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Total score	Assessement rating
Management objective		≥ 9.6 in	≥ 4.0 fish/hr	≥ 7.0 fish/hr	≥ 2.0 fish/hr		
2017	Value		0.6	14.0	5.5		
	Score	3	1	4	4	12	G
2016	Value		1.2	9.7	3.5		
	Score	3	2	3	4	12	G
2015	Value		1.7	10.3	3.5		
	Score	3	2	4	4	13	G
2014	Value		1.2	7.7	2.3		
	Score	3	2	2	3	10	G
2013	Value	11.1	0.0	9.8	1.5		
	Score	3	1	3	3	10	G
2012	Value		14.0	8.8	0.7		
	Score	3	4	3	2	12	G
2011	Value		3.9	5.7	0.3		
	Score	3	3	2	1	9	F
2010	Value		9.7	12.2	0.8		
	Score	3	4	4	2	13	G
2009	Value		6.8	10.0	1.0		
	Score	3	4	3	2	12	G
2008	Value	11.0	8.8	15.3	5.0		
	Score	3	4	4	4	15	E
2007	Value		1.3	13.6	7.0		
	Score	4	2	4	4	14	E
2006	Value		1.8	13.8	8.0		
	Score	4	2	4	4	14	E
2005	Value		5.1	11.2	3.1		
	Score	4	4	4	4	16	E
2004	Value		6.0	10.5	1.9		
	Score	4	4	4	3	15	E
2003	Value	11.4	16.7	9.1	2.9		
	Score	4	4	3	4	15	E
2002	Value		5.1	5.2	1.5		
	Score	4	4	1	3	12	G
2001	Value		2.1	4.7	1.6		
	Score	4	3	1	3	11	G
2000	Value		1.9	5.6	1.2		
	Score	4	2	2	2	10	G

Table 10. Population assessment for smallmouth bass based on spring electrofishing at Lake Cumberland from 1990-2017 (scoring based on statewide assessment).

Year		$\begin{gathered} \text { Mean length } \\ \text { age-3 } \\ \text { at capture } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 11.0-13.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Total score	Assessement rating
Management objective		≥ 11.0 in	≥ 2.0 fish/hr	$\geq 3.0 \mathrm{fish} / \mathrm{hr}$	$\geq 2.0 \mathrm{fish} / \mathrm{hr}$		
2017	Value		0.0	0.7	1.7		
	Score	1	1	2	3	7	F
2016	Value		2.8	1.0	2.5		
	Score	1	3	3	4	11	G
2015	Value		0.3	1.7	5.2		
	Score	1	1	3	4	9	F
2014	Value		0.2	1.7	2.0		
	Score	1	1	3	4	9	F
2013	Value		0.3	0.3	1.7		
	Score	1	1	2	3	7	F
2012	Value		2.5	0.3	1.7		
	Score	1	3	2	3	9	F
2011	Value		0.0	0.7	0.2		
	Score	1	1	2	1	5	P
2010	Value	11.3	0.7	1.2	3.7		
	Score	1	2	3	4	10	G
2009	Value		1.8	0.2	0.7		
	Score	2	3	1	2	8	F
2008	Value		2.5	1.2	2.7		
	Score	2	3	3	4	12	G
2007	Value		2.6	3.8	1.4		
	Score	2	3	4	3	12	G
2006	Value		0.0	0.3	0.3		
	Score	2	1	2	2	7	F
2005	Value	12.2	0.8	1.3	3.9		
	Score	2	2	3	4	11	G
2004	Value		1.9	1.2	1.3		
	Score	1	3	3	3	10	G
2003	Value		1.3	1.6	3.4		
	Score	1	2	3	4	10	G
2002	Value		1.7	2.4	0.9		
	Score	1	3	4	3	11	G
2001	Value		0.5	0.4	0.9		
	Score	1	2	2	3	8	F
2000	Value		0.0	1.4	1.1		
	Score	1	1	3	3	8	F

sedpsdcb.d17

Table 11. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Lake Cumberland during May 2017; 95\% confidence limits are in parentheses.

Year	Area	Largemouth bass			Spotted bass			Smallmouth bass		
		```No. \geq stock size```	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \\ \hline \end{gathered}$	No. $\geq$ stock size	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{14} \\ (+/-95 \%) \\ \hline \end{gathered}$	```No. \geq stock size```	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{14} \\ (+/-95 \%) \\ \hline \end{gathered}$
2017	Dam	82	$83( \pm 8)$	$57( \pm 11)$	73	$89( \pm 7)$	$33( \pm 11)$	13	$77( \pm 24)$	$54( \pm 28)$
	Faubush Creek	95	$94( \pm 5)$	$61( \pm 10)$	20	$40( \pm 22)$	$0( \pm 0)$	1	100 ( $\pm 0$ )	100 ( $\pm 0)$
	Fishing Creek	45	$87( \pm 10)$	$36( \pm 14)$	14	86 ( $\pm 19)$	$0( \pm 0)$	0	$0( \pm 0)$	0 ( $\pm 0$ )
	Lily Creek	43	$98( \pm 5)$	$72( \pm 14)$	61	$52( \pm 13)$	$15( \pm 9)$	5	$60( \pm 48)$	$40( \pm 48)$
	Total	265	$90( \pm 4)$	$57( \pm 6)$	168	$70( \pm 7)$	$20( \pm 6)$	19	$74( \pm 20)$	$53( \pm 23)$
2016	Total	192	$71( \pm 6)$	$40( \pm 7)$	136	$58( \pm 8)$	$15( \pm 6)$	32	$66( \pm 17)$	47( $\pm$ 18)
2015	Total	189	$70( \pm 7)$	$25( \pm 6)$	132	$63( \pm 8)$	$16( \pm 6)$	47	$87( \pm 10)$	$66( \pm 14)$
2014	Total	184	$58( \pm 7)$	$27( \pm 6)$	150	$40( \pm 8)$	$9( \pm 5)$	45	$49( \pm 15)$	$27( \pm 13)$
2013	Total	126	$61( \pm 9)$	$22( \pm 7)$	121	$56( \pm 9)$	$7( \pm 5)$	27	$44( \pm 19)$	$37( \pm 19)$
2012	Total	326	$61( \pm 5)$	$21( \pm 4)$	224	$25( \pm 6)$	$2( \pm 2)$	33	$36( \pm 17)$	$30( \pm 16)$
2011	Total	92	$58( \pm 10)$	$24( \pm 9)$	124	$29( \pm 8)$	$2( \pm 2)$	8	$63( \pm 36)$	$13( \pm 25)$
2010	Total	286	$51( \pm 6)$	$22( \pm 5)$	293	$27( \pm 5)$	$2( \pm 1)$	51	$57( \pm 14)$	$43( \pm 14)$
2009	Total	158	$63( \pm 8)$	$31( \pm 7)$	230	$29( \pm 6)$	$3( \pm 2)$	17	$29( \pm 22)$	$24( \pm 21)$
2008	Total	295	$78( \pm 5)$	$37( \pm 6)$	349	$35( \pm 5)$	$9( \pm 3)$	42	$55( \pm 15)$	$38( \pm 15)$
2007	Total	289	$72( \pm 5)$	$30( \pm 5)$	310	$38( \pm 5)$	$13( \pm 4)$	81	$37( \pm 11)$	$10( \pm 7)$
2006	Total	151	$75( \pm 7)$	$40( \pm 8)$	259	$51( \pm 6)$	$19( \pm 5)$	13	$31( \pm 26)$	$15( \pm 20)$
2005	Total	127	$91( \pm 5)$	$32( \pm 8)$	216	$50( \pm 7)$	$11( \pm 4)$	49	$80( \pm 11)$	$59( \pm 14)$
2004	Total	140	$88( \pm 6)$	$39( \pm 9)$	325	$42( \pm 13)$	$12( \pm 8)$	42	$36( \pm 8)$	$8( \pm 5)$

sedpsdcb.d17

Table 12. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Lake Cumberland, Laurel River Lake, Cedar Creek Lake, Chenoa Lake, Lake Linville, and Wood Creek Lake during 2017; 95\% confidence limits are in parentheses.

Lake	Largemouth bass		Smallmouth bass		Spotted bass	
	PSD	$\mathrm{RSD}_{15}$	PSD	$\mathrm{RSD}_{14}$	PSD	$\mathrm{RSD}_{14}$
Lake Cumberland	$90( \pm 4)$	$57( \pm 6)$	$74( \pm 20)$	$53( \pm 23)$	$70( \pm 7)$	$20( \pm 6)$
Laurel River Lake	$65( \pm 5)$	$34( \pm 5)$	$90( \pm 20)$	$50( \pm 33)$	$57( \pm 10)$	$18( \pm 8)$
Cedar Creek Lake	$66( \pm 9)$	$45( \pm 9)$				
Chenoa Lake	$42( \pm 13)$	$13( \pm 9)$				
Lake Linville	$48( \pm 7)$	$16( \pm 5)$			$26( \pm 8)$	$2( \pm 3)$
Wood Creek Lake	$25( \pm 6)$	$4( \pm 3)$			$34( \pm 17)$	$3( \pm 6)$

sedpsdcb.d17
sedpsdlr.d17
sedpsccl.d17
sedpsdcl.d17
sedpsdII.d17
sedpsdwc.d17

Table 13. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15 -minute nocturnal electrofishing runs for black bass in Fishing Creek of Lake Cumberland on 28 September 2017; standard error is in parentheses.

Species	Inch class													Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14		
Largemouth bass	8	3	1		2	3	1			3		4	2	27	18.0 (4.2)
Spotted bass		18	5	1	5	12	10	4	6	10	2	3	1	77	51.3 (9.9)

Table 14. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples in the Fishing Creek area of Lake Cumberland.

Year class	Area	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1 ${ }^{\text {a }}$	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error


Lake Cumberland									
2017	Fishing Creek	4.2	0.5	11.3	4.4	3.3	1.6		
2016	Fishing Creek	6.8	0.2	20.0	9.2	19.3	8.7	4.0	2.1
2015	Fishing Creek	5.1	0.2	18.7	14.1	8.7	6.4	13.3	4.9
2014	Fishing Creek	6.7	0.2	9.3	2.2	9.3	2.2	26.0	4.9
2013	Fishing Creek	6.1	0.1	80.0	23.8	61.3	15.9	26.0	13.6
2012	Fishing Creek	6.1	0.1	96.7	24.6	80.0	19.6	21.8	6.2
2011	Fishing Creek	6.1	0.1	114.7	25.1	102.0	23.2	46.5	7.0
2010	Fishing Creek	5.8	0.1	85.3	9.4	67.3	8.4	16.7	11.5
2009	Fishing Creek	4.8	0.2	42.0	9.5	22.7	6.4	21.3	6.6
2008	Fishing Creek	5.0	0.1	166.0	40.1	80.7	31.3	81.3	13.5
2007	Fishing Creek	5.0	0.3	4.7	3.2	2.7	1.3	24.9	5.5
2006	Fishing Creek	6.3	0.2	22.0	3.1	20.7	2.4	32.0	8.2
2005	Fishing Creek	6.2	0.2	14.0	4.5	13.3	4.1	3.3	1.2
2004	Fishing Creek	6.2	0.1	50.7	8.2	41.3	7.4	4.0	2.1
2003	Fishing Creek	5.8	0.4	6.0	2.7	4.0	2.5	1.3	0.8
2002	Fishing Creek	6.0	0.1	192.7	36.7	160.7	36.3	4.0	1.5

${ }^{\text {a }}$ Age-1 largemouth bass CPUE based only on Fishing Creek location sedyoycb.d17

Table 15. Year class strength at age-0 and mean lengths (in) of largemouth bass collected in September 2017 in electrofishing samples at Lake Cumberland, Laurel River Lake, Cedar Creek Lake, and Wood Creek Lake.

Lake	Area	Age-0		Age-0		Age-0 $\geq 5.0$ in	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error
Lake Cumberland	Fishing Creek	4.2	0.5	11.3	4.4	3.3	1.6
Laurel River Lake	Laurel River Arm	3.6	0.3	7.3	2.4	1.3	1.3
Cedar Creek Lake		4.0	0.1	68.7	15.8	10.7	3.8
Wood Creek Lake		4.1	0.2	16.0	4.4	2.7	1.3

sedyoycb.d17
sedyoylr.d17
sedyoycc.d17
sedyoywc.d17

Table 16. Number of fish and mean relative weight (Wr) for each length group of black bass collected in Fishing Creek of Lake Cumberland on 28 September 2017. Standard error is in parentheses.

Species	Length group					
Largemouth bass	8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in	
	No.	Wr	No.	Wr	No.	Wr
	4	81 (6)	6	88 (4)	0	0 (0)
Spotted bass	7.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in	
	No.	Wr	No.	Wr	No.	Wr
	31	95 (1)	15	92 (2)	1	86 (-)

Table 17. Number of fish and mean relative weight (Wr) for each length group of black bass collected in Lake Cumberland, Laurel River Lake, Cedar Creek Lake, Chenoa Lake, Lake Linville, and Wood Creek Lake during September and October 2017. Standard error is in parentheses.

Species	Location	Length group					
		No.	Wr	No.	Wr	No.	Wr
Largemouth bass		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in	
	Lake Cumberland (Fishing Creek)	4	81 (6)	6	88 (4)	0	0 (0)
	Laurel River Lake (Laurel River Arm)	12	89 (2)	9	100 (3)	0	0 (0)
	Cedar Creek Lake	29	89 (1)	22	89 (2)	16	95 (2)
	Chenoa Lake	15	80 (1)	16	81 (1)	5	87 (5)
	Lake Linville	32	86 (1)	20	83 (2)	16	87 (3)
	Wood Creek Lake	38	81 (1)	13	85 (7)	1	91 (-)
Spotted		7.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in	
	Lake Cumberland (Fishing Creek)	31	95 (1)	15	92 (2)	1	86 (-)
	Laurel River Lake (Laurel River Arm)	5	100 (6)	2	110 (1)	0	0 (0)
	Wood Creek Lake	3	97 (6)	3	100 (2)	0	0 (0)

## sedyoycb.d17

sedyoylr.d17
sedyoycc.d17
sedwrcl.d17
sedwrll.d17
sedyoywc.d17

Table 18. Length frequency and CPUE (fish/nn) for each species of crappie collected in the Fishing Creek ( 27 net-nights) and Wolf Creek (27 net-nights) embayments of Lake Cumberland in 54 net-nights from 24-27 October and 30 October- 2 November 2017

Area	Species	Inch class											Total	CPUE	Std. error
		2	3	5	6	7	8	9	10	11	12	13			
Fishing Creek															
	White crappie	1	1	3	5	11	28	17	9	4	1	1	81	3.0	0.9
	Black crappie	2	2	4	14	34	26	12	4				98	3.6	1.0
Wolf Creek															
	White crappie												0	0.0	0.0
	Black crappie	2	3	2	20	18	9	9	5	10	3		81	3.0	0.8
Total															
	White crappie	1	1	3	5	11	28	17	9	4	1	1	81	1.5	0.5
	Black crappie	4	5	6	34	52	35	21	9	10	3		179	3.3	0.6

sedtncb.d17

Table 19. PSD and RSD $_{10}$ values calculated for crappie collected in trapnets at Lake Cumberland in October and November 2017; 95\% confidence limits are in parentheses.

Species	No.   stock size	PSD	$\mathrm{RSD}_{10}$
White crappie			
	79	$76( \pm 9)$	$19( \pm 9)$
Fishing Creek	0	$0( \pm 0)$	$0( \pm 0)$
Wolf Creek	79	$76( \pm 9)$	$19( \pm 9)$

Black crappie

Fishing Creek	94	$45( \pm 10)$	$4( \pm 4)$
Wolf Creek	76	$47( \pm 11)$	$24( \pm 10)$
Lake Cumberland	170	$46( \pm 8)$	$13( \pm 5)$

sedtncb.d17

Table 20. Mean back calculated lengths (in) at each annulus for white crappie collected from Lake Cumberland during 2017, including the 95\% confidence interval (Cl) for each mean length per age group.

		Age							
Year	No.	1	2	3	4	5	6	7	
2016	13	4.1							
2015	36	4.0	7.2						
2014	1	4.5	9.5	11.2					
2010	1	4.0	7.1	9.2	10.6	11.5	12.3	13.4	
Mean		4.0	7.3	10.2	10.6	11.5	12.3	13.4	
Number		51	38	2	1	1	1	1	
Smallest		3.2	5.5	9.2	10.6	11.5	12.3	13.4	
Largest		5.5	9.7	11.2	10.6	11.5	12.3	13.4	
Std error		0.1	0.2	1.0					
$95 \%$ Cl $\pm$		0.2	0.4	2.0					

Otoliths were used for age-growth determinations; Intercept $=0$
sedagcbc.d17

Table 21. Mean back calculated lengths (in) at each annulus for black crappie collected from Lake Cumberland during 2017, including the $95 \%$ confidence interval (CI) for each mean length per age group.

		Age				
Year	No.	1	2	3	4	
2016	11	4.0				
2015	37	3.8	5.8			
2014	24	3.7	5.9	8.0		
2013	9	4.0	5.8	8.2	10.0	
Mean		3.8	5.9	8.1	10.0	
Number		81	70	33	9	
Smallest		2.4	4.7	6.4	8.9	
Largest	4.8	7.1	9.6	11.3		
Std error		0.1	0.1	0.1	0.3	
95\% CI $\pm$	0.1	0.2	0.3	0.6		
Otoliths were used for age-growth determinations; Intercept $=$ (						
sedagcbc.d17						

Table 22. Age-frequency and CPUE (fish/nn) of white crappie trap-netted at Lake Cumberland in 54 netnights in October and November 2017.

Age	Inch class											Total	\%	CPUE	$\begin{gathered} \hline \text { Std } \\ \text { error } \end{gathered}$
	2	3	5	6	7	8	9	10	11	12	13				
0+	1	1										2	2.5	0.0	0.0
1+			3	5	4	6						18	22.2	0.3	0.1
2+					7	22	17	9	4			59	72.8	1.1	0.3
$3+$										1		1	1.2	0.0	0.0
7+											1	1	1.2	0.0	0.0
Total	1	1	3	5	11	28	17	9	4	1	1	81	100.0	1.5	
\%	1.2	1.2	3.7	6.2	13.6	34.6	21.0	11.1	4.9	1.2	1.2				

CPUE of $\geq 8.0$ in (quality size) crappie $=1.1$ fish $/ n n$
CPUE of $\geq 10.0$ in (preferred size) crappie $=0.3 \mathrm{fish} / \mathrm{nn}$
sedtncb.d17
sedagcbc.d17

Table 23. Age-frequency and CPUE (fish/nn) of black crappie trap-netted at Lake Cumberland in 54 net-nights in October and November 2017.

Age	Inch class										Total	\%	CPUE	Std error
	2	3	5	6	7	8	9	10	11	12				
0+	4	5									9	5.0	0.2	0.1
1+			4	12	7						23	12.8	0.4	0.1
2+			2	22	37	27	10				98	54.7	1.8	0.4
$3+$					7	8	10	9	5		39	21.8	0.7	0.1
4+							2		5	3	10	5.6	0.2	0.1
Total	4	5	6	34	51	35	22	9	10	3	179	100.0	3.3	
\%	2.2	2.8	3.4	19.0	28.5	19.6	12.3	5.0	5.6	1.7				

CPUE of $\geq 8.0$ in (quality size) crappie $=1.4 \mathrm{fish} / \mathrm{nn}$
CPUE of $\geq 10.0$ in (preferred size) crappie $=0.4$ fish $/ \mathrm{nn}$
sedtncb.d17
sedagcbc.d17

Table 24. Population assessment for white and black crappie from Lake Cumberland trap net data collected in October and November 2017 (scoring based on statewide assessment).

Species

Parameter	Species			
	White crappie		Black crappie	
	Assessment value	Assessment score	Assessment value	Assessment score
CPUE age-1 and older	1.5	1	3.2	2
CPUE age-1	0.3	1	0.4	1
CPUE age-0	0.0	1	0.2	1
CPUE $\geq 8.0$ in	1.1	1	1.4	2
Mean length age-2 at capture	9.4	2	7.7	1
Instantaneous mortality (Z)	0.729		0.298	
Annual mortality (A)	51.8		25.8	
Total score:		6		7
Assessment rating:		P		P
sedtncb.d17   sedagcbc.d17				

Table 25. Population assessment for crappie based on fall trap netting at Lake Cumberland from 1996-2017 (scoring based on statewide assessment).

Year		$\begin{gathered} \text { CPUE } \\ \geq \text { age-1 } \end{gathered}$			$\begin{aligned} & \hline \text { CPUE } \\ & \text { age-1 } \end{aligned}$			$\begin{aligned} & \hline \text { CPUE } \\ & \text { age-0 } \end{aligned}$			$\begin{gathered} \text { CPUE } \\ \geq 8.0 \mathrm{in} \end{gathered}$			Mean length age-2 at capture			Total Score	Assessement rating
		WC	BC	ALL														
Management objective			$\geq 5.0$ fish/nn			$\geq 3.0$ fish/nn			$\geq 3.0$ fish/nn			$\geq 2.0 \mathrm{fish} / \mathrm{nn}$		$\geq 9.6$ in				
2017	Value Score	1.5	3.2	$4.6$	0.3	0.4	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	0.0	0.2	$\begin{gathered} 0.2 \\ 1 \end{gathered}$	1.1	1.4	$2.6$	9.4	7.7	$\begin{gathered} 8.5 \\ 1 \end{gathered}$	7	P
2015	Value Score	0.2	3.7	$\begin{gathered} 3.9 \\ 1 \end{gathered}$	0.1	1.4	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	0.4	0.3	$\begin{gathered} 0.7 \\ 1 \end{gathered}$	0.1	1.6	$\begin{gathered} 1.7 \\ 1 \end{gathered}$	11.9*	8.4	$\begin{gathered} 8.5 \\ 1 \end{gathered}$	5	P
2013	Value Score	0.2	0.9	$\begin{gathered} 1.1 \\ 1 \end{gathered}$	0.0	0.1	$\begin{gathered} 0.1 \\ 1 \end{gathered}$	0.0	34.2	$\begin{gathered} 34.2 \\ 4 \end{gathered}$	0.2	0.8	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	11.9	9.7	$\begin{gathered} 9.9 \\ 3 \end{gathered}$	10	F
2011	Value Score	2.8	2.7	$\begin{gathered} 5.5 \\ 2 \end{gathered}$	2.3	2.2	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	0.2	23.3	$\begin{gathered} 23.5 \\ 4 \end{gathered}$	1.4	0.7	$\begin{gathered} 2.0 \\ 1 \end{gathered}$	10.7	9.8	$\begin{gathered} 10.2 \\ 4 \end{gathered}$	14	G
2009	Value Score	0.8	0.7	$\begin{gathered} 1.5 \\ 1 \end{gathered}$	0.8	0.6	$\begin{gathered} 1.4 \\ 1 \end{gathered}$	0.6	7.3	$\begin{gathered} 7.9 \\ 4 \end{gathered}$	0.6	0.3	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	-	-	$\begin{aligned} & - \\ & 0 \end{aligned}$	7	P
2007	Value Score	0.3	7.0	$\begin{gathered} 7.3 \\ 3 \end{gathered}$	0.2	6.7	$\begin{gathered} 6.9 \\ 3 \end{gathered}$	0.0	0.2	$\begin{gathered} 0.3 \\ 1 \end{gathered}$	0.3	0.5	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	11.2	9.4	$\begin{gathered} 9.9 \\ 3 \end{gathered}$	11	F
2005	Value   Score	0.5	5.2	$\begin{gathered} 5.7 \\ 2 \end{gathered}$	0.1	2.8	$\begin{gathered} 3.0 \\ 2 \end{gathered}$	0.2	1.2	$\begin{gathered} 1.4 \\ 2 \end{gathered}$	0.5	1.4	$\begin{gathered} 1.9 \\ 1 \end{gathered}$	10.6	8.1	$\begin{gathered} 8.8 \\ 1 \end{gathered}$	8	P
2003	Value Score	2.3	3.5	$\begin{gathered} 5.8 \\ 2 \end{gathered}$	1.8	2.7	$\begin{gathered} 4.5 \\ 3 \end{gathered}$	0.2	4.5	$\begin{gathered} 4.7 \\ 4 \end{gathered}$	1.2	1.2	$\begin{gathered} 2.4 \\ 2 \end{gathered}$	10.4	9.8	$\begin{gathered} 10.1 \\ 3 \end{gathered}$	14	G
2001	Value Score	0.4	0.6	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	0.1	0.4	$\begin{gathered} 0.6 \\ 1 \end{gathered}$	0.3	4.0	$\begin{gathered} 4.3 \\ 3 \end{gathered}$	0.3	0.2	$\begin{gathered} 0.5 \\ 1 \end{gathered}$	10.4	9.3	$\begin{gathered} 9.7 \\ 3 \end{gathered}$	9	F
1998	Value   Score	1.7	0.9	$\begin{gathered} 2.7 \\ 1 \end{gathered}$	0.5	0.3	$\begin{gathered} 0.9 \\ 1 \end{gathered}$	0.3	0.5	$\begin{gathered} 0.8 \\ 1 \end{gathered}$	1.7	0.8	$\begin{gathered} 2.5 \\ 2 \end{gathered}$	9.5	-	$\begin{gathered} 9.3 \\ 2 \end{gathered}$	7	P
1996	Value Score	3.3	1.0	$\begin{gathered} 4.2 \\ 2 \end{gathered}$	0.5	0.5	$\begin{gathered} 1.0 \\ 1 \end{gathered}$	2.7	0.2	$\begin{gathered} 2.9 \\ 3 \end{gathered}$	1.5	0.1	$\begin{gathered} 1.6 \\ 1 \end{gathered}$	8.7	6.8	$\begin{gathered} 8.5 \\ 1 \end{gathered}$	8	P
sedtnc	b.d17																	

Table 26. Number of fish and mean relative weight ( Wr ) for each length group of crappie collected in Lake Cumberland in October and November 2017. Standard error is in parentheses.

Species	Location	Length group					
		5.0-7.9 in		8.0-9.9 in		$\geq 10.0$ in	
		No.	Wr	No.	Wr	No.	Wr

White crappie

Fishing Creek	19	$92(2)$	44	$90(1)$	15	$89(1)$
Wolf Creek	0	-	0	-	0	-
Lake Cumberland	19	$92(2)$	44	$90(1)$	15	$89(1)$

Black crappie

Fishing Creek	52	$90(1)$	38	$90(1)$	4	$88(2)$
Wolf Creek	40	$93(1)$	18	$95(2)$	18	$92(1)$
Lake Cumberland	92	$92(1)$	56	$91(1)$	22	$91(1)$

Table 27. Length frequency and CPUE (fish/nn) of striped bass collected at Lake Cumberland in 25 net-nights on 27-30 November 2017 and 4-6 December 2017.

Species	Inch class																				Total	CPUE	Std. error
	9	10	11	14	15	16	17	18	19	20	23	24	25	26	27	28	29	30	31	32			
Striped bass	3	3	1	1	6	2	5	12	25	4	4	6	9	10	6	4	4	1	1	1	108	4.3	0.8

sedgncbs.d17

Table 28. Population assessment for striped bass based on fall gill netting at Lake Cumberland from 20002017.

Year		$\begin{aligned} & \text { CPUE } \\ & \geq \text { age } 1 \end{aligned}$	Mean length age-2 at capture	$\begin{aligned} & \text { CPUE } \\ & \geq 24.0 \text { in } \end{aligned}$	$\begin{gathered} \hline \text { CPUE } \\ \text { age-1 } \\ \hline \end{gathered}$	Total score	Assessement rating
Management objective		$\geq 4.0 \mathrm{fish} / \mathrm{nn}$	$\geq 21.0$ in	$\geq 1.0 \mathrm{fish} / \mathrm{nn}$	$\geq 2.0 \mathrm{fish} / \mathrm{nn}$		
2017	Value	4.0	24.3	1.7	2.2		
	Score	2	4	4	3	13	G
2016	Value	5.0	22.8	2.7	0.9		
	Score	3	4	4	1	12	G
2015	Value	4.6	22.3	1.5	0.9		
	Score	3	3	4	1	11	G
2014	Value	6.1	21.9	0.6	5.2		
	Score	4	2	1	4	11	G
2013	Value	7.2	22.1	2.8	2.6		
	Score	4	3	4	3	14	E
2012	Value	7.3	20.6	1.9	0.8		
	Score	4	1	4	1	10	G
2011	Value	5.9	20.5	1.2	0.6		
	Score	4	1	3	1	9	F
2009	Value	4.0	21.6	1.2	1.8		
	Score	2	2	3	3	10	G
2008	Value	9.2	22.1	1.5	2.7		
	Score	4	3	4	4	15	E
2007	Value	5.3	23.7	1.2	3.9		
	Score	4	4	3	4	15	E
2006	Value	3.9	22.8	1.6	1.3		
	Score	2	4	4	2	12	G
2005	Value	3.4	23.3	1.5	1.2		
	Score	2	4	4	2	12	G
2004	Value	4.4	23.4	2.1	1.8		
	Score	3	4	4	3	14	E
2003	Value	4.1	21.9	1.2	1.7		
	Score	3	2	3	2	10	G
2002	Value	3.5	22.9	1.3	1.8		
	Score	2	4	3	3	12	G
2001	Value	3.1	21.0	0.1	2.7		
	Score	1	1	1	4	7	F
2000	Value	3.4	23.3	0.7	2.5		
	Score	2	4	1	3	10	G

sedgncbs.d17
sedagcbs.d17

Table 29. Mean back calculated lengths (in) at each annulus for striped bass collected from Lake Cumberland during 2017, including the $95 \%$ confidence interval (CI) for each mean length per age group.

Year	No.	Age								
		1	2	3	4	5	6	7	8	9
2016	37	11.5								
2015	10	12.7	20.6							
2014	17	11.8	19.5	23.8						
2013	12	12.9	19.4	22.7	25.4					
2012	2	13.0	19.2	22.6	25.5	27.3				
2009	2	10.0	17.8	20.6	23.0	24.7	26.2	27.4	28.3	
2008	3	10.3	17.2	21.6	23.5	25.2	26.7	28.2	29.4	30.6
Mean		11.9	19.5	23.0	24.8	25.7	26.5	27.9	29.0	30.6
Number		83	46	36	19	7	5	5	5	3
Smallest		6.5	16.0	20.3	22.3	24.0	25.7	26.9	27.7	28.9
Largest		15.2	22.5	25.4	27.9	29.2	27.3	29.0	30.3	31.7
Std error		0.2	0.2	0.2	0.4	0.6	0.3	0.4	0.5	0.9
95\% CI $\pm$		0.5	0.4	0.4	0.8	1.3	0.5	0.7	0.9	1.7

Otoliths were used for age-growth determinations; Intercept $=0$ sedagcbs.d17

Table 30. Age-frequency and CPUE (fish/nn) of striped bass gill netted for 25 net-nights at Lake Cumberland in November and December 2017.

Age	Inch class																				Total	\%	CPUE	Std error
	9	10	11	14	15	16	17	18	19	20	23	24	25	26	27	28	29	30	31	32				
0	3	3	1																		7	6.5	0.3	0.2
1+				1	6	2	5	12	25	4											55	50.9	2.2	0.6
$2+$											4	4	1	1							10	9.3	0.4	0.1
$3+$												1	5	6	4	1					17	15.7	0.7	0.2
4+												1	3	2	2	2	2				12	11.1	0.5	0.1
$5+$														1				1			2	1.9	0.1	0.0
8+																1	1				2	1.9	0.1	0.0
9+																	1		1	1	3	2.8	0.1	0.1
Total	3	3	1	1	6	2	5	12	25	4	4	6	9	10	6	4	4	1	1	1	108	100.0	4.3	
\%	2.8	2.8	0.9	0.9	5.6	1.9	4.6	11.1	23.1	3.7	3.7	5.6	8.3	9.3	5.6	3.7	3.7	0.9	0.9	0.9				
sedgn sedag	$\begin{aligned} & \text { s.d } \\ & \text { s.d } \end{aligned}$																							

Table 31. Population assessment for striped bass gill netted at Lake Cumberland in November and December 2017.

Parameter	Actual value	Assessment score
Population density   (CPUE age 1 and older)	4.0	2
Growth rate   (Mean length age 2+ at capture)	24.3	4
Size structure (CPUE $\geq 24.0 \mathrm{in}$ )	1.7	4
Recruitment (CPUE age 1)	2.2	3
Instantaneous mortality (Z)	0.458	
Annual mortality (A)	36.7	
Total score		13
Assessment rating		G
sedgncbs.d17 sedagcbs.d17		

Table 32. Number of fish and mean relative weight (Wr) for each length group of striped bass collected in Lake Cumberland in November and December 2017. Standard error is in parentheses.

Length group				
12.0-19.9 in		. 9 in		
No. Wr	No.	Wr	No.	Wr
$49 \quad 92$ (1)	47	90 (1)	3	86 (4)

sedgncbs.d17

Table 33. Species composition, relative abundance, and CPUE (fish/hr) of trout collected during 8.75 hours of 15-minute nocturnal electrofishing runs for trout in Cumberland tailwater during November 2017; standard error is in parentheses.

sedcbtw n.d17

Table 34. Fall electrofishing mean CPUE (fish/hr) of 15.0-17.9 in, 18.019.9 in, and $\geq 20.0$ in rainbow trout in the Lake Cumberland tailwater from 1995 to 2017. Data collected from sample sites 1-5 each year. *2011 sampling was conducted in February.

Year	Length group					
	15.0-17.9 in		18.0-19.9 in		$\geq 20.0$ in	
	CPUE	Std. err.	CPUE	Std. err.	CPUE	Std. err.
2017	21.8	2.4	1.4	0.5	0.0	
2016	6.2	1.3	1.0	0.4	0.5	0.3
2015	9.0	1.9	1.3	0.6	0.2	0.2
2014	8.6	1.1	3.0	0.7	0.2	0.2
2013	23.2	3.6	0.5	0.3	0.0	
2012	0.5	0.3	0.2	0.2	0.0	
2011	1.1	0.6	0.0		0.2	0.2
2010	1.3	0.5	0.3	0.2	0.0	
2009	5.4	1.6	0.5	0.3	0.0	
2008	18.1	4.3	1.4	0.5	0.0	
2007	25.0	3.5	6.4	1.3	0.6	0.3
2006	29.3	3.0	4.3	1.2	0.3	0.2
2005	9.3	2.4	2.1	0.8	0.0	
2004	2.2	0.8	0.6	0.4	0.0	
2003	2.1	0.7	1.0	0.4	0.2	0.2
2002	10.7	2.4	1.4	0.7	1.0	0.6
2001	21.0	3.7	5.5	1.3	0.7	0.4
2000	9.4	1.3	1.4	0.7	0.5	0.4
1999	1.9	0.5	0.3	0.2	0.3	0.2
1998	0.3	0.2	0.2	0.2	0.2	0.2
1997	1.4	0.5	1.0	0.5	0.3	0.2
1996	1.8	0.6	0.6	0.3	0.5	0.5
1995	0.7	0.5	0.5	0.4	0.5	0.5

Table 35. Fall electrofishing mean CPUE (fish/hr) of 15.0-17.9 in, 18.019.9 in , and $\geq 20.0$ in brown trout in the Lake Cumberland tailwater from 1995 to 2017. Data collected from sample sites 1-5 each year. *2011 sampling was conducted in February.

Year	Length group					
	15.0-17.9 in		18.0-19.9 in		$\geq 20.0$ in	
	CPUE	Std. err.	CPUE	Std. err.	CPUE	Std. err.
2017	1.4	0.5	1.4	0.5	2.6	0.7
2016	4.5	1.1	3.0	0.8	2.2	0.8
2015	5.6	1.8	1.9	0.7	1.9	0.7
2014	7.2	2.1	1.4	0.6	1.6	0.8
2013	2.4	0.8	1.1	0.6	4.6	1.5
2012	2.6	0.8	3.2	1.2	2.7	0.9
2011	6.6	1.2	3.4	0.9	4.0	1.2
2010	3.7	0.9	1.3	0.5	0.6	0.4
2009	9.1	2.0	5.3	1.7	2.7	1.1
2008	14.1	2.9	6.4	1.0	2.6	0.7
2007	29.0	6.2	5.8	1.3	3.4	0.7
2006	30.2	10.1	5.6	1.5	5.0	1.5
2005	14.9	3.1	7.0	1.7	9.3	2.4
2004	11.8	3.3	7.7	2.0	3.2	0.9
2003	20.2	5.0	3.8	1.4	1.9	0.7
2002	31.2	6.6	5.6	1.1	2.9	0.9
2001	30.2	8.7	5.8	1.5	5.2	1.3
2000	18.9	4.7	6.6	1.6	9.0	2.5
1999	6.1	1.1	5.1	1.8	2.6	0.7
1998	6.4	1.2	1.1	0.5	1.8	0.7
1997	2.2	0.7	1.8	0.9	3.2	1.4
1996	6.8	2.5	1.0	0.6	2.0	0.9
1995	0.7	0.4	0.4	0.3		

Table 36. Number of fish and mean relative weight (Wr) for each species of trout collected in the Cumberland tailwater during November 2017. Standard error is in parentheses.

Location	Species					
	Rainbow trout		Brown trout		Brook trout	
	No.	Wr	No.	Wr	No.	Wr
Above Helms	122	84 (1)	104	88 (1)	22	75 (2)
Below Helms	97	85 (1)	37	89 (2)	13	83 (2)
Rainbow Run	29	$92(2)$	38	95 (2)	2	95 (7)
Big Willis	92	91 (2)	31	98 (2)	3	84 (1)
Crocus Creek	68	90 (1)	19	100 (2)	1	74 (-)
Hwy 61	70	93 (1)	12	98 (6)	1	76 (-)
Cloyds	48	102 (2)	2	106 (5)	-	-
Total	526	89 (1)	243	92 (1)	42	79 (2)

sedcbtwn.d17

Table 37. Comparison of statistics derived from daytime creel surveys on Lake Cumberland tailwater

	1995				2002			
	Rainbow Trout	Brown Trout	Trout Combined	Total	Rainbow Trout	Brown Trout	Trout Combined	Total
Fishing trips								
Number of fishing trips				52,431				104,963
Average trip length				5.1				5.1
Fishing pressure								
Total man-hours			244,107	269,123			516,200	539,034
Standard Error (S.E.)				25,783				39,080
Man hours/rm			6,374	7,027			13,304	13,893
Catch/harvest								
Number of fish caught				108,478				436,649
Number of fish harvested	48,029	13,023	61,052	65,667	184,745	380	185,126	193,169
Pounds of fish harvested	24,809	6,357	31,166	44,428	125,655	2,305	127,961	139,720
Harvest rates								
Fish/hour			0.33	0.24			0.36	0.36
Pounds/hour							0.25	0.26
Fish/rm	1,254	340	1,594	1,715	4,761	10	4,771	4,979
Pounds/rm	648	166	814	1,160	3,239	59	3,298	3,601
Catch rates								
Fish/hour			0.53	0.40			0.77	0.81
Fish/rm				2,832			10,244	11,254
Miscellaneous characteristics (\%)								
Male				84				87
Female				16				13
Resident				82				75
Non-resident				18				25
Method (\%)								
Still fishing				72				55
Casting				20				24
Fly fishing				7				15
Trolling				1				6

Table 37. Cont.

	2006				2009			
	Rainbow Trout	Brown Trout	Trout Combined	Total	Rainbow Trout	Brown Trout	Trout Combined	Total
Fishing trips								
Number of fishing trips				102,844				73,190
Average trip length				3.9				4.3
Fishing pressure								
Total man-hours			383,660	405,754			213,571	314,949
Standard Error (S.E)				33,434				19,676
Man hours/rm			9,888	10,458			5,504	8,117
Catch/harvest								
Number of fish caught				326,996				268,390
Number of fish harvested	120,364	2,087	122,451	123,583	65,671	1,349	67,020	110,326
Pounds of fish harvested	77,364	3,269	71,360	90,030	36,027	2,206	38,233	74,315
Harvest rates								
Fish/hour			0.32	0.30			0.31	0.30
Pounds/hour			0.19	0.22			0.18	0.22
Fish/rm	3,102	54	3,156	3,185	1,693	35	1,727	2,843
Pounds/rm	1,994	84	1,839	2,320	929	57	985	1,915
Catch rates								
Fish/hour			0.82	0.81			0.77	0.85
Fish/rm			8,108	8,428			4,238	6,917
Miscellaneous characteristics (\%)								
Male				86				85
Female				14				15
Resident				78				85
Non-resident				22				15
Method (\%)								
Still fishing				62				66
Casting				26				24
Fly fishing				11				9
Trolling				1				1


	2017			
	Rainbow Trout	Brown Trout	Trout Combined	Total
Fishing trips				
Number of fishing trips				60,291
Average trip length				3.8
Fishing pressure				
Total man-hours			209,336	229,994
Standard Error (S.E.)				22,111
Man hours/rm			5,395	5,928
Catch/harvest				
Number of fish caught				259,603
Number of fish harvested	79,449	22	79,471	82,841
Pounds of fish harvested	48,048	117	48,165	57,933
Harvest rates				
Fish/hour			0.38	0.36
Pounds/hour			0.23	0.25
Fish/rm	2,048	1	2,048	2,135
Pounds/rm	1,238		1,241	1,493
Catch rates				
Fish/hour			0.97	1.13
Fish/rm			5,216	6,691
Miscellaneous characteristics (\%)				
Male				86
Female				14
Resident				79
Non-resident				21
Method (\%)				
Still fishing				29
Casting				49
Fly fishing				14
Trolling				8

Table 38. Statistics for boat and bank anglers derived from a daytime creel survey on Lake Cumberland tailwater (Wolf Creek Dam to Hwy 61 bridge) during 2017. (rm = river mile)

	Total		Upper		Lower	
	Bank	Boat	Bank	Boat	Bank	Boat
Fishing trips						
Number of fishing trips	27,705	36,664	17,701	14,286	10,502	20,901
Average trip length	2.6	4.3	2.6	4.1	2.4	4.8
Fishing pressure						
Total man-hours	70,837	159,158	45,687	58,141	25,150	101,017
Standard error (S.E.)	5,062	20,454	3,613	5,159	3,545	19,792
Catch/harvest						
Number of fish caught	62,087	197,516	46,396	79,250	15,691	118,267
Standard error (S.E.)	9,926	37,289	8,505	8,870	5,118	36,219
Number of fish harvested	30,142	52,699	25,675	33,050	4,468	19,649
Standard error (S.E.)	7,261	8,002	7,010	5,175	1,895	6,103
Pounds of fish harvested	14,908	43,025	12,208	29,824	2,701	13,201
Harvest rates						
Fish/hour	0.43	0.33	0.56	0.57	0.18	0.19
Pounds/hour	0.21	0.27	0.27	0.51	0.11	0.13
Fish/rm	776.9	1358.2	5705.6	7344.4	130.3	572.9
Pounds/rm	384.2	1108.9	2712.9	6627.6	78.7	384.9
Catch rates						
Fish/hour	0.88	1.24	1.02	1.36	0.62	1.17
Fish/rm	1600.2	5090.6	10310.2	17611.1	457.5	3448.0
Miscellaneous characteristics (\%)						
Male	83	88	83	86	79	92
Female	17	12	17	14	21	8
Resident	83	79	83	83	81	71
Non-resident	17	21	17	17	19	29
Method (\%)						
Still fishing	65	11	65	13	63	6
Casting	28	60	28	65	29	51
Fly fishing	6	18	6	9	8	34
Trolling	<1	12	<1	13	0	8

Upper $=$ Wolf Creek Dam to Helms Landing ( 4.5 river miles)
Low er = Helms Landing to Hw y 61 bridge ( 34.3 river miles)

Table 39. Fish harvest statistics by species or group at Lake Cumberland tailwater (Wolf Creek Dam to Hwy 61 Bridge) derived from a daytime creel survey during 2017. (rm = river mile)

	Trout group	Rainbow trout	Brow $n$ trout	Brook   trout	Morone group	$\begin{gathered} \text { Striped } \\ \text { bass } \end{gathered}$	White bass	Walleye	Sauger	$\begin{gathered} \hline \text { Black bass } \\ \text { group } \\ \hline \end{gathered}$	Channel catfish	Flathead catfish
No. harvested		79,449	22	-		339	100	959	298		18	64
No. harvested per rm		2,048	1	-		9	3	25	8		0	2
\% of total no. harvested		95.1	0.0	-		0.4	0.1	1.1	0.4		0.0	0.1
lbs. harvested		48,048	117	-		4,435	152	2,586	255		78	445
lbs. harvested per rm		1,238	3	-		114	4	67	7		2	11
\% of total lbs. harvested		82.9	0.2	-		7.7	0.3	4.5	0.4		0.1	0.8
Mean length (in)		11.5	25.0	15.0		28.8	16.0	19.4	15.3		24.0	26.0
Mean w eight (lb)		0.64	5.38	-		11.69	1.51	2.67	1.22		4.29	6.96
Hours fished for that group/species	209,336				2,244					315		
Hours fished for that group/species per rm	5,395				58					8		
\% of all hours	91.0				1.0					0.1		
No./hr. harvested fishing for that group/species	0.37				0.00					0.00		


	Black crappie	Panfish group	Bluegill	Skipjack	Carp	Paddlefish	Suckers	Anything
No. harvested	8		469	1,639	122	9	27	
No. harvested per rm	0		12	42	3	0	1	
\% of total no. harvested	0.0		0.6	2.0	0.1	0.0	0.0	
lbs. harvested	5		68	1,295	335	72	41	
lbs. harvested per rm	0		2	33	9	2	1	
\% of total lbs. harvested	0.0		0.1	2.2	0.6	0.1	0.1	
Mean length (in)	11.0		6.0	13.7	18.0	38.0	15.0	
Mean w eight (lb)	0.72		0.14	0.64	2.75	7.90	1.51	
Hours fished for that group		144						17,955
Hours fished for that group per rm		4						463
\% of all hours		0.1						7.8
No./hr. harvested fishing for that group		0.00						0.34

Table 40. Length distribution by species for both harvested and released fish in the Lake Cumberland tailwater creel survey (Wolf Creek Dam to Hwy 61 Bridge) during 2017. (Lengths for released fish are estimated.)

	Inch class																														Total
Rainbow trout	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	34	36	37	38	
Harvested				2	1	35	75	384	274	555	163	92		3			1		2	1		1		1			1				1591
Released	3		1	31	6	255	228	610	216	726	102	121	45	109	99	61	20	11		1	4	1									2650
Brow $n$ trout																															
Harvested																							1								1
Released		1		4	6	21	12	120	14	77	19	22	7	8	7	2	1		1	1											323
Brook trout																															
Harvested								1	1				1																		3
Released				2	3	113	178	391	189	318	47	41			2																1284
Striped bass																															
Harvested															2		2									1		2	1		8
Released						8				7		1		1				1		2				1		1				1	23
White bass																															
Harvested														2																	2
Released							1					1																			2
Walleye																															
Harvested														4	3	2	2	3	1	3				1	1						20
Released										1												1									
Sauger																															
Harvested										1				1		1															3
Released								1																							1
Largemouth bass																															
Harvested																															0
Released										1																					1
Smallmouth bass																															
Harvested																															0
Released									1																						1
Channel catfish																															
Harvested																						1									1
Released																															0
Flathead catish																															
Harvested																								1							1
Released																															0
Black crappie																															
Harvested									1																						1
Released																															0

## Table 40. Continued

	Inch Class																														Total
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	34	36	37	38	
Bluegill																															
Harvested			1	1	1																										3
Released		3	3																												6
Green sunfish																															
Harvested																															0
Released			1																												1
Shad																															
Harvested																															0
Released		1																													1
Skipjack																															
Harvested						1		4		2		1	10	12	34																64
Released							1			1			1	3	4	6		3													19
Drum																															
Harvested																															0
Released														1																	1
Suckers																															
Harvested													2																		2
Released												1																			1
Paddlefish																															
Harvested																														1	1
Released																															0
Buffalo																															
Harvested																															0
Released																1															1
Lake sturgeon																															
Harvested																															0
Released																												1			1
Carp																															
Harvested																2															2
Released																						4									4
Gar																															
Harvested																															0
Released												6																			6

Table 41. Comparison of length distributions of both harvested and released brown trout in the Lake Cumberland tailwater creel surveys (Wolf Creek Dam to Hwy 61 Bridge) during 1995, 2002, 2006, 2009, and 2017. (Lengths for released fish are estimated.)

Year		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Inch class			Total
																								26	30	33	
1995	Harvested					32	62	73	25	8	2	5	3	3	2	5	3		1								224
	Released			6	13	28	40	67	22	27	2	4	2	2			1										214
	Total			6	13	60	102	140	47	35	4	9	5	5	2	5	4		1								438
2002	Harvested							1		1		2		1			1		1	1		3			2		13
	Released	1	1	9	15	101	86	288	53	209	82	203	123	101	42	29	12	8	2	4		1					1370
	Total	1	1	9	15	101	86	289	53	210	82	205	123	102	42	29	13	8	3	5		4			2		1383
2006	Harvested						1			1		2		1	2			1	1	1				1		1	12
	Released			2	8	30	30	113	25	105	74	84	50	54	36	25	10	4	2	4	3						659
	Total			2	8	30	31	113	25	106	74	86	50	55	38	25	10	5	3	5	3			1		1	671
2009	Harvested						1	2	2	1	1	1		1	1	1		5	4	1	1						22
	Released			2	3	51	56	173	73	146	58	54	61	42	16	16	9	1	1	2							764
	Total			2	3	51	57	175	75	147	59	55	61	43	17	17	9	6	5	3	1						786
2017	Harvested																						1				1
	Released	1		4	6	21	12	120	14	77	19	22	7	8	7	2	1		1	1							323
	Total	1		4	6	21	12	120	14	77	19	22	7	8	7	2	1		1	1			1				324

Table 42. Comparison of length distributions of both harvested and released rainbow trout in the Lake Cumberland tailwater creel surveys (Wolf Creek Dam to Hwy 61 Bridge) during 1995, 2002, 2006, 2009, and 2017. (Lengths for released fish are estimated)

Year		Inch Class																								Total
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	26	34	
1995	Harvested				1	1	76	311	373	221	137	45	26	15	9	4		2	3	1						1225
	Released				2	10	47	31	93	76	52	16	12		4	3	1									347
	Total				3	11	123	342	466	297	189	61	38	15	13	7	1	2	3	1						1572
2002	Harvested				5	18	135	363	802	852	722	296	295	138	84	68	35	16	7	2	1					3839
	Released	3	1	8	68	53	266	230	575	161	547	115	227	50	73	28	28	3	9	1	5	1	1			2453
	Total	3	1	8	73	71	401	593	1377	1013	1269	411	522	188	157	96	63	19	16	3	6	1	1			6292
2006	Harvested						26	149	454	553	596	304	160	25	8	3	5	3	4	2	1					2293
	Released			4	22	20	97	101	371	142	448	151	180	150	135	64	91	37	15	5		2		1		2036
	Total			4	22	20	123	250	825	695	1044	455	340	175	143	67	96	40	19	7	1	2		1		4329
2009	Harvested						46	276	750	372	397	178	139	5	3	1	1		4	9	1					2182
	Released		1		4	12	89	337	559	129	205	48	55	53	76	29	33	14			2		1			1647
	Total		1		4	12	135	613	1309	501	602	226	194	58	79	30	34	14	4	9	3		1			3829
2017	Harvested				2	1	35	75	384	274	555	163	92		3			1		2	1		1	1	1	1591
	Released	3		1	31	6	255	228	610	216	726	102	121	45	109	99	61	20	11		1	4	1			2650
	Total	3		1	33	7	290	303	994	490	1281	265	213	45	112	99	61	21	11	2	2	4	2	1	1	4241

Table 43. Monthly trout angling success in the Lake Cumberland tailwater (Wolf Creek Dam to Hwy 61 Bridge) during the 2017 creel survey.

Month	Total trout   harvested	Total rainbow   trout harvested	Total brown trout   harvested	Hours fished by   trout anglers	Trout caught/hr   by trout anglers	harvested/hr by   trout anglers
Apr	7,193	7,171	22	20,827	0.84	0.35
May	9,305	9,305	0	20,189	2.23	0.27
Jun	27,007	27,007	16,216	0	40,909	1.79

Table 44. Monthly trout angling success by bank and boat anglers at Lake Cumberland tailwater (Wolf Creek Dam to Hwy 61 bridge) during the 2017 creel survey.

Month	Total trout harvested		Total rainbow trout harvested		Total brown trout harvested		Hours fished by trout anglers		Trout caught/hr by trout anglers		Trout harvested/hr by trout anglers	
	Bank	Boat										
Apr	4,261	2,932	4,261	2,910	0	22	9,410	11,410	0.70	0.86	0.38	0.32
May	6,367	2,938	6,367	2,938	0	0	7,577	12,440	0.96	2.81	0.43	0.20
Jun	8,474	18,533	8,474	18,533	0	0	15,577	25,342	1.91	1.75	0.58	0.56
Jul	4,137	12,078	4,137	12,078	0	0	12,181	47,916	1.11	1.62	0.64	0.30
Aug	1,479	7,042	1,479	7,042	0	0	5,987	20,198	1.13	1.64	0.39	0.30
Sep	0,953	3,726	953	3,726	0	0	4,369	16,165	0.62	1.37	0.51	0.25
Oct	1,697	1,787	1,697	1,787	0	0	4,918	7,876	1.01	0.76	0.37	0.30
Nov	1,984	1,084	1,984	1,084	0	0	2,342	4,909	1.68	0.83	0.77	0.15
Total	29,352	50,120	29,352	50,098	0	22	62,361	146,256	1.21	1.59	0.51	0.33

Table 45. Statistics derived from a daytime creel survey on the upper stratum (Wolf Creek
Dam to Helms Landing) of Lake Cumberland tailwater during 2017. (rm = river mile)

	Rainbow   Trout	Brow n   Trout	Trout   Combined

Table 46. Fish harvest statistics by species or group for the upper stratum (Wolf Creek Dam to Helms Landing) of the Lake Cumberland tailwater derived from a daytime creel survey during 2017. (rm = river mile)

	$\begin{aligned} & \text { Trout } \\ & \text { group } \\ & \hline \end{aligned}$	Rainbow trout	$\begin{gathered} \hline \text { Brown } \\ \text { trout } \end{gathered}$	Morone group	$\begin{gathered} \hline \text { Striped } \\ \text { bass } \end{gathered}$	White bass	Walleye	Sauger	$\begin{gathered} \text { Black bass } \\ \text { group } \\ \hline \end{gathered}$	Channel catfish	Flathead catfish	Black crappie
No. harvested		55,726	22		339	100	540	78		18	64	8
No. harvested per rm		12,384	5		75	22	120	17		4	14	2
\% of total no.harvested		94.5	0.0		0.6	0.2	0.9	0.1		0.0	0.1	0.0
Lbs. harvested		34,039	117		4,435	152	1,193	100		78	445	5
lbs.harvested per rm		7,564	26		986	34	265	22		17	99	1
\% of total lbs. harvested		81.0	0.3		10.6	0.4	2.8	0.2		0.2	1.1	0.0
Mean length (in)		11.4	25.0		28.8	16.0	19.1	16.0		24.0	26.0	11.0
Mean w eight (lb)		0.65	5.38		11.69	1.51	2.53	1.28		4.29	6.96	0.72
Hours fished for that group/species	94,570			804					89			
Hours fished for that group/species per rm	21,016			179					20			
\% of all hours	89.5			0.6					0.1			
No./hr. harvested fishing for that group/species	0.48			0.00					0.00			


	Panfish group	Bluegill	Skipjack	Paddlefish	Suckers	Anything
No. harvested		469	1,578	9	27	
No. harvested per rm		104	351	2	6	
\% of total no.harvested		0.8	2.7	0.0	0.0	
Lbs. harvested		68	1,285	72	41	
lbs.harvested per rm		15	286	16	9	
\% of total lbs. harvested		0.2	3.1	0.2	0.1	
Mean length (in)		6.0	14.2	38.0	15.0	
Mean w eight (lb)		0.14	0.68	7.89	1.51	
Hours fished for that group	144					8,222
Hours fished for that group per rm	32					1,827
\% of all hours	0.1					9.7
No./hr. harvested fishing for that group	0.00					0.21

Table 47. Length distribution by species for both harvested and released fish in the upper stratum (Wolf Creek Dam to Helms Landing) of the Lake Cumberland tailwater creel survey during 2017. (Lengths for released fish are estimated.)

	Inch class																														Total
	4	5	6	7	8	9	10	11	12	13	14		15	16	17	18	19	20	21	22	23	24	25	26	27	28	34	36	37	38	
Rainbow trout																															
Harvested			2	1	29	63	321	211	436	127	70			3			1		2	1		1		1			1				1270
Released		1	31	6	185	157	331	120	332	34	47		27	64	54	32	12	6		1	4										1444
Brown trout																															
Harvested																							1								1
Released			3	3	9	6	54	6	38	14	9		3	3	5	1															154
Brook trout																															
Harvested							1	1																							2
Released			2	3	83	90	253	132	229	25	7				1																825
Striped bass																															
Harvested															2		2									1		2	1		8
Released					8				7		1			1				1		2				1		1				1	23
White bass																															
Harvested														2																	2
Released						1					1																				2
Walleye																															
Harvested														3	3	1	2	2	1	2					1						15
Released									1													1									2
Sauger																															
Harvested														1																	1
Released							1																								1
Largemouth bass																															
Harvested																															0
Released									1																						1
Smallmouth bass																															
Harvested																															0
Released								1																							1
Channel catfish																															
Harvested																						1									1
Released																															0
Flathead catfish																															
Harvested																								1							1
Released																															0
Black crappie																															
Harvested								1																							1
Released																															0

Table 47. Continued

	Inch class																													Total
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	34	36	37	38	
Bluegill																														
Harvested			1	1																										3
Released	3	3																												6
Green sunfish																														
Harvested																														0
Released		1																												1
Shad																														
Harvested																														0
Released	1																													1
Skipjack																														
Harvested							4		2		1	10	12	34																63
Released						1			1			1	3	4	6		3													19
Drum																														
Harvested																														0
Released													1																	1
Suckers																														
Harvested												2																		2
Released											1																			1
Paddlefish																														
Harvested																													1	1
Released																														0
Buffalo																														
Harvested																														0
Released															1															1
Lake sturgeon																														
Harvested																														0
Released																											1			1

Table 48. Monthly trout angling success in the upper stratum (Wolf Creek Dam to Helms Landing) of the Lake Cumberland tailwater during the 2017 creel survey.

	Total trout   harvested	Total rainbow   trout harvested	Total brown trout   harvested	Hours fished by   trout anglers	Trout caught/hr   by trout anglers	Trout   harvested/hr by   trout anglers
Apr	6,688	6,666	22	14,974	0.87	0.40
May	9,305	9,305	0	14,534	1.32	0.37
Jun	18,213	18,213	0	17,162	1.77	0.75
Jul	6,299	6,299	0	15,753	1.65	0.39
Aug	6,570	6,570	0	10,365	1.83	0.50
Sep	3,277	0,277	0	9,759	1.11	0.40
Oct	3,111	2,111	0,285	0	8,740	0.83

Table 49. Monthly trout angling success by bank and boat anglers in the upper stratum (Wolf Creek Dam to Helms Landing) of the Lake Cumberland tailwater during the 2017 creel survey.

Month	Total trout harvested		Rainbow trout harvested		Brow $n$ trout harvested		Hours fished by trout anglers		Trout caught/hr by trout anglers		Trout harvested/hr by trout anglers	
	Bank	Boat										
Apr	4,261	2,427	4,261	2,405	0	22	6,665	8,303	0.99	0.81	0.54	0.32
May	6,367	2,938	6,367	2,938	0	0	7,577	7,030	0.96	1.44	0.43	0.35
Jun	6,804	11,409	6,804	11,409	0	0	7,562	9,611	1.96	1.66	0.81	0.72
Jul	2,747	3,552	2,747	3,552	0	0	8,154	7,599	1.10	2.00	0.52	0.31
Aug	1,055	5,515	1,055	5,515	0	0	3,316	7,017	1.70	1.89	0.47	0.52
Sep	0,568	2,709	568	2,709	0	0	2,671	7,080	0.33	1.28	0.30	0.42
Oct	1,621	1,490	1,621	1,490	0	0	3,509	5,248	0.76	0.87	0.52	0.39
Nov	1,555	0,729	1,555	729	0	0	1,780	1,512	1.93	0.85	0.87	0.28
Total	24,978	30,769	24,978	30,747	0	22	41,234	53,400	1.22	1.43	0.56	0.44

Table 50. Statistics derived from a daytime creel survey on the lower stratum (Helms Landing to Hwy 61 bridge) of Lake Cumberland tailwater during 2017. (rm = river mile)

	Rainbow   Trout	Brow $n$   Trout	Trout   Combined

Table 51. Fish harvest statistics by species or group for the lower stratum (Helms Landing to Hwy 61 bridge) of the Lake Cumberland tailwater derived from a daytime creel survey during 2017. (rm = river mile)

	Trout group	Rainbow trout	$\begin{aligned} & \hline \text { Book } \\ & \text { trout } \end{aligned}$	Morone group	Walleye	Sauger	$\begin{gathered} \text { Black bass } \\ \text { group } \\ \hline \end{gathered}$	Skipjack	Carp	Anything
No. harvested		23,723	-		419	220		61	122	
No. harvested per rm		692	-		12	6		2	4	
\% of total no. harvested		96.7	-		1.7	0.9		0.2	0.5	
lbs. harvested		14,009	-		1,393	155		10	335	
lbs. harvested per rm		408	-		41	5		0	10	
\% of total lbs. harvested		88.1	-		8.8	1.0		0.1	2.1	
Mean length (in)		11.7	15.0		20.2	15.0		8.0	18.0	
Mean w eight (lb)		0.63	-		3.08	1.18		0.16	2.75	
Hours fished for that group/species	114,767			1,440			226			9,734
Hours fished for that group/species per rm	3,346			42			7			284
\% of all hours	88.4			1.1			0.3			10.2
No./hr. harvested fishing for that group/species	0.29			0.00			0.00			0.45

Table 52. Length distribution by species for both harvested and released fish in the lower stratum (Helms Landing to Hwy 61 bridge) of the Lake Cumberland tailwater creel survey during 2017. (Lengths for released fish are estimated.)

	Inch class																							Total
	3	4	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Rainbow trout																								
Harvested					6	12	63	63	119	36	22													321
Released	3				70	71	279	96	394	68	74	18	45	45	29	8	5				1			1206
Brow $n$ trout																								
Harvested																								0
Released		1	1	3	12	6	66	8	39	5	13	4	5	2	1	1		1	1					169
Brook trout																								
Harvested												1												1
Released					30	88	138	57	89	22	34			1										459
Walleye																								
Harvested													1		1		1		1				1	5
Released																								0
Sauger																								
Harvested									1						1									2
Released																								0
Skipjack																								
Harvested					1																			1
Released																								0
Carp																								
Harvested															2									2
Released																					4			4
Gar																								
Harvested																								0
Released											6													6

Table 53. Monthly trout angling success in the lower stratum (Helms Landing to Hwy 61 bridge) of the Lake Cumberland tailwater during the 2017 creel survey.

Month	Total trout   harvested	Total rainbow   trout harvested	Total brown trout   harvested	Hours fished by   trout anglers	Trout caught/hr   by trout anglers	Trout   harvested/hr by   trout anglers
Apr	505	505	0	5,853	0.77	0.24
May	0	0	0	5,655	4.58	0.00
Jun	8,794	8,794	0	23,746	1.81	0.44
Jul	9,916	9,916	1,951	0	44,363	1.51

Table 54. Monthly trout angling success by bank and boat anglers in the lower stratum (Helms Landing to Hwy 61 bridge) of the Lake Cumberland tailwater during the 2017 creel survey.

Month	Total trout harvested		Rainbow trout harvested		Brown trout harvested		Hours fished by trout anglers		Trout caught/hr by trout anglers		Trout harvested/hr by trout anglers	
	Bank	Boat										
Apr	0	505	0	505	0	0	2,745	3,107	0.00	1.00	0.00	0.32
May	0	0	0	0	0	0	0,000	5,410	0.00	4.58	0.00	0.00
Jun	1,670	7,124	1,670	7,124	0	0	8,016	15,731	1.86	1.80	0.36	0.46
Jul	1,390	8,527	1,390	8,527	0	0	4,027	40,317	1.12	1.55	0.87	0.30
Aug	424	1,528	424	1,528	0	0	2,671	13,181	0.43	1.51	0.29	0.19
Sep	385	1,016	385	1,016	0	0	1,698	9,085	1.08	1.44	0.85	0.11
Oct	76	297	76	297	0	0	1,410	2,628	1.64	0.55	0.00	0.11
Nov	429	355	429	355	0	0	0,562	3,398	0.89	0.82	0.44	0.09
Total	4,374	19,352	4,374	19,352	0	0	21,129	92,857	1.19	1.68	0.42	0.26

Table 55. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours of 15-minute electrofishing runs for black bass in Laurel River Lake during April and May 2017; standard error is in parentheses

Area	Species	Inch class																		Total	CPUE
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Dam	Largemouth bass	2		4	5	1	6	1	10	6	6	6	21	9	6	4	5	2		94	62.7 (7.8)
	Spotted bass			1	1					1	2	2	1							8	5.3 (1.7)
	Smallmouth bass	1			1			1						2						5	3.3 (1.9)
Spruce	Largemouth bass		1	3	2	1	10	17	20	5	1	5	7	16	5	13	7	3		116	77.3 (7.6)
Creek	Spotted bass	2		1	5	9	3	4	2	2	3	5	5	2	1					44	29.3 (6.8)
	Smallmouth bass	1											2					1		4	2.7 (1.3)
Laurel	Largemouth bass	2	3	1	3	5	5	10	15	13	8	18	27	14	4	9	3	1	1	142	94.7 (12.7)
River	Spotted bass	1	1		2	2	4	4	5	2	7	2	1		1					32	21.3 (6.5)
Arm	Smallmouth bass									2	1	1								4	2.7 (1.3)
Upper	Largemouth bass		1	4	5	9	15	9	2	3	5	14	14	23	7	5	4	3		123	82.0 (10.9)
Craigs	Spotted bass		4				3	2	5	3	6	3	2	2	3					33	22.0 (5.7)
Creek	Smallmouth bass			1																1	0.7 (0.7)
Total	Largemouth bass	4	5	12	15	16	36	37	47	27	20	43	69	62	22	31	19	9	1	475	79.2 (5.2)
	Spotted bass	3	5	2	8	11	10	10	12	8	18	12	9	4	5					117	19.5 (3.2)
	Smallmouth bass	2		1	1			1		2	1	1	2	2				1		14	2.3 (0.7)

sedpsdlr.d17

Table 56. Comparison of catch-per-hour of black bass (by area) captured during spring electrofishing on Laurel River Lake during the period of 20132017.

	Stock					Quality					Preferred				
Species/Area	2013	2014	2015	2016	2017	2013	2014	2015	2016	2017	2013	2014	2015	2016	2017
Largemouth bass															
Dam	64.7	26.7	59.3	74.0	54.7	53.3	21.3	45.3	53.3	39.3	12.7	13.3	21.3	21.3	17.3
Spruce Creek	60.0	43.3	54.0	48.7	72.7	49.3	33.3	42.0	45.3	38.0	26.7	17.3	27.3	22.0	29.3
Laurel River Arm	59.3	102.7	87.3	109.3	85.3	42.7	47.3	54.7	70.0	56.7	24.0	24.0	16.0	34.0	21.3
Craigs Cr. headwaters	59.3	60.7	44.0	24.0	69.3	44.7	51.3	36.7	14.7	50.0	21.3	31.3	22.0	5.3	28.0
Mean	60.8	58.3	61.2	64.0	70.5	47.5	38.3	44.7	45.8	46.0	21.2	21.5	21.7	20.7	24.0
Spotted bass															
Dam	6.0	5.3	8.7	9.3	4.0	3.3	2.0	7.3	4.7	4.0	0.7	0.7	2.7	2.7	0.7
Spruce Creek	25.3	14.7	10.7	8.7	24.0	22.7	9.3	7.3	6.0	12.0	6.0	4.7	6.0	4.0	5.3
Laurel River Arm	8.7	18.0	7.3	24.0	18.7	4.7	4.0	4.0	11.3	8.7	0.7	0.0	0.7	1.3	1.3
Craigs Cr. headwaters	36.0	42.0	20.0	17.3	19.3	21.3	25.3	14.0	5.3	12.7	1.3	10.0	4.0	1.3	4.7
Mean	19.0	20.0	11.7	14.8	16.5	13.0	10.2	8.2	6.8	9.3	2.2	3.8	3.3	2.3	3.0
Smallmouth bass															
Dam	2.7	1.3	0.0	7.3	2.0	2.7	1.3	0.0	4.0	1.3	1.3	1.3	0.0	4.0	1.3
Spruce Creek	4.7	4.7	2.0	1.3	2.0	4.7	2.0	2.0	1.3	2.0	2.0	2.0	2.0	1.3	2.0
Laurel River Arm	0.0	0.7	0.0	0.0	2.7	0.0	0.7	0.0	0.0	2.7	0.0	0.7	0.0	0.0	0.0
Craigs Cr. headwaters	1.3	8.0	6.7	6.0	0.0	0.0	7.3	4.0	4.7	0.0	0.0	5.3	3.3	2.7	0.0
Mean	2.2	3.7	2.2	3.7	1.7	1.8	2.8	1.5	2.5	1.5	0.8	2.3	1.3	2.0	0.8

Largemouth bass - $\geq 8.0$ in = stock, $\geq 12.0$ in = quality, $\geq 15.0$ in = preferred.
Smallmouth bass and spotted bass $-\geq 7.0$ in = stock, $\geq 11.0$ in = quality, $\geq 14.0$ in = preferred.
sedpsdlr.d17

Table 57. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Laurel River Lake during April and May 2017.

Year	Length group										Total	
	$<8.0$ in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	Std. err.										
2017	8.7	1.3	24.5	3.0	22.0	2.6	24.0	2.2	0.2	0.2	79.2	5.2
2016	6.5	1.5	18.2	3.3	25.2	2.9	20.7	3.0	0.8	0.3	70.5	7.9
2015	11.5	2.6	16.5	2.5	23.0	3.2	21.7	2.2	1.2	0.5	72.7	7.1
2014	5.8	1.2	20.0	4.9	16.8	2.5	21.5	2.6	0.8	0.3	64.2	7.9
2013	5.0	1.2	13.3	2.1	26.3	3.0	21.2	2.1	1.2	0.4	65.8	4.6
2012	6.0	1.2	23.3	3.6	18.8	2.9	18.3	2.0	0.2	0.2	66.5	7.6
2011	11.5	3.7	19.8	4.1	26.7	4.7	20.0	2.9	0.8	0.3	78.0	11.6
2010	15.8	3.0	31.0	4.4	20.7	3.1	21.2	2.4	0.8	0.4	88.7	8.4
2009	13.2	2.4	12.2	2.7	16.8	2.6	20.8	3.2	0.8	0.5	63.0	8.5
2008	37.5	11.5	15.0	2.0	7.8	1.5	17.7	2.7	0.7	0.5	78.0	13.8
2007	2.3	0.8	7.8	1.9	14.5	1.9	21.8	2.6	0.5	0.3	46.5	4.0
2006	20.8	5.7	13.9	2.7	17.1	2.9	19.5	2.8	0.6	0.3	71.4	11.4
2005	6.2	1.2	15.0	2.9	18.5	2.7	22.5	2.9	0.2	0.2	62.2	7.5
2004	3.8	1.5	11.0	1.4	18.5	3.0	14.2	1.9	0.0	0.0	47.5	4.8
2003	9.8	2.9	37.0	5.8	29.3	4.1	13.8	2.0	0.0	0.0	90.0	12.3
2002	21.7	5.0	24.0	3.8	23.3	3.3	8.3	1.4	0.0	0.0	77.3	9.7

sedpsdlr.d17

Table 58. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Laurel River Lake during April and May 2017.

Year	Length group										Total	
	$<8.0$ in		8.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in		$\geq 17.0$ in			
	CPUE	Std. err.										
2017	4.8	1.1	5.3	0.9	6.3	1.5	3.0	0.8	0.0	0.0	19.5	3.2
2016	4.0	0.9	6.3	1.4	4.5	1.1	2.3	0.7	0.0	0.0	17.2	2.4
2015	2.0	0.7	2.8	0.7	4.8	1.0	3.3	0.9	0.0	0.0	13.0	1.9
2014	3.0	0.7	8.2	1.7	6.3	1.5	3.8	1.2	0.0	0.0	21.3	3.6
2013	3.3	0.8	4.8	1.4	10.8	2.9	2.2	0.7	0.0	0.0	21.2	3.9
2012	6.3	1.6	8.3	1.8	6.8	1.6	1.7	0.5	0.0	0.0	23.2	3.3
2011	7.3	1.4	9.2	1.3	7.5	1.7	2.0	0.5	0.0	0.0	26.0	3.5
2010	25.2	4.2	13.0	2.3	9.0	2.0	4.8	1.2	0.0	0.0	52.0	6.1
2009	6.5	1.5	12.5	2.4	6.8	1.5	2.7	0.8	0.2	0.2	28.5	4.6
2008	20.2	4.2	12.7	2.6	8.5	1.4	2.3	0.6	0.0	0.0	43.7	7.0
2007	12.2	2.3	13.5	2.2	10.7	1.7	2.0	0.6	0.0	0.0	38.3	4.0
2006	15.0	2.4	13.4	1.7	9.1	1.7	2.6	0.7	0.0	0.0	40.2	4.6
2005	4.8	0.8	3.3	0.8	7.7	1.6	3.7	1.1	0.0	0.0	19.5	2.7
2004	3.2	1.0	12.5	2.9	9.8	2.3	2.2	0.7	0.0	0.0	27.7	5.6
2003	23.3	5.3	17.8	3.1	10.2	2.0	0.8	0.5	0.0	0.0	52.2	8.9
2002	13.7	3.2	13.3	1.8	5.5	1.4	0.3	0.2	0.0	0.0	32.8	5.6

Table 59. Spring electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected at Laurel River Lake during April and May 2017.

Year	Length group										Total	
	<8.0 in		8.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in		$\geq 17.0$ in			
	CPUE	Std. err.										
2017	0.7	0.4	0.2	0.2	0.7	0.4	0.8	0.4	0.2	0.2	2.3	0.7
2016	0.5	0.3	1.0	0.5	0.5	0.4	2.0	0.6	1.2	0.5	4.0	1.1
2015	0.3	0.3	0.3	0.3	0.2	0.2	1.3	0.5	0.5	0.3	2.2	0.9
2014	0.7	0.3	0.5	0.3	0.5	0.4	2.3	0.6	1.0	0.4	4.0	0.9
2013	0.3	0.2	0.2	0.2	1.0	0.6	0.8	0.4	0.0	0.0	2.3	0.8
2012	0.3	0.2	0.2	0.2	0.3	0.2	1.0	0.4	0.5	0.3	1.8	0.6
2011	1.0	0.4	1.7	0.5	0.5	0.3	0.8	0.4	0.7	0.3	4.0	1.1
2010	10.2	2.2	1.2	0.5	0.7	0.4	2.8	0.7	1.2	0.4	14.8	3.0
2009	1.7	1.2	1.0	0.4	0.7	0.4	3.5	1.5	1.8	0.8	6.8	2.4
2008	1.7	0.7	1.8	0.7	1.3	0.5	3.2	1.2	1.8	0.6	8.0	2.3
2007	2.8	0.8	1.7	0.7	0.3	0.2	1.2	0.5	0.8	0.4	6.0	1.4
2006	0.5	0.3	0.5	0.4	0.2	0.2	1.0	0.6	0.3	0.2	2.1	1.0
2005	0.2	0.2	0.8	0.4	1.5	0.6	5.5	1.5	2.8	1.1	8.0	1.8
2004	2.0	0.6	1.2	0.4	0.7	0.4	1.2	0.5	0.0	0.0	5.0	1.1
2003	8.3	2.2	7.5	1.8	1.8	0.8	2.2	0.8	0.2	0.2	19.8	4.3
2002	8.2	2.5	4.5	1.5	2.2	0.6	0.7	0.3	0.2	0.2	15.5	3.8

sedpsdlr.d17

Table 60. Population assessment for largemouth bass based on spring electrofishing at Laurel River Lake from 2000-2017 (scoring based on statewide assessment).

Year		$\begin{aligned} & \text { Mean length } \\ & \text { age-3 } \\ & \text { at capture } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { CPUE } \\ \text { age-1 } \end{array}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Total   score	Assessement $\qquad$ rating
Managem	bjective	$\geq 13.0$ in	$\geq 10.0 \mathrm{fish} / \mathrm{hr}$	$\geq 20.0$ fish/hr	$\geq 10.0$ fish/hr	$\geq 0.5 \mathrm{fish} / \mathrm{hr}$		
2017	Value		4.3	22.0	24.0	0.2		
	Score	3	1	2	4	2	12	F
2016	Value		3.3	25.2	20.7	0.8		
	Score	3	1	3	4	3	14	G
2015	Value		1.3	23.0	21.7	1.2		
	Score	3	1	3	4	3	14	G
2014	Value		1.6	16.8	21.5	0.8		
	Score	3	1	2	4	3	13	G
2013	Value	13.1	1.2	26.3	21.2	1.2		
	Score	3	1	3	4	3	14	G
2012	Value		3.3	18.8	18.3	0.2		
	Score	3	1	2	3	2	11	F
2011	Value		9.2	26.7	20.0	0.8		
	Score	3	1	3	4	3	14	G
2010	Value		6.5	20.7	21.2	0.8		
	Score	3	1	2	4	3	13	G
2009	Value		12.2	16.8	20.8	0.8		
	Score	3	2	2	4	3	14	G
2008	Value	13.3	36.3	7.8	17.7	0.7		
	Score	3	3	1	3	3	13	G
2007	Value		2.1	14.5	21.8	0.5		
	Score	4	1	1	4	3	13	G
2006	Value		18.4	17.1	19.5	0.6		
	Score	4	2	2	3	3	14	G
2005	Value		4.6	18.5	22.5	0.2		
	Score	4	1	2	4	2	13	G
2004	Value		2.6	18.5	14.2	0.0		
	Score	4	1	2	3	1	11	F
2003	Value	13.7	7.8	29.3	13.8	0.0		
	Score	4	1	3	3	1	12	F
2002	Value		18.2	23.3	8.8	0.0		
	Score	4	2	3	2	1	12	F
2001	Value		17.8	22.1	2.5	0.3		
	Score	4	2	2	1	2	11	F
2000	Value		2.3	16.3	2.1	0.1		
	Score	4	1	2	1	1	9	F

sedpsdlr.d17

Table 61. Population assessment for spotted bass based on spring electrofishing at Laurel River Lake from 2000-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & 11.0-13.9 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Total score	Assessement rating
Management objective		$\geq 11.0$ in	$\geq 3.0$ fish/hr	$\geq 7.0$ fish/hr	$\geq 1.0$ fish/hr		
2017	Value		1.3	6.3	3.0		
	Score	1	2	2	4	9	F
2016	Value		1.0	4.5	2.3		
	Score	1	2	1	3	7	F
2015	Value		0.3	4.8	3.3		
	Score	1	1	1	4	7	F
2014	Value		0.5	6.3	3.8		
	Score	1	1	2	4	8	F
2013	Value		0.3	10.8	2.2		
	Score	1	1	4	3	9	F
2012	Value	10.0	0.5	6.8	1.7		
	Score	1	1	2	3	7	F
2011	Value		0.8	7.5	2.0		
	Score	2	1	2	3	8	F
2010	Value		2.5	9.0	4.8		
	Score	2	3	3	4	12	G
2009	Value		0.3	6.8	2.7		
	Score	2	1	2	4	9	F
2008	Value		4.0	8.5	2.3		
	Score	2	3	3	3	11	G
2007	Value	10.4	0.8	10.7	2.0		
	Score	2	1	4	3	10	G
2006	Value		4.3	9.1	2.6		
	Score	4	3	3	4	14	E
2005	Value		1.5	7.7	3.7		
	Score	4	2	2	4	12	G
2004	Value		0.0	9.8	2.2		
	Score	4	1	3	3	11	G
2003	Value		2.3	10.2	0.8		
	Score	4	3	3	2	12	G
2002	Value	11.5	2.2	5.5	0.3		
	Score	4	3	2	1	10	G
2001	Value		6.0	8.3	0.1		
	Score	4	4	3	1	12	G
2000	Value		2.6	2.3	0.1		
	Score	4	3	1	1	9	F

Table 62. Population assessment for smallmouth bass based on spring electrofishing at Laurel River Lake from 1990-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 11.0-13.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Total score	Assessement rating
Management objective		$\geq 13.0$ in	$\geq 3.0 \mathrm{fish} / \mathrm{hr}$	$\geq 1.5 \mathrm{fish} / \mathrm{hr}$	$\geq 1.0 \mathrm{fish} / \mathrm{hr}$		
2017	Value		0.3	0.7	0.8		
	Score	3	1	2	2	8	F
2016	Value		0.2	0.5	2.0		
	Score	3	1	2	4	10	G
2015	Value		0.0	0.2	1.3		
	Score	3	1	1	3	8	F
2014	Value		0.0	0.5	2.3		
	Score	3	1	2	4	10	G
2013	Value	13.2	0.0	1.0	0.8		
	Score	3	1	3	2	9	F
2012	Value		0.0	0.3	1.0		
	Score	4	1	2	3	10	G
2011	Value		0.3	0.5	0.8		
	Score	4	1	2	2	9	F
2010	Value		3.8	0.7	2.8		
	Score	4	4	2	4	14	E
2009	Value		0.3	0.7	3.5		
	Score	4	1	2	4	11	G
2008	Value	13.6	0.8	1.3	3.2		
	Score	4	2	3	4	13	G
2007	Value		1.2	0.3	1.2		
	Score	4	2	2	3	11	G
2006	Value		0.4	0.2	1.0		
	Score	4	2	1	3	10	G
2005	Value		0.1	1.5	5.5		
	Score	4	1	3	4	12	G
2004	Value		0.4	0.7	1.2		
	Score	4	2	2	3	11	G
2003	Value	13.6	4.0	1.8	2.2		
	Score	4	4	3	4	15	E
2002	Value		6.0	2.2	0.7		
	Score	4	4	4	2	14	E
2001	Value		3.4	2.8	1.1		
	Score	4	3	4	3	14	E
2000	Value		0.9	1.3	0.6		
	Score	4	2	3	2	11	G

Table 63. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Laurel River Lake during April and May 2017; 95\% confidence limits are in parentheses.

Year	Area	Largemouth bass			Spotted bass			Smallmouth bass		
		$\begin{gathered} \text { No. } \geq \\ \text { stock size } \end{gathered}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \text { No. } \geq \\ \text { stock size } \end{gathered}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{14} \\ (+/-95 \%) \\ \hline \end{gathered}$	No. $\geq$ stock size	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{14} \\ (+/-95 \%) \\ \hline \end{gathered}$
2017	Dam	82	$72( \pm 10)$	$32( \pm 10)$	6	$100( \pm 0)$	$17( \pm 33)$	3	$67( \pm 65)$	$67( \pm 65)$
	Spruce Creek	109	$52( \pm 9)$	$40( \pm 9)$	36	$50( \pm 17)$	$22( \pm 14)$	3	$100( \pm 0)$	$100( \pm 0)$
	Laurel River Arm	128	$66( \pm 8)$	$25( \pm 8)$	28	$46( \pm 19)$	$7( \pm 10)$	4	$100( \pm 0)$	$0( \pm 0)$
	Upper Craigs Creek	104	$72( \pm 9)$	$40( \pm 9)$	29	66 ( $\pm 18)$	$24( \pm 16)$	0	$0( \pm 0)$	$0( \pm 0)$
	Total	423	$65( \pm 5)$	$34( \pm 5)$	99	$57( \pm 10)$	$18( \pm 8)$	10	$90( \pm 20)$	$50( \pm 33)$
2016	Total	384	$72( \pm 5)$	$32( \pm 5)$	89	$46( \pm 10)$	$16( \pm 8)$	22	$68( \pm 20)$	$55( \pm 21)$
2015	Total	367	$73( \pm 5)$	$35( \pm 5)$	70	$70( \pm 11)$	$29( \pm 11)$	13	$69( \pm 26)$	$62( \pm 28)$
2014	Total	350	$66( \pm 5)$	$37( \pm 5)$	120	$51( \pm 9)$	$19( \pm 7)$	22	$77( \pm 18)$	$64( \pm 21)$
2013	Total	365	$78( \pm 4)$	$35( \pm 5)$	114	$68( \pm 9)$	$11( \pm 6)$	13	$85( \pm 20)$	$38( \pm 28)$
2012	Total	363	$61( \pm 5)$	$30( \pm 5)$	124	$41( \pm 9)$	$8( \pm 5)$	9	$89( \pm 22)$	$67( \pm 33)$
2011	Total	399	$70( \pm 4)$	$30( \pm 5)$	132	$43( \pm 8)$	$9( \pm 5)$	21	$38( \pm 21)$	$24( \pm 19)$
2010	Total	437	$57( \pm 5)$	$29( \pm 4)$	211	$39( \pm 7)$	$14( \pm 5)$	41	$51( \pm 15)$	$41( \pm 15)$
2009	Total	299	$76( \pm 5)$	$42( \pm 6)$	145	$39( \pm 8)$	$11( \pm 5)$	36	$69( \pm 15)$	$58( \pm 16)$
2008	Total	243	$63( \pm 6)$	$44( \pm 6)$	193	$34( \pm 7)$	$7( \pm 4)$	38	$71( \pm 15)$	$50( \pm 16)$
2007	Total	265	$82( \pm 5)$	$49( \pm 6)$	192	$40( \pm 7)$	$6( \pm 3)$	27	$33( \pm 18)$	$26( \pm 17)$
2006	Total	316	$72( \pm 5)$	$39( \pm 5)$	193	$38( \pm 7)$	$8( \pm 4)$	10	$70( \pm 30)$	$60( \pm 32)$
2005	Total	336	$73( \pm 5)$	$40( \pm 5)$	98	$69( \pm 9)$	$22( \pm 8)$	47	$89( \pm 9)$	$70( \pm 13)$
2004	Total	262	$75( \pm 5)$	$32( \pm 6)$	158	$41( \pm 19)$	$26( \pm 17)$	27	$46( \pm 8)$	$8( \pm 4)$

sedpsdlr.d17

Table 64. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15minute nocturnal electrofishing runs for black bass in Laurel River Lake on 18 September 2017; standard error is in parentheses.

Area	Species	Inch class													Total	CPUE
		2	3	4	5	6	7	8	9	10	11	12	13	14		
Laurel River Arm	Largemouth bass	3	5	1	2	1	2	4	5	1	2	5	1	3	35	23.3 (5.0)
	Spotted bass	1		1	2	1	2	2	2		1	1			13	8.7 (2.4)

sedyoylr.d17

Table 65. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples at Laurel River Lake.

Year class	Area	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1 ${ }^{\text {a }}$	
		Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2017	Laurel River Arm	3.6	0.3	7.3	2.4	1.3	1.3		
2016	Laurel River Arm	3.4	0.1	24.0	4.8	2.7	1.3	4.7	1.9
2015	Laurel River Arm	3.5	0.1	5.3	2.0	0.0	0.0	6.7	2.5
2014	Laurel River Arm	4.4	0.1	19.3	4.3	4.0	1.0	4.0	1.5
2013	Laurel River Arm	4.0	0.1	21.3	6.6	2.7	1.3	6.7	2.2
2012	Laurel River Arm	4.6	0.1	11.3	3.6	3.3	1.9	4.0	2.1
$2011{ }^{\text {b }}$	Laurel River Arm	4.1	0.3	10.7	5.6	3.3	1.9	$6.0^{\text {c }}$	0.9
$2010{ }^{\text {b }}$	Laurel River Arm	5.4	0.4	2.7	0.8	2.0	0.9	$31.5^{\text {d }}$	7.5
2009	Laurel River Arm	3.8	0.3	6.0	3.2	0.7	0.7	19.3	7.0
$2008{ }^{\text {b }}$	Laurel River Arm	3.2	0.3	1.3	0.8	0.0	0.0	$14.0{ }^{\text {e }}$	4.6
$2007{ }^{\text {b }}$	Laurel River Arm	3.5	0.1	5.3	4.6	0.0	0.0	$118.9{ }^{\text {f }}$	12.4
$2006{ }^{\text {b }}$	Laurel River Arm	3.7	0.1	12.7	4.9	0.7	0.7	$5.4{ }^{9}$	2.1
$2005{ }^{\text {b }}$	Laurel River Arm	4.4	0.2	14.0	3.5	3.3	1.6	$58.3{ }^{\text {h }}$	9.2
2004	Laurel River Arm	4.9	0.2	14.0	5.8	8.0	3.4	8.3	2.4
2003	Laurel River Arm	3.4	0.1	36.7	14.0	0.7	0.7	2.6	1.0
2002	Laurel River Arm	4.5	0.1	30.7	5.8	8.7	3.5	10.3	4.1

${ }^{\text {a }}$ Age-1 largemouth bass CPUE based only on Laurel River Arm location
${ }^{\mathrm{b}}$ Age-0 largemouth bass stocked in the fall
${ }^{\text {c }}$ Includes bass stocked in fall 2011; CPUE of fin-clipped bass=0.0 fish/hr
${ }^{d}$ Includes bass stocked in fall 2010; CPUE of fin-clipped bass= 8.0 fish $/ \mathrm{hr}$
${ }^{\mathrm{e}}$ Includes bass stocked in fall 2008; CPUE of fin-clipped bass= 8.0 fish $/ \mathrm{hr}$
${ }^{\dagger}$ Includes bass stocked in fall 2007; CPUE of fin-clipped bass=108.0 fish/hr
${ }^{9}$ Includes bass stocked in fall 2006; CPUE of fin-clipped bass=2.0 fish/hr
${ }^{\mathrm{h}}$ Includes bass stocked in fall 2005; CPUE of fin-clipped bass $=36.0 \mathrm{fish} / \mathrm{hr}$
sedyoylr.d17

Table 66. Number of fish and mean relative weight (Wr) for each length group of black bass collected at 312 Bridge in Laurel River Lake on 18 September 2017. Standard error is in parentheses.

Species		Length group	
Largemouth bass	8.0-11.9 in	12.0-14.9 in	$\geq 15.0$ in
	No. Wr	No. $\quad \mathrm{Wr}$	No. Wr
	1289 (2)	9100 (3)	0 0 (0)
Spotted bass	7.0-10.9 in	11.0-13.9 in	$\geq 14.0$ in
	No. Wr	No. $\quad \mathrm{Wr}$	No. Wr
	5100 (6)	2110 (1)	0 0 (0)

sedyoylr.d17

Table 67. Length frequency and CPUE (fish/nn) of walleye collected from Laurel River Lake in 8 net-nights in November 2017.

Species	Inch class															Total	CPUE	Std. error
	9	10	11	12	13	14	15	16	17	18	19	20	21	22	24			
Walleye	3	16	32	15	12	9	2	1	7	9	29	22	12	6	2	177	22.1	4.6

sedgnlrw.d17

Table 68. Population assessment for walleye based on fall gill netting at Laurel River Lake from 19902017 (scoring based on statewide assessment).

Year		Parameters				Total   score	Assessment rating
		$\begin{gathered} \text { CPUE } \\ \geq \text { age- } 1+ \end{gathered}$	Mean length age- $2+$ at capture	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	$\begin{gathered} \hline \text { CPUE } \\ \text { age-1+ } \end{gathered}$		
Management objective		$\geq 10.0$ fish/nn	$\geq 18.0$ in	$\geq 2.5 \mathrm{fish} / \mathrm{nn}$	$\geq 4.0$ fish/nn		
2017	Value	11.4	19.2	5.3	1.3		
	Score	4	4	4	2	14	E
2015	Value	16.5	19.5	8.5	4.9		
	Score	4	4	4	4	16	E
2013	Value	18.5	19.4	7.9	4.6		
	Score	4	4	4	4	16	E
2011	Value	15.1	19.1	4.3	1.2		
	Score	4	4	4	2	14	E
2009	Value	15.3	19.0	7.2	5.1		
	Score	4	4	4	4	16	E
2007	Value	21.6	19.1	6.5	8.3		
	Score	4	4	4	4	16	E
2005	Value	25.1	19.5	9.3	8.0		
	Score	4	4	4	4	16	E
2002	Value	10.6	18.8	0.6	6.1		
	Score	4	4	2	4	14	E
1993	Value	4.3	18.6	0.5	2.4		
	Score	3	4	1	3	11	G
1991	Value	3.7		0.8	0.5		
	Score	2	4	2	1	9	F
1990	Value	4.7		1.5	1.5		
	Score	3	4	3	2	12	G

sedgnlrw.d17
sedaglrw.d17

Table 69. Mean back calculated lengths (in) at each annulus for male walleye collected from Laurel River Lake during 2017, including the 95\% confidence interval (CI) for each mean length per age

group.			Age										
Year	No.	1	2	3	4	5	6	7	8	8			
2016	9	10.5											
2015	20	11.5	17.0										
2014	8	9.2	16.0	18.4									
2013	7	10.3	15.4	18.2	19.7								
2012	8	10.4	16.4	18.9	20.1	21.1							
2011	4	11.3	16.0	17.9	19.2	20.1	20.8						
2010	3	9.7	14.9	17.5	19.0	19.8	20.7	21.2					
2009	1	9.9	15.3	17.3	18.9	19.9	20.6	20.9	21.1				
2008	1	11.2	16.0	18.2	19.2	20.2	20.8	21.4	21.8	22.1			
Mean		10.6	16.3	18.3	19.6	20.5	20.8	21.2	21.5	22.1			
Number		61	52	32	24	17	9	5	2	1			
Smallest		6.8	12.7	16.7	18.4	19.1	19.8	20.5	21.1	22.1			
Largest		13.7	19.1	21.1	22.2	23.4	21.6	21.7	21.8	22.1			
Std error		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3				
95\% CI $\pm$		0.4	0.4	0.3	0.4	0.5	0.4	0.4	0.6				

Otoliths were used for age-growth determinations; Intercept $=0$
sedaglwm.d17

Table 70. Mean back calculated lengths (in) at each annulus for female walleye collected from Laurel River Lake during 2017, including the $95 \%$ confidence interval (Cl) for each mean length per age group.

		Age				
Year	No.	1	2	3	4	
2015	4	12.5	17.9			
2013	1	11.0	17.6	20.2	22.4	
Mean		12.2	17.9	20.2	22.4	
Number		5	5	1	1	
Smallest		9.1	16.0	20.2	22.4	
Largest		14.3	18.9	20.2	22.4	
Std error		1.0	0.5			
$95 \%$ Cl $\pm$		2.0	1.1			

Otoliths were used for age-growth determinations;
Intercept $=0$
sedaglwf.d17

Table 71. Mean back calculated lengths (in) at each annulus for walleye (both sexes) collected from Laurel River Lake during 2017, including the 95\% confidence interval (CI) for each mean length per age group.

		Age								
Year	No.	1	2	3	4	5	6	7	8	9
2016	10	10.6								
2015	24	11.6	17.1							
2014	8	9.2	16.0	18.4						
2013	8	10.4	15.7	18.4	20.0					
2012	8	10.4	16.4	18.9	20.1	21.1				
2011	4	11.3	16.0	17.9	19.2	20.1	20.8			
2010	3	9.7	14.9	17.5	19.0	19.8	20.7	21.2		
2009	1	9.9	15.3	17.3	18.9	19.9	20.6	20.9	21.1	
2008	1	11.2	16.0	18.2	19.2	20.2	20.8	21.4	21.8	22.1
Mean		10.8	16.4	18.4	19.7	20.5	20.8	21.2	21.5	22.1
Number		67	57	33	25	17	9	5	2	1
Smallest		6.8	12.7	16.7	18.4	19.1	19.8	20.5	21.1	22.1
Largest		14.3	19.1	21.1	22.4	23.4	21.6	21.7	21.8	22.1
Std error		0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	
95\% CI $\pm$		0.4	0.3	0.4	0.4	0.5	0.4	0.4	0.6	

Otoliths were used for age-growth determinations; Intercept $=0$
sedaglrw.d17

Table 72. Age-frequency and CPUE (fish/nn) of walleye gill netting for 8 net-nights at Laurel River Lake during November 2017.

	Inch class															Total	\%	CPUE	Std error
Age	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23				
0	3	16	32	15	12	8										86	48.6	10.8	2.7
1						1	2	1	5	1						10	5.6	1.3	0.4
2									2	7	23	3	1			36	20.3	4.5	1.5
3										1	6	6				13	7.3	1.6	0.4
4												6	4		1	11	6.2	1.4	0.3
5												2	5	2	1	10	5.6	1.3	0.3
6												3	1	1		5	2.8	0.6	0.2
7												2		2		4	2.3	0.5	0.1
8													1			1	0.6	0.1	0.1
9														1		1	0.6	0.1	0.1
Total	3	16	32	15	12	9	2	1	7	9	29	22	12	6	2	177	100.0	22.1	
\%	1.7	9.0	18.1	8.5	6.8	5.1	1.1	0.6	4.0	5.1	16.4	12.4	6.8	3.4	1.1				
sedgn sedag	$\begin{aligned} & \hline \text { w.d17 } \\ & \text { w.d17 } \end{aligned}$																		

Table 73. Population assessment for walleye gill netted at Laurel River Lake in November 2017 (scoring based on statewide assessment).

Parameter	Actual   value	Assessment   score
Population density   (CPUE age 1 and older)	11.4	4
Growth rate   (Mean length age 2+ at capture)	19.2	4
Size structure   $\quad$ (CPUE $\geq 20.0$ in)	5.3	4
Recruitment		
(CPUE age 1)	1.3	2
Total score		14
Assessment rating	0.339	E
Instantaneous mortality (Z)	28.7	
Annual mortality (A)		4

```
sedgnlrw.d17
sedaglrw.d17
```

Table 74. Number of fish and mean relative weight (Wr) for each length group of walleye collected in Laurel River Lake during November 2017. Standard error is in parentheses.

Length group				
10.0-14.9 in	15.0-19.9 in		$\geq 20.0$ in	
No. $\quad \mathrm{Wr}$	No.	Wr	No.	Wr
8295 (1)	47	96 (1)	38	99 (1)

sedgnlrw.d17

Table 75. Length frequency and CPUE (fish/hr) of largemouth bass collected at Cedar Creek Lake in 1.5 hours ( 0.75 hours in lower end; 0.75 hours upper end; 15-min runs) of diurnal electrofishing on 30 May 2017.

Area	Species	Inch class																			Total	CPUE	Std. error
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Lower	Largemouth bass		9	10	17	9	6	3	7	1	3	2	4	2	5	2	1	1			82	109.3	5.8
Upper	Largemouth bass	1	2	1	8	10	11	4	4	4	5	1	10	9	12	13	3	2	1	2	103	137.3	14.1
Total	Largemouth bass	1	11	11	25	19	17	7	11	5	8	3	14	11	17	15	4	3	1	2	185	246.7	19.9

sedpsdccl.d17

Table 76. PSD and RSD $_{15}$ values obtained for largemouth bass taken in spring electrofishing samples in each area of Cedar Creek Lake on 30 May 2017; 95\% confidence levels are in parentheses.

Year	Lower Lake			Upper Lake			Total		
	$\begin{aligned} & \text { No. } \geq \\ & 8.0 \text { in } \end{aligned}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { No. } \geq \\ & 8.0 \text { in } \end{aligned}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{aligned} & \text { No. } \geq \\ & 8.0 \text { in } \end{aligned}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \\ \hline \end{gathered}$
$2017{ }^{\text {a }}$	37	$54( \pm 16)$	$30( \pm 15)$	81	$72( \pm 10)$	$52( \pm 11)$	118	$66( \pm 9)$	$45( \pm 9)$
$2016^{\text {a }}$	73	$67( \pm 11)$	$47( \pm 12)$	104	$75( \pm 8)$	$52( \pm 10)$	177	$72( \pm 7)$	$50( \pm 7)$
$2015{ }^{\text {b }}$	95	$79( \pm 8)$	$52( \pm 10)$	107	$81( \pm 7)$	$53( \pm 9)$	202	$80( \pm 6)$	$52( \pm 7)$
2014	237	$82( \pm 5)$	$48( \pm 6)$	345	$81( \pm 4)$	$47( \pm 5)$	582	$82( \pm 3)$	$47( \pm 4)$
2013	448	$69( \pm 4)$	$33( \pm 4)$	299	$66( \pm 5)$	$36( \pm 5)$	747	$68( \pm 3)$	$34( \pm 3)$
2012	406	$56( \pm 5)$	$27( \pm 4)$	409	$60( \pm 5)$	$30( \pm 4)$	815	$58( \pm 3)$	$29( \pm 3)$
2011	283	$55( \pm 6)$	$22( \pm 5)$	172	$62( \pm 7)$	$31( \pm 7)$	455	$57( \pm 5)$	$25( \pm 4)$
2010	386	$43( \pm 5)$	$22( \pm 4)$	310	$48( \pm 6)$	$23( \pm 5)$	696	$45( \pm 4)$	$22( \pm 3)$
2009	260	$55( \pm 6)$	$27( \pm 5)$	208	$50( \pm 7)$	$27( \pm 6)$	468	$53( \pm 5)$	$27( \pm 4)$
2008	249	$39( \pm 6)$	$27( \pm 6)$	177	$45( \pm 7)$	$26( \pm 6)$	426	$42( \pm 5)$	$27( \pm 4)$
2007	322	$36( \pm 5)$	$22( \pm 5)$	145	$49( \pm 8)$	$36( \pm 8)$	467	$40( \pm 4)$	26 ( $\pm 4)$
2006	238	$36( \pm 6)$	$31( \pm 6)$	99	$55( \pm 10)$	$43( \pm 10)$	337	$42( \pm 5)$	$35( \pm 5)$
2005	228	$83( \pm 5)$	$50( \pm 7)$	95	$93( \pm 6)$	$63( \pm 10)$	323	$86( \pm 4)$	$54( \pm 6)$
2004	277	66 ( $\pm 6$ )	$6( \pm 3)$	178	$76( \pm 7)$	$5( \pm 3)$	455	$70( \pm 5)$	$6( \pm 3)$

[^33]Table 77. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Cedar Creek Lake from 2003-2017.

Year	Area	Length group										Total	Std. err.
		<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
		CPUE	Std. err.										
2017	Total	44.7	8.9	26.7	6.5	16.7	2.6	35.3	9.3	2.0	0.9	123.3	9.3
2016	Total	19.3	5.0	33.3	3.2	26.0	5.7	58.7	8.2	5.3	1.7	137.3	7.5
2015	Total	14.0	4.8	26.7	4.2	37.3	5.7	70.7	6.1	5.3	1.3	148.7	8.7
2014	Total	6.3	1.7	30.3	6.0	57.7	8.8	78.3	12.0	5.7	1.1	172.6	25.7
2013	Total	6.3	2.1	69.1	3.7	72.0	8.1	72.3	5.0	10.3	2.3	219.7	12.1
2012	Total	21.4	7.4	98.6	8.5	67.7	7.1	66.6	7.8	7.4	1.6	254.3	17.4
2011	Total	69.4	13.1	55.4	7.2	41.7	4.4	32.9	5.8	4.3	1.1	199.4	18.6
2010	Total	36.1	8.1	105.3	10.0	45.0	5.8	42.8	6.5	4.1	1.3	229.2	15.8
2009	Total	91.1	26.7	63.4	7.7	34.0	4.3	36.3	6.1	5.1	1.0	224.9	25.3
2008	Total	70.9	13.7	70.9	9.1	18.3	2.5	32.6	5.1	4.3	1.8	192.6	20.6
2007	Total	30.3	8.5	79.7	19.0	18.9	4.2	34.9	2.1	3.4	0.6	163.7	28.2
2006	Total	24.0	6.9	56.3	15.6	6.6	1.5	33.4	3.7	0.3	0.3	120.3	24.5
2005	Total	79.7	21.1	12.9	4.8	30.0	5.1	49.4	7.9	0.0	0.0	172.0	33.4
2004	Total	27.9	6.6	34.5	4.6	74.7	10.2	6.3	2.0	0.0	0.0	143.3	16.1
2003	Total	165.8	23.3	12.5	4.1	17.3	2.4	0.5	0.3	0.0	0.0	196.0	24.7

sedpsccl.d17

Table 78. Population assessment for largemouth bass based on spring electrofishing at Cedar Creek Lake from 2003-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{array}{r} \text { CPUE } \\ \text { age } 1 \\ \hline \end{array}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \mathrm{in} \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { score } \end{aligned}$	Assessement $\qquad$ rating
Management objective		$\geq 11.5$ in	$\geq 16.0$ fish/hr	$\geq 20.0$ fish/hr	$\geq 30.0$ fish/hr	$\geq 4.0$ fish/hr		
2017	Value		44.7	16.7	35.3	2.0		
	Score	4	3	2	4	3	16	G
2016	Value		16.0	26.0	58.7	5.3		
	Score	4	2	3	4	4	17	E
2015	Value	12.0	8.0	37.3	70.7	5.3		
	Score	4	2	3	4	4	17	E
2014	Value		3.7	57.7	78.3	5.7		
	Score	4	1	4	4	4	17	E
2013	Value		4.9	72.0	72.3	10.3		
	Score	4	1	4	4	4	17	E
2012	Value		16.3	67.7	66.6	7.4		
	Score	4	2	4	4	4	18	E
2011	Value		68.6	41.7	32.9	4.3		
	Score	4	4	3	4	4	19	E
2010	Value	13.5	35.5	45.0	42.8	4.1		
	Score	4	3	4	4	4	19	E
2009	Value		92.6	34.0	36.3	5.1		
	Score	4	4	3	4	4	19	E
2008	Value		72.6	18.3	32.6	4.3		
	Score	4	4	2	4	4	18	E
2007	Value	12.0	26.6	18.9	34.9	3.4		
	Score	4	3	2	4	3	16	G
2006	Value		23.1	6.6	33.4	0.3		
	Score	4	3	1	4	2	14	G
2005	Value	14.0	1.7	30.0	49.4	0.0		
	Score	4	1	3	4	1	13	G
2004	Value		5.4	74.7	6.3	0.0		
	Score	4	1	4	2	1	12	F
2003	Value		6.0	17.3	0.5	0.0		
	Score	4	1	2	1	1	9	F

sedpsccl.d17

Table 79. Length-frequency and CPUE (fish/hr) of largemouth bass collected during 1.5 hours of nocturnal electrofishing ( 0.75 hours in lower end; 0.75 hours in upper end; 15-minute runs) at Cedar Creek Lake on 15 September 2017; standard error is in parentheses.

Area	Inch class																			Total	CPUE
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Lower		2	14	23	8	1	8	3	5	3	3	5	3	3	2		2	1		86	114.7 (33.7)
Upper	1	14	18	15	7	1	1	3	5	5	2	5	4	2	2	2	3	2	2	94	125.3 (20.8)
Total	1	16	32	38	15	2	9	6	10	8	5	10	7	5	4	2	5	3	2	180	120.0 (17.9)

sedyoycc.d17

Table 80. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples at Cedar Creek Lake.

Year class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	Std. error	CPUE	Std.   error	CPUE	Std. error	CPUE	Std.   error
2017	4.0	0.1	68.7	15.8	10.7	3.8		
2016	4.0	0.1	131.3	45.2	36.7	10.1	44.7	8.9
2015	3.4	0.1	50.0	18.6	4.0	1.5	16.0	4.5
2014	3.8	0.2	19.3	7.6	3.3	1.2	8.0	4.0
2013	3.5	0.2	9.4	3.9	0.3	0.3	3.7	1.2
2012	4.0	0.2	18.3	7.6	7.1	1.8	4.9	2.1
2011	4.2	0.1	27.1	4.0	6.0	1.1	16.3	6.5
2010	5.0	0.1	59.5	15.8	33.4	6.1	68.6	12.9
2009	4.1	0.1	17.4	4.3	3.7	1.8	35.5	7.9
2008	4.7	0.1	55.7	8.6	24.9	5.4	92.6	26.9
2007	5.4	0.0	32.9	7.8	28.6	6.6	72.6	13.5
2006	4.7	0.1	43.7	11.3	17.7	5.3	26.6	7.4
2005	4.8	0.1	55.7	9.5	28.0	7.7	23.1	6.7
2004	4.8	0.0	17.4	3.1	12.9		1.7	0.9

sedyoycc.d17

Table 81. Number of fish and mean relative weight (Wr) for each length group of largemouth bass collected in Cedar Creek Lake on 15 September 2017. Standard error is in parentheses.

Species	Area	Length group					
		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in	
		No.	Wr	No.	Wr	No.	Wr
Largemouth bass	Lower	14	88 (1)	11	87 (4)	5	91 (5)
	Upper	15	89 (2)	11	92 (2)	11	97 (2)
	Total	29	89 (1)	22	89 (2)	16	95 (2)

sedyoycc.d17

Table 82. Length frequency and CPUE (fish/hr) of largemouth bass collected at Chenoa Lake in 1.0 hour (7.5-min runs) of diurnal electrofishing on 11 April 2017.

Species	Inch class															Total	CPUE	Std. error
	3	6	7	8	9	10	11	12	13	14	15	16	18	21	23			
Largemouth bass	2	2	6	3	9	6	13	7	5	3	1	2	1	2	1	63	63.0	10.0

sedpsdcl.d17

Table 83. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Chenoa Lake on 11 April 2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	Std. err.										
2017	10.0	3.3	31.0	5.3	15.0	4.1	7.0	2.4	3.0	2.1	63.0	10.0
2014	16.0	4.8	52.0	14.7	22.0	3.3	15.0	7.6	2.0	1.3	105.0	20.1
2011	35.2	7.1	35.2	7.8	63.2	9.7	8.8	2.5	0.8	0.8	142.4	18.7
2008	24.0	4.5	49.6	14.1	63.2	10.7	20.0	4.3	1.6	1.1	156.8	23.2
2006	28.0	12.8	44.0	5.7	68.0	9.6	16.8	3.4	3.2	1.5	156.8	19.8

sedpsdcl.d17

Table 84. PSD and $\mathrm{RSD}_{15}$ values obtained for largemouth bass taken in spring electrofishing samples in Chenoa Lake on 11 April 2017; 95\%

confidence levels are in parentheses.					
Year	No. $\geq 8.0$ in	PSD (+/-95\%)	RSD $_{15}(+/-95 \%)$		


2017	53	$42( \pm 13)$	$13( \pm 9)$
2014	89	$42( \pm 10)$	$17( \pm 8)$
2011	134	$67( \pm 8)$	$8( \pm 5)$
2008	166	$63( \pm 7)$	$15( \pm 5)$
2006	161	$66( \pm 7)$	$13( \pm 5)$

sedpsdcl.d17

Table 85. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Chenoa Lake during fall 2017, including the $95 \%$ confidence interval (CI) for each mean length per age group.

		Age								
Year	No.	1	2	3	4	5	6	7	8	
2016	3	4.9								
2015	6	4.1	8.5							
2014	6	4.6	8.4	10.5						
2013	9	4.0	7.6	10.0	11.3					
2012	3	3.3	7.0	8.7	11.0	12.0				
2011	4	4.5	8.2	9.9	11.5	12.4	13.5			
2010	5	4.3	8.0	10.6	11.5	12.5	13.5	14.3		
2009	1	3.8	9.5	11.8	13.7	14.5	15.3	16.0	16.4	
Mean		4.2	8.0	10.1	11.5	12.5	13.6	14.6	16.4	
Number		37	34	28	22	13	10	6	1	
Smallest		3.0	6.7	8.4	10.3	11.1	11.7	13.1	16.4	
Largest		6.0	9.5	11.8	13.7	14.5	16.2	16.0	16.4	
Std error		0.1	0.1	0.2	0.2	0.3	0.5	0.5		
95\% CI $\pm$		0.2	0.3	0.3	0.4	0.6	0.9	0.9		

Otoliths were used for age-growth determinations; Intercept = 0
sedagcll.d17

Table 86. Number of fish and mean relative weight (Wr) for each length group of largemouth bass collected at Chenoa Lake on 5 October 2017. Standard error is in parentheses.

Species	Length group					
Largemouth bass	8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in	
	No.	Wr	No.	Wr	No.	Wr
	15	80 (1)	16	81 (1)	5	87 (5)

sedwrcl.d17

Table 87. Length frequency and CPUE (fish/hr) of black bass collected at Lake Linville in 1.5 hours (15-min runs) of nocturnal electrofishing on 31 May 2017.

Species	Inch class																				Total	CPUE	Std. error
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	1	10	8	14	14	13	32	35	14	21	13	24	15	4	1	2	2	4	1	1	229	152.7	6.7
Spotted bass	6	39	3	7	23	23	13	22	6	15	5	2									164	109.3	34.4

sedpsdll.d17

Table 88. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Lake Linville on 31 May 2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	Std. err.										
2017	31.3	7.8	62.7	9.6	38.7	5.5	20.0	4.7	4.0	1.5	153.7	6.7
2014	19.3	7.3	95.3	16.4	74.7	7.1	12.0	3.4	2.0	1.4	201.3	19.9
2012	47.3	10.6	135.3	26.2	42.0	5.2	12.0	2.7	0.7	0.7	236.7	40.3
2011	48.0	7.8	108.7	11.0	22.0	5.5	9.3	2.7	1.3	1.3	188.0	18.0
2010	52.0	25.1	194.7	45.4	39.3	8.4	10.7	2.2	4.7	1.2	296.7	71.5
2009	55.6	10.8	93.2	10.9	8.4	1.5	10.4	1.6	2.4	0.9	167.6	17.1
2008	54.0	13.5	144.4	19.9	12.4	3.9	18.4	4.6	2.8	1.2	229.2	28.0
2007	46.4	15.7	101.6	19.6	13.2	1.9	25.6	3.6	4.8	2.1	186.8	32.0
2006	10.0	2.5	47.3	12.6	22.0	4.0	10.0	2.3	2.7	1.3	89.3	11.2

sedpsdII.d17

Table 89. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Lake Linville on 31 May 2017.

Year	Length group										Total	
	<8.0 in		8.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in		$\geq 17.0$ in			
	CPUE	Std. err.										
2017	52.0	22.3	38.7	10.4	17.3	4.7	1.3	0.8	0.0	0.0	109.3	34.4
2014	24.7	8.0	49.3	9.4	18.0	6.2	2.0	0.9	0.0	0.0	94.0	19.3
2012	16.7	6.7	66.7	11.8	22.0	4.5	2.7	0.8	0.0	0.0	108.0	18.3
2011	22.7	5.7	47.3	8.0	9.3	4.0	1.3	0.8	0.0	0.0	80.7	14.4
2010	32.0	8.3	114.0	22.3	20.0	5.3	0.7	0.7	0.0	0.0	166.7	34.4
2009	62.4	11.6	64.0	9.2	2.8	1.0	0.4	0.4	0.0	0.0	129.6	19.5
2008	96.0	14.5	60.4	8.6	8.0	2.2	1.6	0.9	0.0	0.0	166.0	23.6
2007	76.0	26.0	44.8	10.4	15.2	4.5	2.0	1.2	0.4	0.4	138.0	36.5
2006	24.0	7.0	35.3	7.1	10.0	2.7	2.0	1.4	0.0	0.0	71.3	14.5

sedpsdII.d17

Table 90. Population assessment for largemouth bass based on spring electrofishing at Lake Linville from 2002-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	Spring   CPUE   age 1	Spring CPUE $12.0-14.9$ in	Spring CPUE $\geq 15.0$ in	$\begin{gathered} \text { Spring } \\ \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	Total score	Assessement rating
Management objectives		$\geq 10.8$ in	$\geq 16.0$ f/h	$\geq 20.0$ f/h	$\geq 17.0 \mathrm{f} / \mathrm{h}$	$\geq 2.0 \mathrm{f} / \mathrm{h}$		
2017	Value	12.3	30.7	38.7	20.0	4.0		
	Score	4	3	3	3	4	17	E
2014	Value		19.3	74.7	12.0	2.0		
	Score	3	2	4	2	3	14	G
2012	Value	11.3	47.3	42.0	12.0	0.7		
	Score	3	3	3	2	1	12	G
2011	Value		48.0	22.0	9.3	1.3		
	Score	3	3	2	2	2	12	G
2010	Value		47.3	39.3	10.7	4.7		
	Score	3	3	3	2	4	15	G
2009	Value		52.0	8.4	10.4	2.4		
	Score	3	3	1	2	3	12	G
2008	Value		34.8	12.4	18.4	2.8		
	Score	3	2	1	3	3	12	G
2007	Value	11.1	39.2	13.2	25.6	4.8		
	Score	3	2	1	3	4	13	G
2006	Value		6.5	22.0	10.0	2.7		
	Score	3	1	2	2	3	11	F
2002	Value	11.7	4.0	12.0	14.7	1.3		
	Score	4	1	1	2	2	10	F

sedpsdll.d17

Table 91. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Lake Linville on 31 May 2017; 95\% confidence limits are in parentheses.

	Largemouth bass				Spotted bass		
	No. $\geq$	PSD   stock size   $(+/-95 \%)$	$\mathrm{RSD}_{15}$   $(+/-95 \%)$		No. $\geq$   stock size	PSD   $(+/-95 \%)$	$\mathrm{RSD}_{14}$   $(+/-95 \%)$
2017	182	$48( \pm 7)$	$16( \pm 5)$		109	$26( \pm 8)$	$2( \pm 3)$
2014	273	$48( \pm 6)$	$7( \pm 3)$		133	$23( \pm 7)$	$2( \pm 3)$
2012	284	$29( \pm 5)$	$6( \pm 3)$		146	$25( \pm 7)$	$3( \pm 3)$
2011	210	$22( \pm 6)$	$7( \pm 3)$		96	$17( \pm 7)$	$2( \pm 3)$
2010	367	$20( \pm 4)$	$4( \pm 2)$		229	$14( \pm 4)$	$0( \pm 1)$
2009	280	$17( \pm 4)$	$9( \pm 3)$		247	$3( \pm 2)$	$0( \pm 1)$
2008	438	$18( \pm 4)$	$11( \pm 3)$		288	$8( \pm 3)$	$1( \pm 1)$
2007	351	$28( \pm 5)$	$18( \pm 4)$		204	$21( \pm 6)$	$2( \pm 2)$
2006	119	$40( \pm 9)$	$13( \pm 6)$		83	$22( \pm 9)$	$4( \pm 4)$
2002	56	$32( \pm 11)$	$15( \pm 8)$	32	$20( \pm 13)$	$3( \pm 4)$	

sedpsdll.d17

Table 92. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Lake Linville during fall 2017, including the $95 \%$ confidence interval (CI) for each mean length per age group.

		Age									
Year	No.	1	2	3	4	5	6	7	8	9	
2016	15	5.2									
2015	25	5.4	10.0								
2014	9	5.2	10.2	12.3							
2013	2	6.8	10.1	12.8	14.7						
2012	6	6.8	11.3	13.2	14.5	15.2					
2011	8	6.4	10.3	13.0	14.2	15.2	16.1				
2010	1	5.4	8.3	9.5	11.3	11.8	12.3	12.8			
2009	2	6.1	10.2	12.7	14.3	15.8	16.7	17.4	18.0		
2008	1	5.4	8.9	9.7	11.6	12.8	14.3	14.7	15.1	15.5	
Mean		5.7	10.2	12.6	14.1	15.0	15.8	15.6	17.1	15.5	
Number		69	54	29	20	18	12	4	3	1	
Smallest		3.5	8.3	9.5	11.3	11.8	12.3	12.8	15.1	15.5	
Largest		8.2	12.5	15.5	16.2	17.2	18.5	18.9	19.7	15.5	
Std error		0.1	0.1	0.3	0.3	0.4	0.6	1.3	1.4		
95\% Cl $\pm$		0.3	0.3	0.6	0.7	0.8	1.2	2.5	2.8		

Otoliths were used for age-growth determinations; Intercept $=0$
sedagIII.d17

Table 93. Number of fish and mean relative weight (Wr) for each length group of largemouth bass collected at Lake Linville on 4 October 2017. Standard error is in parentheses.

Species	Length group			
Largemouth bass	8.0-11.9 in	12.0-14.9 in	$\geq 15.0$ in	
	No. $\quad \mathrm{Wr}$	No. $\quad \mathrm{Wr}$	No.	Wr
	3286 (1)	2083 (2)	16	87 (3)

sedwrll.d17

Table 94. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15-minute nocturnal electrofishing runs for black bass in Wood Creek Lake on 4 May 2017; standard error is in parentheses.

Area	Species	Inch class																	Total	CPUE
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	21		
Pump	Largemouth bass	1	1		3	4	5	9	10	10	12	10	3	3	1		1		73	97.3 (17.0)
Station	Spotted bass				2	4	4	6	5	5	5	2	2			1			36	48.0 (16.2)
Dock	Largemouth bass		12	55	54	27	20	42	21	19	12	13	9		2	3		1	290	386.7 (61.7)
	Spotted bass							1			1								2	2.7 (2.7)
Total	Largemouth bass	1	13	55	57	31	25	51	31	29	24	23	12	3	3	3	1	1	363	242.0 (70.8)
	Spotted bass				2	4	4	7	5	5	6	2	2			1			38	25.3 (12.5)

sedpsdwc.d17

Table 95. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Wood Creek Lake on 4 May 2017; 95\% confidence limits are in parentheses.

Year	Area	Largemouth bass			Spotted bass		
		$\begin{gathered} \text { No. } \geq \\ \text { stock size } \end{gathered}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{15} \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \text { No. } \geq \\ \text { stock size } \end{gathered}$	$\begin{gathered} \text { PSD } \\ (+/-95 \%) \end{gathered}$	$\begin{gathered} \mathrm{RSD}_{14} \\ (+/-95 \%) \end{gathered}$
2017*	Pump Station	59	$31( \pm 12)$	$3( \pm 5)$	30	$33( \pm 17)$	$3( \pm 7)$
	Dock	122	$23( \pm 7)$	$5( \pm 4)$	2	$50( \pm 98)$	$0( \pm 0)$
	Total	181	$25( \pm 6)$	$4( \pm 3)$	32	$34( \pm 17)$	$3( \pm 6)$
2016*	Total	110	$42( \pm 9)$	$8( \pm 5)$	23	$26( \pm 18)$	$0( \pm 0)$
2015	Total	259	$41( \pm 6)$	$10( \pm 4)$	37	$30( \pm 15)$	$0( \pm 0)$
2014	Total	334	$34( \pm 5)$	$10( \pm 3)$	61	$21( \pm 10)$	$0( \pm 0)$
2013	Total	256	$23( \pm 5)$	$9( \pm 4)$	79	$14( \pm 8)$	$1( \pm 2)$
2012	Total	215	$20( \pm 5)$	$5( \pm 3)$	60	$17( \pm 10)$	$0( \pm 0)$
2011	Total	185	$39( \pm 7)$	$16( \pm 5)$	47	$17( \pm 11)$	$0( \pm 0)$
2010	Total	181	$52( \pm 7)$	$15( \pm 5)$	55	$20( \pm 11)$	$0( \pm 0)$
2009	Total	241	$55( \pm 6)$	$17( \pm 5)$	69	$16( \pm 9)$	$1( \pm 3)$
2008	Total	223	$40( \pm 6)$	$19( \pm 5)$	66	$12( \pm 8)$	$2( \pm 3)$
2007	Total	223	$32( \pm 6)$	$24( \pm 6)$	109	$23( \pm 8)$	$5( \pm 4)$
2006	Total	165	$56( \pm 8)$	$38( \pm 7)$	93	$44( \pm 10)$	$11( \pm 6)$
2005	Total	138	$74( \pm 7)$	$23( \pm 7)$	86	$57( \pm 11)$	$13( \pm 7)$

* Lower lake area was not sampled
sedpsdwc.d17

Table 96. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Wood Creek Lake during May 2017.

Year	Length group										Total	
	$<8.0$ in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	Std. err.										
2017*	121.3	48.5	90.0	19.9	25.3	4.3	5.3	1.7	0.7	0.7	242.0	70.8
2016*	40.0	14.5	42.7	9.0	24.7	3.2	6.0	0.9	0.7	0.7	113.3	21.3
2015	11.7	2.4	51.3	10.6	26.3	6.0	8.7	2.0	1.3	0.6	98.0	15.8
2014	19.0	4.2	74.0	13.4	25.7	4.7	11.7	3.1	1.0	0.7	130.3	19.8
2013	16.7	5.4	65.3	12.1	12.0	1.8	8.0	1.6	1.0	0.5	102.0	17.7
2012	13.7	4.6	57.0	15.2	11.0	2.5	3.7	0.9	0.3	0.3	85.3	19.4
2011	28.3	5.8	37.7	5.9	14.3	3.3	9.7	2.7	1.0	0.5	90.0	12.9
2010	27.5	9.2	43.0	11.3	33.5	5.2	14.0	2.8	2.5	1.1	118.0	26.6
2009	6.7	3.1	36.0	7.5	31.0	2.5	13.3	3.6	2.7	0.9	87.0	14.1
2008	6.7	3.6	44.7	6.8	15.3	2.7	14.3	2.4	2.0	0.8	81.0	12.3
2007	6.7	2.3	50.3	8.5	6.0	1.2	18.0	3.3	1.3	0.6	81.0	12.5
2006	30.3	7.0	24.3	6.2	10.0	2.1	20.7	5.0	2.0	1.0	85.3	17.5
2005	4.0	2.0	14.4	3.6	28.0	4.4	12.8	2.3	3.2	1.7	59.2	9.3

* Lower lake area was not sampled sedpsdwc.d17

Table 97. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Wood Creek Lake during May 2017.

Year	Length group										Total	
	<8.0 in		8.0-10.9 in		11.0-13.9 in		$\geq 14.0$ in		$\geq 17.0$ in			
	CPUE	Std. err.										
2017*	6.7	4.0	11.3	5.6	6.7	4.0	0.7	0.7	0.0	0.0	25.3	12.5
2016*	5.3	4.6	9.3	5.7	4.0	2.5	0.0	0.0	0.0	0.0	18.7	10.6
2015	4.3	1.7	7.3	2.1	3.7	0.9	0.0	0.0	0.0	0.0	15.3	3.9
2014	6.3	2.5	13.7	2.7	4.3	1.5	0.0	0.0	0.0	0.0	24.3	5.1
2013	6.0	2.0	19.7	5.4	3.3	1.7	0.3	0.3	0.0	0.0	29.3	7.0
2012	17.7	4.4	11.0	2.3	3.3	1.2	0.0	0.0	0.0	0.0	32.0	7.1
2011	16.3	4.2	9.0	2.8	2.7	1.2	0.0	0.0	0.0	0.0	28.0	7.3
2010	13.5	5.5	19.0	2.9	5.5	1.3	0.0	0.0	0.0	0.0	38.0	8.0
2009	16.7	4.9	15.7	3.4	3.3	1.0	0.3	0.3	0.0	0.0	36.0	6.5
2008	11.7	3.3	16.7	2.9	2.3	1.2	0.3	0.3	0.0	0.0	31.0	5.4
2007	14.7	3.9	20.7	3.8	6.7	1.6	1.7	1.0	0.0	0.0	43.7	7.5
2006	13.7	2.7	14.0	2.8	10.3	2.2	3.3	1.0	0.0	0.0	41.3	6.0
2005	8.8	2.9	13.6	5.5	15.2	2.8	4.4	1.3	0.0	0.0	42.0	10.2

* Lower lake area was not sampled sedpsdwc.d17

Table 98. Population assessment for largemouth bass based on spring electrofishing at Wood Creek Lake from 2005-2017 (scoring based on statewide assessment).

Year		Mean length age-3 at capture	$\begin{array}{r} \text { CPUE } \\ \text { age } 1 \\ \hline \end{array}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Total   score	Assessement $\qquad$
Management objectives		$\geq 11.5$ in	$\geq 8.0$ fish/hr	$\geq 20.0$ fish/hr	$\geq 17.0$ fish/hr	$\geq 2.0$ fish/hr		
2017	Value		105.3	25.3	5.3	0.7		
	Score	3	4	2	1	2	12	F
2016	Value		29.3	24.7	6.0	0.7		
	Score	3	3	2	2	2	12	F
2015	Value		5.0	26.3	8.7	1.3		
	Score	3	1	3	2	2	11	F
2014	Value	11.3	6.0	25.7	11.7	1.0		
	Score	3	1	3	2	2	11	F
2013	Value		14.0	12.0	8.0	1.0		
	Score	3	2	1	2	2	10	F
2012	Value		4.3	11.0	3.7	0.3		
	Score	3	1	1	1	2	8	P
2011	Value		24.8	14.3	9.7	1.0		
	Score	3	3	2	2	2	12	F
2010	Value	11.4	15.1	33.5	14.0	2.5		
	Score	3	2	3	3	3	14	G
2009	Value		5.3	31.0	13.3	2.7		
	Score	4	1	3	3	3	14	G
2008	Value		5.7	15.3	14.3	2.0		
	Score	4	1	2	3	3	13	G
2007	Value		5.3	6.0	18.0	1.3		
	Score	4	1	1	3	2	11	F
2006	Value		11.8	10.0	20.7	2.0		
	Score	4	2	1	3	3	13	G
2005	Value	12.3	2.4	28.0	12.8	3.2		
	Score	4	1	3	2	3	13	G

[^34]Table 99. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15-minute nocturnal electrofishing runs for black bass in Wood Creek Lake on 26 September 2017; standard error is in parentheses.

Area	Species	Inch class														Total	CPUE
		2	3	4	5	6	7	8	9	10	11	12	13	14	15		
Pump station	Largemouth bass	1		3	2	1	1	1	2	5	3	4				23	30.7 (7.1)
	Spotted bass		1	1	1	1		1	3		2					10	13.3 (3.5)
Dock	Largemouth bass		10	6	2	3	10	7	3	10	7	4	3	2	1	68	90.7 (4.8)
	Spotted bass										1					1	1.3 (1.3)
Total	Largemouth bass	1	10	9	4	4	11	8	5	15	10	8	3	2	1	91	60.7 (14.0)
	Spotted bass		1	1	1	1		1	3		3					11	7.3 (3.2)

sedyoywc.d17

Table 100. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in fall (September and October) electrofishing samples at Wood Creek Lake.

Year Class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
$2017{ }^{\text {a }}$	4.1	0.2	16.0	4.4	2.7	1.3		
2016	4.0	0.1	74.7	22.6	8.7	1.6	105.3	43.5
2015	4.2	0.1	32.7	7.8	8.0	2.2	29.3	12.8
$2014{ }^{\text {a }}$	3.7	0.2	2.7	0.9	0.0	0.0	5.0	1.0
$2013{ }^{\text {a }}$	3.4	0.2	11.3	3.0	1.0	0.5	6.0	1.7
2012	4.3	0.1	34.7	10.1	8.3	4.2	14.0	4.9
$2011{ }^{\text {a }}$	4.0	0.1	12.3	4.1	0.7	0.7	$4.3{ }^{\text {b }}$	1.6
2010	5.0	0.1	36.7	14.9	18.0	6.6	24.8	6.0
$2009{ }^{\text {a }}$	3.7	0.4	2.7	1.7	0.7	0.5	$15.1^{\text {c }}$	7.4
2008	3.8	0.1	13.3	3.2	1.0	0.7	5.3	2.7
2007	4.2	0.1	13.3	7.6	2.7	1.2	5.7	3.2
$2006{ }^{\text {a }}$	4.4	0.3	3.7	1.7	0.7	0.5	$5.3{ }^{\text {d }}$	2.4
2005	4.0	0.1	23.7	11.9	3.3	1.4	11.8	4.4
2004	4.2	0.1	17.9	4.8	4.3	1.5	2.4	1.2

sedyoywc.d17
${ }^{\text {a }}$ Age-0 largemouth bass stocked in the fall
${ }^{\text {b }}$ Includes fish stocked in fall 2011; CPUE stocked fish=1.0 fish/hr
${ }^{\text {c }}$ Includes fish stocked in fall 2009; CPUE stocked fish=10.0 fish/hr
${ }^{\text {d }}$ Includes fish stocked in fall 2006; CPUE stocked fish=0.3 fish/hr

Table 101. Number of fish and mean relative weight (Wr) for each length group of black bass collected at Wood Creek Lake during 26 September 2017. Standard error is in parentheses.

Species	Length group				
Largemouth bass	8.0-11.9 in	12.0-14.9 in		$\geq 15.0$ in	
	No. Wr	No.	Wr	No.	Wr
	38 81 (1)	13	85 (7)	1	91 (-)
Spotted bass	7.0-10.9 in	11.0-13.9 in		$\geq 14.0$ in	
	No. Wr	No.	Wr	No.	Wr
	$3 \quad 97$ (6)	3	100 (2)	0	-

## EASTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

## FINDINGS

Table 1 shows sampling conditions by water body for eastern fishery district lakes in 2017.

## Buckhorn Lake

During January, muskellunge were sampled via boat electrofishing (Tables 2-3). Water clarity was murky with a secchi reading of 10.0 in (Table 1). This may have hindered observation and sampling of some fish. Some larger fish $\geq 36.0$ in were observed and not caught. Fish were sampled from 11.0-38.0 in (Table 2). The largest fish collected was 38.8 in and 16.87 lbs and was a female. An assessment rating of "Poor" was observed for the fishery (Table 3). Muskellunge (420, 11.8 in ) were stocked in September. Stocking sites included the marina and Trace Fork boat ramps. These fish were marked with a caudal fin microwire tag.

Spring and fall electrofishing was used to sample black bass (Tables 4-9). Spring sampling was shortened due to a rain event and fall sampling was shortened due to conflicts with a bass tournament. Largemouth bass were sampled from 3.0-20.0 inches in the spring sample (Table 4). Recent spring assessment ratings for largemouth bass have been "Good" (Table 7). Fall sampling observed age-0 largemouth bass numbers to be above average (Table 9) and no supplemental stocking of fingerlings occurred. A high number of age-0 fish each year is necessary for overwintering recruitment at this lake.

White crappie were sampled with trap nets in the fall. Fish were sampled from 2.5-12.0 in (Table 10). PSD, RSD, age and growth, and age frequency are listed in Tables 11-13. Mean age-2 length at capture was 7.5 in and the population assessment observed a rating of "Good" (Table 14). This mean length of 7.5 in is an improvement over the last data acquired in 2015. This is still slightly lower than the $8.0-8.3$ in value observed prior to the $9.0-\mathrm{in}$ minimum length regulation implemented in 2007. Future management may require this regulation to be removed to improve growth rates and reduce small fish numbers. However, increased natural mortality, poor recruitment years, and spillway loss could also lead to natural reduction in numbers.

Additional fish stocking occurred throughout the year at the tailwater area below the dam. Approximately 5,000 rainbow trout (8.0-12.0 in) were stocked during the months of April-June and October-November.

Habitat projects were completed in summer and fall. A total of 6 shallow water brushpiles were refurbished and 1 new Christmas tree reef, 10 new pallet structures, and 1 plastic tree site were constructed. In addition, 425 lbs of winter wheat was sowed onto exposed mud flats.

## Carr Creek Lake

Electrofishing was used to sample black bass in the spring and fall (Tables 15-20). Some of the total CPUE's for largemouth bass have been high in recent years due to spring vs fall stocking of fingerlings (Table 16). The largemouth bass assessment rating was "Good" (Table 18). Angler success has been good with tournament numbers increasing on weekends as well as during nighttime during the weekdays. Below average age-0 largemouth bass numbers were observed in the fall (Table 20). During March 2018, a total of 7,000 largemouth bass fingerlings will be stocked to supplement the 2017 age- 0 class.

Tables 21-22 contain information from spring electrofishing for walleye. Total CPUE was similar to recent years (Table 21). Larger size fish have been infrequent in recent sampling efforts (Table 21). This may be a result of previous broodfish collection at the lake and/or poor sampling conditions for larger fish. An estimated 35,022 walleye ( 1.5 in ) were stocked in May.

Early spring electrofishing was used to collect black and white crappie (Tables 23-28). Black and black-nosed black crappie, and white crappie were sampled. The fishery has a special regulation of a 9.0 -in minimum size limit. During the fall of 2009, a research study was initiated on white crappie recruitment. Totals of $5,440,9,676,3,822$, 17,814 , and 18,160 white crappie were stocked from 2009-2013, respectively. The total CPUE has fluctuated greatly from year to year (Table 24), but crappie populations can be cyclic in numbers. Tables 26-27 contain age and growth data for black and white crappie. Small fish were not collected, whereby no age-2 or younger fish are included in the age and growth data. Most fish collected were ages 3-8 for both black and white crappie (Table 28).

Tailwater stockings included 1000 rainbow trout/month during the months of 4, 5, 6, 10, and 11.
Fish habitat work consisted of refurbishing 2 shallow water brushpiles and preparation with the habitat branch crew for a large-scale project in future. Preparation included several meetings and collection of materials for early 2018 deployment. Several spot treatments of herbicide were applied to dense areas of hydrilla and 200 grass carp were stocked in October to assist with hydrilla removal.

A day (1 March-31 October) and night (1 May-31 August) creel survey was conducted at Carr Creek Lake during 2017. Both day and night surveys were random roving creel designs (date and time) and the lake was treated as one area. Day surveys consisted of 2,6 -hour periods (morning starting at 600 hrs and afternoon starting at 1300 hrs ) and night surveys of 1, 6 -hour period starting at dusk. Angler counts would be conducted in the middle of each respective 6-hour time period. Data from the day and night creel survey is presented in Tables 29-38.

The 2017 day creel survey ( 1 March-31 October) produced more fishing trips and angler hours than the last survey in 2009 (1 April-31 October) on the lake. During 2017, the total number of day fishing trips was 7,706 at the lake (Table 29). A total of 2,387 day fishing trips occurred during the 2009 creel survey. During 2017, the total number of night fishing trips was 2,576 at the lake (Table 29). A total of 2,614 night fishing trips occurred during the 2009 creel survey. The significant number of angler trips and hours occurring at night even though the calendar time was of shorter duration was expected due to the popularity of night tournaments. Total angler hours were 25,667 during the day and 10,438 at night in 2017 and 17,643 and 13,462 for day and night surveys, respectively in 2009. Angler success rates at the lake during the day in 2017 were $25.97 \%$ for panfish, $17.24 \%$ for catfish, $15.94 \%$ for crappie, $10.00 \%$ for walleye, and $0.67 \%$ for black bass (Table 30). Angler success rates at the lake during the day in 2009 were $40.68 \%$ for panfish, $29.41 \%$ for catfish, $28.41 \%$ for crappie, $26.87 \%$ for walleye, and $3.93 \%$ for black bass. Angler success rates at the lake during the night in 2017 were $0.00 \%$ for panfish, $12.64 \%$ for catfish, $12.64 \%$ for crappie, $16.67 \%$ for walleye, and $0.61 \%$ for black bass (Table 31). Angler success rates at the lake during the night in 2009 were $18.18 \%$ for panfish, $15.38 \%$ for catfish, $33.33 \%$ for crappie, 32.00 for walleye, and $3.85 \%$ for black bass. During the 2017-day survey, bluegill were the most numerous caught fish (Table 30) while largemouth bass were most numerous in the night survey (Table 31). Largemouth bass were the most numerous fish caught during both the day and night surveys of 2009 .

An angler attitude survey was conducted in conjunction with the angler creel survey at the lake to obtain further information. Anglers were asked to answer a series of questions regarding the fishery at Carr Creek Lake (Appendix A). Anglers were surveyed throughout the creel during 2017 with anglers only being asked the questions once. A total of 43 surveys were completed during the lake creel. Black bass at $74.4 \%(\mathrm{~N}=32)$ were the most popular species fished for on the lake followed by bluegill/redear at $53.3 \%(\mathrm{~N}=23)$, crappie at $48.8 \%(\mathrm{~N}=21)$, catfish at $37.2 \%(\mathrm{~N}=16)$, and walleye at $30.2 \%(\mathrm{~N}=13)$. Level of fishing satisfaction was asked for several fish groups or species and only one category was observed to exceed $50.0 \%$ of anglers being somewhat to very satisfied. This was catfish at $64.3 \%$. Angler responses found $42.9 \%$ to fish tournaments with $0.0 \%$ using the KDFWR tournament website registration page. Approximately $76.2 \%$ of anglers were aware of KDFWR placing fish habitat in the lake and $72.7 \%$ of anglers said this improved their fishing.

## Cranks Creek Lake

Black bass were sampled in the spring and fall with boat electrofishing (Tables 39-44). Largemouth bass comprise the major fishery and in recent years are producing a good number of trophy size fish. During spring, largemouth bass were sampled from 3.0-23.5 in (Table 39). The CPUE of largemouth bass $\geq 20.0$ in ( $8.8 \mathrm{fish} / \mathrm{hr}$ ) is higher than historical lake values. With high catch-and-release rates and continuance of the trout stocking program, this lake
will continue to provide good opportunity for large fish. Fall age-0 CPUE was above average (Table 44) and no supplemental stocking of largemouth bass fingerlings occurred in the fall.
Brittle naiad has become a nuisance in shallow upper lake areas and requires some herbicide application at boat access areas. However, this thick growth of aquatic vegetation has correlated with a trend of increased quality fisheries for largemouth bass, white crappie, and redear sunfish.

Rainbow trout were stocked at 1,250/mo during January, April, May, and October for a total of 5,000 fish. No fish habitat work was performed in 2017. Repair work was finished on the boat ramp access near the marina and a new courtesy dock was installed. Some herbicide was applied at this ramp access for brittle naiad control.

## Dewey Lake

Black bass sampling was completed during the spring and fall of 2017 (Tables 45-50). Since the loss of the dense hydrilla infestation at the lake, the smaller largemouth bass size group CPUE's are running at average or below average and CPUE's of length groups 15.0 in and greater are average or above average (Table 46). Also, angler success with numbers of keeper-size fish continues to improve. The largemouth bass assessment rating has rated "Good" from 2013-2017 (Table 48). The total CPUE of age-0 fish was above average (Table 50) and no supplemental age-0 fingerling bass were stocked in 2017.

Fish stockings consisted of blue catfish and musky in the lake and rainbow trout in the tailwater. A total of 11,000 blue catfish (5.0-9.0 in) were stocked in April and an additional 11,000 (6.0-8.0 in) were stocked in October. Muskellunge ( 12.7 in ; 376 fish) were stocked in late July. Rainbow trout were stocked in the tailwater of Dewey Lake in April, May, October, and November (1,000/mo; 8.0-12.0 in).

A good amount of new and refurbished fish habitat structures were completed. This work consisted of 9 new shallow water brushpiles, 6 refurbished shallow water brushpiles, 5 new deep water brushpiles, 1 refurbished deep water brushpile, 1 new stake bed, 2 refurbished stake beds, 1 hinge-cut tree, and 200 lbs of wheat seed sowed. Maintenance was performed at Stratton Branch boat ramp with sediment removal and with mowing of bank access in this area. Additional maintenance occurred at the Jenny Wiley State Park campground boat access with signage and courtesy dock maintenance.

## Fishtrap Lake

Black bass were sampled in the spring and fall with boat electrofishing. Spring data can be found in Tables 51-54. This lake experienced an extreme drawdown of approximately 42 ft during the winter of 2016-2017 for hydraulic gate repairs in the dam. During 2017, this appeared to create a "new lake effect" with spawning and recruitment. However, there was loss of larger fish through the spillway during the winter drawdown. The largemouth bass spring assessment decreased to a rating of "Fair" (Table 54). This could be attributed to lower scores in older-age length groups. This fishery is expected to return to a "Good" assessment value quickly. Fall length frequencies and CPUE for smallmouth, spotted, and largemouth bass are presented in Table 55. Age-0 largemouth bass numbers were average (Table 56), however a decision was made to add a light supplemental stocking of approximately 4,000 fingerlings in March 2018. Age and growth data was collected for largemouth bass from the fall sampling (Table 57). Mean length of age- 3 fish was 11.8 in and approximately equal to the last value of 11.7 in obtained in 2010.

Trap nets were utilized in the fall to sample white crappie for population evaluation (Tables 58-62). A total of 20 net-nights were used and with a lot of moving of net locations to improve catches to no avail (Table 58). There was difficulty with sampling of small fish and this was also observed during 2015 trap net sampling. However, primarily catching larger crappie in the trap nets fit with angler rod and reel reports. Additionally, the high PSD and RSD values from the trap netting agree with this trend (Table 59). Age and growth data is provided in Table 60. The mean length of age-2 fish at capture was 9.6 in (Table 62). This is the highest value ever obtained from trap netting. The assessment value obtained was "Good" and similar to the last sample in 2015 with age- 0 and age- 1 scores lowering the value some (Table 62).

Several fish stockings occurred during the year at Fishtrap Lake. A total of 11,460 blue catfish (6.0-9.0 in) were stocked in the lake during April and an additional 11,000 (6.0-8.0 in) blue catfish were stocked in October. During May, native strain walleye ( 9,$000 ; 2.3 \mathrm{in}$ ) were stocked in the Levisa Fork River upstream of Fishtrap Lake. Hybrid striped bass $(25,400 ; 1.5 \mathrm{in})$ were stocked in June. Rainbow trout $(10,000)$ were stocked in the tailwater $(2,000 / \mathrm{mo}$ for months $4,5,6,10$, and 11). Fish habitat work consisted of 3 new Christmas tree and hardwood brushpiles in deep water. Approximately 18 Christmas trees were collected at the lake drop-off site.

## Fishpond Lake

Largemouth bass were sampled via nocturnal electrofishing at Fishpond Lake (32 acres) on 12 April 2017 (Tables 63-65). Fish were collected from 6.0-23.0 in (Table 63) and length group CPUE's were fairly consistent with previous years (Table 64). This lake continues its trophy bass status with the high PSD and $\mathrm{RSD}_{15}$ values (Table 65). With these high PSD and RSD values, it is important to continue to observe recruitment of young fish or supplemental stocking may have to occur some years.

Additional management at Fishpond Lake entails fertilization and some fish stockings. Spring lake fertilization is conducted in order to increase zooplankton density for young-of-year fishes and to limit the filamentous algae growth. This lake is typically very clear and shoreline areas clog with filamentous algae without the addition of fertilizer in the spring. A total of 5,000 rainbow trout ( 8.0 in ) are stocked annually during January, April, May, and October. Channel catfish ( 9.0 in ) are stocked every other year.

## Martins Fork Lake

Flooding prevented spring sampling during 2016 and 2017. Fall electrofishing was conducted for black bass and walleye population assessment (Tables 66-67). Largemouth bass were collected from 3.0-21.0 in (Table 66) and age-0 numbers were above average (Table 67), whereby no supplemental stocking of fingerling bass was done. Similar to sampling in 2016, there were no walleye collected in this sample. However, anglers are catching some of the native strain walleye in the lake now. The native strain walleye have been stocked annually since 2013. During 2019, in addition to CPUE and length frequency data collection for black bass and walleye, there will be additional early spring electrofishing for walleye broodfish acquisition.

Native strain walleye and rainbow trout were stocked in 2017. A total of 10,027 native strain walleye ( 2.3 in ) were stocked in June. Rainbow trout were stocked at the tailwater throughout the year for an approximate total of 3,750 fish ( 750 fish/month for months $4,5,6,10$, and 11).

One new Christmas tree brushpile was constructed in the lake in 2017. Christmas tree brushpile construction and stake bed habitat is planned for the lake in 2018.

## Paintsville Lake

Tables 68-73 contain spring and fall black bass electrofishing data. Although implemented in 2002, the 12.0- to 14.9-in slot length limit has not showed a trend towards increasing fish numbers in the protected slot as expected (Table 69). It has been recommended to remove the largemouth bass slot length regulation for 2019 and revert back to the statewide 12 -in minimum size limit. The largemouth bass assessment rated "Fair" (Table 71). The CPUE assessment parameter for fish 12.0-14.9 in continually scores low affecting lower scoring (Table 71). Age-0 largemouth bass CPUE's continue above average (Table 73) and has coincided with the establishment of several non-native aquatic plants at the lake.

The lake received a stocking of 4,500 rainbow trout (8.0-12.0 in) during February. Some holdover trout are observed each year during bass and walleye sampling. The tailwater trout fishery received 20,000 rainbow trout from April to November and 300 brown trout in April.

Fish habitat work consisted of plastic structures and brushpile construction. Ten plastic tree structures were deployed at one site, one new Christmas tree brushpile and three new hardwood/Christmas tree brushpiles were constructed. No herbicide applications were done at boat access points during the year.

## Pikeville City Lake

This lake was sampled in the spring with boat electrofishing to evaluate the largemouth bass population (Tables 7476). Fish were sampled from 3.0-21.0 in (Table 74). The fishery remains popular with anglers and has numerous large fish as shown by the PSD and $\mathrm{RSD}_{15}$ values (Table 76). The PSD and $\mathrm{RSD}_{15}$ values are high, but expected with the current catch-and-release-only management regulation. No fish were observed with disease or health issues during this sampling effort and there is still some annual recruitment of young fish.

The primary fisheries at Pikeville City Lake (20 acres) are largemouth bass, bluegill, white crappie, common carp, and channel catfish. This lake has a catch-and-release only regulation for largemouth bass and contains gizzard shad. During 2017, some new stocking programs were initiated (rainbow trout and channel catfish). Rainbow trout stockings will total 2,500 fish a year with 1,250 in March and 1,250 in November. A total of 600 channel catfish will be stocked every other year (even years) in summer.

## Yatesville Lake

Electrofishing was utilized to sample black bass during the spring and fall (Tables 77-82). The largemouth bass spring assessment of "Good" with a value of 16 had not been this high since 2007 (Table 80). This is good for the fishery with the numerous fishing tournaments and pressure that occurs there. PSD and RSD 15 values remain good for the largemouth bass fishery (Table 79). The fishery continues to be dominated by largemouth bass with spotted bass accounting for $10 \%$ or less of the population. Age-0 largemouth bass CPUE's were above average in the fall sampling (Table 82) and no supplemental stocking of fingerlings occurred in the fall.

Rainbow trout were stocked in the tailwater of Yatesville Lake at 750 fish/month for months 4, 5, and $11(2,250$ fish total). Fish habitat was added with 1 plastic tree structure site and 3 new hardwood brushpiles.

Table 1. Summary of 2017 sampling conditions by waterbody, species sampled and date.

Water body	Species	Date	Time   (24hr)	Gear	Weather	Water Temp ( ${ }^{\circ} \mathrm{F}$ )		Secchi (in)	Pertinent sampling comments ${ }^{\text {a }}$, ${ }^{\text {b }}$
Buckhorn Lake	Musky	1/4	1100	shock	sunny/clear	47.0	761.38	10	outflow : 1000CFS; bp: 29.92; cond: 245; 2 boats (w/Habitat Branch); w hole lake
Buckhorn Lake	LMB	5/9	1100	shock	cloudy	68.0	782.20	73	bp: 30.01; outflow : 400CFS; w hole lake; w ater clear
Buckhorn Lake	LMB	9/18	2000	shock	pt. cloudy	80.0	782.00	65	outflow : minimum; cond: 397; bp: 30.02; w hole lake - bass tournament
Buckhorn Lake	Crappie	11/13	1000	trap net	cloudy/rain	53.0	768.00		upper lake; bp: 30.41; outflow : 378CFS;
Carr Creek Lake	Crappie	2/10	1000	shock	cloudy	44.0	1017.10	36	outflow : 95CFS; bp: 30.42; Cond: 441; w hole lake
Carr Creek Lake	Crappie	2/20	1000	shock	clear	52.0	1017.10	30	bp: 30.26;
Carr Creek Lake	Crappie	4/13	1000	shock			1028.00		additional sampling for CPUE
Carr Creek Lake	w alleye	2/21	1000	shock	cloudy	50.0	1017.10	104	broodfish collection and sample; cond: 491; bp: 30.08; w hole lake
Carr Creek Lake	LMB	5/3	1000	shock	clear	74.0	1028.10	56	bp: 30.10; cond:555; 2 boats; w hole lake; w ater stained
Carr Creek Lake	LMB	9/13	2000	shock	cloudy	74.5	1028.00	132	minimum outflow ; bp: 29.86; Cond: 620; 1 boat; w hole lake
Cranks Creek Lake	LMB	4/18	1000	shock	cloudy/rain	66.0	normal	74	cond: 189; 1 boat; w hole lake; w ater stained
Cranks Creek Lake	LMB	9/20	1000	shock	pt. cloudy	79.0	normal		cond: 215; 1 boat; w hole lake
Dew ey Lake	LMB	4/17	1000	shock	cloudy/rain	67.0	650.50	53	outflow : 293CFS; bp: 30.10; 1 boat; w hole lake; w ater stained
Dew ey Lake	LMB	9/14	2000	shock	cloudy	74.0	650.50	80	bp: 29.92; Cond: 518; outflow : 76.5CFS; 2 boats; w hole lake
Fish Pond	LMB	4/12	1000	shock	clear	66.0	normal	186	1 boat used
Fishtrap Lake	LMB	5/10	2000	shock	pt. cloudy	65.0	757.90	44	outflow : 948.8CFS; cond: 411; bp: 29.99; 1 boat; w hole lake
Fishtrap Lake	LMB	10/23	1000	shock	cloudy/rain	68.0	756.30	116	outflow : 78.2CFS; bp: 29.87; age and grow th collection; 2 boats
Fishtrap Lake	Crappie	11/27	1000	trap net	clear	43.5	739.00		outflow : variable 602-406CFS; bp: 30.31; upper (middle) lake @ WP
Martins Fk Lake	w alleye	3/2	1000	shock	clear	47.0	1305.90	50	exploratory native w alleye broodfish sample; Martins Fk. Creek arm
Martins Fk Lake	LMB	9/20	1000	shock	cloudy	79.0	1310.03	104	outflow : minimum; bp: 30.04; cond: 165; 1 boat; w hole lake
Paintsville Lake	Walleye	2/22	1000	shock	cloudy,rain	56.0	709.5		bp: 29.96; 2 boats; broodfish collection; low er lake
Paintsville Lake	LMB	4/19	2000	shock	cloudyrain	67.0	709.9	98	outflow : 187.7CFS; cond: 109; bp: 30.21; 2 boats; w hole lake
Paintsville Lake	LMB	10/18	2000	shock	pt. cloudy	70.0	709.6	61	outflow : 25.3 CFS; bp: 30.23; cond: 123; 2 boats; w hole lake
Pikeville City Lake	LMB	4/4	1000	shock	cloudy/w indy	58.0	1/2' over	30	cond: 395; bp: 29.77; w ater stained; 1 boat; w hole lake
Yatesville Lake	LMB	4/26	2000	shock	clear	69.0	630.5	90	cond: 131; bp: 29.69; w ater clear; 2 boats; w hole lake
Yatesville Lake	LMB	9/26	2000	shock	clear	83.0	630.20	66	outflow : 39.8CFS; cond: 165; bp: 29.93; 2 boats; w hole lake

${ }^{a}$ cond = conductivity in $\mu \mathrm{S} / \mathrm{cm}$
${ }^{\mathrm{b}} \mathrm{bp}=$ barometric pressure in inches
$\mathrm{L}=$ lower lake
$\mathrm{U}=$ upper lake

Table 2. Length frequency and electrofishing CPUE (fish/hr) of muskellunge collected during spring sampling on Buckhorn Lake from 1998-2017; numbers in parentheses are standard errors. Results from 2002 are from fall electrofishing.

Year	10	11	12	13	14	15	16	17	18	19	20	21	22	23		24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	Total	CPUE
1998	1	1	2	7	4	1	1				1	4	3		1	1	1						1		1	1			1	1										33	6.6 (2.9)
1999		1	1	2	3	3	1			1	3	6	6	11		4	4	3				3	2	1		2	1		1											59	10.9 (4.4)
2000		1	3	2	3	1									4				1	2		7	1		1	1			2	1				1						31	8.2 (0.5)
2001					4	1	1				1				1									1		1	1		1									1		13	3.2 (0.7)
2002							1								2	1						3	1		1			2				1								12	6.0 (0.8)
2003	1		5	2	1	1										2	1	1		1	1	2	1	1				1									1			22	7.1 (1.9)
2004			2	9	23	16	2				1		6		7	19	9				3	5	6	6	6	4	5	7	5	8	3	1	1					1		155	16.7 (2.1)
2005					4	5	2					1			2	2							1			1			2	1	1	3		1				1		27	6.3 (1.7)
2006			1	8	10	6									1	2	3						1	1		1	3	2	1	1	1	1	1	1						45	14.2 (2.2)
2007					1	1	2	1					2		3	6	2		1			1		2		1	2		1	2		1	1				1		1	32	13.7 (4.5)
2008				2	6	10	6	1							1	1	3				1		1	5	2			1				1			1			1		43	8.3 (1.6)
2009	1			2	4	11	12	6					1			1	3	2	3	1	1		1	1	4	3	3	3		1		2				1		1		68	17.6 (3.4)
2010			1	4	13	18			1	1	1	1			6	6	10	6	1		2	3	2	1	3	2	1	2	1	4	3	1	1					1		96	12.9 (1.6)
2011			4	5	17	14	3					2			3	3	1				1		3	1	3		3	2	1	1		1			1					69	12.6 (2.7)
2012		1		1	8	20	2					1	2		1	6	1	1					1		2		1	3	2	2	1			1						57	13.4 (1.8)
2013			3	6	3							1												1	1			1												16	4.3 (0.9)
2014		1	2	1	6	2						1	2		1	4								1		1				1		1		2						26	7.4 (1.9)
2015 no sample																																									
2016				2	2	4						2	1		2			1						1	1		1	1		1	1					1				21	7.0 (3.3)
2017		3	7	1							1					1	1				2	2	1	1						2										22	6.8 (1.1)

EFDBLMSS.D98-D10, D12, D14, D16-D17
LFRBHLSP.D11, D13

Table 3. Population assessment for muskellunge from Buckhorn Lake (1,230 acres) captured during spring electrofishing from 2000-2017.
Assessment scores for 2002 were derived from fall electrofishing data. Actual values are in parentheses. Scoring based on statewide assessment.

	Year														
Parameter	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2016	2017
CPUE age 1	$\begin{gathered} 1 \\ (0.5) \end{gathered}$	$\begin{gathered} 2 \\ (3.3) \end{gathered}$	$\begin{gathered} 3 \\ (5.9) \end{gathered}$	$\begin{gathered} 2 \\ (2.5) \end{gathered}$	$\begin{gathered} \hline 4 \\ (7.9) \end{gathered}$	$\begin{gathered} 1 \\ (1.7) \end{gathered}$	$\begin{gathered} 3 \\ (4.8) \end{gathered}$	$\begin{gathered} \hline 4 \\ (9.3) \end{gathered}$	$\begin{gathered} \hline 3 \\ (5.1) \end{gathered}$	$\begin{gathered} 4 \\ (7.8) \end{gathered}$	$\begin{gathered} \hline 4 \\ (7.5) \end{gathered}$	$\begin{gathered} 2 \\ (3.2) \end{gathered}$	$\begin{gathered} 2 \\ (3.4) \end{gathered}$	$\begin{gathered} 2 \\ (2.7) \end{gathered}$	$\begin{gathered} 2 \\ (3.4) \end{gathered}$
CPUE $\geq 20.0$ in	$\begin{gathered} 3 \\ (5.5) \end{gathered}$	$\begin{gathered} 2 \\ (3.9) \end{gathered}$	$\begin{gathered} 4 \\ (11.1) \end{gathered}$	$\begin{gathered} 2 \\ (3.7) \end{gathered}$	$\begin{gathered} 3 \\ (6.3) \end{gathered}$	$\begin{gathered} 4 \\ (12.0) \end{gathered}$	$\begin{gathered} 2 \\ (3.8) \end{gathered}$	$\begin{gathered} 4 \\ (7.7) \end{gathered}$	$\begin{gathered} 4 \\ (7.8) \end{gathered}$	$\begin{gathered} 2 \\ (4.7) \end{gathered}$	$\begin{gathered} 3 \\ (5.9) \end{gathered}$	$\begin{gathered} 1 \\ (1.1) \end{gathered}$	$\begin{gathered} 2 \\ (4.0) \end{gathered}$	$\begin{gathered} 2 \\ (4.3) \end{gathered}$	$\begin{gathered} 1 \\ (3.4) \end{gathered}$
CPUE $\geq 30.0$ in	$\begin{gathered} 3 \\ (4.0) \end{gathered}$	$\begin{gathered} 1 \\ (2.0) \end{gathered}$	$\begin{gathered} 4 \\ (6.3) \end{gathered}$	$\begin{gathered} 2 \\ (2.6) \end{gathered}$	$\begin{gathered} 4 \\ (4.4) \end{gathered}$	$\begin{gathered} 4 \\ (5.3) \end{gathered}$	$\begin{gathered} 2 \\ (2.2) \end{gathered}$	$\begin{gathered} 4 \\ (4.7) \end{gathered}$	$\begin{gathered} 3 \\ (3.4) \end{gathered}$	$\begin{gathered} 2 \\ (2.9) \end{gathered}$	$\begin{gathered} 2 \\ (3.1) \end{gathered}$	$\begin{gathered} 1 \\ (0.8) \end{gathered}$	$\begin{gathered} 1 \\ (1.7) \end{gathered}$	$\begin{gathered} 2 \\ (2.3) \end{gathered}$	$\begin{gathered} 1 \\ (1.9) \end{gathered}$
CPUE $\geq 36.0$ in	$\begin{gathered} 3 \\ (1.5) \end{gathered}$	$\begin{gathered} 1 \\ (0.7) \end{gathered}$	$\begin{gathered} 4 \\ (2.8) \end{gathered}$	$\begin{gathered} 4 \\ (2.1) \end{gathered}$	$\begin{gathered} 4 \\ (2.5) \end{gathered}$	$\begin{gathered} 4 \\ (2.5) \end{gathered}$	$\begin{gathered} 1 \\ (0.6) \end{gathered}$	$\begin{gathered} 3 \\ (1.8) \end{gathered}$	$\begin{gathered} 3 \\ (1.7) \end{gathered}$	$\begin{gathered} 2 \\ (1.1) \end{gathered}$	$\begin{gathered} 4 \\ (2.1) \end{gathered}$	$\begin{gathered} 1 \\ (0.3) \end{gathered}$	$\begin{gathered} 2 \\ (1.1) \end{gathered}$	$\begin{gathered} 3 \\ (1.3) \end{gathered}$	$\begin{gathered} 1 \\ (0.6) \end{gathered}$
CPUE $\geq 40.0$ in	$\begin{gathered} 3 \\ (0.5) \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \end{gathered}$	$\begin{gathered} 4 \\ (1.1) \end{gathered}$	$\begin{gathered} 4 \\ (1.0) \end{gathered}$	$\begin{gathered} 4 \\ (1.6) \end{gathered}$	$\begin{gathered} 3 \\ (0.5) \end{gathered}$	$\begin{gathered} 4 \\ (1.0) \end{gathered}$	$\begin{gathered} 3 \\ (0.4) \end{gathered}$	$\begin{gathered} 3 \\ (0.4) \end{gathered}$	$\begin{gathered} 2 \\ (0.2) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 4 \\ (0.9) \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$
Total score Assessment	$13$   Good	$8$   Poor	$17$   Excellent	14 Good	19 Excellen	$\overline{17}$   Excellent	$\begin{aligned} & 11 \\ & \text { Fair } \end{aligned}$	$19$   Excellent	16 Good	$\begin{gathered} 13 \\ \text { Good } \end{gathered}$	$\begin{gathered} 15 \\ \text { Good } \end{gathered}$	6   Poor	$\begin{gathered} 11 \\ \text { Fair } \end{gathered}$	$\begin{gathered} 11 \\ \text { Fair } \end{gathered}$	$\begin{gathered} 6 \\ \text { Poor } \end{gathered}$

## EFDBLMSS.D00-D10, D12, D14, D16-D17

LFRBHLSP.D11, D13

Table 4. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 1.5 hours of 15 -minute electrofishing samples at Buckhorn Lake (1,230 acres) on 9 May 2017; numbers in parentheses are standard errors.

Inch class																				Total	CPUE	
Area	Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Lower	Largemouth bass	1	8	17	17	5	1	8	14	8	14	14	6		3	1		1	1	119	158.67	(23.36)
Upper	Largemouth bass		12	37	31	9		10	10	9	8	8	2	4	2		1			143	190.67	(33.81)
Total	Largemouth bass	1	20	54	48	14	1	18	24	17	22	22	8	4	5	1	1	1	1	262	174.67	(19.72)

Table 5. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Buckhorn Lake (1,230 acres). SE=standard error.


EFDBLLSS.D03-D17

Table 6. PSD and $\mathrm{RSD}_{15}$ values for largemouth bass in each area of Buckhorn Lake (1,230 acres) on 9 May 2017. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are 95\% confidence intervals.

	Largemouth bass		
Area	No.	PSD	$\mathrm{RSD}_{15}$
Lower	71	56	8
		$(48-68)$	$(2-15)$
		46	13
Upper	54	$(33-60)$	$(4-22)$
		52	10
		$(43-61)$	$(5-16)$
Total	125		

Table 7. Population assessment for largemouth bass collected during spring at Buckhorn Lake (1,230 acres). Actual values are in parentheses. Scoring based on statewide assessment.

	Year									
Parameter	2005	2006	2007	2008	2009	2010	2012	2014	2015	2017
Mean length age 3 at capture	$\begin{gathered} 3 \\ (12.6) \end{gathered}$	$\begin{gathered} 3 \\ (13.3) \end{gathered}$	$\begin{gathered} 3 \\ (13.3) \end{gathered}$	$\begin{gathered} \hline 3 \\ (13.3) \end{gathered}$	$\begin{gathered} 2 \\ (12.1) \end{gathered}$	$\begin{gathered} 2 \\ (12.1) \end{gathered}$	$\begin{gathered} 2 \\ (12.1) \end{gathered}$			
Spring CPUE age 1	$\begin{gathered} 2 \\ (16.3) \end{gathered}$	$\begin{gathered} 1 \\ (11.2) \end{gathered}$	$\begin{gathered} 2 \\ (13.0) \end{gathered}$	$\begin{gathered} 1 \\ (11.19) \end{gathered}$	$\begin{gathered} 4 \\ (43.8) \end{gathered}$	$\begin{gathered} 3 \\ (26.1) \end{gathered}$	$\begin{gathered} 3 \\ (36.1) \end{gathered}$	$\begin{gathered} 1 \\ (8.7) \end{gathered}$	$\begin{gathered} 4 \\ (56.0) \end{gathered}$	$\begin{gathered} 4 \\ (90.7) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 4 \\ (38.3) \end{gathered}$	$\begin{gathered} 4 \\ (40.5) \end{gathered}$	$\begin{gathered} 2 \\ (20.5) \end{gathered}$	$\begin{gathered} 2 \\ (21.4) \end{gathered}$	$\begin{gathered} 2 \\ (17.2) \end{gathered}$	$\begin{gathered} 2 \\ (18.3) \end{gathered}$	$\begin{gathered} 1 \\ (7.5) \end{gathered}$	$\begin{gathered} 1 \\ (6.0) \end{gathered}$	$\begin{gathered} 3 \\ (27.1) \end{gathered}$	$\begin{gathered} 4 \\ (34.7) \end{gathered}$
Spring CPUE $\geq 15.0$ in	$\begin{gathered} 2 \\ (8.3) \end{gathered}$	$\begin{gathered} 3 \\ (15.2) \end{gathered}$	$\begin{gathered} 3 \\ (14.0) \end{gathered}$	$\begin{gathered} 3 \\ (13.8) \end{gathered}$	$\begin{gathered} 3 \\ (14.5) \end{gathered}$	$\begin{gathered} 2 \\ (10.7) \end{gathered}$	$\begin{gathered} 1 \\ (3.5) \end{gathered}$	$\begin{gathered} 1 \\ (2.7) \end{gathered}$	$\begin{gathered} 1 \\ (3.6) \end{gathered}$	$\begin{gathered} 2 \\ (8.7) \end{gathered}$
Spring CPUE $\geq 20.0$ in	$\begin{gathered} 2 \\ (0.3) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.4) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.5) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.9) \end{gathered}$	$\begin{gathered} 3 \\ (0.7) \end{gathered}$
Total score	13	13	13	10	13	12	10	6	13	15
Assessment rating	Good	Good	Good	Fair	Good	Fair	Fair	Poor	Good	Good
Instantaneous mortality (z)	0.67	0.48	0.45	0.42	0.64	0.73	0.77			
Annual mortality (A)	48.70	38.00	36.40	34.20	47.40	51.80	54.90			
$\begin{aligned} & \text { EFDBLLSS.D03-D10, D12, D } \\ & \text { EFDBLLAS.D04, D09 } \\ & \text { EFDBLLAF.D14 } \end{aligned}$	D17									

Table 8. Length frequency and CPUE (fish/hr) of black bass collected in approximately 1.25 hours of 15-min nocturnal electrofishing runs at Buckhorn Lake (1,230 acres) on 18 September 2017; numbers in parentheses are standard errors.

Area	Inch class															
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total	CPUE
Lower	1	18	30	25	7	1	4	3	6	1	1	1	2		100	$200.0(68.0)$
Upper	3	29	59	24	4	2	5	7	3	7	2		1	2	148	$197.3(24.9)$
Total	4	47	89	49	11	3	9	10	9	8	3	1	3	2	248	$198.4(25.5)$

EFDBLLSF.D17

Table 9. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Buckhorn Lake (1,230 acres) from electrofishing. CPUE=fish/hr, SE=standard error.

Year class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2002	4.5	0.1	99.3	7.4	38.7	2.6	19.2	3.3
2003	4.7	0.5	106.0	13.8	39.7	4.6	35.5	5.4
2004	3.6	0.0	176.7	34.0	9.3	4.6	16.3	3.5
2005	4.0	0.2	44.7	6.6	10.0	3.5	11.2	2.1
2006	4.2	0.2	17.6	4.1	5.3	1.9	13.0	3.7
2007	4.5	0.2	18.8	6.4	9.6	3.4	11.2	3.8
2008	4.9	0.1	21.4	3.7	9.9	2.3	43.8	3.5
2009			no fall	mple			26.1	5.2
2010	4.3	0.1	67.0	5.0	22.5	5.8	no sprin	sample
2011	4.5	0.1	126.7	26.7	42.0	10.0	36.1	6.5
2012	5.0	0.2	39.0	9.6	21.0	7.2	no sprin	sample
2013	4.1	0.1	68.8	10.8	16.8	4.3	8.7	3.5
2014	4.4	0.1	86.5	24.9	26.5	8.6	56.0	6.0
2015	4.2	0.1	80.0	15.9	17.6	2.0	no sprin	sample
2016	5.0	0.0	169.7	44.0	85.7	23.9	90.7	20.0
2017	4.6	0.1	161.6	20.1	49.6	9.4		
EFDBLLSF.D02-D08, D10-D17								
EFDBLLAS.D04, D09								
EFDBLLAF.D14								
EFDBLLSS.D03-D17								

Table 10. Length frequency and CPUE (fish/net-night) for white crappie collected at Buckhorn Lake (1,230 acres) in 13 net-nights 14-15 November 2017. SE= standard error of CPUE.

Inch class													
2	3	4	5	6	7	8	9	10	11	12	Total	CPUE	SE
22	240	26	85	91	154	118	59	13	8	1	817	62.9	15.0
EFDBLCTF.D17													

Table 11. PSD and $\mathrm{RSD}_{10}$ values calculated for white crappie collected in trap nets at Buckhorn Lake (1,230 acres) on 14-15 November 2017; 95\% confidence intervals are in parentheses.

No. $\geq$ stock size	PSD	$\mathrm{RSD}_{10}$
529	38	4
	$(34-42)$	$(3-6)$

EFDBLCTF.D17

Table 12. Mean back-calculated length (in) at each annulus for white crappie collected from Buckhorn Lake (1,230 acres) November 2017, including 95\% confidence intervals.

Year class	No.	Age							
		1	2	3	4	5	6	7	8
2016	25	3.9							
2015	44	4.3	6.2						
2014	25	4.2	6.6	8.2					
2013	7	4.1	5.8	7.8	9.0				
2012	3	4.5	6.6	7.8	9.6	10.9			
2011	3	4.1	6.0	7.2	8.2	9.5	10.2		
2010	2	4.7	6.6	7.6	8.4	9.4	10.6	11.6	
2009	1	4.6	6.5	7.3	8.0	8.6	9.0	9.4	10.3
Mean	110	4.2	6.3	8.0	8.8	9.8	10.1	10.9	10.3
Smallest		3.2	4.8	6.7	7.6	8.6	9.0	9.4	10.3
Largest		5.2	7.9	9.7	10.2	11.3	11.4	12.5	10.3
STD error		0.0	0.1	0.1	0.2	0.3	0.4	0.9	
95\% CI LO		4.1	6.2	7.8	8.4	9.2	9.4	9.1	
95\% CI HI		4.2	6.4	8.2	9.2	10.5	10.9	12.6	

Intercept = 0
EFDBLCAF.D17

Table 13. Age frequency and CPUE (fish/net-night) of white crappie collected by trap netting for 13 net-nights at Buckhorn Lake (1,230 acres) 14-15 November 2017; numbers in parentheses are standard errors.

						cla									
Age	2	3	4	5	6	7	8	9	10	11	12	Total	Age\%		
0	22	240	7									269	33	20.7	(7.6)
1				80	12							112	14	8.6	(3.0)
2				5	79	145	84	12				325	40	25.0	(8.3)
3						9	34	35	9	1		88	11	6.7	(2.0)
4								12	2	2		16	2	1.2	(0.4)
5										2	1	3	0	0.3	(0.1)
6									2	1		3	0	0.2	(0.1)
7										1		1	0	0.1	(0.0)
8									1			1	0	0.1	(0.0)
Total	22	240	27	85	91	154	118	59	14	7	1	818			
\%	3	29	3	10	11	19	14	7	2	1	0				
CPUE of $\geq 8$ in (quality size) $=27.3$															
CPUE of $\geq 10$ in (preferred size) $=2.8$															
EFDBLCAF.D17															
EFDBLCTF.D17															

Table 14. Population assessment scores for white crappie collected from Buckhorn Lake (1,230 acres). Actual values are in parantheses.
Scoring based on statewide assessment.

	Year								
Parameter	2005	2006	2007	2008	2010	2011	2013	2015	2017
CPUE age-1 and older	$\begin{gathered} 4 \\ (14.8) \end{gathered}$	$\begin{gathered} \hline 4 \\ (191.4) \end{gathered}$	$\begin{gathered} 4 \\ (32.5) \end{gathered}$	$\begin{gathered} 4 \\ (60.7) \end{gathered}$	$\begin{gathered} 4 \\ (54.0) \end{gathered}$	$\begin{gathered} \hline 4 \\ (299.7) \end{gathered}$	$\begin{gathered} 4 \\ (52.1) \end{gathered}$	$\begin{gathered} 4 \\ (54.6) \end{gathered}$	$\begin{gathered} 4 \\ (42.2) \end{gathered}$
CPUE age 1	$\begin{gathered} 3 \\ (7.4) \end{gathered}$	$\begin{gathered} 4 \\ (58.6) \end{gathered}$	$\begin{gathered} 2 \\ (3.0) \end{gathered}$	$\begin{gathered} 4 \\ (14.5) \end{gathered}$	$\begin{gathered} 4 \\ (32.9) \end{gathered}$	$\begin{gathered} 4 \\ (155.8) \end{gathered}$	$\begin{gathered} 4 \\ (28.4) \end{gathered}$	$\begin{gathered} 4 \\ (12.3) \end{gathered}$	$\begin{gathered} 4 \\ (8.6) \end{gathered}$
CPUE age 0	$\begin{gathered} 1 \\ (0.4) \end{gathered}$	$\begin{gathered} 4 \\ (29.8) \end{gathered}$	$\begin{gathered} 2 \\ (0.6) \end{gathered}$	$\begin{gathered} 2 \\ (0.4) \end{gathered}$	$\begin{gathered} 4 \\ (22.3) \end{gathered}$	$\begin{gathered} 4 \\ (51.0) \end{gathered}$	$\begin{gathered} 4 \\ (50.0) \end{gathered}$	$\begin{gathered} 4 \\ (10.0) \end{gathered}$	$\begin{gathered} 4 \\ (20.7) \end{gathered}$
CPUE $\geq 8.0 \mathrm{in}$.	$\begin{gathered} 3 \\ (4.1) \end{gathered}$	$\begin{gathered} 4 \\ (17.8) \end{gathered}$	$\begin{gathered} 3 \\ (5.5) \end{gathered}$	$\begin{gathered} 3 \\ (5.9) \end{gathered}$	$\begin{gathered} 4 \\ (12.6) \end{gathered}$	$\begin{gathered} 4 \\ (54.7) \end{gathered}$	$\begin{gathered} 4 \\ (10.9) \end{gathered}$	$\begin{gathered} 4 \\ (27.3) \end{gathered}$	$\begin{gathered} 4 \\ (15.3) \end{gathered}$
Mean age 2 length @ capture	$\begin{gathered} 2 \\ (8.3) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (7.1) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (6.3) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (6.3) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (7.7) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (8.2) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (6.9) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (7.2) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (7.5) \\ \hline \end{gathered}$
Total score	13	17	12	14	17	18	17	17	17
Assessment rating	Good	Excellent	Fair	Good	Excellent	Excellent	Excellent	Excellent	Excellent
Instantaneous mortality (z)	1.30	1.52	1.74	1.03	0.87	0.98	0.89	0.61	0.88
Annual Mortality (A)	72.80	78.00	82.50	64.40	58.20	62.40	59.30	45.90	58.40

EFDBLCTF.D03-D17
EFDBLCAF.D03-D17

Table 15. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.0 hours of 15-minute electrofishing samples at Carr Creek Lake ( 710 acres) on 3 May 2017; numbers in parentheses are standard errors.

Area	Species	Inch class																		Total	CPUE
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Lower	Smallmouth bass														1					1	1.0 (1.0)
	Spotted bass			7	3	1	5	1		1	1	3	1							23	23.0 (8.1)
	Largemouth bass	4	7	10	4	7	11	9	3	2	9	6	4	6	3	1				86	86.0 (24.1)
Upper	Smallmouth bass																			0	0.0
	Spotted bass			7	5	5		4	2	1		2								26	26.0 (7.4)
	Largemouth bass	8	8	11	5	9	5	4	3	5		3	7	8		3	1		1	81	81.0 (12.5)
Total	Smallmouth bass														1					1	0.5 (0.5)
	Spotted bass			14	8	6	5	5	2	2	1	5	1							49	24.5 (5.1)
	Largemouth bass	12	15	21	9	16	16	13	6	7	9	9	11	14	3	4	1		1	167	83.5 (12.6)

EFDCLLSS.D17

Table 16. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Carr Creek Lake (710 acres) from 20022017. SE=standard error.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	SE										
2002	116.3	14.2	16.9	1.7	12.3	1.6	7.1	1.2	0.0		152.7	13.3
2003	67.6	11.3	15.9	2.2	11.1	1.5	10.7	1.5	0.4	0.3	105.2	14.4
2004	135.0	17.7	24.4	5.3	8.4	1.4	9.0	1.2	0.2	0.2	176.9	18.8
2005	20.0	2.7	19.8	1.6	24.8	2.4	14.0	1.8	0.3	0.3	78.6	4.9
2006	22.3	7.0	30.9	4.8	27.9	3.3	29.9	3.1	0.7	0.5	111.0	10.2
2007	8.0	1.9	20.8	4.7	18.6	3.4	15.7	3.6	0.5	0.5	63.0	5.5
2008	3.0	1.3	16.4	2.6	24.7	5.4	23.7	3.3	0.5	0.5	67.8	8.4
2009	5.1	0.7	10.3	2.6	17.1	3.0	16.0	3.4	0.6	0.6	48.6	6.1
2010	13.8	3.2	10.8	2.6	10.8	2.1	12.6	3.5	0.9	0.6	47.9	4.8
2011	11.0	4.4	10.5	2.6	5.5	1.3	16.0	4.5	1.0	1.0	43.0	9.8
2012	15.0	3.1	21.5	3.5	9.0	1.5	13.5	3.5	1.5	0.7	59.0	8.4
2013	113.3	51.4	20.0	4.5	16.0	3.7	16.7	2.2	2.7	1.3	166.0	53.2
2014	115.0	23.6	48.0	7.8	25.0	4.3	18.5	3.5	1.0	0.7	206.5	18.1
2015	69.5	23.2	18.5	4.1	15.5	3.7	22.0	6.1	1.0	0.7	125.5	28.5
2016	30.0	7.6	40.0	11.9	10.7	3.0	15.3	3.6	0.0		96.0	16.8
2017	28.5	6.6	25.5	7.1	12.5	3.3	17.0	3.1	0.5	0.5	83.5	12.6

BBRPSCFL.D02-D05
EFDCLLSS.D06-D10, D12-D17

Table 17. PSD and RSD values for each species of black bass collected in each area of Carr Creek Lake (710 acres) on 3 May 2017. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are 95\% confidence intervals.

	Smallmouth bass			Spotted bass			Largemouth bass		
Area	No.	PSD	$\mathrm{RSD}_{15}$	No.	PSD	$\mathrm{RSD}_{14}$	No.	PSD	$\mathrm{RSD}_{14}$
Lower	1	100	100	16	$\begin{gathered} 38 \\ (13-62) \end{gathered}$	$\begin{gathered} 25 \\ (3-47) \end{gathered}$	61	$\begin{gathered} 51 \\ (38-64) \end{gathered}$	$\begin{gathered} 23 \\ (12-34) \end{gathered}$
Upper	0			19	$\begin{gathered} 26 \\ (6-47) \end{gathered}$	$\begin{gathered} 11 \\ (0-25) \end{gathered}$	49	$\begin{gathered} 57 \\ (43-71) \end{gathered}$	$\begin{gathered} 41 \\ (27-55) \end{gathered}$
Total	1	100	100	35	$\begin{gathered} 31 \\ (16-47) \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ (5-30) \\ \hline \end{gathered}$	110	$\begin{gathered} 54 \\ (44-63) \\ \hline \end{gathered}$	$\begin{gathered} 31 \\ (22-40) \\ \hline \end{gathered}$

EFDCLLSS.D17

Table 18. Population assessment for largemouth bass collected from Carr Creek Lake (710 acres). Actual values are in parentheses. Scoring based on statewide assessment.

Parameter												
	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mean length age-3 at capture	$\begin{gathered} \hline 4 \\ (13.2) \end{gathered}$	$\begin{gathered} 4 \\ (13.2) \end{gathered}$	$\begin{gathered} \hline 4 \\ (12.6) \end{gathered}$	$\begin{gathered} 4 \\ (12.6) \end{gathered}$	$\begin{gathered} 4 \\ (13.5) \end{gathered}$	$\begin{gathered} \hline 4 \\ (13.5) \end{gathered}$	$\begin{gathered} \hline 4 \\ (13.5) \end{gathered}$	$\begin{gathered} \hline 4 \\ (13.5) \end{gathered}$	$\begin{gathered} 4 \\ (13.5) \end{gathered}$			
Spring CPUE age-1	$\begin{gathered} 2 \\ (21.1) \end{gathered}$	$\begin{gathered} 2 \\ (7.6) \end{gathered}$	$\begin{gathered} 1 \\ (2.4) \end{gathered}$	$\begin{gathered} 1 \\ (3.1) \end{gathered}$	$\begin{gathered} 2 \\ (10.0) \end{gathered}$	$\begin{gathered} 2 \\ (9.0) \end{gathered}$	$\begin{gathered} 2 \\ (13.9) \end{gathered}$	$\begin{gathered} 4 \\ (114.7) \end{gathered}$	$\begin{gathered} 4 \\ (116.0) \end{gathered}$	$\begin{gathered} 4 \\ (71.0) \end{gathered}$	$\begin{gathered} 3 \\ (35.3) \end{gathered}$	$\begin{gathered} 3 \\ (31.0) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 3 \\ (27.9) \end{gathered}$	$\begin{gathered} 2 \\ (18.6) \end{gathered}$	$\begin{gathered} 2 \\ (24.7) \end{gathered}$	$\begin{gathered} 2 \\ (17.1) \end{gathered}$	$\begin{gathered} 1 \\ (10.8) \end{gathered}$	$\begin{gathered} 1 \\ (5.5) \end{gathered}$	$\begin{gathered} 1 \\ (9.0) \end{gathered}$	$\begin{gathered} 2 \\ (16.0) \end{gathered}$	$\begin{gathered} 2 \\ (25.0) \end{gathered}$	$\begin{gathered} 2 \\ (15.5) \end{gathered}$	$\begin{gathered} 1 \\ (10.7) \end{gathered}$	$\begin{gathered} 1 \\ (12.5) \end{gathered}$
Spring CPUE $\geq 15.0$ in	$\begin{gathered} 4 \\ (29.9) \end{gathered}$	$\begin{gathered} 3 \\ (15.7) \end{gathered}$	$\begin{gathered} 3 \\ (23.7) \end{gathered}$	$\begin{gathered} 3 \\ (16.0) \end{gathered}$	$\begin{gathered} 2 \\ (12.6) \end{gathered}$	$\begin{gathered} 3 \\ (16.0) \end{gathered}$	$\begin{gathered} 3 \\ (13.5) \end{gathered}$	$\begin{gathered} 3 \\ (16.7) \end{gathered}$	$\begin{gathered} 3 \\ (18.5) \end{gathered}$	$\begin{gathered} 3 \\ (18.5) \end{gathered}$	$\begin{gathered} 3 \\ (15.3) \end{gathered}$	$\begin{gathered} 3 \\ (17.0) \end{gathered}$
Spring CPUE $\geq 20.0$ in	$\begin{gathered} 2 \\ (0.7) \end{gathered}$	$\begin{gathered} 2 \\ (0.5) \end{gathered}$	$\begin{gathered} 2 \\ (0.5) \end{gathered}$	$\begin{gathered} 2 \\ (0.6) \end{gathered}$	$\begin{gathered} 2 \\ (0.9) \end{gathered}$	$\begin{gathered} 2 \\ (1.0) \end{gathered}$	$\begin{gathered} 2 \\ (1.5) \end{gathered}$	$\begin{gathered} 3 \\ (2.7) \end{gathered}$	$\begin{gathered} 2 \\ (1.0) \end{gathered}$	$\begin{gathered} 2 \\ (1.0) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 2 \\ (0.5) \end{gathered}$
Total score   Assessment rating	$\begin{gathered} 15 \\ \text { Good } \end{gathered}$	$\begin{gathered} 13 \\ \text { Good } \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { Fair } \end{gathered}$	$\begin{gathered} 12 \\ \text { Fair } \end{gathered}$	$\begin{gathered} \hline 11 \\ \text { Fair } \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { Fair } \end{gathered}$	$\begin{gathered} 12 \\ \text { Fair } \end{gathered}$			$\begin{gathered} 15 \\ \text { Good } \end{gathered}$	$\begin{gathered} \hline 12 \\ \text { Fair } \end{gathered}$	$\begin{gathered} 13 \\ \text { Good } \end{gathered}$
Instantaneous mortality (z)	0.43	0.37	0.41	0.74	0.34	0.27	0.44					
Annual mortality (A)	35.10	30.90	33.50	52.30	29.10	23.80	35.80					

BBRPSCFL.D04-D05
EFDCLLSS.D06-D17
EFDCLLAS.D08
EFDCLLAF.D13

Table 19. Length frequency and electrofishing CPUE (fish/hr) of black bass collected in approximately 1.5 hours of 15-minute nocturnal electrofishing samples at Carr Creek Lake ( 710 acres) on 13 September 2017; numbers in parentheses are standard errors.

Area Species		Inch class																	Total	CPUE
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18		
Lower	Smallmouth bass							1											1	1.3 (1.3)
	Spotted bass	2	3	1		1	1	2	4		1								15	20.0 (8.3)
	Largemouth bass	9	3	1	1		1	2	1	2	2	1	2	1			1		27	36.0 (6.1)
Upper	Smallmouth bass																		0	0.0
	Spotted bass							5	1	1	1								8	10.7 (5.8)
	Largemouth bass	1	2	6	5	2	8	2	2	1	3	1	2	2	1			1	39	52.0 (20.1)
Total	Smallmouth bass							1											1	0.70 .67
	Spotted bass	2	3	1		1	1	7	5	1	2								23	15.3 (5.0)
	Largemouth bass	10	5	7	6	2	9	4	3	3	5	2	4	3	1	0	1	1	66	44.0 (10.7)

Table 20. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected by electrofishing at Carr Creek Lake (710 acres). CPUE=fish/hr, SE=standard error.

Year class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2003	4.4	0.1	14.0	5.4	5.8	2.3	133.8*	17.5
2004	5.2	0.0	132.0	17.3	88.2	12.7	18.8	2.6
2005	4.7	0.1	15.8	6.7	5.6	1.7	21.3	6.7
2006	4.2	0.2	11.0	4.1	3.0	1.0	7.6	2.0
2007	3.7	0.5	5.0	2.2	1.0	0.7	2.4	1.2
2008	4.3	0.2	15.2	6.6	3.8	1.7	3.1	0.8
2009	3.6	0.3	12.5	2.8	3.5	1.6	10.0	2.5
2010	4.6	0.2	13.5	4.4	5.0	1.7	9.0	3.1
2011	4.6	0.1	17.6	5.7	7.2	3.0	13.2	2.6
2012	4.3	0.2	34.5	10.9	11.5	4.0	$114.7{ }^{*}$	51.8
2013	4.4	0.2	14.0	4.6	4.8	1.8	116.0*	23.8
2014	4.4	0.3	13.3	4.2	5.3	1.7	$71.0{ }^{*}$	23.2
2015	4.7	0.2	45.3	9.6	16.0	6.1	35.3	8.0
2016	4.6	0.1	32.0	7.9	10.4	3.0	31.0	6.4
2017	3.9	0.2	19.3	5.8	4.7	1.9		

[^35]Table 21. Length frequency and CPUE (fish/hr) of walleye collected at Carr Creek Lake (710 acres) during daytime spring electrofishing

Year	Inch class																						Total	CPUE	SE
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28			
2000							5	28	10	6	8	2	3	3	1		1	6	4	1			78	20.8	4.6
2001							2	4	3	14	8	6	2	2	1				2				44	20.4	4.7
2002														no sa	mpl										
2003		2	1			1	1	2			3	7		4	2		1	1	1	1	1		28	26.7	8.5
2004											1	3	13	10	13	13	4	3	1				61	27.1	7.4
2005									1	1	2	10	2	10	6	5	4	3	1	1			46	28.2	5.0
2006											1	4	6	7	9	9	8	3	4	2	2		55	31.3	5.4
2007								1		1	2	4	3	11	15	8	4	4	5	2			60	32.9	7.4
2008									1	2	5	12	16	19	21	19	15	14	7	3	1	1	136	12.8	1.2
2009								1	4	3	9	18	21	17	15	13	10	11	2				124	21.3	1.3
2010								6	8	7	7	10	15	16	14	16	13	8	8	9		1	138	12.7	3.3
2011	1	1				1			2	6	8	8	5	15	7	11	5	5	2	3	1		81	15.4	5.2
2012								1	1	2	1	13	19	22	14	4	4	5	1				87	20.8	2.5
2013									3	2	8	11	13	16	21	9	2	2	1				88	10.7	1.4
2014									1		2	14	9	12	10	6	1		1				56	11.8	2.9
2015								2	3	7	9	13	14	11	12	7	3	1					82	21.6	17.4
2016									3	3	7	16	21	26	18	13	1	4	1				113	20.6	2.3
2017								1			6	7	18	13	13	9	2		1	1			71	21.9	3.1

EFDCLWSS.D00-D17

Table 22. Spring electrofishing catch rate (fish/hr) for each age of walleye collected from Carr Creek Lake (710 acres) from 2008-2017.

Age	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
1										
2	0.6	2.0	2.1	1.3	1.6	1.0	0.9	3.2	1.8	1.5
3	3.4	7.2	3.2	5.0	7.8	4.2	4.5	9.1	8.1	9.0
4	3.2	5.5	2.6	3.6	5.1	2.6	3.6	5.2	5.2	5.7
5	1.7	2.4	1.4	1.6	2.9	1.2	1.3	1.6	2.4	2.4
6	0.6	0.8	0.3	0.4	0.9	0.5	0.4	0.6	0.8	0.8
7	0.7	0.8	0.4	0.4	0.5	0.1	0.1	0.2	0.2	0.2
8	0.9	1.0	0.9	0.7	0.8	0.5	0.5	0.6	0.8	0.9
9	1.1	1.4	0.8	1.0	1.2	0.5	0.5	0.7	1.0	0.9
10	0.2	0.3	0.2	0.3	0.1	0.1	0.2	0.2	0.3	0.4

## EFDCLWSS.D08-D17

EFDCLWAS.D03, D09

Table 23. Length frequency and CPUE (fish/hr) of crappie collected by electrofishing at Carr Creek Lake ( 710 acres) on 10 and 20 February and 13 April 2017; numbers in parentheses are standard errors.

	Inch class										
Species	6	7	8	9	10	11	12	13	14	Total	CPUE
White crappie	7	12	10	8	6	6	11	13	5	78	$39.0(12.1)$
Black crappie	6	7	7	5	5	2	1	1	1	35	$17.5(5.0)$

EFDCLCSS.D17

Table 24. Spring electrofishing CPUE (fish/hr) for each length group of black and white crappie collected at Carr Creek Lake (710 acres).
SE=standard error.

Length group																
	$\geq 8.0$ in				$\geq 10.0$ in				$\frac{\geq 8.0 \text { in }}{\text { all crappie }}$		$\geq 10.0 \text { in }$   all crappie		Total			
	WC		BC		WC		BC				WC	BC				
Year	CPUE	SE			CPUE	SE	CPUE	SE	CPUE	SE						
2007	10.1	9.1	3.8	3.0	6.2	5.3	0.7	0.7	13.9	12.1	6.9	5.1	27.8	26.0	6.9	5.3
2008	1.3	0.8	1.0	0.4	0.8	0.5	0.2	0.1	2.3	1.0	0.9	0.5	1.7	1.0	1.6	0.7
2009	1.3	0.6	4.6	2.2	0.8	0.4	0.6	0.4	5.9	2.8	1.4	0.6	1.6	0.5	7.5	4.8
2010	2.5	1.9	2.4	1.0	2.2	1.8	0.8	0.3	4.9	2.3	2.9	2.0	4.9	3.5	6.1	2.3
2011	2.0	1.3	1.3	0.8	0.7	0.7	0.4	0.3	3.3	1.2	1.1	0.6	21.7	14.1	3.5	0.9
2012	3.1	1.3	11.3	9.1	1.4	0.8	0.9	0.7	14.4	9.4	2.4	1.2	8.7	3.9	16.7	12.9
2013	14.0	4.3	10.5	2.9	2.0	1.1	1.0	0.7	24.5	4.9	3.0	1.0	85.0	19.9	41.0	10.8
2014	41.6	11.4	8.0	3.1	22.4	8.6	1.6	1.6	49.6	11.1	24.0	9.6	280.0	69.5	28.8	5.6
2017	29.5	9.8	11.0	3.4	20.5	8.3	5.0	2.1	40.5	11.1	25.5	9.1	39.0	12.1	17.5	5.0

Table 25. PSD and $\mathrm{RSD}_{10}$ values for black and white crappie taken in spring electrofishing samples at Carr Creek Lake ( 710 acres) on 10 and 20 February and 13
April 2017; 95\% confidence intervals are in parentheses.

Species	No. $\geq 5.0$ in	PSD	RSD $_{10}$
White crappie	78	76	
		$(66-85)$	$(41-64)$
Black crappie	35	63	29
		$(47-79)$	$(13-44)$

EFDCLCSS.D17

Table 26. Mean back-calculated length (in) at each annulus for white crappie collected from Carr Creek Lake ( 710 acres) on 10 and 20 February 2017, including 95\% confidence intervals.

Year class	No.	Age							
		1	2	3	4	5	6	7	8
2014	6	4	5.9	7.1					
2013	20	4.3	6.4	8.0	9.2				
2012	14	4.4	6.0	7.1	8.2	9.3			
2011	13	4.9	6.8	8.4	9.9	11.6	12.7		
2010	4	4.4	6.1	7.4	8.6	9.7	10.7	12.1	
2009	2	4.8	6.7	7.9	8.6	9.3	10.2	12.1	13.7
Mean	59	4.5	6.3	7.7	9.0	10.3	12.0	12.1	13.7
Smallest		3.4	4.7	5.6	6.0	6.6	9.0	9.8	13.4
Largest		5.7	8.1	11.2	12.9	14.0	14.7	13.3	14.0
STD error		0.1	0.1	0.2	0.3	0.4	0.4	0.5	0.3
95\% CI LO		4.3	6.1	7.4	8.5	9.5	11.2	11.0	13.1
95\% CI HI		4.6	6.5	8.1	9.6	11.0	12.8	13.2	14.3
Intercept = 0   EFDCLCAS.D17									

Table 27. Mean back-calculated length (in) at each annulus for black crappie collected from Carr Creek Lake (710 acres) on 10 and 20 February 2017, including 95\% confidence intervals.

Year   class	No.	Age									
		1	2	3	4	5	6	7	8	9	10
2014	1	3.8	6.3	7.6							
2013	3	3.9	5.6	7.5	8.9						
2012	8	4.1	5.6	6.9	7.8	8.7					
2011	5	4.0	5.4	6.3	7.1	8.0	8.9				
2010	6	3.6	5.4	6.5	7.3	8.0	8.9	9.6			
2009	6	3.6	5.3	6.3	7.0	7.5	8.0	8.5	8.9		
2007	1	3.2	4.6	5.3	5.9	6.0	6.2	6.4	6.6	6.9	7.1
Mean	30	3.8	5.5	6.6	7.5	8.0	8.5	8.8	8.6	6.9	7.1
Smallest		2.6	4.3	5.2	5.7	6.0	6.2	6.4	6.6	6.9	7.1
Largest		4.8	6.4	8.9	10.6	10.6	10.6	11.7	11.1	6.9	7.1
STD error		0.1	0.1	0.2	0.2	0.3	0.4	0.5	0.6		
95\% CI LO		3.7	5.2	6.3	7.0	7.5	7.7	7.8	7.4		
95\% CI HI		4.0	5.7	7.0	7.9	8.5	9.2	9.8	9.8		
Intercept $=0$   EFDCLCAS.D17											

Table 28. Spring electrofishing catch rate (fish/hr) for each age of white and black crappie collected from Carr Creek Lake (710 acres).

Age	Year													
	2009		2010		2011		2012		2013		2014		2017	
	WC	BC												
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0						
2	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0						
3	0.1	0.0	0.9	0.0	5.1	0.0	1.9	1.3	30.7	10.6	124.9	8.0	3.4	0.6
4	0.1	0.5	0.5	0.4	4.1	0.2	1.5	3.2	12.9	10.4	30.4	6.3	12.0	1.4
5	0.5	3.1	2.1	1.8	4.2	0.9	1.9	2.5	12.9	2.9	37.4	1.8	9.3	4.3
6	0.5	2.4	1.0	1.0	4.6	0.6	1.9	5.7	15.6	10.7	43.2	6.2	9.6	2.8
7	0.3	0.0	0.3	0.0	0.2		0.5	2.9	3.7	4.0	12.3	3.7	3.0	3.3
8	0.2	0.3	0.1	0.6	0.2		0.6	0.0	4.0		18.0		1.7	3.1
9							0.4	0.3	0.3	0.9	0.8	0.5		
10							0.0	0.0				0.8		0.6
11							0.0	0.0						
12							0.0	0.8		1.2				
13							0.1	0.0			1.0			
EFDCLWSS.D07-D17														
EFDCLCSS.D13-D17														
EFDCLCAS.D07, D12, D17														
WC=white crappie														
$B C=b$	ck cra													

Table 29. Fish harvest statistics derived from day (1 March-31 October) and night (1 May31 August) creel surveys at Carr Creek Lake (710 acres) in 2017.

	Day	Night
Fishing trips		
No. of fishing trips (per acre)	7,706 (10.85)	2,576 (3.63)
Fishing pressure		
Total angler hours (S.E.)a	25,667 (811.61)	10,438 (773.53)
Man-hours/acre	36.15	14.7
Catch/harvest		
No. of fish caught (S.E.)	23,809 (2,927.51	7,426 (1,323.28)
No. of fish harvested (S.E.)	2,237 (566.35)	531 (238.4)
Lb of fish harvested	2,873	503
Harvest rates		
Fish/hour	0.08	0.05
Fish/acre	3.15	0.75
Lb/acre	4.05	0.71
Catch rate		
Fish/hour	0.91	0.68
Fish/acre	33.53	10.46
Miscellaneous characteristics (\%)		
Male	85.70	85.31
Female	14.30	14.69
Resident	98.41	99.44
Non-resident	1.59	0.06
Method (\%)		
Still fishing	39.28	51.13
Casting	59.31	47.74
Trotline/Jugging	1.06	1.13
Trolling	0.26	
Spider Rigging	0.09	
Mode (\%)		
Boat	82.88	65.25
Bank	14.03	25.42
Dock	3.09	9.32

aS.E. = standard error

Table 30. Fish harvest statistics derived from a daytime creel survey at Carr Creek Lake (710 acres) from 1 March through 31 October 2017.

	Channel Catfish	Flathead Catfish	Warmouth	Bluegill	Spotted   Bass	Largemouth Bass	White Crappie	Black Crappie	Walleye	Smallmouth Bass	$\begin{gathered} \text { Common } \\ \text { Carp } \end{gathered}$	White Bass	Rock Bass	Green Sunfish
No. caught (per acre)	$\begin{aligned} & \hline 1609 \\ & (2.27) \end{aligned}$	$\begin{gathered} 21 \\ (0.03) \end{gathered}$	$\begin{gathered} 709 \\ (1.00) \end{gathered}$	$\begin{gathered} 10953 \\ (15.43) \end{gathered}$	$\begin{gathered} \hline 594 \\ (0.84) \end{gathered}$	$\begin{gathered} \hline 7924 \\ (11.16) \end{gathered}$	$\begin{aligned} & 1529 \\ & (2.15) \end{aligned}$	$\begin{gathered} 20 \\ (0.03) \end{gathered}$	$\begin{gathered} 54 \\ (0.08) \end{gathered}$	$\begin{gathered} 85 \\ (0.12) \end{gathered}$	$\begin{gathered} 7 \\ (0.01) \end{gathered}$	$\begin{gathered} \hline 4 \\ (0.01) \end{gathered}$	$\begin{gathered} 30 \\ (0.04) \end{gathered}$	$\begin{gathered} \hline 266 \\ (0.38) \end{gathered}$
No. harvested (per acre)	$\begin{gathered} 527 \\ (0.74) \end{gathered}$	$\begin{gathered} 4 \\ (0.01) \end{gathered}$	$\begin{gathered} 33 \\ (0.05) \end{gathered}$	$\begin{gathered} 1356 \\ (1.91) \end{gathered}$	$\begin{gathered} 64 \\ (0.09) \end{gathered}$	$\begin{gathered} 72 \\ (0.10) \end{gathered}$	$\begin{gathered} 138 \\ (0.19) \end{gathered}$	$\begin{gathered} 12 \\ (0.02) \end{gathered}$	$\begin{gathered} 26 \\ (0.04) \end{gathered}$					
\% of total no. harvested	23.58	0.19	1.49	60.63	2.87	3.21	6.15	0.55	1.14					
Lb harvested (per acre)	$\begin{gathered} 2225.7 \\ (3.14) \end{gathered}$	$\begin{gathered} 54.4 \\ (0.08) \end{gathered}$	$\begin{gathered} 1.5 \\ (0.00) \end{gathered}$	$\begin{aligned} & 156.4 \\ & (0.22) \end{aligned}$	$\begin{gathered} 37.2 \\ (0.05) \end{gathered}$	$\begin{aligned} & 192.2 \\ & (0.27) \end{aligned}$	$\begin{gathered} 66.2 \\ (0.09) \end{gathered}$	$\begin{gathered} 4.6 \\ (0.01) \end{gathered}$	$\begin{aligned} & 105.0 \\ & (0.15) \end{aligned}$					
\% of total lb harvested	77.48	1.89	0.05	5.44	1.30	6.69	2.30	0.16	3.66					
Mean length (in)	20.8	32.0	4.0	5.6	11.6	17.5	11.0	9.0	22.8					
Mean w eight (lb)	3.12	12.98	0.04	0.12	0.71	2.83	0.65	0.37	4.11					
		Walleye	Catfish group	Panfish group	Black bass group	Crappie group	Anything							
No. of fishing trips for that species		72	412	569	3914	476	2263							
\% of all trips		0.94	5.35	7.38	50.79	6.18	29.37							
Hours fished for that species (per acre)		$\begin{aligned} & 241.29 \\ & (0.34) \end{aligned}$	$\begin{gathered} 1372.12 \\ (1.93) \end{gathered}$	$\begin{gathered} 1894.83 \\ (2.67) \end{gathered}$	$\begin{gathered} 13035.03 \\ (18.36) \end{gathered}$	$\begin{gathered} 1586.09 \\ (2.23) \end{gathered}$	$\begin{gathered} 7537.48 \\ (10.62) \end{gathered}$							
No. harvested fishing for that species		12	445	768	36	142								
Lb harvested fishing for that species		51.10	2133.20	85.90	71.10	65.00								
No./hour harvested fishing for that species		0.04	0.31	0.57	0.00	0.10								
\% success fishing for that species		10.00	17.24	25.97	0.67	15.94	8.05							

Table 31. Fish harvest statistics derived from a night creel survey at Carr Creek Lake (710 acres) from 1 May through 31 August 2017.

	Channel catfish	Flathead Catfish	Bluegill	Largemouth Bass	White Crappie	Walleye	Smallmouth Bass	Spotted Bass	Rock Bass	Warmouth
No. caught	1,033	27	1,582	3,056	1,123	39	13	215	13	326
(per acre)	(1.46)	(0.04)	(2.23)	(4.30)	(1.58)	(.0.55)	(0.02)	(0.30)	(0.02)	(0.46)
No. harvested	226	13	206	13	40	33				
(per acre)	0.32	0.02	0.29	0.02	0.06	0.05				
\% of total no. harvested	42.62	2.40	38.81	2.40	7.58	6.19				
Lb harvested	206.2	136.2	24.0	22.0	28.1	86.6				
(per acre)	0.29	0.19	0.03	0.03	0.04	0.12				
\% of total lb harvested	40.99	27.07	4.77	4.37	5.59	17.21				
Mean length (in)	14.0	30.0	4.9	15.0	11.5	20.0				
Mean w eight (Ib)	0.93	10.69	0.09	1.73	0.74	2.79				
		Walleye	Catfish group	Black bass group	Panfish group	Crappie group	Anything			
No. of fishing trips for that species		141	630	1136	29	120	519			
\% of all trips		5.48	24.47	44.10	1.14	4.67	20.14			
Hours fished for that species (per acre)		$\begin{gathered} 571.65 \\ (0.81) \end{gathered}$	$\begin{gathered} 2553.97 \\ (3.60) \end{gathered}$	$\begin{gathered} 4603.26 \\ (6.48) \end{gathered}$	$\begin{aligned} & 118.91 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 487.65 \\ & (0.69) \end{aligned}$	$\begin{gathered} 2102.43 \\ (2.96) \end{gathered}$			
No. harvested fishing for that species		33	193	13		20				
Lb harvested fishing for that species		86.4	188.9	22.5		17.4				
No./hour harvested fishing for that species		0.04	0.13	0.00		0.04				
\% success fishing for that species		16.67	12.64	0.61	0.00	12.64	6.35			

Table 32. Species composition and length distribution of each species of fish harvested $(H)$ and released $(R)$ from a daytime creel survey on Carr Creek Lake ( 710 acres) from 1 March to 31 October 2017.

Species		Inch class																									
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	23	24	25	26	28	30	32
Common	H																										
Carp	R																			7							
Walleye	H																	9			9			7			
	R											9		9					10								
Channel Catfish	H												19	74	46	9	9	9		28	9	93	46	102	83		
	R				10		52	83	135	177	239	166	166	21		21									11		
Flathead Catfish	H																										4
	R														8										8		
Bluegill	H	20	233	395	405	303																					
	R	796	3928	3501	885	448	10	10	18																		
Spotted Bass	H							13	13	13	13		12														
	R				25	25	132	25	108	33	41	66	25	17	25			7									
Largemouth Bass	H														10	31	30										
	R						1433	530	1897	837	1450	514	364	249	273	133	75	58	33	6							
Smallmouth Bass	H																										
	R								14	28	28										15						
White Crappie	H							61	38	8	30																
	R			388	457	397	139		10																		
Black Crappie	H							12																			
	R																										
Rock Bass	H																										
	R		8	8	8	6																					
Warmouth	H		33																								
	R	126	378	135	27	9																					
Green   Sunfish   White Bass	H																										
	R		53	106	53	54																					
	H																										
	R															4											

Table 33. Species composition and length distribution of each species of fish harvested $(H)$ and released $(\mathrm{R})$ from a night creel survey on Carr Creek Lake (710 acres) from 1 May to 31 August 2017.

Species		Inch class																							
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	21	22	23	24	26	28	30
Warmouth	H																								
	R	91	91	117		27																			
Walleye	H															11			11	10					
	R											6													
Channel Catfish	H							8		24	40		48	48	24	16	8						10		
	R			9	9	65	56	28	158	139	130	102	56	37					9			8			
Flathead Catfish	H																								12
	R																							13	
Bluegill	H		26	77	52	51																			
	R	37	307	516	369	135		12																	
Rock Bass	H																								
	R					12																			
Spotted Bass	H																								
	R		11			11	34		34	23	45	11	23	23											
Largemouth Bass	H													12											
	R						321	117	593	476	642	438	204	49	88	68	39	8							
Smallmouth Bass	H																								
	R										6	6													
White	H								10	20			10												
Crappie	R		77	87	358	406	87	39	19				9												

Table 34. Monthly black bass angling success at Carr Creek Lake during the 2017 day and night creel survey period.

	Total no. of bass caught		Total no. of bass harvested		No. of black bass fishing trips		Hours fished by bass anglers		Bass caught by bass anglers		Bass caught/hour by bass anglers		Bass harvested by bass anglers		Bass   harvested/hour by bass anglers	
	Day	Night														
March	811				707		2356		737		0.307					
April	835		49		582		1938		393		0.220					
May	2542	1427	20	13	443	352	1474	1427	2237	1300	1.087	0.860	14	13	0.006	0.008
June	1317	801	36		530	315	1764	1276	996	690	0.495	0.512				
July	281	958			195	421	648	1707	281	952	0.406	0.485				
August	683	98	12		286	48	952	193	515	75	0.467	0.394	12		0.011	
September	1383		19		738		2456		1277		0.464		10		0.004	
October	751				434		1446		709		0.470					
Total	8,603	3,284	136	13	3,914	1,136	13,035	4,603	7,145	3,017	3.916	2.251	36	13	0.021	0.008
Mean											0.490	0.563			0.007	0.008

Table 35. Monthly crappie angling success at Carr Creek Lake during the 2017 creel survey period.

	Total no. of crappie caught		Total no. of crappie harvested		No. of crappie fishing trips		Hours fished by crappie anglers		Crappie caught by crappie anglers		Crappie caught/hour by crappie anglers		Crappie harvested by crappie anglers		Crappie harvested/hour by crappie anglers	
	Day	Night														
March	597		125		174		579		516		0.659		118		0.151	
April	504		25		151		504		478		0.935		24		0.048	
May	80	51			38	10	127	40	53		0.606					
June	285	635		28	22	70	72	283	285	428	2.286	1.211		14		0.039
July	33	309		13	10	41	34	165	17	38	0.500	0.238		6		0.040
August		128			59		195									
September	29				7		23									
October	21				15		51		13		0.536					
Total	1,549	1,123	150	41	476	120	1,586	488	1,362	466			142	20		
Mean											0.92	0.72			0.10	0.04

Table 36. Monthly walleye angling success at Carr Creek Lake during the 2017 creel survey period.

	Total no. of		Total no. of		No. of walleye		Hours fished by		Walleye caught		Walleye		Walleye		Walleye	
	Day	Night														
March																
April	12		12		16		53		12		0.137		12		0.137	
May	20	13	13	13	16	69	55	278		13		0.033		13		0.033
June		14		14	32	26	108	106		14		0.092		14		0.092
July		13		6		31		123		12		0.084		6		0.042
August	12					16		65								
September	10															
October																
Total	54	40	25	33	64	142	216	572	12	39			12	33		
Mean											0.14	0.07			0.14	0.06

Table 37. Catch and harvest statistics derived from a daytime creel survey at Carr Creek Lake (710 acres) for largemouth bass, white crappie, black crappie, and walleye caught and released by all anglers from 1 March to 31 October 2017.

	Largemouth bass				White crappie				Black Crappie			
	Catch \& release			Total	Catch \& release			Total	Catch \& release			
	Harvest	12-14.9	$\geq 15.0$		Harvest	<9.0	$\geq 9.0$		Harvest	<9.0	$\geq 9.0$	Total
Total number	72	2,328	828	7,924	138	1,381	10	1,529	12	7	0	20
Total weight (lb)	192.2	1,524.0	543.5	5,334.7	66.2	128.0	0.7	194.9	4.6	1.9	0.0	6.5
Mean length (in)	17.5				11.0				9.0			
Mean weight (lb)	2.83				0.65				0.37			
Rate (fish/hour)	0.002				0.006				0.000			
	Walleye											
	Catch \& release											
	Harvest	8-14.9	$\geq 15.0$	Total								
Total number	27	9	19	54								
Total weight (lb)	105.0	14.0	26.5	145.5								
Mean length (in)	22.8											
Mean weight (lb)	4.11											
Rate (fish/hour)	0.001											

Table 38. Catch and harvest statistics derived from a night creel survey at Carr Creek Lake (710 acres) for largemouth bass, white crappie, black crappie, and walleye caught and released by all anglers from 1 May to 31 August 2017.

	Largemouth bass				White crappie				Black Crappie			
	Catch \& release			Total	Catch \& release			Total	Catch \& release			Total
	Harvest	12-14.9	$\geq 15.0$		Harvest	<9.0	$\geq 9.0$		Harvest	<9.0	$\geq 9.0$	
Total number	13	1,284	252	3,056	40	1,015	68	1,123	0	0	0	0
Total weight (lb)	22.0	1,001.0	197.6	2,396.6	28.1	126.0	8.3	162.4				
Mean length (in)	15.0				11.5							
Mean weight (lb)	1.73				0.74							
Rate (fish/hour)	0.001				0.004							
	Walleye											
	Catch \& release											
	Harvest	8-14.9	$\geq 15.0$	Total								
Total number	33	6	0	39								
Total weight (lb)	86.6	4.0		90.6								
Mean length (in)	20.0											
Mean weight (lb)	2.79											
Rate (fish/hour)	0.003											

Table 39. Length frequency and CPUE (fish/hr) of black bass collected in 1.25 hours of 15 -min electrofishing runs at Cranks Creek Lake (219 acres) on 18 April 2017; numbers in parentheses are standard errors.

Species	Inch class																							Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
SB			2		2	4	2	1	1															12	9.6 (6.6)
LMB		4	35	38	15	4	11	23	25	19	10	7	6	1	2	3	1	1	4	3		4		216	172.8 (17.8)

SB = spotted bass
LMB = largemouth bass
EFDCCLSS.D17

Table 40. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Cranks Creek Lake (219 acres). SE=standard error.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	SE										
2000	51.33	11.05	24.67	3.78	2.67	1.33	2.00	1.37	2.00	1.37	80.67	12.45
2001	20.00	6.37	22.00	8.31	2.67	1.33	2.00	0.89	0.67	0.67	46.67	13.84
2002						no s	mple					
2003						no s	mple					
2004	40.67	7.55	40.00	5.75	3.33	1.91	4.00	2.07	0.67	0.67	88.00	11.12
2005	59.20	16.56	70.40	10.48	4.00	1.26	6.40	2.04	2.40	0.98	140.00	17.34
2006						no s	mple					
2007						no s	mple					
2008	33.00	7.90	51.00	6.61	27.00	4.43	8.00	3.65	3.00	1.91	119.00	8.23
2009						no s	mple					
2010	80.80	27.64	43.20	10.38	9.60	2.99	14.40	2.04	4.80	2.33	148.00	41.18
2011	57.60	6.01	52.00	10.51	9.60	1.60	11.20	3.88	5.60	3.49	130.40	15.42
2012	34.40	12.04	32.80	4.63	5.60	2.40	8.80	2.33	2.40	0.98	81.60	14.46
2013						no s	mple					
2014						no s	mple					
2015	27.20	5.99	76.00	8.29	15.20	0.80	13.60	2.40	6.40	1.60	132.00	10.81
2016						no s	mple					
2017	76.80	14.28	62.40	13.89	18.40	2.71	15.20	3.88	8.80	3.80	172.80	17.82

EFDCCLSS.D00-D17

Table 41. PSD and RSD values for each species of black bass in each area of Cranks Creek Lake (219 acres) on 18 April 2017. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are $95 \%$ confidence intervals.

	Largemouth bass			Spotted bass		
	No.	$\mathrm{PSD}_{8}$	$\mathrm{RSD}_{15}$	No.	$\mathrm{PSD}_{7}$	$\mathrm{RSD}_{14}$
Total	120	$\begin{gathered} 35 \\ (26-44) \end{gathered}$	$\begin{gathered} 16 \\ (9-22) \end{gathered}$	8	0	0

EFDCCLSS.D17

Table 42. Population assessments for largemouth bass collected from Cranks Creek Lake (219 acres).
Actual values are in parentheses. Scoring based on statewide assessment.

Parameter	Year						
	2005	2008	2010	2011	2012	2015	2017
Mean length age 3 at capture	$\begin{gathered} 3 \\ (11.2) \end{gathered}$	$\begin{gathered} 3 \\ (11.2) \end{gathered}$	$\begin{gathered} \hline 3 \\ (11.2) \end{gathered}$	$\begin{gathered} 3 \\ (11.2) \end{gathered}$	$\begin{gathered} 3 \\ (11.2) \end{gathered}$	$\begin{gathered} 1 \\ (10.0) \end{gathered}$	$\begin{gathered} 1 \\ (10.0) \end{gathered}$
Spring CPUE age 1	$\begin{gathered} 3 \\ (50.40) \end{gathered}$	$\begin{gathered} 3 \\ (23.00) \end{gathered}$	$\begin{gathered} 4 \\ (68.80) \end{gathered}$	$\begin{gathered} 3 \\ (45.60) \end{gathered}$	$\begin{gathered} 3 \\ (28.00) \end{gathered}$	$\begin{gathered} 2 \\ (19.20) \end{gathered}$	$\begin{gathered} 4 \\ (72.80) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 1 \\ (4.00) \end{gathered}$	$\begin{gathered} 3 \\ (27.00) \end{gathered}$	$\begin{gathered} 1 \\ (9.60) \end{gathered}$	$\begin{gathered} 1 \\ (9.60) \end{gathered}$	$\begin{gathered} 1 \\ (5.60) \end{gathered}$	$\begin{gathered} 2 \\ (15.20) \end{gathered}$	$\begin{gathered} 2 \\ (18.40) \end{gathered}$
Spring CPUE $\geq 15.0$ in	$\begin{gathered} 2 \\ (6.40) \end{gathered}$	$\begin{gathered} 2 \\ (8.00) \end{gathered}$	$\begin{gathered} 3 \\ (14.40) \end{gathered}$	$\begin{gathered} 2 \\ (11.20) \end{gathered}$	$\begin{gathered} 2 \\ (8.80) \end{gathered}$	$\begin{gathered} 3 \\ (13.60) \end{gathered}$	$\begin{gathered} 3 \\ (15.20) \end{gathered}$
Spring CPUE $\geq 20.0$ in	$\begin{gathered} 3 \\ (2.40) \end{gathered}$	$\begin{gathered} 3 \\ (3.00) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (4.80) \end{gathered}$	$\begin{gathered} 4 \\ (5.60) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (2.40) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (6.40) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (8.80) \\ \hline \end{gathered}$
Total score	12	13	15	13	12	12	14
Assessment rating	Fair	Good	Good	Good	Fair	Fair	Good
Instantaneous mortality (z)	0.48	0.52	0.49	0.56	0.53		
Annual mortality (A)	38.40	40.60	38.90	43.10	40.90		
$\begin{aligned} & \hline \text { EFDCCLAS.D08 } \\ & \text { EFDCCLAF.D13 } \\ & \text { EFDCCLSS.D05-D17 } \end{aligned}$							

Table 43. Length frequency and CPUE (fish/hr) of black bass collected in 0.75 hours of 15 -min nocturnal electrofishing runs at Cranks Creek Lake (219 acres) on 20 September 2017; numbers in parentheses are standard errors.

Species	Inch class																					Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
LMB	5	21	22	5	5	17	5	8	5	11	2	2		1								109	145.3 (10.4)
LMB = largemouth bass																							
EFDCCLSF.D17																							

Table 44. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Cranks Creek Lake (219 acres) from electrofishing. CPUE=fish/hr, SE=standard error.

Year   class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
1999							44.3	10.4
2000							14.3	4.8
2001	5.0	0.1	27.3	5.2	13.3	3.0		
2002	5.1	0.1	34.4	10.6	20.8	7.7		
2003							15.0	4.3
2004							50.4	15.3
2005								
2006								
2007	4.3	0.1	32.0	8.7	7.2	2.9	23.0	7.3
2008								
2009	3.9	0.1	64.0	29.8	7.2	4.8	68.8	26.1
2010	4.3	0.1	93.3	28.5	16.0	6.1	45.6	6.0
2011	5.3	0.1	51.2	5.4	34.4	5.3	28.0	10.7
2012	4.1	0.1	66.4	27.4	10.4	5.3		
2013	3.9	0.2	11.2	5.4	0.8	0.8		
2014	4.0	0.1	104.8	24.5	20.8	5.1	19.2	5.3
2015	4.3	0.2	37.0	14.6	9.0	3.0		
2016	4.1	0.1	70.4	29.7	2.4	1.0	72.8	12.6
2017	4.2	0.1	77.3	11.6	13.3	3.5		
EFDCCLSF.D01-D02, D07, D09-D17								
EFDCCLAS.D08								
EFDCCLSS.D00-D17								
EFDCCLAF.D13								

Table 45. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 1.5 hours of 15-minute nocturnal electrofishing samples by area at Dewey Lake (1,100 acres) on 17 April 2017. Standard errors are in parentheses.

Area	Species	Inch class																		Total	CPUE
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		
Lower	Spotted bass		1		2	2			1											6	8.0 (4.0)
	Largemouth bass	1	2	5	8	1	2	13	3	4	5	4	12	8	10	2	2		1	83	110.0 (13.9)
Upper	Spotted bass		1		1															2	2.7 (1.3)
	Largemouth bass		4	7	3	3	8	4	3	4	3	2	4	4	2	1	3	1	1	57	76.0 (6.1)
Total	Spotted bass		2		3	2			1											8	5.3 (2.2)
	Largemouth bass	1	6	12	11	4	10	17	6	8	8	6	16	12	12	3	5	1	2	140	93.3 (10.3)

EFDDLLSS.D17

Table 46. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Dewey Lake (1,100 acres). SE=standard error.

Year	Length group										Total	
	$<8.0$ in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	SE										
1987	44.6		38.3		12.0		0.6		0.0		95.4	
1988	84.0		40.7		26.7		2.0		0.0		154.7	
1989	75.0		27.5		10.8		7.0		0.0		120.7	
1990	58.8		68.0		32.0		11.4		0.6		171.4	
1991	73.8		50.6		18.4		3.5		0.2		146.4	
1992	57.4		64.1		17.2		7.4		0.2		146.1	
1993	43.7		71.8		15.6		8.8		0.8		140.0	
1994	no sample											
1995	46.6		59.6		28.5		3.6		0.0		138.3	16.9
1996	no sample											
1997	15.3		53.3		32.3		11.0		1.0		112.0	12.2
1998	20.1		51.4		43.2		7.2		0.6		122.0	8.5
1999	78.9		34.6		39.5		12.8		0.5		165.8	12.7
2000	62.2	4.7	44.0	4.4	23.6	3.5	10.3	1.3	0.1		140.1	9.5
2001	150.1	17.2	57.8	5.7	26.9	2.7	17.8	1.6	0.6		252.6	22.8
2002	no sample											
2003	71.1	10.1	55.6	4.4	23.1	1.8	22.0	2.1	0.7		171.8	14.6
2004	96.2	11.9	34.7	3.8	20.0	3.2	17.5	2.6	1.0		168.3	13.9
2005	39.3	5.0	59.2	6.3	31.0	3.2	24.5	1.9	0.3		153.9	12.8
2006	32.3	5.7	66.4	8.6	24.2	3.6	24.9	3.6	0.7		147.8	10.0
2007	54.9	9.6	80.8	9.8	35.1	5.0	30.2	4.1	1.5	0.7	200.9	19.9
2008	87.4	10.4	86.5	9.5	21.6	3.6	16.3	3.4	0.8	0.5	211.7	12.4
2009	83.7	12.7	62.8	6.3	18.8	1.9	14.4	3.4	0.5	0.5	179.8	16.9
2010	42.6	5.9	98.0	27.6	12.3	2.8	8.3	2.0	0.0	0.0	161.2	33.0
2011	no sample											
2012	27.2	4.6	63.2	7.0	34.9	3.9	10.7	2.5	0.4	0.4	136.0	8.6
2013	20.8	3.9	92.8	14.8	54.0	6.5	17.2	1.9	1.2	0.6	184.8	20.8
2014	12.4	2.6	40.4	8.1	31.2	6.6	20.0	2.1	1.2	0.9	104.0	16.2
2015	21.2	3.0	35.2	5.2	43.2	5.4	24.0	4.2	0.8	0.5	123.6	11.2
2016	22.5	3.1	25.5	4.9	47.0	5.4	24.0	3.5	1.0	0.7	119.0	9.9
2017	22.7	5.7	27.3	7.1	20.0	5.4	23.3	4.3	1.3	0.8	93.3	10.3
EFDDLLSS.D87-D02, D06-D10, D12-D17												

Table 47. PSD and RSD values for each species of black bass collected in each area of Dewey Lake (1,100 acres) during spring 2017. Numbers in parentheses are 95\% confidence intervals.

	Largemouth bass			Spotted bass		
Area	No.	PSD	$\mathrm{RSD}_{15}$	No.	PSD	$\mathrm{RSD}_{14}$
Lower		$\begin{gathered} 67 \\ (55-78) \end{gathered}$	$\begin{gathered} 35 \\ (23-46) \end{gathered}$	3		
Upper		$\begin{gathered} 53 \\ (37-68) \end{gathered}$	$\begin{gathered} 30 \\ (16-44) \end{gathered}$	0		
Total	106	$\begin{gathered} 61 \\ (67-80) \\ \hline \end{gathered}$	$\begin{gathered} 33 \\ (24-42) \\ \hline \end{gathered}$	3	0	0

EFDDLLSS.D17

Table 48. Population assessment for largemouth bass collected from Dewey Lake (1,100 acres). Actual values are in parentheses. Scoring based on statewide assessment.

	Year										
Parameter	2006	2007	2008	2009	2010	2012	2013	2014	2015	2016	2017
Mean length age-3 at capture	$\begin{gathered} 1 \\ (10.5) \end{gathered}$	$\begin{gathered} 1 \\ (10.5) \end{gathered}$	$\begin{gathered} 2 \\ (11.3) \end{gathered}$	$\begin{gathered} 2 \\ (11.2) \end{gathered}$							
Spring CPUE age-1	$\begin{gathered} 3 \\ (27.9) \end{gathered}$	$\begin{gathered} 4 \\ (49.0) \end{gathered}$	$\begin{gathered} 4 \\ (49.5) \end{gathered}$	$\begin{gathered} 4 \\ (55.6) \end{gathered}$	$\begin{gathered} 2 \\ (16.4) \end{gathered}$	$\begin{gathered} 2 \\ (19.5) \end{gathered}$	$\begin{gathered} 2 \\ (20.8) \end{gathered}$	$\begin{gathered} 1 \\ (10.8) \end{gathered}$	$\begin{gathered} 2 \\ (17.2) \end{gathered}$	$\begin{gathered} 2 \\ (20.5) \end{gathered}$	$\begin{gathered} 2 \\ (21.3) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 3 \\ (24.2) \end{gathered}$	$\begin{gathered} 4 \\ (35.1) \end{gathered}$	$\begin{gathered} 2 \\ (21.6) \end{gathered}$	$\begin{gathered} 2 \\ (18.8) \end{gathered}$	$\begin{gathered} 1 \\ (12.3) \end{gathered}$	$\begin{gathered} 4 \\ (34.9) \end{gathered}$	$\begin{gathered} 4 \\ (54.0) \end{gathered}$	$\begin{gathered} 4 \\ (31.2) \end{gathered}$	$\begin{gathered} 4 \\ (43.2) \end{gathered}$	$\begin{gathered} 4 \\ (47.0) \end{gathered}$	$\begin{gathered} 2 \\ (20.0) \end{gathered}$
Spring CPUE $\geq 15.0$ in	$\begin{gathered} 4 \\ (24.9) \end{gathered}$	$\begin{gathered} 4 \\ (30.2) \end{gathered}$	$\begin{gathered} 3 \\ (16.3) \end{gathered}$	$\begin{gathered} 3 \\ (14.4) \end{gathered}$	$\begin{gathered} 2 \\ (8.3) \end{gathered}$	$\begin{gathered} 2 \\ (10.7) \end{gathered}$	$\begin{gathered} 3 \\ (17.2) \end{gathered}$	$\begin{gathered} 4 \\ (20.0) \end{gathered}$	$\begin{gathered} 4 \\ (24.0) \end{gathered}$	$\begin{gathered} 4 \\ (24.0) \end{gathered}$	$\begin{gathered} 4 \\ (23.3) \end{gathered}$
Spring CPUE $\geq 20.0$ in	$\begin{gathered} 3 \\ (0.7) \end{gathered}$	$\begin{gathered} 4 \\ (1.5) \end{gathered}$	$\begin{gathered} 3 \\ (0.8) \end{gathered}$	$\begin{gathered} 3 \\ (0.5) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 2 \\ (0.4) \end{gathered}$	$\begin{gathered} 3 \\ (1.2) \end{gathered}$	$\begin{gathered} 3 \\ (1.2) \end{gathered}$	$\begin{gathered} 3 \\ (0.8) \end{gathered}$	$\begin{gathered} 3 \\ (1.0) \end{gathered}$	$\begin{gathered} 4 \\ (1.3) \end{gathered}$
Total score	14	17	14	14	8	12	14	14	15	15	14
Assessment rating	Good	Excellent	Good	Good	Poor	Fair	Good	Good	Good	Good	Good
Instantaneous mortality (z)	0.41	0.39	0.56	0.48	0.77	0.64					
Annual mortality (A)	33.50	32.10	42.80	38.40	53.90	35.80					

BBRPSDEW.D04-D05
EFDDLLSS.D06-D10, D13-D17
EFDDLLAS.D08
EFDDLLAF.D13

Table 49. Length-frequency distribution of each black bass species captured during 2.0 hours of 15 -minute nocturnal electrofishing runs at Dewey Lake (1,100 acres) on 14 September 2017. Standard errors are in parentheses.

Area	Species	Inch class																				Total	CPUE
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Lower	Spotted bass		2	12	1	1	1	2	2	1	1	1										24	24.0 (11.0)
	Largemouth bass	1	10	26	14	7	4	9	7	3	2		3	1	2	3	1	1				94	94.0 (14.1)
Upper	Spotted bass							1														1	1.0 (1.0)
	Largemouth bass	3	14	13	11	1	4	10	11	5	5	3	1	8	7	4	13	10	5		2	130	130.0 (24.3)
Total	Spotted bass		2	12		1	1			1												17	8.5 (6.7)
	Largemouth bass	4	24	39	25	8	8	19	18	8	7	3	4	9	9	7	14	11	5		2	224	112.0 (14.7)

EFDDLLSF.D17

Table 50. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Dewey Lake ( 1,100 acres) from electrofishing. CPUE=fish/hr, SE=standard error.

Year class	Age-0		Age-0		Age-0 $\geq 5.0$ in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2002	5.0	0.0	75.6	14.2	37.6	9.4	61.2	9.4
2003	4.9	0.1	38.9	10.6	15.1	3.8	79.7	10.5
2004	5.2	0.1	45.2	7.1	25.4	4.6	24.8	4.1
2005	4.4	0.1	58.7	16.1	16.9	6.6	27.9	5.5
2006	5.1	0.1	39.0	9.9	21.3	5.8	49.0	9.2
2007	4.8	0.1	54.3	12.8	21.2	4.2	49.5	10.0
2008	5.0	0.1	54.9	14.3	30.0	7.4	55.6	12.1
2009	5.3	0.1	45.7	8.8	28.8	5.2	16.4	3.3
2010	5.0	0.1	67.6	14.2	38.4	8.5	no sample	
2011	4.6	0.1	37.2	9.3	14.8	3.6	19.5	4.4
2012	4.4	0.1	26.0	5.3	7.2	1.7	20.8	3.9
2013	3.4	0.2	25.2	6.3	3.2	0.8	10.8	2.8
2014	3.9	0.1	36.8	8.3	10.0	4.3	17.2	3.5
2015	3.7	0.2	38.7	9.9	7.3	3.0	20.5	3.2
2016	4.9	0.1	33.5	5.1	17.0	3.5	21.3	5.8
2017	4.6	0.1	50.0	9.4	16.5	3.6		
BBRPSDEW.D03-D05								
BBRDLLSF.D02								
BBRWRDEW.D03-D04								
BBRSCDEW.D03								
EFDDLLSF.D05-D16								
EFDDLLSS.D06-D10, D12-D17								
EFDDLLAS.D08								

Table 51. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 1.50 hours of 15-minute electrofishing samples at Fishtrap Lake (1,143 acres) on 10 May 2017; numbers in parentheses are standard errors.

Area	Species	Inch class																			Total	CPUE	
		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Lower	Smallmouth bass								1												1	1.3	(1.3)
	Spotted bass				2	2		3	1												8	10.7	(10.7)
	Largemouth bass	1	5	18	2	3	2	4	3	8	2	4	1		2					1	56	74.7	(3.5)
Upper	Smallmouth bass																				0	0.0	
	Spotted bass																				0	0.0	
	Largemouth bass		32	29	6	4	3	6	9	9	8		1	1							108	144.0	(45.5)
Total	Smallmouth bass								1												1	0.7	(0.7)
	Spotted bass				2	2		3	1												8	5.3	(5.3)
	Largemouth bass	1	37	47	8	7	5	10	12	17	10	4	2	1	2					1	164	109.3	(25.6)

Table 52. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass at Fishtrap Lake ( 1,143 acres).

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		$\geq 15.0$ in		$\geq 20.0$ in			
	CPUE	S.E.										
2000	28.7	4.2	29.0	2.3	19.0	2.6	23.0	4.3	3.4		99.7	9.9
2001	20.3	3.7	32.7	4.3	17.3	2.5	10.3	2.9	1.3		80.7	7.7
2002	no sample											
2003	43.0	4.4	25.0	7.6	16.0	4.9	11.0	3.4	2.0		95.0	4.1
2004	44.7	6.8	45.1	5.8	19.3	2.2	13.1	3.9	1.5		122.2	10.7
2005	61.8	10.2	67.6	10.0	38.9	6.5	14.9	2.0	0.0		183.3	20.8
2006	52.5	8.8	37.6	1.9	33.0	3.4	4.0	0.7	0.0		127.1	11.6
2007	28.7	4.7	53.9	8.3	33.0	3.5	7.9	1.9	1.2	0.9	123.5	13.5
2008	39.5	12.7	31.1	3.5	32.0	5.8	9.4	2.7	0.0		111.9	15.0
2009	44.2	10.7	61.4	11.8	20.4	4.8	9.9	2.4	0.6	0.6	135.9	15.1
2010	52.4	3.1	35.6	5.6	20.4	2.8	10.4	2.5	0.4	0.4	118.8	11.3
2011	no sample											
2012	54.7	9.0	20.7	1.9	12.0	2.3	12.7	4.3	3.3	2.6	100.0	9.4
2013	no sample											
2014	25.6	5.5	32.8	10.2	35.2	5.9	16.8	5.3	3.2	1.5	110.4	15.2
2015	23.6	3.5	48.4	6.8	33.6	4.6	18.0	2.6	2.4	0.9		
2016							ple					
2017	62.0	17.7	22.7	5.5	20.7	6.5	4.0	1.5	0.7	0.7	109.3	25.6

EFDFLLSS.D00-D10, D12, D14-D15, D17

Table 53. PSD and RSD values for each species of black bass in each area of Fishtrap Lake (1,143 acres) on 10 May 2017. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are 95\% confidence intervals.

	Smallmouth bass			Spotted bass			Largemouth bass		
Area	No.	$\mathrm{PSD}_{7}$	$\mathrm{RSD}_{14}$	No.	$\mathrm{PSD}_{7}$	$\mathrm{RSD}_{14}$	No.	$\mathrm{PSD}_{8}$	$\mathrm{RSD}_{15}$
Lower	1	$\begin{gathered} 36 \\ (10-62) \end{gathered}$	$\begin{gathered} 21 \\ (0-44) \end{gathered}$	8	$\begin{gathered} 13 \\ 0-37) \end{gathered}$	0	30	$\begin{gathered} 60 \\ (42-78) \end{gathered}$	$\begin{gathered} 13 \\ (1-26) \end{gathered}$
Upper	0			0			41	$\begin{gathered} 46 \\ (31-62) \end{gathered}$	$\begin{gathered} 5 \\ (0-12) \end{gathered}$
Total	1	100		8	$\begin{gathered} 13 \\ 0-37) \\ \hline \end{gathered}$		71	$\begin{gathered} 52 \\ (40-64) \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ (2-15) \\ \hline \end{gathered}$

EFDFLLSS.D17

Table 54. Population assessment for largemouth bass collected from Fishtrap Lake (1,143 acres). Actual values are in parentheses. Scoring based on statewide assessment.

Parameter	2005	2006	2007	2008	2009	2010	2012	2014	2015	2017
Mean length age 3 at capture	$\begin{gathered} 4 \\ (13.6) \end{gathered}$	$\begin{gathered} 4 \\ (13.6) \end{gathered}$	$\begin{gathered} \hline 4 \\ (13.6) \end{gathered}$	$\begin{gathered} 4 \\ (13.6) \end{gathered}$	$\begin{gathered} 4 \\ (13.6) \end{gathered}$	$\begin{gathered} 2 \\ (11.7) \end{gathered}$	$\begin{gathered} 2 \\ (11.8) \end{gathered}$			
Spring CPUE age 1	$\begin{gathered} 4 \\ (61.50) \end{gathered}$	$\begin{gathered} 4 \\ (52.50) \end{gathered}$	$\begin{gathered} 3 \\ (28.29) \end{gathered}$	$\begin{gathered} 3 \\ (38.51) \end{gathered}$	$\begin{gathered} 4 \\ (44.17) \end{gathered}$	$\begin{gathered} 4 \\ (51.55) \end{gathered}$	$\begin{gathered} 4 \\ (50.75) \end{gathered}$	$\begin{gathered} 3 \\ (24.20) \end{gathered}$	$\begin{gathered} 2 \\ (22.05) \end{gathered}$	$\begin{gathered} 4 \\ (61.33) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 4 \\ (38.90) \end{gathered}$	$\begin{gathered} 4 \\ (33.00) \end{gathered}$	$\begin{gathered} 4 \\ (33.00) \end{gathered}$	$\begin{gathered} 4 \\ (31.99) \end{gathered}$	$\begin{gathered} 2 \\ (20.42) \end{gathered}$	$\begin{gathered} 2 \\ (20.40) \end{gathered}$	$\begin{gathered} 1 \\ (12.00) \end{gathered}$	$\begin{gathered} 4 \\ (35.20) \end{gathered}$	$\begin{gathered} 4 \\ (33.60) \end{gathered}$	$\begin{gathered} 2 \\ (20.67) \end{gathered}$
Spring CPUE $\geq 15.0$ in	$\begin{gathered} 3 \\ (14.90) \end{gathered}$	$\begin{gathered} 1 \\ (4.00) \end{gathered}$	$\begin{gathered} 2 \\ (7.91) \end{gathered}$	$\begin{gathered} 2 \\ (9.37) \end{gathered}$	$\begin{gathered} 2 \\ (9.85) \end{gathered}$	$\begin{gathered} 2 \\ (10.40) \end{gathered}$	$\begin{gathered} 2 \\ (12.67) \end{gathered}$	$\begin{gathered} 3 \\ (16.80) \end{gathered}$	$\begin{gathered} 3 \\ (18.00) \end{gathered}$	$\begin{gathered} 1 \\ (4.00) \end{gathered}$
Spring CPUE $\geq 20.0$ in	$\begin{gathered} 1 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (1.19) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.00) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.64) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.40) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (3.33) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (3.20) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (2.40) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.67) \\ \hline \end{gathered}$
Total score	16	14	16	14	15	12	13	16	15	12
Assessment rating	Good	Good	Good	Good	Good	Fair	Good	Good	Good	Fair
Instantaneous mortality (z)	0.65	0.83	0.72	0.59	0.67	0.66	0.50	0.43	0.52	
Annual mortality (A)	48.00	56.50	51.30	44.30	49.10	48.20	39.20	35.20	40.70	
```EFDFLLSS.D03-D17 EFDFLLAS.D04, D10 EFDFLLAF.D17```										

Table 55. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.25 hours of 15-minute electrofishing samples at Fishtrap Lake (1,143 acres) on 23 September 2017; numbers in parentheses are standard

Area	Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Total	CPUE
Lower	Smallmouth bass		1	1														2	1.6 (1.0)
	Spotted bass		3			2	3	2	2	3	4	1						20	16.0 (6.7)
	Largemouth bass	3	32	54	20	1	8	10	11	5	7	6	1	3	1		3	165	132.0 (40.9)
Upper	Smallmouth bass			1														1	1.0 (1.5)
	Spotted bass						1						1					2	2.0 (1.6)
	Largemouth bass	1	29	64	32	3	3	10	6	1	6	4	1	2			1	163	163.0 (34.7)
Total	Smallmouth bass		1	2														3	1.3 (0.9)
	Spotted bass		3			2	4	2	2	3	4	1	1					22	9.8 (3.4)
	Largemouth bass	4	61	118	52	4	11	20	17	6	13	10	2	5	1		4	328	145.8 (25.3)

EFDFLLSS.D17

Table 56. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Fishtrap Lake (1,143 acres).

Year class	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2003	5.1	0.0	106.2	32.9	59.6	15.9	35.4	6.0
2004	5.0	0.0	256.0	51.1	122.7	23.9	61.5	10.2
2005	4.5	0.1	108.0	41.3	24.0	11.1	52.5	8.8
2006	5.0	0.1	72.7	14.1	36.5	8.0	28.3	4.5
2007	5.1	0.1	114.2	23.7	63.5	11.0	38.5	12.1
2008	4.6	0.1	75.3	25.9	26.3	9.5	44.2	10.7
2009	4.8	0.1	83.3	15.1	39.3	5.4	51.6	3.2
2010	5.2	0.1	111.6	16.4	61.6	8.4	no s	ple
2011	5.1	0.1	119.4	26.9	69.1	13.3	50.8	8.2
2012	5.1	0.1	72.7	24.3	38.0	12.0	no s	ple
2013	4.6	0.1	63.5	16.4	19.5	5.2	24.2	6.2
2014	4.8	0.1	54.0	8.8	21.2	3.6	22.1	3.1
2015	4.9	0.1	139.0	25.2	62.0	16.7	no s	ple
2016	4.7	0.0	105.2	25.1	32.0	6.3	61.33*	17.9
2017	5.4	0.1	105.8	20.5	76.9	15.9		

[^36]Table 57. Mean back-calculated length (in) at each annulus for largemouth bass collected from Fishtrap Lake (1,143 acres) on 23 September 2017, including 95\% confidence intervals.

Year class	No.	Age						
		1	2	3	4	5	6	
2016	31	6.5						
2015	14	6.9	10.9					
2013	4	6.0	10.2	11.8				
2012	5	6.6	10.0	12.0	13.8			
2011	4	6.5	10.3	12.1	13.4	14.7		
	1	6.7	11.6	13.4	14.9	15.9	16.8	
Mean								
Smallest		6.6	10.6	12.0	13.8	14.9	16.8	
Largest		8.9	9.0	10.2	11.2	11.7	16.8	
STD error		0.4	12.3	13.4	14.9	16.5	16.8	
95\% CI LO		6.4	0.2	0.2	0.3	0.9		
95\% CI HI		6.8	10.3	11.6	13.1	13.2		
Intercept = 0				12.5	14.4	16.6		
EFDFLLAF.D17								

Table 58. Length frequency and CPUE (fish/net-night) for white crappie collected at Fishtrap Lake (1,143 acres) in 20 net-nights on 28-30 November 2017.

Inch class												Total	CPUE	SE
3	4	5	6	7	8	9	10	11	12	13	14			
17	5		5	11	24	65	37	12	2		1	179	9.0	(2.2)

EFDFLCTF.D17

Table 59. PSD and RSD values calculated for white crappie collected in trap nets at Fishtrap Lake (1,143 acres) on 28-30 November 2017; 95\% confidence intervals are in parentheses.

No. \geq stock size	PSD	RSD_{10}
157	90	33
	$(85-95)$	$(26-41)$

EFDFLCTF.D17

Table 60. Mean back-calculated length (in) at each annulus for white crappie collected from Fishtrap Lake (1,143 acres) on 28-30 November 2017, including 95\% confidence intervals.

Table 61. Age frequency and CPUE (fish/net-night) of white crappie collected by trap netting for 20 net-nights at Fishtrap Lake (1,143 acres) on 28-30 November 2017; numbers in parentheses are standard errors

Age	Inch class												Total	Age\%	CPUE	
	3	4	5	6	7	8	9	10	11	12	13	14				
0	17	5											22	12	1.1	(0.4)
1				5	10								15	8	0.8	(0.2)
2						3	11	10					24	14	1.2	(0.4)
3						3	11	5	2	1			22	13	1.1	(0.4)
4						3	23	5	2	1			34	19	1.7	(0.5)
5						2	4	5	3				14	8	0.7	(0.3)
6					1	7	11	10	2				31	18	1.6	(0.5)
7						2				1		1	4	2	0.2	(0.1)
8						2	4	2	2				10	6	0.5	(0.2)
9						2							2	1	0.1	(0.0)
Total	17	5		5	11	24	64	37	11	3		1	178			
\%	9	3		3	6	13	36	21	7	1		1				

CPUE of ≥ 8 in (quality size) $=7.05$
CPUE of ≥ 10 in (preferred size) $=2.60$
EFDFLCAF.D17
EFDFLCTF.D17

Table 62. Population assessment scores for white crappie collected from Fishtrap Lake (1,143 acres). Actual assessment values are in parentheses. Scoring based on statewide assessment.

	Year								
Parameter	2003	2005	2007	2008	2010	2011	2013	2015	2017
CPUE age-1 and older	$\begin{gathered} 4 \\ (100.0) \end{gathered}$	$\begin{gathered} \hline 4 \\ (38.9) \end{gathered}$	$\begin{gathered} 3 \\ (6.7) \end{gathered}$	$\begin{gathered} 4 \\ (31.9) \end{gathered}$	$\begin{gathered} \hline 4 \\ (27.2) \end{gathered}$	$\begin{gathered} 4 \\ (74.9) \end{gathered}$	$\begin{gathered} \hline 4 \\ (117.0) \end{gathered}$	$\begin{gathered} 4 \\ (20.4) \end{gathered}$	$\begin{gathered} 3 \\ (8.0) \end{gathered}$
CPUE age 1	$\begin{gathered} 4 \\ (33.2) \end{gathered}$	$\begin{gathered} 2 \\ (2.1) \end{gathered}$	$\begin{gathered} 2 \\ (3.2) \end{gathered}$	$\begin{gathered} 4 \\ (10.8) \end{gathered}$	$\begin{gathered} 4 \\ (10.6) \end{gathered}$	$\begin{gathered} 4 \\ (15.1) \end{gathered}$	$\begin{gathered} 4 \\ (27.8) \end{gathered}$	$\begin{gathered} 2 \\ (1.1) \end{gathered}$	$\begin{gathered} 1 \\ (0.8) \end{gathered}$
CPUE age 0	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 4 \\ (22.5) \end{gathered}$	$\begin{gathered} 3 \\ (2.7) \end{gathered}$	$\begin{gathered} 4 \\ (18.8) \end{gathered}$	$\begin{gathered} 3 \\ (3.1) \end{gathered}$	$\begin{gathered} 4 \\ (14.0) \end{gathered}$	$\begin{gathered} 4 \\ (12.1) \end{gathered}$	$\begin{gathered} 2 \\ (1.1) \end{gathered}$	$\begin{gathered} 2 \\ (1.1) \end{gathered}$
CPUE ≥ 8.0 in	$\begin{gathered} 4 \\ (15.9) \end{gathered}$	$\begin{gathered} 4 \\ (25.9) \end{gathered}$	$\begin{gathered} 2 \\ (2.9) \end{gathered}$	$\begin{gathered} 4 \\ (8.8) \end{gathered}$	$\begin{gathered} 4 \\ (10.4) \end{gathered}$	$\begin{gathered} 4 \\ (25.1) \end{gathered}$	$\begin{gathered} 4 \\ (69.2) \end{gathered}$	$\begin{gathered} 4 \\ (19.0) \end{gathered}$	$\begin{gathered} 4 \\ (7.1) \end{gathered}$
Mean age 2 length @ capture	$\begin{gathered} 1 \\ (7.1) \end{gathered}$	$\begin{gathered} 2 \\ (8.2) \end{gathered}$	$\begin{gathered} 2 \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (7.8) \end{gathered}$	$\begin{gathered} 1 \\ (7.5) \end{gathered}$	$\begin{gathered} 1 \\ (7.3) \end{gathered}$	$\begin{gathered} 2 \\ (8.8) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (8.5) \end{gathered}$	$\begin{gathered} 3 \\ (9.6) \\ \hline \end{gathered}$
Total score Assessment rating	14 Good	$\begin{gathered} 16 \\ \text { Good } \end{gathered}$	$\begin{gathered} 12 \\ \text { Fair } \end{gathered}$	$\overline{17}$ Excellent	$\begin{gathered} 16 \\ \text { Good } \end{gathered}$	17 Excellent	$\overline{18}$ Excellent	$\begin{gathered} 14 \\ \text { Good } \end{gathered}$	$\begin{gathered} 13 \\ \text { Good } \end{gathered}$
Instantaneous mortality (z)	1.45	0.56	0.80	0.78	1.19	0.75	0.87	0.21	0.25
Annual Mortality (A)	76.60	43.10	54.90	54.40	69.7	53.00	58.20	19.00	22.10
EFDFLCTF.D03-D17 EFDFLCAF.D03-D17									

Table 63. Length frequency and electrofishing CPUE (fish/hr) of black bass collected in approximately 0.75 hours of $7.5-\mathrm{min}$. nocturnal electrofishing samples in Fishpond Lake (32 acres) on 12 April 2017;
numbers in parentheses are standard errors.

Species	Inch class																		Total	CPUE
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23		
LMB	1	2	12	9	5	8	19	26	16	9	3	10	4	7	2	1	2	2	138	184.0 (14.5)
LMB = largemouth bass																				
EFDFPLSS.D17																				

Table 64. Spring nocturnal electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Fishpond Lake (32 acres). S.E. = standard error.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	S.E.										
1990	19.2		43.6		14.1		2.6		0.0		79.5	
1991	216.3		192.3		62.8		10.7		0.7			
1992											80.0	
1993	9.0		83.0		42.0		0.0		0.0		134.0	
1994	57.0		28.0		0.0		5.0		0.0		90.0	
1995												
1996	2.3		99.6		25.5		10.4		1.2		137.8	
1997	4.0		33.3		32.7		6.0		0.7		76.0	
1998	11.7		29.6		49.4		21.5		0.0		112.2	
1999	193.6		107.2		19.2		24.8		0.8		344.8	
2000	5.9		246.4		11.1		7.4		0.7		270.7	
2001	28.0		118.0		32.0		8.7		4.0		186.7	
2002												
2003												
2004	78.9	12.2	76.0	7.9	45.2	5.9	39.4	6.7	3.9	2.9	239.5	14.9
2005												
2006	31.9	5.5	168.1	9.9	14.7	3.8	30.4	2.4	7.9	2.9	245.0	12.5
2007												
2008	5.0	2.0	109.3	13.6	61.8	6.2	16.9	3.3	11.6	2.4	192.9	15.4
2009	11.4	2.4	43.4	6.7	64.0	10.6	21.7	4.2	10.3	2.9	140.6	15.5
2010	4.6	2.4	34.3	6.7	26.3	2.9	13.7	4.2	4.6	2.4	78.9	9.1
2011	17.1	5.9	35.4	6.7	28.6	6.0	28.6	4.6	4.6	2.4	109.7	13.5
2012												
2013	17.1	8.3	50.3	11.5	76.6	10.2	36.6	11.4	11.4	4.9	180.6	22.4
2015	14.9	4.4	38.9	8.5	58.3	7.1	30.9	7.7	11.4	3.0	142.9	15.2
2017	4.0	2.7	45.3	4.9	81.3	6.0	53.3	9.6	9.3	3.8	184.0	14.5

Table 65. PSD and RSD_{15} values obtained for largemouth bass taken in spring nocturnal electrofishing samples in Fishpond Lake (32 acres) on 12
April 2017; 95\% confidence intervals are in parentheses.

No. ≥ 8.0 in	PSD (+/-95\%)	RSD $_{15}(+/-95 \%)$
135	75	30
	$(68-83)$	$(22-37)$
EFDFPLSS.D17		

EFDFPLSS.D17

Table 66. Length frequency and CPUE (fish/hr) of black bass and walleye collected at Martins Fork Lake (330 acres) during 1.0 hour of 15 -minute nocturnal electrofishing samples on 20 September 2017; numbers in parentheses are standard errors.

Inch class																	Total	CPUE
Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	21		
SMB								1									1	1.0 (1.0)
SB		7		4	2	6	12	10	3								44	44.0 (9.8)
LMB	24	46	22	4	15	31	11	9	5	4	1	1	1	1	1	1	177	177.0 (23.9)
Coosa																	0	0.0
Walleye																	0	0.0
SMB = smallmouth bass																		
SB = spotted bass																		
LMB = largemouth bass																		
EFDMLLS	D17																	

Table 67. Electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Martins Fork Lake (330 acres); CPUE = fish/hr, SE = standard error.

Year class	Age-0		Age-0		Age-0 ≥ 5.0 in		Age-1	
	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2002	5.5	0.1	34.4	8.6	25.6	7.9	15.3	3.6
2003	no fall sa						77.5	18.5
2004	no fall sa						24.6	5.9
2005	4.4	0.2	32.0	4.3	10.0	2.6	10.0	2.3
2006	4.5	0.1	38.4	14.5	11.2	3.2	10.1	3.4
2007	4.6	0.2	28.7	8.7	10.4	3.0	10.0	5.1
2008	4.4	0.2	31.9	14.3	10.3	2.7	7.2	2.9
2009	4.3	0.2	23.2	8.3	7.2	2.3	4.8	2.0
2010	5.2	0.2	40.0	11.6	26.7	9.3	11.2	3.4
2011	4.7	0.1	20.0	6.8	7.2	1.5	8.8	2.7
2012	4.8	0.2	28.8	4.6	13.6	3.9	no sample	
2013	4.0	0.2	21.0	6.6	6.0	1.2	22.0	5.3
2014	4.9	0.1	39.2	11.8	21.6	8.2	22.4	4.1
2015	4.6	0.1	59.0	24.4	18.0	7.4	no sample	
2016	4.5	0.1	67.0	26.5	15.0	9.0	no sample	
2017	4.5	0.1	95.0	24.6	25.0	4.4		
EFDMLLSF.D02-D17								
EFDMLLSS.D03-D15								
EFDMLLAS.D03, D09								
EFDMLLAF.D14								

Table 68. Length frequency and CPUE (fish/hr) of black bass collected in approximately 2.5 hours of 15-minute nocturnal electrofishing samples in Paintsville Lake (1,150 acres) on 19 April 2017; numbers in parentheses are standard errors.

Inch class																				Total	CPUE
Species/Area	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21		
Lower																					
SMB																				0	0.0
SB		1		1	1	2	1	1												7	5.6 (5.6)
LMB	3	20	14	7	12	39	32	24	12	4	6		2	1	3		2		2	183	146.4 (19.0)
Upper																					
SMB																				0	0.0
SB		2	1		1				2	1	1									8	6.4 (4.5)
LMB		12	9	9	2	24	15	4	3	1	3	2	4		1		1			90	72.0 (11.6)
Total																					
SMB																				0	0.0
SB		3	1	1	2	2	1	1	2	1	1									15	6.0 (3.4)
LMB	3	32	23	16	14	63	47	28	15	5	9	2	6	1	4		3		2	273	109.2 (16.3)

SMB = smallmouth bass
SB = spotted bass
LMB = largemouth bass
EFDPLLSS.D17

Table 69. Spring nocturnal electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Paintsville Lake (1,150 acres). SE = standard error.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	SE										
1988	6.8		10.6		1.6		0.3		0.0		19.3	
1989	15.4		16.0		3.4		0.9		0.0		36.3	
1990	34.0		31.3		2.7		2.0		0.0		70.0	
1991	26.6		33.1		12.0		0.4		0.4		72.0	
1992	16.4		44.0		21.3		0.7		0.0		82.4	
1993	16.4		26.3		22.5		2.8		0.6		68.0	
1994	34.0		47.4		26.6		3.6		0.3		111.6	15.6
1995	no sample											
1996						no s						
1997	29.0		40.0		26.3		1.0		0.3		96.3	11.5
1998	25.7		87.7		26.3		0.0		0.0		139.7	17.9
1999	36.3		65.7		36.7		2.3		0.0		141.0	12.1
2000	12.7	5.0	95.0	19.6	27.0	7.8	2.0	0.8	0.0	0.0	136.7	28.0
2001	42.3	5.5	63.0	10.8	46.7	4.8	4.3	0.9	0.7	0.5	156.3	17.5
2002	41.8	1.8	70.5	2.7	36.0	1.4	2.2	0.2	0.0	0.0	150.9	14.2
2003	106.0	21.2	71.0	10.8	19.7	5.7	3.0	1.3	0.3	0.3	199.7	35.2
2004	62.7	10.9	92.0	19.2	17.0	3.4	2.0	0.9	0.0	0.0	173.7	25.4
2005	80.4	31.9	133.3	38.9	35.1	6.0	6.2	1.2	0.4	0.4	255.1	72.7
2006	30.6	4.4	65.1	12.6	13.6	1.9	2.6	1.1	0.0	0.0	111.9	14.3
2007	39.8	9.5	81.6	23.0	11.1	3.1	6.5	0.8	0.0	0.0	139.0	20.5
2008	37.8	6.6	79.3	11.9	9.8	1.8	4.0	1.6	0.4	0.4	130.8	14.1
2009	28.1	8.0	69.2	24.6	6.2	2.6	2.3	1.0	0.0	0.0	105.9	16.4
2010	51.2	16.4	86.4	11.6	13.3	1.7	5.6	1.1	1.9	0.5	156.5	26.3
2011	40.6	7.2	56.9	5.1	9.4	1.9	3.7	0.9	1.1	0.5	110.6	11.6
2012	63.2	10.5	61.6	7.0	9.9	1.6	2.1	0.7	1.3	0.5	136.8	14.8
2013	58.6	4.9	60.0	5.6	4.6	1.1	4.0	1.0	0.3	0.3	127.1	7.0
2014	62.4	8.1	64.5	6.0	24.8	3.8	4.3	1.3	0.8	0.4	156.0	8.6
2015	83.6	7.4	68.4	11.5	17.8	3.6	10.7	3.0	2.7	1.5	180.4	15.4
2016	67.6	6.2	80.0	7.8	9.2	2.0	10.4	2.1	1.2	0.6	167.2	9.1
2017	35.2	5.3	61.2	11.3	6.4	1.4	6.4	1.5	0.8	0.5	109.2	16.3

EFDPLLSS.D88-D17

Table 70. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples in each area of Paintsville Lake (1,150 acres) on 19 April 2017; 95\% confidence intervals are in parentheses.

Area	Largemouth bass			Spotted bass		
	No.	PSD	RSD ${ }_{15}$	No.	PSD	RSD_{14}
Lower	127	$\begin{gathered} 16 \\ (9-22) \end{gathered}$	$\begin{gathered} 8 \\ (3-13) \end{gathered}$	5	0	0
Upper	58	$\begin{gathered} 21 \\ (10-31) \end{gathered}$	$\begin{gathered} 10 \\ (2-18) \end{gathered}$	5	$\begin{gathered} 80 \\ (41-119) \end{gathered}$	0
Total	185	$\begin{gathered} 17 \\ (12-23) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (5-13) \\ \hline \end{gathered}$	10	$\begin{gathered} 40 \\ (8-72) \\ \hline \end{gathered}$	0

EFDPLLSS.D17

Table 71. Spring nocturnal electrofishing population assessments for largemouth bass collected in Paintsville Lake (1,150 acres). Actual values are in parentheses. Scoring based on statewide assessment.

Parameter	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Mean length age-3 at capture	$\begin{gathered} 2 \\ (11.7) \end{gathered}$	$\begin{gathered} 1 \\ (10.6) \end{gathered}$	$\begin{gathered} 2 \\ (11.2) \end{gathered}$									
Spring CPUE age-1	$\begin{gathered} 4 \\ (43.5) \end{gathered}$	$\begin{gathered} 4 \\ (44.0) \end{gathered}$	$\begin{gathered} 4 \\ (51.5) \end{gathered}$	$\begin{gathered} 3 \\ (35.6) \end{gathered}$	$\begin{gathered} 4 \\ (58.1) \end{gathered}$	$\begin{gathered} 3 \\ (35.6) \end{gathered}$	$\begin{gathered} 4 \\ (68.8) \end{gathered}$	$\begin{gathered} 4 \\ (64.9) \end{gathered}$	$\begin{gathered} 4 \\ (63.7) \end{gathered}$	$\begin{gathered} 4 \\ (90.7) \end{gathered}$	$\begin{gathered} 4 \\ (71.2) \end{gathered}$	$\begin{gathered} 3 \\ (39.2) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 1 \\ (13.6) \end{gathered}$	$\begin{gathered} 1 \\ (11.1) \end{gathered}$	$\begin{gathered} 1 \\ (9.8) \end{gathered}$	$\begin{gathered} 1 \\ (6.2) \end{gathered}$	$\begin{gathered} 1 \\ (13.3) \end{gathered}$	$\begin{gathered} 1 \\ (9.4) \end{gathered}$	$\begin{gathered} 1 \\ (9.9) \end{gathered}$	$\begin{gathered} 1 \\ (4.6) \end{gathered}$	$\begin{gathered} 3 \\ (24.8) \end{gathered}$	$\begin{gathered} 2 \\ (17.8) \end{gathered}$	$\begin{gathered} 1 \\ (9.2) \end{gathered}$	$\begin{gathered} 1 \\ (6.4) \end{gathered}$
Spring CPUE ≥ 15.0 in	$\begin{gathered} 1 \\ (2.6) \end{gathered}$	$\begin{gathered} 2 \\ (6.5) \end{gathered}$	$\begin{gathered} 1 \\ (4.0) \end{gathered}$	$\begin{gathered} 1 \\ (2.3) \end{gathered}$	$\begin{gathered} 1 \\ (5.6) \end{gathered}$	$\begin{gathered} 1 \\ (3.7) \end{gathered}$	$\begin{gathered} 1 \\ (2.1) \end{gathered}$	$\begin{gathered} 1 \\ (4.0) \end{gathered}$	$\begin{gathered} 1 \\ (4.3) \end{gathered}$	$\begin{gathered} 2 \\ (10.7) \end{gathered}$	$\begin{gathered} 2 \\ (10.4) \end{gathered}$	$\begin{gathered} 2 \\ (6.4) \end{gathered}$
Spring CPUE ≥ 20.0 in	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 2 \\ (0.4) \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \end{gathered}$	$\begin{gathered} 4 \\ (1.9) \end{gathered}$	$\begin{gathered} 3 \\ (1.1) \end{gathered}$	$\begin{gathered} 4 \\ (1.3) \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \end{gathered}$	$\begin{gathered} 3 \\ (0.8) \end{gathered}$	$\begin{gathered} 4 \\ (2.7) \end{gathered}$	$\begin{gathered} 3 \\ (1.2) \end{gathered}$	$\begin{gathered} 3 \\ (0.8) \end{gathered}$
Total score	9	10	10	8	12	9	10	10	13	14	12	11
Assessment rating	Fair	Fair	Fair	Poor	Fair	Fair	Fair	Fair	Good	Good	Fair	Fair
Instantaneous mortality (z)	1.02	1.16	1.17	1.12	1.18	0.57						
Annual mortality (A)	63.80	68.60	69.10	67.40	69.40	83.70						
EFDPLLSS.D03-D17 EFDPLLAS.D03, D06, D11 EFDPLLAF.D12												

Table 72. Length frequency and CPUE (fish/hr) of black bass collected in 2.25 hours of 15 -minute nocturnal electrofishing samples in Paints ville Lake (1,150 acres) on 18 October 2017; numbers in parentheses are standard errors.

Area/	Inch class																					Total	CPUE
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22		
Lower																							
SMB																						0	0.0
SB		2			1			1				1										5	3.3 (1.9)
LMB	2	32	63	49	45	8	5	25	17	17	12	1	3			1		4			1	285	190.0 (35.7)
Upper																							
SMB																						0	0.0
SB		1	3		1	3	1						1									10	10.0 (4.8)
LMB		27	33	34	15	2	17	15	14	11	10	2							2	1		183	183.0 (31.7)
Total																							
SMB																							0.0
SB		3	3		2	3	1	1				1	1									15	6.0 (2.3)
LMB	2	59	96	83	60	10	22	40	31	28	22	3	3			1		4	2	1	1	468	187.2 (23.7)

SMB = smallmouth bass
SB= spotted bass
LMB = largemouth bass
EFDPLLSF.D17

Table 73. Nocturnal electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Paintsville Lake (1,150 acres); CPUE $=$ fish $/ \mathrm{hr}$.

					Age-0	5.0 in		
Year class	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2002							95.2	20.1
2003	4.8	0.1	31.3	6.1	14.0	2.2	61.4	10.7
2004	5.1	0.1	65.7	10.8	37.3	8.6	75.6	29.2
2005	4.5	0.1	46.0	9.6	10.7	2.7	43.5	5.9
2006	4.9	0.1	72.4	12.0	33.6	5.1	44.0	8.4
2007	5.1	0.1	52.4	24.0	30.2	15.6	51.5	7.3
2008	4.6	0.1	24.8	8.8	8.1	5.2	35.6	9.7
2009	4.6	0.1	64.6	13.3	23.1	10.7	58.1	17.6
2010	4.6	0.1	86.4	19.5	31.5	6.9	35.6	6.7
2011	5.1	0.1	36.3	7.2	19.7	4.3	68.8	11.1
2012	5.0	0.1	58.1	10.6	32.3	7.3	64.9	5.0
2013	4.9	0.0	111.7	13.8	53.1	5.0	63.7	8.3
2014	4.8	0.1	60.0	11.0	27.0	7.3	90.7	7.4
2015	4.9	0.1	95.1	17.7	42.2	6.7	71.2	5.6
2016	5.0	0.1	70.0	6.3	34.0	8.6	39.2	6.1
2017	5.0	0.1	125.2	20.2	62.4	12.9		
EFDPLLSF.D03-D17								
EFDPLLSS.D02-D17								
EFDPLLAS.D03, D06, D11								
EFDPLLAF.D12								

Table 74. Length frequency and electrofishing CPUE (fish/hr) of largemouth bass collected in approximately 0.75 hours of $7.5-\mathrm{min}$. electrofishing runs in Pikeville City Lake (20 acres) on 4 April 2017; numbers in parentheses are standard errors.

Inch class																				
4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Total	CPUE	
3	1	3	1	8	2		4		3	3	1	2	3	6	8	3	1	52	69.3	(11.6)

Table 75. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Pikeville City Lake (20 acres). SE = standard error.

EFDHALSS.D04-D17

Table 76. PSD and RSD values obtained for largemouth
bass species from spring electrofishing samples in
Pikeville City Lake (20 acres) on 4 April 2017; 95\%
confidence intervals are in parentheses.

No.	PSD	RSD_{15}
44	68	55
	$(54-82)$	$(40-69)$
EFDHALSS.D17		

EFDHALSS.D17

Table 77. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 3.0 hours of 15-minute electrofishing samples at Yatesville Lake (2,280 acres) on 26 April 2017; numbers in parentheses are standard errors.

Inch class																						CPUE
Area	Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Total	
Lower	SB	1	2	1	2	1	3	2	1	2											15	10.0 (6.5)
	LMB		23	67	36	11	42	25	4	7	12	12	13	9	12	2			1	1	277	184.7 (27.0)
Upper	SB																				0	0.0
	LMB		16	24	35	18	20	37	17	14	22	31	22	23	9	3	2	1			294	196.0 (23.1)
Total	SB	1	2	1	2	1	3	2	1	2											15	5.0 (3.5)
	LMB		39	91	71	29	62	62	21	21	34	43	35	32	21	5	2	1	1	1	571	190.3 (17.0)

SB = spotted bass
LMB =largemouth bass
EFDYLLSS.D17

Table 78. Spring nocturnal electrofishing CPUE (fish/hr) for each length group of largemouth bass at Yatesville Lake (2,280 acres). SE = standard error

EFDYLLSS.D93, D96-D02, D04-D10, D12, D14-D17

Table 79. PSD and RSD values for black bass species taken in spring electrofishing samples in each area of Yatesville Lake (2,280 acres) on 26 April 2017; 95\% confidence intervals are in parentheses.

Area	Largemouth bass			Spotted bass		
	No.	PSD	RSD_{15}	No.	PSD	RSD_{14}
Lower	140	$\begin{gathered} 44 \\ (24-42) \end{gathered}$	$\begin{gathered} 18 \\ (12-24) \end{gathered}$	9	$\begin{gathered} 22 \\ (0-51) \end{gathered}$	
Upper	201	$\begin{gathered} 56 \\ (49-63) \end{gathered}$	$\begin{gathered} 19 \\ (14-24) \end{gathered}$	0		
Total	341	$\begin{gathered} 51 \\ (46-57) \\ \hline \end{gathered}$	$\begin{gathered} 19 \\ (14-23) \\ \hline \end{gathered}$	9	$\begin{gathered} 22 \\ (0-51) \\ \hline \end{gathered}$	

EFDYLLSS.D17

Table 80. Spring nocturnal electrofishing population assessment for largemouth bass collected at Yatesville Lake (2,280 acres). Actual values are in parentheses. Scoring based on statewide assessment.

Parameter	2006	2007	2008	2009	2010	2012	2014	2015	2016	2017
Mean length age-3 at capture	$\begin{gathered} 4 \\ (13.5) \end{gathered}$	$\begin{gathered} 2 \\ (12.4) \end{gathered}$	$\begin{gathered} 2 \\ (12.4) \end{gathered}$	$\begin{gathered} 1 \\ (11.1) \end{gathered}$	$\begin{gathered} 1 \\ (11.1) \end{gathered}$	$\begin{gathered} 1 \\ (11.1) \end{gathered}$				
Spring CPUE age-1	$\begin{gathered} 4 \\ (45.9) \end{gathered}$	$\begin{gathered} 4 \\ (47.0) \end{gathered}$	$\begin{gathered} 4 \\ (45.0) \end{gathered}$	$\begin{gathered} 3 \\ (28.2) \end{gathered}$	$\begin{gathered} 4 \\ (42.6) \end{gathered}$	$\begin{gathered} 2 \\ (19.4) \end{gathered}$	$\begin{gathered} 3 \\ (37.0) \end{gathered}$	$\begin{gathered} 4 \\ (54.3) \end{gathered}$	$\begin{gathered} 4 \\ (56.7) \end{gathered}$	$\begin{gathered} 4 \\ (73.3) \end{gathered}$
Spring CPUE 12.0-14.9 in	$\begin{gathered} 2 \\ (20.3) \end{gathered}$	$\begin{gathered} 4 \\ (31.3) \end{gathered}$	$\begin{gathered} 2 \\ (20.4) \end{gathered}$	$\begin{gathered} 3 \\ (30.6) \end{gathered}$	$\begin{gathered} 2 \\ (19.3) \end{gathered}$	$\begin{gathered} 2 \\ (21.6) \end{gathered}$	$\begin{gathered} 3 \\ (23.3) \end{gathered}$	$\begin{gathered} 3 \\ (23.0) \end{gathered}$	$\begin{gathered} 1 \\ (16.0) \end{gathered}$	$\begin{gathered} 4 \\ (37.3) \end{gathered}$
Spring CPUE ≥ 15.0 in	$\begin{gathered} 3 \\ (16.0) \end{gathered}$	$\begin{gathered} 3 \\ (15.8) \end{gathered}$	$\begin{gathered} 3 \\ (16.6) \end{gathered}$	$\begin{gathered} 3 \\ (16.6) \end{gathered}$	$\begin{gathered} 2 \\ (11.0) \end{gathered}$	$\begin{gathered} 2 \\ (8.4) \end{gathered}$	$\begin{gathered} 3 \\ (16.7) \end{gathered}$	$\begin{gathered} 4 \\ (23.3) \end{gathered}$	$\begin{gathered} 3 \\ (16.7) \end{gathered}$	$\begin{gathered} 4 \\ (21.0) \end{gathered}$
Spring CPUE ≥ 20.0 in	$\begin{gathered} 3 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ (0.0) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.8) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (0.3) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.7) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0.7) \\ \hline \end{gathered}$
Total score	16	16	14	14	15	11	13	15	12	16
Assessment rating	Good	Good	Good	Good	Good	Fair	Good	Good	Fair	Good
Instantaneous mortality (z)	1.23	0.80	0.70	0.91	1.22	0.79	0.77			
Annual mortality (A)	70.70	55.20	50.20	59.80	70.40	54.60	53.70			
```EFDYLLSS.D02-D10, D12, D14-D17 EFDYLLAS.D05, D06, D12 EFDYLLAF.D15```										

Table 81. Length frequency and nocturnal electrofishing CPUE (fish/hr) of black bass collected at Yatesville Lake (2,280 acres) during 2.5 hours of 15 -minute samples on 26 September 2017; numbers in parentheses are standard errors.

Area/ ${ }^{\text {Species }}$	Inch class																		Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		
Lower																				
SB		26	16	2		3	4	3		1									55	44.0 (27.0)
LMB		3	51	54	15	9	37	23	23	14	3	2	5	2	3	1			245	196.0 (22.5)
Upper																				
SB			1	1						1									3	2.4 (2.4)
LMB	1	7	33	25	7	18	44	15	12	10	8	6	9	5	2	1		1	204	163.2 (12.1)
Total																				
SB	0	26	17	3	0	3	4	3	0	2	0	0	0	0	0	0	0	0	58	23.2 (14.6)
LMB	1	10	84	79	22	27	81	38	35	24	11	8	14	7	5	2	0	1	449	179.6 (13.2)
LMB = largemouth bass																				
SB= spotted	bas																			
EFDYLLSF. 1																				

Table 82. Fall electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected during 2003-2017 at Yatesville Lake (2,280 acres); CPUE = fish/hr, SE = standard error.

					Age-0	5.0 in		
Year class	Mean length	SE	CPUE	SE	CPUE	SE	CPUE	SE
2003	5.3	0.1	46.0	6.3	29.3	4.4	12.7	2.8
2004	4.8	0.1	69.5	13.5	32.5	10.8	42.3	7.1
2005	4.7	0.1	47.0	12.3	20.0	7.1	45.9	7.2
2006	4.9	0.1	29.5	7.8	13.8	3.8	47.0	6.0
2007	5.3	0.1	37.4	10.6	23.2	6.1	45.0	8.1
2008	5.1	0.1	45.9	7.8	28.4	6.0	28.2	5.3
2009	4.9	0.1	32.7	6.5	16.3	4.0	42.6	6.4
2010	5.1	0.1	78.6	11.5	45.1	8.7	no sample	
2011	4.9	0.1	55.3	9.6	28.7	4.9	19.4	2.5
2012	5.0	0.1	82.9	20.0	45.1	10.1	no sample	
2013	5.2	0.1	39.6	5.8	25.6	5.0	37.0	2.9
2014	4.7	0.1	79.3	14.8	29.3	7.8	54.3	7.7
2015	5.0	0.1	92.0	11.3	48.7	9.9	56.7	9.9
2016	5.8	0.1	67.3	7.1	61.3	7.2	73.3	10.9
2017	5.1	0.1	84.4	8.7	46.4	7.1		
EFDYLLSS.D03-D17								
EFDYLLSF.D03-D17								
EFDYLLAS.D05, D06, D12								
EFDYLLAF.D15								

Appendix A. Carr Creek Lake Angler Attitude Survey 2017
Frequency Table ( $\mathrm{N}=43$ )

Q3. On average how many times do you fish Carr Creek Lake in a year?		
	Frequency	Percent
First Time	1	$2.4 \%$
1 to 4	11	$26.8 \%$
5 to 10	9	$22.0 \%$
More than 10	20	$48.8 \%$
Total	41	
No Response	2	


Q4. Which species of fish do you fish for at Carr Creek Lake? (Bass)		
	Frequency	Percent
Bass	32	$74.4 \%$
Crappie	21	$48.8 \%$
Bluegill/Redear	23	$53.5 \%$
Catfish	16	$37.2 \%$
Walleye	13	$30.2 \%$
Carp	1	$2.3 \%$

Q5. Which one species do you fish for most at Carr Creek Lake (check only one)?

	Frequency	Percent
Bass	22	$61.1 \%$
Crappie	3	$8.3 \%$
Bluegill/Redear	4	$11.1 \%$
Catfish	6	$16.7 \%$
Walleye	1	$2.8 \%$
Total	36	
No Response	7	

Q6. In general, what level of satisfaction or dissatisfaction do you have with bass fishing at Carr Creek Lake?

	Frequency	Percent
Very Satisfied	1	$3.1 \%$
Somewhat Satisfied	11	$34.4 \%$
Neutral	7	$21.9 \%$
Somewhat Dissatisfied	10	$31.3 \%$
Very Dissatisfied	3	$9.4 \%$
No Opinion	0	$0.0 \%$
Total	32	
No Response	11	

Appendix A (cont).
Q6a. If you responded with very or somewhat satisfied in question (6) What is the single most important reason for your satisfaction?

	Frequency	Percent
Number of fish	5	$38.5 \%$
Size of fish	7	$53.8 \%$
Size limit	0	$0.0 \%$
Creel limit	1	$7.7 \%$
Low angler pressure	0	$0.0 \%$
Total	13	
No Response	30	

Q6b. If you responded with somewhat or very dissatisfied in question (6) what is the single most important reason for your dissatisfaction?

	Frequency	Percent
Number of fish	10	$76.9 \%$
Size of fish	1	$7.7 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Too many anglers	0	$0.0 \%$
limited habitat/good areas to fish	1	$7.7 \%$
slot limit on bass like Paints ville or raise the size limit	1	$7.7 \%$
Total	13	
No Response	30	

Q7. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Carr Creek Lake?

	Frequency	Percent
Very Satisfied	3	$13.6 \%$
Somewhat Satisfied	4	$18.2 \%$
Neutral	3	$13.6 \%$
Somewhat Dissatisfied	9	$40.9 \%$
Very Dissatisfied	3	$13.6 \%$
No Opinion	0	$0.0 \%$
Total	22	
No Response	21	

Q7a. If you responded with very or somewhat satisfied in question (7) What is the single most important reason for your satisfaction?

	Frequency	Percent
Number of fish	3	$37.5 \%$
Size of fish	5	$62.5 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Low angler pressure	0	$0.0 \%$
Total	8	
No Response	35	

Appendix A (cont).
Q7b. If you responded with somewhat or very dissatisfied in question (7) what is the single most important reason for your dissatisfaction?

	Frequency	Percent
Number of fish	11	$100.0 \%$
Size of fish	0	$0.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Too many anglers	0	$0.0 \%$
Total	11	
No Response	32	

Q8. In general, what level of satisfaction or dissatisfaction do you have with bluegill/redear fishing at Carr Creek Lake?

	Frequency	Percent
Very Satisfied	2	$8.7 \%$
Somewhat Satisfied	8	$34.8 \%$
Neutral	4	$17.4 \%$
Somewhat Dissatisfied	7	$30.4 \%$
Very Dissatisfied	2	$8.7 \%$
No Opinion	0	$0.0 \%$
Total	23	
No Response	20	

Q8a. If you responded with very or somewhat satisfied in question (8) What is the single most important reason for your satisfaction?

	Frequency	Percent
Number of fish	6	$46.2 \%$
Size of fish	4	$30.8 \%$
Size limit	0	$0.0 \%$
Creel limit	2	$15.4 \%$
Low angler pressure	1	$7.7 \%$
Total	13	
No Response	30	

Q8b. If you responded with somewhat or very dissatisfied in question (8) what is the single most important reason for your dissatisfaction?

	Frequency	Percent
Number of fish	2	$40.0 \%$
Size of fish	3	$60.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Too many anglers	0	$0.0 \%$
Total	5	
No Response	38	

Appendix A (cont).

Q9. In general, what level of satisfaction or dissatisfaction do you have		
with catfish fishing at Carr Creek Lake?	Frequency	Percent
	2	$14.3 \%$
Very Satisfied	7	$50.0 \%$
Somewhat Satisfied	4	$28.6 \%$
Neutral	1	$7.1 \%$
Somewhat Dissatisfied	0	$0.0 \%$
Very Dissatisfied	0	$0.0 \%$
No Opinion	14	
Total	29	
No Response		

Q9a. If you responded with very or somewhat satisfied in question (9) What is the single most important reason for your satisfaction?

	Frequency	Percent
Number of fish	7	$70.0 \%$
Size of fish	3	$30.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Low angler pressure	0	$0.0 \%$
Total	10	
No Response	33	

Q9b. If you responded with somewhat or very dissatisfied in question (9) what is the single most important reason for your dissatisfaction?

	Frequency	Percent
Number of fish	0	$0.0 \%$
Size of fish	1	$100.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Too many anglers	0	$0.0 \%$
Total	1	
No Response	42	

Q10. In general, what level of satisfaction or dissatisfaction do you have with walleye fishing at Carr Creek Lake?

	Frequency	Percent
Very Satisfied	0	$0.0 \%$
Somewhat Satisfied	4	$33.3 \%$
Neutral	2	$16.7 \%$
Somewhat Dissatisfied	5	$41.7 \%$
Very Dissatisfied	1	$8.3 \%$
No Opinion	0	$0.0 \%$
Total	12	
No Response	31	

Appendix A (cont).
Q10a. If you responded with very or somewhat satisfied in question (10) What is the single most important reason for your satisfaction?

	Frequency	Percent
Number of fish	3	$75.0 \%$
Size of fish	1	$25.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Low angler pressure	0	$0.0 \%$
Total	4	
No Response	39	

Q10b. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction?

	Frequency	Percent
Number of fish	3	$50.0 \%$
Size of fish	0	$0.0 \%$
Size limit	0	$0.0 \%$
Creel limit	0	$0.0 \%$
Too many anglers	0	$0.0 \%$
can't catch them	2	$33.3 \%$
just plain hard to catch	1	$16.7 \%$
Total	6	
No Response	37	


Q11. Do you fish any tournaments?		
	Frequency	Percent
Yes	18	$42.9 \%$
No	24	$57.1 \%$
Total	42	
No Response	1	

Q12. Do you use the KDFWR tournament registration website to register tournaments?

	Frequency	Percent
Yes	0	$0.0 \%$
No	42	$100.0 \%$
Total	42	
No Response	1	

Q13. Do you use the KDFWR tournament registration website to plan your activity at a particular boat ramp access?

	Frequency	Percent
Yes	1	$2.4 \%$
No	40	$97.6 \%$
Total	41	
No Response	2	


Appendix A (cont).		
Q14. How would you rate the existing fish habitat at Carr Creek Lake (both natural and man-made)?		
	Frequency	Percent
Very Good	2	4.8\%
Good	12	28.6\%
Fair	21	50.0\%
Poor	4	9.5\%
Very Poor	3	7.1\%
Total	42	
No Response	1	

Q15. Were you aware KDFWR places fish habitat (e.g. fish attractors/structures) within the lake?

	Frequency	Percent
Yes	32	$76.2 \%$
No	10	$23.8 \%$
Total	42	
No Response	1	

Q16. Do you regularly fish Dept. placed attractors/structures at Carr Creek Lake?

	Frequency	Percent
Yes	25	$75.8 \%$
No	8	$24.2 \%$
Total	33	
No Response	10	

## Q17. How did you find these attractors/structures?

	Frequency	Percent
On my own	23	$69.7 \%$
Friend/word of mouth	9	$27.3 \%$
KDFWR Website	2	$6.1 \%$
buoys	1	$3.0 \%$

Q18. Do you feel the addition of Dept. placed attractors/structures has improved your fishing results?

	Frequency	Percent
Yes	24	$72.7 \%$
No	1	$3.0 \%$
No Opinion	8	$24.2 \%$
Total	33	
No Response	10	

Appendix A (cont).
Q19. Were you aware that the locations of KDFWR placed attractors/structure are available on KDFWR website?

	Frequency	Percent
Yes	14	$42.4 \%$
No	19	$57.6 \%$
Total	33	
No Response	10	

# WESTERN FISHERIES DISTRICT <br> Project B: Stream Fishery Surveys - Warmwater Streams <br> FINDINGS 

## Lower Tennessee River

Diurnal electrofishing (120 PPS DC current) was conducted on September 07 and 112017 in the lower Tennessee River (TRM 22.4) below Kentucky Lake Dam downstream to river mile 17. A total of 3.25 hours of sampling yielded 5039 fish, comprised of 39 species (Table 1). The sample at river mile 22.4 was conducted by the Critical Species Investigation (CSI) branch and included the collection of shad and herrings. Of the sportfish collected in the most recent study, bluegill had the highest catch rate at 28.6 fish $/ \mathrm{hr}$. The catch rate ( $26.2 \mathrm{fish} / \mathrm{hr}$ ) for largemouth bass was down from the 40.3 fish $/ \mathrm{hr}$ collected in 2015 . The catch rate for all catfish was $13.5 \mathrm{fish} / \mathrm{hr}$ in the most recent study, as compared to approximately 54.3 fish/hr collected in 2015. Low pulse (15 PPS) DC current was used to help collect catfish in some of the sampling locations. The catch rates of catfish in all of these surveys should always be used with caution because the amount of time dedicated to low pulse (15pps DC current) shocking was at the discretion of the driver and was typically based on an anticipation of higher catch rates due to habitat differences such as greater depth and the presence of woody debris. The catch rate of silver carp was $36.9 \mathrm{fish} / \mathrm{hr}$.

## Lower Cumberland River

The lower Cumberland River was sampled using diurnal electrofishing on 11 and 20 September 2017 below Lake Barkley Dam (CRM 30.6 sampled by CSI branch) and near Dycusburg, KY (CRM 20.0). A total of 2.0 hours of electrofishing yielded 4118 fish, comprised of 33 species (Table 2). As seen in previous years, largemouth bass and bluegill accounted for the highest catch rates of all sportfish species ( 29.6 fish $/ \mathrm{hr}$ and $18.0 \mathrm{fish} / \mathrm{hr}$, respectively). The catch rate of silver carp was 10.0 fish $/ \mathrm{hr}$, as compared to 18.0 fish $/ \mathrm{hr}$ collected during the 2015 study. The highest catch rates (excluding shad) were those of longnose gar ( $45.2 \mathrm{fish} / \mathrm{hr}$ ).

## Ohio River

The Ohio River was sampled using diurnal electrofishing on 26 August and 6 September 2017. Sampling areas included Smithland Tailwater (ORM 918.5-920.1) and the area between Dam \#52 and Shawnee Steam Plant (ORM 938.9-946.4). A total of 497 ( 141.7 fish/hr) fish, comprised of 27 species were collected (Table 3). The catch rate for largemouth bass ( $4.0 \mathrm{fish} / \mathrm{hr}$ ) was lower than 2015 ( $5.0 \mathrm{fish} / \mathrm{hr}$ ), but was higher than 2013 ( $2.0 \mathrm{fish} / \mathrm{hr}$ ). Channel catfish had the highest catch rate ( 22.9 fish $/ \mathrm{hr}$ ). Low pulse ( 15 PPS) DC current was used to help collect catfish in some of the sampling locations. A total of 3.5 hours (14-900-second runs) were directed at all fish except for shad and herrings. Silver carp catch rates were 12.0 fish $/ \mathrm{hr}$, with most fish collected when corralled near a wing dyke.

## Mississippi River

The Mississippi River was sampled at two locations on September 8 and 252017 by diurnal electrofishing. The first site was near Wickliffe, KY. The second site was near Columbus Belmont, KY. The 3.5 hours of sampling effort yielded 520 ( $173.3 \mathrm{fish} / \mathrm{hr}$ ) sportfish comprised of 18 different species (Table 4 ). White bass were
collected at a rate of 3.0 fish $/ \mathrm{hr}$, down from 8.3 fish $/ \mathrm{hr}$ collected in 2015. Catfish species made up the majority of fish collected. The catch rate for all catfish was 91.7 fish $/ \mathrm{hr}$, which was up from the 56.0 fish $/ \mathrm{hr}$ collected in 2015. Low pulse (15 PPS) DC current was selectively used to collect catfish species in both studies. Silver carp catch rates were lower in the Mississippi river ( 4.0 fish $/ \mathrm{hr}$ ) than in other rivers we sampled this year, but this may have more to do with sampling conditions rather than actual relative abundance.

Table 1. Relative species abundance and size distribution of species collected during diurnal electrofishing (PPS 120) on the Lower Tennessee River on 11 and 07 September 2017. Sample sites were in the area of river mile 22 and 17. Total effort was 3.25 hours. Low pulse (15 PPS) was used for short periods of time in some areas

Species 1	Inch class																																								Total	CPUE	Std err
	1	2	3	4	5	6	7		8	9	10	11	1	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	43			
Channel Catfish						2	2	2	1	1			2	2	3			1	1	1		1	1	2																	20	6.2	2.2
Blue Catfish																			1						1																2	0.6	0.3
Flathead Catfish					1		1	1	2	3	4	4	1		2			1	1		3			1					1	1											22	6.8	1.9
White Bass			3		5		3	3	1				1			1																									14	4.3	2.5
Striped Bass			3		5	1																																			9	2.8	1.3
Hybrid Striped Bass				1	2	4	1	1		1	4	4	1																												14	4.3	2.1
Yellow Bass		2	2	3	10	14	15		5	2																															53	16.3	3.9
Bluegill 1	1	5	27	29	15	13	3																																		93	28.6	7.9
Redear Sunfish				4	2	4	4		1					1																											16	4.9	1.4
Spotted Bass				1	4	1																																			6	1.8	1.3
Largemouth Bass			2	4	12	10	2	2	1	10	9	9	8	5	1	3	1	8	2	1	3	1	1	1																	85	26.2	5.7
Smallmouth Bass		1	1	2	2	1																																			7	2.2	0.6
White Crappie					2	1				3	2	2	2		1	1																									12	3.7	1.8
Black Crappie					1	1			3	1	2	2					1																								9	2.8	1.5
Sauger					1	3	3	3								1		1																							9	2.8	2.1
Longear Sunfish		4	26	28	8																																				66	20.3	6.9
Green Sunfish				3																																					3	0.9	0.5
Orangespotted Sunfish		2																																									
River Carpsucker													1			2			1		1			1																	6	1.8	0.9
Smallmouth Buffalo											2	2	1	4	2	4	1	7	1		1	3	3	1	1		2	1													34	10.5	3.0
Bigmouth Buffalo														1		1		1																							3	0.9	0.5
Black Buffalo																1						2																			3	0.9	0.7
Freshw ater Drum		3	16	61	37	64	18		2				1		1		4	1	2	4	2	3	2		2		1	1											2		227	69.8	54.7
Common Carp																				3		4																			7	2.2	1.5
Silver Carp											7	729	29	17	5	5	5	2	2	4	1	1	3	4	1	2		3	3	8	5	2	7	1	1	1	1				120	36.9	20.6
Grass Carp																			1		1	1																			3	0.9	3.8
Longnose Gar													1							4	7	10	20	10	9		3	2		5	1	2	2	3	4		1	2	1		87	26.8	9.1
Shortnose Gar																	1		1		1	1	1	3	2	3	4	2	1				1								21	6.5	2.6
Spotted Gar																				1					1																2	0.6	0.4
Quillback									1																																1	0.3	0.3
Greater Redhorse									1																																1	0.3	0.3
American Eel																		1	1	1																					3	0.9	0.9
Bow fin																1			1	1		1	1	5	4	1	2	1													18	5.5	2.9
*Logperch			2	1	3																																				6	3.4	3.9
*Gizzard Shad							3	3	9	12	19	1	19	5	3																										70	40.0	4.9
*Threadfin Shad		3281	692	1	4																																				3978	2273.1	5.9
*Skipjack herring						1	5	5							1																										7	4.0	6.9
*Golden Shiner				1																																					1	0.6	7.9
*Bluntnose Minnow		1																																							1	0.6	8.9

## wdtr.d17

* only collected at Kentucky Dam tailwaters (RVM 22)

Table 2. Relative species abundance and size distribution of species collected during diurnal electrofishing (120 PPS) on the Lower Cumberland River on 11 and 20 September 2017. Sample sites were in the area of river mile 30 and 20. Total effort was 2.0 hours. The sampling runs at mile 20 were directed at all fish species excluding shad, small cyprinids, and atherinids. The sampling runs at mile 30 (Barkley Dam tailwaters) were directed at all fish species. Low pulse (15 PPS) was used for approximately 0.25 hours of the total sample time.

wfdcr.d17

* only collected in barkley dam tailwaters (RVM 30 ).

Table 3. Relative species abundance and size distribution of species collected during diurnal electrofishing (120 PPS) on the Ohio River on 26 August and 6 September 2017. Sample sites were in the area of river mile 944 and 920. Total effort was 3.5 hours consisting of fourteen, 900 -second runs directed at all fish species excluding shad and small cyprinids. Low pulse ( 15 PPS ) was used for approximately 0.75 hours of the total sample time.

Species	Inch class																																						Total	CPUE	Std err
	1	2	3	4	5	6		7	8	9	10	11		2	13	14	15	16	17		18	19	20	21		3	24	25	26	27	28	29	30	31	32	33	34	35			
Blue Catfish			9	4	1	3		6	7	2	4	2	2	1			1																						40	11.4	8.3
Channel Catfish		6	8	2		5		3	1	6	2	7	7	7	9	3	1	7		5	2	4		1					1										80	22.9	4.7
Flathead Catfish		1	5	2		6		3	3	1	3	2	2	2	5	2				2			1																38	10.9	6.1
White Bass				2	2	1				1								2		1																			9	2.6	1.0
Hybrid Striped Bass						1			2	2	1	2	2		1	2	1	2			1	2	1	2		3	1				1								25	7.1	3.4
Yellow Bass			2		1	1				1																													5	1.4	0.7
Bluegill		2	3		1			1																															7	2.0	1.2
Redear Sunfish		1	2		2	2		3	9	6	7	2	2																										34	9.7	3.5
Spotted Bass			2	3	1			1	1	1	2			1	1																								13	3.7	1.9
Largemouth Bass				1				1	2	4	4			2																									14	4.0	1.6
Black Crappie									1																														1	0.3	0.3
White Crappie			1																																				1		
Sauger																1																							1	0.3	0.3
Spotted Gar																1							1			1		1	1										5	1.4	0.7
Longnose Gar												1	1							1	1	1	1	1			1	2	2	3	3	3	5	8	2	4	1	1	41	11.7	3.3
Shortnosed Gar																				1	2	2	3			3	5	2	2	3					1				24	6.9	
Grass Carp																						2														1			3	0.9	0.5
Common Carp																		2		1		3	2	2		1					1								12	3.4	1.2
Silver Carp																1		3		3	1			1		1	6	5	4	4	6	3	1	1		1		1	42	12.0	5.3
River Carpsucker	1											2	2		1	1													1										6	1.7	0.7
Smallmouth Buffalo			1					1			1			1	1	1	2	3		5	5	2	1				1												25	7.1	3.7
Bigmouth Buffalo																		1			1								1										3	0.9	0.6
Black Buffalo																										1													1	0.3	0.3
Spotted Sucker															1																								1	0.3	0.3
Longear Sunfish			1	4	1																																		6	1.7	0.9
American Eel																				1																			1	0.3	1.9
Freshw ater Drum		2	3	12	1	2		5	3	1				1	1			2		5	1	3	6	2		2	3		3		1								59	16.9	5.2

wfdohr.d17

Table 4. Relative species abundance and size distribution of species collected during diurnal electrofishing (120 PPS) on the Mississippi River on 8 and 25 September 2017. Sample sites were in the area of river mile 950 (just downstream of Wickliffe, KY) and 936 (just downstream of Columbus Belmont, KY).
Total effort, 3.0 hours, of electrofishing was exerted; 12-900-second runs at each site where all species (excluding shad and small cyprinids) were dipped.
Low pulse (15 PPS) was used for a short periods during the total sample time.

Species	Inch class																																						Total	CPUE	Std err
	1	2	3	4	5	6	7	8	9	10	11		12	13	14	15	16	17	18	19	20		21	22	23	24	25	6	728	28	29	30	32	34	37	38	39	41			
Blue Catfish		8	8	3		1	3	2	1		3				2	5	6	3	6	2	3			2	2	3	3	3	3	1	4	1							78	26.0	8.0
Channel Catfish	6	11	7	5	1	2	4				1				1		1	1	4	2			1																47	15.7	5.1
Flathead Catfish			7	9	4	18	39	20	9	7	4		4	4	3			1	2	1	1		2	1	2		2	1	1	3			1	1	1		1	1	150	50.0	17.6
White Bass					1								2		3	1		1					1																9	3.0	1.4
Hybrid Striped Bass													1					1																					2	0.7	0.5
Largemouth Bass								1																															1	0.3	0.3
Spotted Bass													1																										1	0.3	0.3
Bluegill					1																																		1	0.3	0.3
River Carpsucker																		2																					2	0.7	0.5
Blue Sucker																				1	1		1	2	3	1	4	5	4	1									23	7.7	2.7
Smallmouth Buffalo															3	2	1	2	3	1	6		5	1		3		2											29	9.7	3.4
Bigmouth Buffalo																								1				1											2	0.7	0.5
Black Buffalo																				1			1	1	1														4	1.3	0.6
Freshw ater Drum		1	1				1	1	2	1	7		8	10	10	7	8	8	6	3	3		4	2	4														87	29.0	8.8
Common Carp																		1			2		1	4	3	4													15	5.0	1.9
Silver Carp																							2		2	1	1	2	1	1		1				,			12	4.0	1.6
Longnose Gar																			1				4		6	1	7	4			5			2	1			1	33	11.0	5.8
Shortnose Gar																				1	1		3	2	4	8		2				1							24	8.0	4.1

[^37]
## WESTERN FISHERY DISTRICT

## Project B: Technical Guidance

## FINDINGS

Table 1. Technical guidance given to pond owners in the Western Fishery District during the 2017 project year (April 1, 2017 - March 31, 2018). Approximately 84 telephone calls to the office regarding technical guidance and stocking were also handled. Additionally, numerous emails were replied to requesting farm pond technical guidance information.

$\begin{gathered} \text { County } \\ \text { Pond Owner } \end{gathered}$	Date of Inspection	Findings	Management Recommendations
Calloway			
Anthony Sheppard	16-May	filamentous algae, low alkalinity, crappie, stunted bass	lime, fertilize, remove crappie, harvest bass
Greg McNutt	13-Apr	stunted catfish, stunted bluegill	removal of some catfish, stock bass
Bill Elkins	7-Jun	low alkalinity, no bluegill observed	lime, fertilize, stock minnows and bluegill in fall.
Kevin Cherry	23-Jun	stunted fish, low alkalinity	lime, fertilize, control willows on levee, aerate. Harvest bass >12 inches for trophy bluegill
Jeff Jones	24-Jul	small bass	harvest small bass and large male bluegill
Jerry Penner	22-Sep	low DO, skinny catfish	use fountain more frequently, feed catfish pellet feed
Jerry Penner	22-Sep	muddy water	lime, and potentially gypsum if lime does not clear water.

## Graves

Robert or Becca Foy	30-May	primrose, small bass	lime, 2-4-D, fertilize, stock minnows,   aerate   glyphosate, trap muskrats, clean
Chris	30-May muskrats, primrose, weeds, crappie	levees, fix leak with clay, remove   crappie	
Randy Adams	15-Jun	lack of large catfish	lime, aerate, fertlize, clean levee,   stock minnows, bass. Remove   crappie
Jon Lilequist	15-Jun	stunted bass	lime, aerate, harvest small bass,   harvest large bluegill
Monte Davidson	18-Jun	Algae and stunted fish	lime, aerate,fertlize, clean levee,
stock minnows			

Table 1 (cont).

County   Pond Owner	Date of Inspection	Findings	Management Recommendations
Livingston			
Ronnie James	31-Mar	crappie, low alkalinity, filamentous algae	harvest all crappie, add lime, treat with copper sulfate after liming
Hickman			
Rick Stutts	26-May	duckweed, coontail	treat with diquat, stock grass carp
McCracken			
Russ Litsinger			
	14-Jun	muddy water, weeds, low alkalinity	lime, fertilize, stock bass
Eva Kelley			
	$22-\mathrm{Apr}$	low alkalinity, fish kill, low DO	Aerator, lime, fertilize

## NORTHWESTERN FISHERY DISTRICT

## Project B: Technical Guidance

## FINDINGS

Requests for technical guidance information were received via e-mails, phone calls, and office visits. Problems included unbalanced populations, new pond construction, stocking, fish disease and fish kills, water quality issues, aquatic vegetation control, and general pond management. No on-site visits were conducted. The requested information was relayed via phone, e-mail, office visit, and referencing the Pond Management section of the web site.

## SOUTHWESTERN FISHERY DISTRICT

Project B: Technical Guidance

## FINDINGS

Onsite technical guidance given during 2017: Numerous emails and phone calls taken, but were not enumerated.
Table 1: Onsite technical guidance visits during 2017

County	Date	Landowner	Problem/Situation	Recommendations
Barren	$9 / 20$	Nate Crimmins	Old pond/siltation/No fish   Crowded bass \& crappie	Contact NRCS \& clean out/resize   accordingly
Taylor	$11 / 21$	Taylor Co.   Sportsman's Club	Bluegill thin/Gizzard shad	Restock catfish if desired, shad   reduction/kill options
Logan	$12 / 1$	David Fields	Increase size\& depth	Contact NRCS \& resize accordingly
Warren	$9 / 20$	Barry Lemily	No fish/Pond depth/siltation	Clean out, lime \& restock

## CENTRAL FISHERIES DISTRICT <br> Project B: Stream Fishery Surveys - Warmwater Streams <br> FINDINGS

Stream sampling conditions for 2017 are summarized in Table 1.
Diurnal electrofishing for black bass and rock bass was conducted during April 2017 at three locations on Floyds Fork. Length distribution and CPUE data of black bass and rock bass from Floyds Fork are presented in Table 2. Smallmouth bass ( $69 \%$ ) comprised the majority of the black bass sampled in Floyds Fork, whereas, largemouth bass and spotted bass comprised $16 \%$ and $15 \%$ of the sample, respectively. The catch rate of smallmouth bass on Floyds Fork in 2017 ( 21.4 fish $/ \mathrm{hr}$ ) was higher than the historical average ( $15.4 \mathrm{fish} / \mathrm{hr}$ ) (Table 3). However, the catch rate of rock bass ( $7.4 \mathrm{fish} / \mathrm{hr}$ ) was lower than the historical average ( $10.8 \mathrm{fish} / \mathrm{hr}$ ) (Table 4). The smallmouth bass population assessment rating for Floyds Fork was "Good", the average rating observed since 2012 (Table 5). The largemouth bass and rock bass population assessment ratings were "Fair", which is the average rating for both species in the Floyds Fork (Tables 6 and 7).

Rainbow trout were stocked during March, April and October 2017 in the North Beckley section of Floyds Fork. A total of 3,600 rainbow were stocked (1,200 fish/stocking) that averaged 9.0-10.0 in.

Table 1. Yearly summary of sampling conditions by waterbody, species sampled and date.

Water body	Species	Date	Time $(24 \mathrm{hr})$	Gear	Weather	Water temp. F	Water level	Secchi   (in)	Conditions	Pertinent sampling comments ${ }^{\text {c }}$
Floyd's Fork (Miles Park)	Black Bass/ Rock Bass	4/10	1000	shock	mostly sunny	58	1.67 ft . at Fisherville Gauge	36	good	Big Rivers Crew Sampled
Floyd's Fork (Fisherville Ramp)	Black Bass/ Rock Bass	4/10	1300	shock	mostly sunny	61	1.67 ft . at Fisherville Gauge	36	good	Big Rivers Crew Sampled
Floyd's Fork (Cane Run Access)	Black   Bass/   Rock   Bass	4/10	1000	shock	mostly sunny	60	1.67 ft . at Fisherville Gauge	36	good	CFD Sampled

Table 2. Length distribution and CPUE (fish/hr) of black bass and rock bass collected in 2.25 hours of 15-minute electrofishing runs for black bass in April 2017 in the Floyd's Fork; numbers in parentheses are standard errors.

Species	Inch class															Total	CPUE
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16		
Miles Park																	
Canoe Access																	
Smallmouth bass					2				1							3	3.0 (1.9)
Spotted bass			1	3	1	1	2	1	1	1						11	11.0 (1.0)
Largemouth bass		1	1				1	1			1					5	5.0 (1.0)
Fisherville Canoe																	
Access																	
Rock bass		1			2	1										4	8.0 (4.0)
Smallmouth bass	1	1			2	2			4	1		2		1	2	16	32.0 (4.0)
Cane Run Canoe																	
Access																	
Rock bass		2	3		1	5	2									13	16.8 (6.2)
Smallmouth bass			1	6	8	3	1	3		1	2	3	1	2		31	38.8 (13.1)
Largemouth bass					3	1		1	1	1						7	8.0 (4.7)
Total																	
Rock bass		3	3		3	6	2									17	7.4 (3.2)
Smallmouth bass	1	1	1	6	12	5	1	3	5	2	2	5	1	3	2	50	21.4 (7.1)
Spotted bass			1	3	1	1	2	1	1	1						11	4.9 (2.0)
Largemouth bass		1	1		3	1	1	2	1	1	1					12	4.9 (1.8)

Table 3. Electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected from Floyd's Fork from 2007-2017; numbers in parentheses are standard errors. Number of samples and locations varies between years.

	Length group					
Year	$<4.0$ in	$4.0-8.9$ in	$>9.0$ in	$>12.0$ in	$>14.0$ in	Total
2007	$0.0(0.0)$	$7.0(4.7)$	$2.0(1.2)$	$1.0(1.0)$	$0.0(0.0)$	$9.0(5.3)$
2008		NS				
2009		NS				
2010		NS				
2011		NS				
2012	$1.0(0.5)$	$7.0(2.7)$	$7.5(2.0)$	$2.8(1.1)$	$1.8(0.7)$	$15.5(4.4)$
2013	$0.3(0.4)$	$7.8(3.8)$	$8.0(2.3)$	$2.7(1.1)$	$0.5(0.3)$	$16.0(4.6)$
2014	0.0	$2.3(1.5)$	$5.5(1.9)$	$2.3(0.8)$	$1.7(0.6)$	$7.8(2.7)$
2015	$1.1(0.8)$	$2.9(1.0)$	$8.7(2.5)$	$4.7(1.9)$	$1.8(0.8)$	$12.7(3.3)$
2016	$4.0(1.1)$	$10.0(4.3)$	$11.7(3.4)$	$4.7(1.7)$	$3.7(1.6)$	$25.7(7.5)$
2017	$0.9(0.9)$	$10.4(3.8)$	$10.0(4.3)$	$5.6(2.6)$	$2.7(1.5)$	$21.4(7.1)$

Dataset = cfdpsflf.d17-.d07

Table 4. Electrofishing CPUE (fish/hr) for each length group of rock bass collected from Floyd's Fork from 2007-2017; numbers in parentheses are standard errors. Number of samples and location varies between years.

	Length group				
Year	$<4.0$ in	$4.0-5.9$ in	$>6.0$ in	$>8.0$ in	Total
2007	$2.0(1.2)$	$10.0(10.0)$	$5.0(3.8)$	$1.0(1.0)$	$17.0(14.4)$
2008			NS		
2009		NS			
2010		NS			
2011		NS	$1.7(0.7)$	$12.8(3.6)$	
2012	$0.6(0.3)$	$1.2(0.53)$	$11.0(3.3)$	$2.2(1.5)$	$11.9(3.7)$
2013	0.0	$1.3(0.75)$	$10.7(3.5)$	$11.8(4.0)$	
2014	0.0	$1.7(0.93)$	$10.1(3.4)$	$3.0(1.3)$	$5.5(1.1)$
2015	0.0	0.0	$5.5(1.1)$	$3.3(0.7)$	$9.3(2.7)$
2016	$0.3(0.3)$	$2.0(0.6)$	$7.0(2.4)$	$4.0(1.3)$	$7.4(3.2)$
2017	$1.3(0.9)$	$1.3(0.6)$	$4.8(2.0)$	$0.9(0.6)$	

Dataset = cfdpsflf.d17-.d07

Table 5. Population assessment for smallmouth bass collected by boat electrofishing gear in Floyd's Fork from 2012-2017 (scoring based on statewide assessment).

Year		$\begin{aligned} & \text { CPUE } \\ & \leq 4.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 4.0-8.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 9.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 12.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 14.0 \text { in } \end{aligned}$	Total score	Assessment rating
2017	Value	0.9	10.4	10.0	5.6	2.7		
	Score	2	3	3	3	3	14	Good
2016	Value	4.0	10.0	11.7	4.7	3.7		
	Score	3	3	3	3	3	15	Good
2015	Value	1.1	2.9	8.7	4.7	1.8		
	Score	2	2	3	3	2	12	Good
2014	Value	0.0	2.3	5.5	2.3	1.7		
	Score	0	1	2	2	2	7	Fair
2013	Value	0.3	7.8	8.0	2.7	0.5		
	Score	1	3	2	2	1	9	Fair
2012	Value	1.0	7.0	7.5	2.8	1.8		
	Score	2	3	2	2	2	11	Good

Table 6. Population assessment for rock bass collected by boat electrofishing gear in Floyd's Fork from 2012-2017 (scoring based on statewide assessment).

Year		$\begin{aligned} & \text { CPUE } \\ & \leq 4.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 4.0-5.9 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Total score	Assessment rating
2017	Value	1.3	1.3	4.8	0.9	7	Fair
	Score	3	1	2	1		
2016	Value	0.3	2.0	7.0	4.0	6	Fair
	Score	1	1	2	2		
2015	Value	0.0	0.0	5.5	3.3	4	Poor
	Score	0	0	2	2		
2014	Value	0.0	1.7	10.1	3.0	5	Fair
	Score	0	1	2	2		
2013	Value	0.0	1.3	10.7	2.2	5	Fair
	Score	0	,	2	2		
2012	Value	0.6	1.2	11.0	1.7		Fair
	Score	1	1	2	2	6	

Table 7. Population assessment for largemouth bass collected by boat electrofishing gear in Floyd's Fork 2012-2017 (scoring based on statewide assessment).

Year		CPUE   $\leq 4.0$ in	CPUE   $4.0-8.9$ in	CPUE   $\geq 9.0$ in	CPUE   $\geq 12.0$ in	CPUE   $\geq 15.0$ in	Total score	Assessment   rating
2017	Value	0.4	2.4	2.1	0.4	0.0		
	Score	1	2	2	1	0	6	Fair
2016	Value	1.3	2.7	1.7	0.3	0.0		
	Score	3	2	1	1	0	7	Fair
2015	Value	0.4	2.9	3.3	1.1	0.0		Fair
	Score	1	3	2	1	0	7	
2014	Value	0.0	4.6	2.7	0.8	0.0		Fair
	Score	0	3	2	1	0	6	Poor
2013	Value	0.3	4.5	1.5	0.0	0.0		
	Score	1	3	1	0	0	5	Fair
2012	Value	1.8	2.0	2.2	1.4	0.2		10
	Score	3	2	2	2	1		

## CENTRAL FISHERIES DISTRICT

## Project B: Technical Guidance

## FINDINGS

A total of 44 pond owners and 56 ponds were visited in 2017. Most common problems were unbalanced fish populations, excessive aquatic plant growth, lack of fish cover, and the presence of undesirable fish species (Table 1). During our 2017 technical guidance sampling, six landowners requested a Fisheries Special Management Permit (FMP) for their ponds. Finally, a total of 343 phone calls, 220 e-mails, and 3 walk-in office visits concerning farm pond problems were handled this year.

Table 1. Technical guidance in the Central Fishery District in 2017.

County	Name of lake / pond owner	Date sampled	Findings	Recommendations
Anderson   (1)	Floyd Johnson Jr.	7/10/17	Unbalanced fish populations	Stock bluegill
Boone   (1)	Barry Suedkamp	7/27/17	Good bass population	Stock CCF; add cover
$\begin{aligned} & \text { Boyle } \\ & \text { (2) } \end{aligned}$	Perryville Battlefield   KY State Park	6/14/17	Inaccessible due to aquatic vegetation	Fluridone for vegetation control
	Kelly Griffith	6/21/17	2 ponds; Fair fish population	Stock CCF
Bullitt   (2)	Stephen Coffey	6/27/17	Inaccessible	None - small pond
	Connie Freeman	6/27/17	Fair fish population; very shallow	Renovation and restock
Fayette   (2)	Mark Corvin	7/18/17	Good fish populations	Harvest CCF and crappie; add cover
	Juddmonte Farms	7/18/17	Good fish populations	Harvest common carp and crappie; add cover
Franklin   (2)	Joe Hutcherson	6/6/17	Good fish populations	Stock CCF; harvest crappie
	Dayne Sanders	8/18/17	2 ponds; very small and leak issue	Pond 1; too small to sustain fish population; Pond 2, renovation due to significant leak issue.
Grant   (1)	Michael Dickey	7/21/17	Good fish populations	Remove trees from dam
Jefferson   (3)	Woodbridge Apartments	8/1/17	Shallow pond; highly enriched; significant blue-green algae; no sportfish	Stock LMB and/or CCF
	Stephen Leonard	8/9/17	Inaccessible due to vegetation and size	Stock LMB and BG
	Jason Ollis	8/11/17	Good fish populations	Harvest LMB and BG; control aquatic vegetation
Jessamine   (1)	Peggy Baker	8/15/17	Small and shallow	Renovate and restock
Kenton(2)	Elizabeth Fisk	7/19/17	No fish were sampled	Stock LMB and BG
	Tom Bolger	7/19/17	Good fish populations	Harvest crappie and add cover
Mercer   (1)	Kentucky Utilities	6/21/17	Good fish populations	Add cover
Nelson   (4)	Michelle Thompson	8/2/17	Good fish populations	Address leak issue
	David McIntire	8/2/17	Undesirable fish present	Remove Koi and address leak issue with NRCS
	Justin Douglas	8/3/17	Unbalance fish population	Stock LMB
	Shawn Veech	8/3/17	2 ponds Unbalanced fish populations	Pond 1; Stock LMB; Pond 2, stock LMB and BG
Oldham   (2)	Lake Pointe Subdivision	8/1/17	Good fish populations	FMP to harvest crowded LMB population
	William Mers Kelly	8/7/17	Good fish populations	None
Owen   (3)	Perry Park Resort	6/19/17	3 lakes sampled: Good fish populations	Holiday Lake -Stock CCF; Inverness Lake - Lime and Fertilize, Stock CCF; Big Bass Lake - Stock CCF
	Bobby Kemper	6/20/17	Inaccessible due to aquatic vegetation	Fluridone for vegetation control
	Jimmy Bevins	7/25/17	2 ponds; Good fish populations	Pond 1 - None; Pond 2 - Lime and Fertilize


County	Name of lake / pond owner	Date sampled	Findings	Recommendations
Pendleton   (1)	Melanie Goble	7/27/17	Good fish populations	Add cover
Scott   (3)	Bradford Bentz	6/20/17	Inaccessible due to shallow water leak	Renovate pond
	Betty Ward	7/17/17	2 ponds; good fish populations in both ponds	Stock CCF
	Robert Conley	7/17/17	Unbalanced fish populations	Stock BG
Shelby   (5)	Nick Coleman	6/22/17	Good fish populations	Add cover, address leak issue
	Charles Davis	6/22/17	2 ponds; Crowded LMB populations in both ponds	FMP to remove crowded LMB
	David Pearce	8/7/17	Fair fish populations; small pond	Remove flathead catfish
	Rick Ellis	8/8/17	Unbalanced fish populations	Stock LMB, harvest crappie
	Paul Hamilton	8/8/17	2 ponds; good fish populations in both ponds	No recommendations
Spencer   (2)	Louis Miller	8/9/17	Fair fish populations	Recovering from fish kill; install aeration system
	Alex Featherstone	8/17/17	Good fish populations	Harvest crappie
Trimble   (1)	Dallas Stucker	8/17/17	Unbalanced fish population	Stock LMB
Washington   (5)	William Mudd	6/13/17	Fair fish populations	Stock CCF; add cover
	Travis Mattingly	6/23/17	Pond recovering from fish kill	Stock BG
	Jackie Robinson	7/10/17	Good fish populations	Stock LMB; add cover
	Michael Jones	8/14/17	2 ponds; Fair fish populations; large pond recovering from fish kill	Pond 1 - Stock LMB, add cover; Pond 2 - stock LMB; add cover
	Andy Matherly	8/25/17	5 ponds; 3 smaller ponds had unbalanced fish populations; 2 larger ponds had good fish populations	3 smaller pond - stock LMB and CCF; 2 larger ponds stock CCF

## NORTHEASTERN FISHERIES DISTRICT

Project B: Stream Fishery Surveys - Warmwater Streams
FINDINGS

Sampling conditions for excursions on the South Fork Licking River and Stoner Creek can be found on Table 1 of Project 1.

## South Fork Licking River Sampling

On the May 31 and June 7, 4 pools of the South Fork of the Licking River were sampled for an assessment of the game fish, sunfish and catfish populations. On May 31, the Lair, Airport and Cynthiana Pools were all sampled (3-15-minute runs at each) and on June 7, above the Robinson dam was sampled (2-15-minute runs). In total, 10 different species were collected with the dominant species being smallmouth bass ( $25 \%$ ) followed by largemouth bass ( $22 \%$; Table 1). Catch rates of rock bass were very similar to the average of previous years' sampling (2015, 2012, 2010 and 2006; Table 2). The overall assessment of the rock bass population on these 4 pools of the South Fork Licking River was "Good" (Table 3). Similarly, catch rates of smallmouth bass were near or above average for previous years' sampling efforts (Table 4). The overall assessment of the smallmouth bass population on these four pools of the South Fork Licking River was "Excellent" (Table 5). Finally, catch rates of largemouth bass were all well above the average of previous years' sampling (Table 6) as was the overall assessment of this population, which was rated as "Excellent" (Table 7).

## Stoner Creek Sampling

On June 7, Stoner Creek was sampled for one hour (4-15-minute runs) at Fryman's ramp for an assessment of the game fish, sunfish, and catfish. In total, 4 different fish species were collected with the dominant species being bluegill ( $65 \%$ ) and largemouth bass ( $29 \%$; Table 8 ). Catch rates of largemouth bass were very similar to the average of previous years' sampling (2015, 2012, and 2010; Table 9). The overall assessment of the largemouth bass population on this pool of Stoner Creek was "Excellent" (Table 10).

Table 1. Length frequency and CPUE (fish/hr) of selected sport fish collected during 3.0 hours of electrofishing (15-minute sampling runs) at 4 sites in the

Location	Species	Inch class																									Total	CPUE	$\begin{gathered} \hline \text { Std } \\ \text { Error } \end{gathered}$
		2	3	4	5	6	7	8	9	10	1	1	12	13	14	15	16	17	18	819	20	21	22	232	25	26			
Lair Pool	Channel catish																									1	1	1.3	1.3
	Rock bass	1		6	6	3	4	2																			22	29.3	10.7
	Bluegill		2	10	9	3	1																				25	33.3	3.5
	Redear sunfish																										0	0.0	0.0
	Smallmouth bass			2	1	2	1	2	3	1	4	4	2	1	3	3	1	1									27	36.0	4.6
	Largemouth bass					2	3		2					1	1			2									11	14.7	8.1
	White crappie								1																		1	1.3	1.3
	Black crappie						2	1																			3	4.0	2.3
Airport Pool	Channel catish																							2			2	2.7	2.7
	Rock bass		1	3	4	4	3																				15	20.0	10.6
	Bluegill			7	6	2																					15	20.0	6.1
	Redear sunfish				2			1																			3	4.0	2.3
	Smallmouth bass		2	8	2	7	2	5	6	2	1	1				1	1		1	1							40	52.0	16.2
	Largemouth bass			1		5		2																			8	10.7	2.7
Cynthania Pool	Channel catfish					11	3	4	2												2	1			1		24	32.0	22.3
	Rock bass	1	2	5	5	10	15	15	4																		57	76.0	16.7
	Bluegill		5	11	13	310	3																				42	56.0	16.0
	Redear sunfish					1	1	3			1	1															6	8.0	6.1
	Smallmouth bass		1	2	4		1	1	2	6	3		1	3	4	1	4	2		1							36	48.0	14.1
	Largemouth bass		1	3		3	9	12	12	5	8	8	7	4	2	2	1	1				1					71	94.7	15.4
	White crappie								1																		1	1.3	1.3
	Black crappie						4																				4	5.3	1.3
Above   Robinson Dam	Flathead catfish									1	1	1															2	2.7	1.3
	Bluegill	1	2	8	3																						14	18.7	2.7
	Smallmouth bass				4	2						1	1			1											9	12.0	4.6
	Spotted bass				1	2		1	1																		5	6.7	1.3
	Largemouth bass					1			1	3	2	2	1	1	2												11	14.7	12.7
Total	Channel catfish					11	13	4	2												2	1		2	1	1	27	9.0	6.3
	Flathead catfish									1	1	1															2	0.7	0.5
	Rock bass	2	3	14	15	517	22	17	4																		94	31.3	9.7
	Bluegill	1	9	36	31	115	4																				96	32.0	5.9
	Redear sunfish				2	1	1	4				1															9	3.0	1.7
	Smallmouth bass		3	12	11	111	14	8	11	9	9	9	4	4	7	6	6	3		2							112	37.0	6.7
	Spotted bass				1	2		1	1																		5	1.7	0.9
	Largemouth bass		1	4		11	12	14	15	8		0	8	6	5	2	1	3				1					101	33.7	11.6
	White crappie								2																		2	0.7	0.5
	Black crappie						6	1																			7	2.3	0.9

## nedsflic.d17

Table 2. Rock bass electrofishing CPUE (fish/hr) from each length group collected during spring sampling on South Fork Licking River. Number of sites and effort have varied across years.

	Length group					
Std.						
	$<4.0$ in	$4.0-5.9$ in	$6.0-7.9$ in	$\geq 8.0$ in	Total	error
2017	1.7	9.7	13.0	7.0	31.3	9.7
2015	4.1	8.3	20.0	4.2	36.7	4.8
2012	1.0	4.0	11.3	1.2	17.5	4.2
2010	2.7	12.7	9.7	0.7	24.5	
2006	1.1	10.6	17.1	2.2	30.9	11.6
nedsflic.d17						

Table 3. Population assessment of rock bass collected from South Fork Licking River during spring 2015 and 2017.

Year		$\begin{aligned} & \text { CPUE } \\ & <4.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 4.0-5.9 \text { in } \\ \hline \end{gathered}$	$\begin{array}{r} \text { CPUE } \\ \geq 6.0 \text { in } \\ \hline \end{array}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \\ & \hline \end{aligned}$	Total score	Assessment rating
2017	Value	1.7	9.7	20.0	7.0	12	Good
	Score	3	3	3	3		
2015	Value	4.1	8.3	24.2	4.2	11	Good
	Score	3	3	3	2		

nedsflic.d17

Table 4. Smallmouth bass electrofishing CPUE (fish/hr) from each length group collected during spring sampling on South Fork Licking River. Number of sites and effort have varied across years.

	Length group						
Std.   error							
	$<4.0$ in	$4.0-8.9$ in	$9.0-11.9$ in	$12.0-13.9$ in	$\geq 14.0$ in	Total	2.7
2017	1.0	15.3	9.7	2.0	37.0	6.7	
2015	6.4	4.4	5.8	2.7	2.2	28.4	3.2
2012	1.5	12.4	4.3	2.8	1.7	16.8	2.7
2010	1.1	6.5	11.9	2.1	0.6	28.0	
2006	0.0	11.3	8.7	8.4	2.2	23.6	6.5

nedsflic.d17

Table 5. Population assessment of smallmouth bass collected from South Fork Licking River during spring 2015 and 2017.

Year		$\begin{gathered} \hline \text { CPUE } \\ <4.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ 4.0-8.9 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 9.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 12.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 14.0 \text { in } \\ \hline \end{gathered}$	Total score	Assessment rating
2017	Value	1.0	15.3	20.3	10.7	8.0	18	Excellent
	Score	2	4	4	4	4		
2015	Value	6.4	11.3	10.7	4.9	2.2	18	Excellent
	Score	4	3	3	4	4		

nedsflic.d17

Table 6. Largemouth bass electrofishing CPUE (fish/hr) from each length group collected during spring sampling on South Fork Licking River. Number of sites and effort have varied across years.

	Length group						
Std.   error							
	$<4.0$ in	$4.0-8.9$ in	$9.0-11.9$ in	$12.0-14.9$ in	$\geq 15.0$ in	Total	en
2017	0.3	13.7	11.0	6.3	2.3	33.7	11.6
2015	0.1	4.1	4.1	0.8	0.1	9.2	4.4
2012	0.0	1.0	1.2	0.6	0.7	3.5	1.0
2010	0.0	1.5	1.3	0.5	0.2	3.5	
2006	0.0	0.0	0.4	0.0	0.0	0.4	0.4

nedsflic.d17

Table 7. Population assessment of largemouth bass collected from South Fork Licking River during spring 2015 and 2017.

Year	CPUE   C	CPUE   $4.0-8.9$ in	CPUE   $\geq 9.0$ in	CPUE   $\geq 12.0$ in	CPUE   $\geq 15.0$ in	Total   score	Assessment   rating	
2017	Value	0.3	13.7	19.7	8.7	2.3	17	Excellent
	Score	1	4	4	4	4		
2015	Value	0.1	4.1	5.0	0.9	1.0	9	Fair
	Score	2	2	2	2	1		

[^38]Table 8. Length frequency and CPUE (fish/hour) of selected sport fish collected during 1.0 hours of electrofishing (4-15 minute sampling runs) at Stoner Creek during the spring of 2017.

Location	Species	Inch class																	Total	CPUE	Std error
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18			
	Bluegill	1	29	60	28	12		1											131	131.0	8.9
Stoner	Redear sunfish	1	5		1		2												9	9.0	4.4
Creek	Largemouth bass		1	5	3	2	3	7	5	2	6	8	3	2	1	4	5	2	59	59.0	7.4
	White crappie							1	1										2	2.0	1.2

nedstone.d17

Table 9. Largemouth bass electrofishing CPUE (fish/hr) from each length group collected during spring sampling on Stoner Creek. Number of sites and effort have varied across years.

	Length group					Total	Std. error
	< 4.0 in	4.0-8.9 in	9.0-11.9 in	12.0-14.9 in	$\geq 15.0$ in		
2017	1.0	20.0	13.0	11.0	14.0	59.0	7.4
2015	4.7	16.7	12.3	15.3	6.7	55.7	17.1
2012	2.7	31.3	24.0	5.3	2.0	65.3	9.3
2010	0.0	18.0	6.0	24.0	14.0	62.0	18.0

nedstone.d17

Table 10. Population assessment of largemouth bass collected from South Fork Licking River during spring 2015 and 2017.

Year		$\begin{aligned} & \text { CPUE } \\ & <4.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 4.0-8.9 \text { in } \end{gathered}$	$\begin{array}{r} \text { CPUE } \\ \geq 9.0 \text { in } \end{array}$	$\begin{gathered} \text { CPUE } \\ \geq 12.0 \text { in } \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \end{gathered}$	Total score	Assessment rating
2017	Value	1.0	20.0	38.0	25.0	12.0	18	Excellent
	Score	2	4	4	4	4		
2015	Value	3.5	14.1	28.8	17.9	5.4	20	Excellent
	Score	4	4	4	4	4		

nedstone.d17

## NORTHEASTERN FISHERIES DISTRICT

## Project B: Technical Guidance

FINDINGS

Table 1 provides a list of ponds visited (20) in 2017 and our findings and recommendations. In addition to on-site inspections, consultations were rendered via telephone (75-100) and/or written correspondence (4). Most vegetation problems and a few population problems were resolved using email pictures, pond harvest log data or the use of the "Managing Your Farm Ponds" web page. Technical guidance was provided to individuals from all counties in the NEFD. Typical problems responded to include: pond stocking, aquatic vegetation problems, undesirable species, fishing information, fish kills, farm pond management, fish pathogens, water quality, pond construction, structural problems with dams, and pond nuisances.

County	Name	Date	Findings	Recommendations
Bourbon	T. Poe	24-Aug	Fish kill, no LMB observed, veg issues	Stock 1150 LMB and 5 grass carp
	C. Smart	24-Aug	Unbalanced and many underirables	Remove undesirables, stock 75 LMB and 50 CCF
Clark	E. Fink   J. Kuperstein	$\begin{aligned} & \text { 13-Jun } \\ & \text { 13-Jun } \end{aligned}$	Fish kill in 2015, veg issues vegetation problem (duckw eed)	Lake is rebounding, apply Rew ard with surfactant for veg control Apply Sonar or Clipper
Fleming	K. Arnett   C. Brown	$\begin{aligned} & \text { 17-Oct } \\ & \text { 5-May } \end{aligned}$	Fish kill, unbalanced with veg. Veg problem	remove larger LMB, stock $200 \mathrm{RE}, \mathrm{CuSO}_{4}$ on algae Apply Sonar or Clipper
Harrison	J. Guthier	27-Jun	Unbalanced	Remove 50 CCF and stock 50 4-6" BG
Lew is	S. Ship	28-Aug	P-1: Unbalanced, veg issues   $\mathrm{P}-2$ : Veg. issues   $\mathrm{P}-3$ : Veg. issues	P-1: Stock 250 LMB, and 20 grass carp   P-2: Apply Clipper   P-3: Renovate, or apply Rodeo
Madison	K. Contre   E. Igo	$\begin{aligned} & \text { 13-Jun } \\ & \text { 12-Jun } \end{aligned}$	Unbalanced Unable to sample pond	Stock 50 LMB
Mason	G. Beckner	14-Jun	Fish kill, veg issues	stock 25 LMB and 75 BG , continue current veg treatment program
Row an	S. James	10-May	Spatterdock issues	Aooky Rodeo w ith surfactant
	S. Napier	19-Sep	Unbalanced	Stock 250 BG and remove 20 LMB
	D. Wells	12-Jun	Unbalanced, veg issues	Stock 225 BG and 10 grass carp
	S. Williams	18-Sep	Veg issues	Apply Rodeo with surfactant to shoreline, stock 5 grass carp
Wolfe	R. How ard	25-Jul	Unbalanced, veg issues	Stock 125 BG, remove 25 LMB, soil sample

## SOUTHEASTERN FISHERIES DISTRICT

Project B: Stream Fishery Surveys - Warmwater Streams
FINDINGS

## Upper Cumberland River Basin

The Southeastern Fishery district sampled one location in the Upper Cumberland River Basin in Knox County in 2017. Sampling was conducted to assess the black bass, sunfish, catfish, and walleye populations. During 1.5 hours of shocking, 66 fish were collected, which was comprised of 10 species (Table 1). Due to the low number of fish collected, no further assessments were completed.

Table 1. Length-frequency and CPUE (fish/hr) of selected fish species* collected during 1.5 hours of electrofishing (15-minute runs) in the Barbourville ramp area of the Upper Cumberland River (Knox county) in 2017; standard error is in parantheses.

Inch class																					CPUE
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	23	Total	
Smallmouth bass						1	1				1									3	2.0 (1.4)
Spotted bass			2		5				2	1			1							11	7.3 (2.8)
Bluegill	1																			1	0.7 (0.7)
Longear sunfish		1		3																4	2.7 (2.7)
Redbreast sunfish			1																	1	0.7 (0.7)
Green sunfish	1																			1	0.7 (0.7)
Black crappie									1											1	0.7 (0.7)
Walleye									1	1	1	1	1		1					6	4.0 (2.1)
Channel catfish									1	1	1	5	5	4	2	3	3	1	1	27	18.0 (6.7)
Flathead catfish						1		1	3	3			1		1			1		11	7.3 (4.3)

sedupcbr.d17

* Did not net shad, suckers, and minnow s.


## SOUTHEASTERN FISHERIES DISTRICT

## Project B: Technical Guidance

## FINDINGS

Details of the technical guidance provided during 2017 are shown in Table 1. Technical guidance was provided through five on-site visits. Additional technical guidance requests were handled over the telephone, or by written correspondence. Topics encountered and responded to included: fish population balance, water quality problems, fish disease, fish stocking, and aquatic vegetation problems.

Several other requests for information (approximately 200) about area fisheries and miscellaneous information about fish management in lakes and ponds were handled over the telephone.

Table 1. Technical guidance provided in the Southeastern Fishery District during 2017.

County	Name of pond or pond owner	Date	Findings	Recommendations
Jackson	Eddie Judd	6/28	Balanced fish population; some pondweed present	Continue current management but consider removing crappie from pond; add lime; add cover
	Ryan Judd	6/28	Balanced fish population; no bluegill present but redear sunfish observed	Stock bluegill; add cover; add lime; add pea gravel for sunfish spawning areas in shallow water; possibly fertilize
Knox	Mark Frazier	8/24	Water quality fine	Recommended stocking largemouth bass, bluegill, and channel catfish
Pulaski	Melissa Bastin	8/17	Pond 1: Good water quality Pond 2: Low alkalinity	Pond 1: No changes recommended   Pond 2: Add lime; add cover
Whitley	Mr. Sharpe	6/27	Pond 1: Bass slightly overcrowded	Pond 1: Remove skinny bass; add cover; consider adding fertilizer in the spring
			Pond 2: Mostly balanced fish population	Pond 2: Continue current management but harvest any skinny bass if caught; add cover; consider fertilizing

## EASTERN FISHERY DISTRICT

Project B: Stream Surveys - Warmwater Streams

## FINDINGS

## Sportfish Assessment

Two streams, Levisa Fork and Russell Fork, were sampled with electrofishing boats in spring of 2017. Levisa Fork was sampled at various sites from Pikeville, KY to Prestonsburg, Ky. Future sampling will include further upstream and downstream sites for Levisa Fork as weather permits. Russell Fork was sampled at various sites from just upstream of the Ratliff Hole area in Breaks Interstate Park near KY/VA state line and then downstream to the confluence area of Marrow Bone Creek. The Levisa Fork population assessments included smallmouth bass "Good", rock bass "Poor", spotted bass "Fair", and largemouth bass "Poor". The Russell Fork population assessments included smallmouth bass "Excellent" and rock bass "Good". Sportfish species sampled totaled 14 and 10 from the Levisa Fork and Russell Fork, respectively. Actual sample data for each stream can be reviewed in the Streams Investigation Branch annual performance report.

## STREAM SURVEY CUMBERLANRIVER BASIN

SITE INFORMATION
Date: 8/05/2013

County: Harlan
Drainage Area: $5.5 \mathrm{mi}^{2}$
Stream: Fugitt Creek
Station Number: DOW02044001
Crew: K. Frey, M. Harless

Location: At RT179 bridge in middle reach
Sampling Method: Backpack Electrofisher Longitude: -83.07666
Sampling Time (sec): 1,138 sec

Latitude: $\quad 36.92071$

Quadrangle: Louellen

CHEMICAL AND PHYSICAL CHARACTERISTICS
Surface Temperature: $64.0^{\circ} \mathrm{F}$
pH: N/A
Dissolved Oxygen: N/A mg/l Specific Conductance: $380 \mu \mathrm{~S}$
Fish Shelter: Abundant
Type: Undercut banks, boulders, ledges, logs, brush
Riparian Zone: 10-20 meters
Shade: 75-100\%
Stream Substrate (\%):

1) Pool Area: $\quad 15 \%$ boulders (>12 in), $15 \%$ large rubble ( $6-12 \mathrm{in}$ ), $25 \%$ small rubble ( $3-6 \mathrm{in}$ ), $20 \%$ coarse gravel ( $1-3$ "), $10 \%$ fine gravel ( $0.1-1 \mathrm{in}$ ) $10 \%$ sand, $5 \%$ clay
2) Riffle Area: $\quad 20 \%$ boulder ( $>12 \mathrm{in}$ ), $20 \%$ large rubble ( $6-12 \mathrm{in}$ ), $35 \%$ small rubble ( $3-6 \mathrm{in}$ ), $10 \%$ coarse gravel ( $1-3 \mathrm{in}$ ), $5 \%$ fine gravel ( $0.1-1 \mathrm{in}$ ), $5 \%$ sand, $5 \%$ muck

Pool-Riffle Ratio in Section: $\quad 40 \%$ pool; $60 \%$ riffle

## Other Observations

Aquatic Vegetation:
Type:
Macroinvertebrates: Crayfish, mayflies

HABITAT ASSESSMENT	Mountain Bioregion	
Habitat Parameter	Condition Category	Score
1. Epifaunal Substrate / Available Cover	Suboptimal	15
2. Embeddedness	Marginal	10
3. Velocity / Depth Regime	Optimal	18
4. Sediment Deposition	Marginal	10
5. Channel Flow Status	Optimal	17
6. Channel Alteration	Suboptimal	15
7. Frequency of Riffles (or bends)	Optimal	17
8. Bank Stability	Right	Suboptimal
	Suboptimal	6
9. Vegetation Protection	Left	Right
	Left	Opoptimal
10. Riparian Vegetation	Right	Suboptimal
Zone Width	Left	Optimal
Total		


BIOLOGICAL ASSESSMENT	Fugitt Creek	k (cont.)	DOW02044001
Species Composition			
Common Name S	Species	Number	Notes
Blacknose Dace $R$	Rhinichthys obtusus	58	
Creek Chub S	Semotilus atromaculatus	40	
White Sucker C	Catostomus commersoni	3	
Northern Hogsucker Hyp	Hypentelium nigricans	2	
Central Stoneroller C	Campostoma anomalum	20	
Rainbow Darter E	Etheostoma caeruleum	3	
Total Number of Individuals	6 Native Species	126	
Index of Biotic Integrity (IBI)	Mountains (MT) Ichthyoregion		
Metric	Actual Ex	Expected Value	IBI Score
Benthic Spp. Richness	1.0	3.7	37.7
Intolerant Spp. Richness	0	1.8	29.3
SL Spawning Spp. Richness	4.0	4.2	61.9
\% Insectivores (Indv.)	3.9	45.2	20.0
\% Tolerants (Indv.)	19.9	61.8	35.1
\% Facultative Headwater Individuals	als $\quad 38.1$	59.6	9.1
		Final IBI Score	32.2
		IBI Rating	Poor

## EASTERN FISHERY DISTRICT

## Project B: Technical Guidance

## FINDINGS

Details of the technical guidance provided during 2017 are shown in Table 1. Technical guidance (29) was provided by on-site visits (4), over the telephone, or by written correspondence. Topics encountered and responded to included: fish population balance, water quality problems, fish disease, fish stocking, and aquatic vegetation problems.

Several other requests for information about area fisheries and miscellaneous information about fish management in lakes and ponds were handled over the telephone.

Table 1. Pond technical guidance in the Eastern Fishery District during 2017.

Date	County	Owner	Problem	Recommendations
1/25	Magoffin	Royalton	duckw eed	multi-application of Rew ard
2/1	Floyd	Pat Griffith	fish balance	stock fish
2/9	Law rence	Steve Long	trout stocking, vegetation	max w ater temp for trout, email vegetation pictures
3/24	Knott	Jamie Thomas	vegetation	grass carp stocking \& herbicide
3/27	Knott	Wendel McClain	brazilian elodea control	grass carp
3/28	Johnson	Scott Stew art	new pond stocking	private dealers list
4/3	Magoffin	Farley Joseph	pond balance \& stocking	private dealer list and stocking \#'s based on fishing
4/7	Floyd	Dean Harless	algae	copper sulfate
4/10	Johnson	Bob Hutchinson	stocking, algae	private dealer list, herbicide
4/24	Leslie	Dylan Couch	stocking	farm pond book \& private dealer list
4/25	Wolfe	Kenneth Combs	pond balance	remove small bass \& catfish
5/4	Perry	Haskel Ritchie	fish dying	transport issue of stocked fish
5/16	Law rence	Darrel Holbrook	fish stocking	private dealers list
5/18	Perry	Ishmael Stacy	algae	CutrinePlus
5/22	Letcher	M. Mullins	pond balance	private dealer list
6/19	Perry	Bradley J. VanZandt	stocking	private dealer list \& possibly stocking himself
6/27	Law rence	Curt Fitzpatrick	stocking	private dealers list
6/27	Martin*	Jamie Cline	w ater clarity, pond construction rip	riprap shoreline, install larger spillw ay
6/28	Floyd	R. Reynolds	filamentous algae	CutrinePlus
7/3	Knott*	Nicholas Slone	pond balance	lime, fertilize, harvest small bass
7/21	Law rence	Tammy Barker	brittle naiad, algae	Rew ard \& Cutrine-Plus
8/1	Floyd	Andrew Shepherd	fish stocking	private dealers list \& stocking numbers
8/2	Floyd	Andrew Shepherd	vegetation	farm pond book, fertilize
8/2	Perry	Doug Baker	fish dying	aerate, salt
8/2	Perry	Haskel Ritchie	fish dying	reduce stocking rates, transport issue
9/1	Law rence	Steve Long	plant ID	naiad treat w ith Rew ard
10/17	Magoffin	Kevin How ard	stocking	stock catfish, private dealer list
10/23	Floyd	Dean Harless	habitat	farm pond book
11/1	Harlan*	Valdean Jones	muddy w ater, algae	lime, CutrinePlus, refer to KY Div of Water

Project B: Fish Habitat Improvement - Public Lakes Fertilization

Lake		County	Size (acres)
Northwestern Fishery District	Subtotal		33
Honeycone Lake		Ohio	5
Lil' Gil Lake		Ohio	10
Washburn Lake		Ohio	18
Southwestern Fishery District	Subtotal		204
Marion County Lake		Marion	25
Spurlington Lake		Taylor	25
Briggs Lake		Logan	18
Shanty Hollow Lake		Warren	136
Central Fishery District	Subtotal		84
Corinth Lake		Grant	84
Eastern Fishery District	Subtotal		39.7
Fishpond Lake		Knott	30.3
High Splint Lake		Harlan	6.9
Kingdom Come Lake		Harlan	2.5

## Project B: Fish Habitat Improvement - Fish Attractors

District / Lake	Fish Attractor Sites
Western Fishery District	
Barkley Lake	71 hardwood units ( 1 tree=1 unit) were used to create new deep water fish attractor sites; 137 hardwood units were used to refurbish existing deep water sites; 900 hardwood units were used to create new shallow water habitat sites; 86 plastic units were used to refurbish old deep water sites; 35 plastic units were used to create new deep water fish attractor sites; 138 Christmast tree units (2 trees=1 unit) were used to create new shallow water habitat sites; Refurbished 153 hardwood stake beds and made 41 new sites (new site $=100$ stakes, refurbished site $=50$ stakes)
Energy Lake	Refurbished 2 attractor sites with plastic attractors
Kentucky Lake	88 Christmas tree units (2 trees=1 unit) were used to create new shall water fish habitat sites; 30 plastic units were used to refurbish existing deepwater fish attractors; Refurbished 17 hardwood stake beds and made 4 new sites; planted 30 cypress trees along shoreline; planted 5 acres of rye grass in the drawdown zone
Northwestern Fishery District	
Carpenter Lake	57 scrap vinyl attractors and 3 "large fountain" gas pipe attractors around fishing jetty
Nolin River Lake	
Wax Marina area	52 gas line "spider square" attractors in 1 site
Upper Dog Creek	39 gas line attractor units in 2 sites
Rough River Lake	
Little Clifty Creek area	19 gas line attractors in 1 site (various designs)
Cave Creek area	174 gas line attractors in 3 sites ("cattails" and "snags")
Peter Cave Creek area	40 "snag" gas line attractors in 1 site
Kingfisher lakes	
New Kingfisher	61 scrap vinyl attractors and 17 "large fountain" gas pipe attractors
Southwestern Fishery District	
Barren River Lake	5 new brush sites, 13 refurbished brush sites, 1 new stake bed, 1 new plastics site
Green River Lake	5 new brush sites, 4 refurbished brush site, 1 new pallet trees site, 2 refurbished pallet trees sites
Shanty Hollow Lake	2 new brush piles, 2 refurbished brush piles
Three Springs Lake	4 refurbished brush sites, 1 new brush site

Project B: Fish Habitat Improvement - Fish Attractors cont.

District / Lake	Fish Attractor Sites
Central Fishery District	
Beaver Lake	127 PVC structures (spider ball); 32 brush piles (602 trees); 4 shallow shoreline transects ( 30 trees per transect ( 120 trees); 107 pallet structures ( 3 pallets per unit +2 trees per pallet ( 200 trees); 3 PVC trees; 14 stake beds; 1 hinge cut - fallen trees
McNeely Lake	1 brush pile (15 trees)
Northeastern Fishery District	
Cave Run Lake	
Annual habitat work	2 refurbished brush sites (Christmas tree sites - 100+ trees)
Large-scale habitat project work	In the final year of the Cave Run Lake Fish Habitat Project, areas worked on included: the impounded side of Ramey's Creek, Cassidy Point and between and around the Poppin Rock and Bangor Boat ramps. Twenty-one new sites and 1 large reef were created in these areas. Thousands of structures were added to the lake including: Christmas tree bundles, larger cedar trees, pallet structures, stake buckets, plastic pallet structures, concrete culverts, hardwood tree stumps and wooden spool structures. In addition, 6 new sites were created by district staff. Structures were made out of tree bundles, large stumps and wooden crates.
Grayson Lake	4 refurbished brush sites (Christmas tree sites - 150+ trees)
Southeastern Fishery District	
Laurel River Lake	10 brush sites refurbished (30 Christmas trees per site)
Eastern Fishery District	
Buckhorn Lake	6 refurbished shallow water brushpiles ( 60 Christmas trees), 1 new Christmas tree reef ( 40 trees), 10 pallet structures with 15 Christmas trees, 3 plastic tree structures, 4 hinge-cut hardwood trees, 425lbs of winter wheat sowed
Carr Creek Lake	2 refurbished shallow water brushpiles (11 Christmas trees)
Dewey Lake	9 new shallow water brushpiles ( 84 Christmas trees and hardwood), 6 refurbished shallow water brushpiles ( 70 Christmas trees), 5 new deep water brushpile ( 57 Christmas trees and hardwood), 1 refurbished deep water brushpile (15 Christmas trees), 1 new stake bed, 2 refurbished stake beds, 1 hinge-cut tree, 200 lbs wheat seed sowed
Fishtrap Lake	3 refurbished brushpiles deep water (18 Christmas trees)
Martins Fork Lake	1 new Christmas tree brushpile deep water (10 trees)
Paintsville Lake	1 new Christmas tree brushpile ( 15 trees), 10 plastic tree structures, 3 new deep water brushpiles ( 35 Christmas trees \& 20 cedar trees)
Yatesville Lake	2 plastic tree structures, 3 new shallow water brushpiles (25 Christmas trees)

Minor Clark Fish Hatchery 2017 Sport Fish Production


Planned			Actual				Notes
Species	Number	Size (in) Location/Use	Number	Size (in)	Pounds	No./lb.	
Hybrid Striped	200,000	1.5 Barren River Lake**	200,046	1.4	132.6	1,509	
Bass	2,600	1.5 Sympson Lake*	2,624	2.1	8.3	316	
	15,000	1.5 Grayson Lake	15,053	2.0	53.5	281	
	51,000	1.5 Rough River Lake*	51,030	1.5	54.0	945	
	51,000	1.5 Rough River Lake	51,561	1.5	53.1	971	
	30,000	1.5 Taylorsville Lake*	30,618	1.5	32.4	945	
	30,000	1.5 Taylorsville Lake	30,588	1.5	31.5	971	
	25,000	1.5 Herrington Lake*	25,515	1.5	27.0	945	
	25,000	1.5 Herrington Lake	25,635	1.5	26.4	971	
	23,000	1.5 Fishtrap Lake	23,028	1.4	44.7	515	
	7,200	1.5 Lake Linville	7,251	2.0	21.2	342	
	19,000	1.5 Guist Creek Lake	19,098	1.6	24.9	767	
	3,333	1.5 KY River Pool 4	3,339	1.6	4.3	774	
	3,333	1.5 KY River Pool 5	3,339	1.6	4.3	774	
	3,333	1.5 KY River Pool 6	3,340	1.6	4.3	774	
	3,333	1.5 KY River Pool 7	3,340	1.6	4.3	774	
	3,334	1.5 KY River Pool 8	3,340	1.6	4.3	774	
	3,334	1.5 KY River Pool 9 Ohio River	3,340	1.6	4.3	774	
	54,500	1.5 Markland Pool	54,663	1.3	39.9	1,370	
	41,500	1.5 McAlpine Pool	41,630	1.3	31.0	1,343	
	50,000	1.5 Cannelton Pool	50,074	1.6	79.7	628	
	36,000	1.5 Newburg Pool	36,050	1.6	46.6	774	
	43,700	1.5 Uniontown Pool	47,126	1.4	47.0	1,003	
	60,500	1.5 Smithland Pool	64,023	1.3	42.7	1,499	
	0	Meldahl Pool	54,756	1.3	32.4	1,690	
Total Recips	679,000		628,956	1.5	659.3		
Total Originals	106,000	*OTC Marked Originals	221,451		195.4		
Grand Total	785,000	** Mixed Originals/Recips	850,407		854.7		


Planned			Actual				Notes
Species	Number	Size (in) Location/Use	Number	Size (in)	Pounds	No./lb.	
Walleye (Erie)	0	0 Licking River	1,242,505				Fry
	0	0 West Virginia	1,003,000				Fry
Total			2,245,505				
	350,000	1.5 Lake Cumberland	601,044	1.5	519.1	1,158	
	40,000	1.5 Dale Hollow Lake (KY)	112,570	1.6	97.3	1,157	
	260,000	1.5 Laurel River Lake	300,353	1.5	182.0	1,650	
	35,000	1.5 Carr Creek Lake	35,022	1.5	26.0	1,347	
	57,000	1.5 Paintsville Lake	57,040	1.5	46.0	1,240	
	200,000	1.5 Nolin River Lake	201,385	1.5	126.7	1,590	
	200,000	1.5 Green River Lake	400,319	1.5	250.9	1,596	
	15,000	1.5 Russell Fork	15,128	1.5	12.2	1,240	
Total			1,722,861	1.5	1260.2	1,367	
Grand Total			3,968,366				
Walleye (Native)	0	Tennessee	55,260				Fry
			55,260				
	20,000	2.5 Upper KY River	20,020	2.3	60	332	
	3,000	2.5 Upper Levisa Fork	3,021	2.3	9	332	
	6,400	2.5 Rockcastle River	6,408	2.3	19.3	332	
	19,800	2.5 Wood Creek Lake	1,428	2.3	4.3	332	
	16,000	2.5 Lower Barren	15,994	2.3	47.6	336	
	10,000	2.5 Martins Fork Lake	10,027	2.3	30.2	332	
	27,200	2.5 Upper Cumberland River	27,182	2.3	80.9	336	
Total	102,400		84,080	2.3	251.3	335	
Grand Total			139,340				
Striped Bass	350,000	1.5 Lake Cumberland	356,385	1.5	568.3	574	
	50,000	1.5 Kentucky Lake tailwater	50,066	1.3	41.9	1,195	
	50,000	1.5 Barkley Lake tailwater Ohio River	50,059	1.4	42.3	1,183	
	49,000	1.5 Markland Pool	49,000	1.3	47.9	1,022	
	38,000	1.5 McAlpine Pool	38,005	1.3	32.5	1,169	
	46,000	1.5 Cannelton Pool	46,045	1.7	47.9	961	
	33,000	1.5 Newburg Pool	33,020	1.3	25.4	1,300	
	40,000	1.5 Uniontown Pool	40,105	1.4	40.9	981	
	55,000	1.5 Smithland Pool	50,051	1.4	49.3	1,015	
	0	Kentucky Lake	179,322	1.4	157	1,142	
	0	Barkley Lake	196,382	1.5	233.0	842	
	711,000	1.5	1,088,440	1.5	1286.3	810	



Nonsport Forage Species   Forage Species	
Fathead Minnows	Pounds $\quad$ Location/use
	2,435 Muskellunge Ponds
	3,903 LMB Pond
Total Pounds FHM	6,338
Goldfish	
	5,529 Muskellunge Ponds
	5,201 Walleye Broodstock
	4,174 Overwinter Display Pool
	1,450 LMB Pond
	525 Display Pool
	615 Furture Broodstock
Total Pounds GOF	17,494

## Peter W. Pfeiffer Fish Hatchery 2017 Sport Fish Production

Species	Planned		Actual				
	Number S	Size (in)	Location/Use	Number	Size (in)	Pounds	No./lb.
Channel Catfish							
	0		Elkhorn Creek	66,800	Fry		
	0		KY River Pool 3	168,085	Fry		
	0		KY River Pool 4	266,000	Fry		
				500,885			
	$675{ }^{\prime \prime}$	15	Minor Clark Fish Hatchery	810	10-15	675	1.2
	0		N. Fork KY River	20,520	4-8	1,800	11.4
	0		KY River Pool 1	17,090	4-8	2,100	8.1
	0		KY River Pool 3	49,620	4-8	4,230	11.7
	0		KY River Pool 4	43,635	4-8	4,250	10.3
	0		Multiple Districts as Reque	147,264	4-8	13,652	10.8
	72,475	8-10	Public Fishing Lakes(Stockı	72,219	7-10	15,337	4.7
	121,000	15	FINS Program	47,990	12-24	66,339	0.7
	193,475			399,148		108,383	
Blue Catfish							
	0		OH DNR	59,714	Fry		
				59,714			
	40,000	5-7	Barren River Lake	174,740	4-8	15,290	11.4
	4,800	5-7	Dewey Lake	22,000	4-8	2,131	10.3
	5,200	5-7	Fishtrap Lake	22,460	4-8	2,479	9.1
	23,500	5-7	Taylorsville Lake	47,040	4-8	5,151	9.1
	73,500			266,240		25,051	
	121,000	15	FINS Program	33,170	7-15	42,945	0.8
	121,000			33,170		42,945	
Hybrid Catfish							
	0		Jacobson Park Lake	6,090	4-8	700	8.7
	121,000		FINS Program	41,140	10-24	40,635	1.0
				47,230		41,335	
Hybrid Sunfish							
	30,000	6-8	FINS Program	35,815	5-10	10,369	3.5
	30,000			35,815		10,369	



Planned			Actual   Number
Brook Trout	40000 Lake Cumberland Tailwater		42,930
	300 Parched Corn Creek		375
		Total:	43,305
Brown Trout	500 Bark Camp Creek		500
	250 Big Caney Creek		250
	450 Chimney Top Creek		475
	3250 Fort Campbell		3,250
	1000 Herrington Lake Tailwater		1,000
	400 Indian Creek - East Fork		400
	500 Jennings Creek		500
	25000 Lake Cumberland Tailwater		30,843
	250 Laurel Creek		250
	700 Looney Creek		700
	1000 Nolin River Lake Tailwater		1,000
	500 Otter Creek		500
	Paint Creek		300
	200 Roundstone Creek		200
	200 Sulphur Springs Creek		200
	600 Trammel Creek		600
	250 Laurel Tailwater		
	300 Paintsville Tailwater		
		Total	40,968


Species	Number Location	Number
Rainbow Trout	4500 Alexandria Community Park Lake	4,500
	1500 Anderson County Community Park Lake	1,500
	3750 Bark Camp Creek	3,750
	1500 Beaver Creek	1,500
	1200 Beaver Creek - Left Fork	1,200
	1200 Beaver Creek - Right Fork	1,200
	4000 Beulah Lake	4,000
	1200 Big Bone Lick State Park	1,200
	2500 Big Caney Creek	2,500
	1500 Bloomfield Park Lake	1,500
	4500 Bob Noble Park Lake	2,300
	2000 Boone Tract 6 Acre Lake	2,000
	800 Boulder Lake	800
	2700 Brickyard Pond	2,700
	5000 Buckhorn Lake Tailwater	5,000
	500 Buffalo Creek	500
	4500 Camp Ernst Lake	3,600
	3750 Cane Creek	3,750
	6000 Cannon Creek Lake	6,000
	5000 Carr Creek Lake Tailwater	5,000
	8000 Casey Creek	8,000
	6800 Cave Run Lake Tailwater	7,800
	2500 Cherokee Park Lake	2,500
	1200 Clear Creek	1,200
	Clinton Rotary Park Lake	1,700
	1000 Craney Creek	1,000
	5000 Cranks Creek Lake	5,000
	4000 Dewey Lake Tailwater	4,000
	1000 Eagle Lake (Morehead State)	1,000
	1500 Easy Walker Park Pond	1,500
	1600 Elk Spring Creek	1,600
	2000 Fagan Branch Lake	2,000
	3000 Fisherman's Park Lakes	3,000
	5000 Fishpond Lake	5,000
	10000 Fishtrap Lake Tailwater	10,000
	2700 Flemingsburg City Reservoir (OId)	2,700
	3600 Floyds Fork Creek	3,600
	2400 Fort Campbell	2,400
	1000 Goose Creek	1,000
	2000 Grants Branch Lake	4,000


5000 Grayson Lake Tailwater	4,000
400 Greasy Creek	400
11000 Greenbo Lake	11,000
33500 Hatchery Creek	26,875
4500 Herrington Lake Tailwater	4,500
Higginson \& Henry WMA	500
2750 Highsplint Lake	2,750
4500 Indian Creek - East Fork	4,500
9000 Jacobson Park Lake	9,000
1500 James Beville Park Lake	1,500
7000 Jennings Creek	7,500
2700 Kentucky Horse Park Lake	3,600
1500 Kess Creek Park Lake	1,700
2500 Kingdom Come State Park Lake	3,000
161000 Lake Cumberland Tailwater	172,805
1500 Lake Mingo	1,500
2500 Lake Pollywog	2,500
2750 Laurel Creek	2,850
45000 Laurel River Lake	45,000
500 Laurel River Lake Tailwater	100
4500 Leary Lake	5,400
400 Little Sandy River - East Fork	400
4500 Logan Hubble Park	4,500
1500 Looney Creek	1,500
1500 Lower Sportsman's Lake	1,500
Lusby Lake	1,500
2500 Lynn Camp Creek	2,500
4500 Madisonville Park	3,600
Martin County Lake	4,250
3750 Martins Fork Lake Tailwater	3,750
2700 Mason County Recreational Lake	2,700
500 Metcalfe County Park Lake	500
Middlesboro Canal	420
3000 Middleton Mills Park Lake	3,000
2500 Mike Miller Park Lake	2,500
4000 Miles Park Lakes	4,000
6000 Mill Creek Lake (Wolfe \& Powell Co.)	6,000
1500 Millenium Park Pond	1,500
9000 Nolin River Lake Tailwater	8,00
7500 Otter Creek	Paint Creek


Rainbow Trout	4500 Paintsville Lake	4,500
	20000 Paintsville Lake Tailwater	19,500
	6000 Panbowl Lake	6,000
	2500 Panther Creek Park Lake	2,500
	5250 Peabody WMA	5,250
	2500 Pikeville City Lake	2,500
	2500 Prisoners Lake	2,000
	400 Raven Creek	400
	3000 Red River - Middle Fork	3,000
	15600 Rock Creek	15,600
	2800 Roundstone Creek	3,075
	1200 Royal Springs	1,200
	2250 Russell Fork Creek	2,250
	1000 Sandy Watkins Park Lake	1,000
	1500 Scott County Park Lake	1,500
	1200 Sinking Creek	1,200
	1500 Southgate Lake	1,500
	750 Station Camp Creek	750
	400 Sturgeon Creek	400
	3000 Sulphur Springs Creek	3,250
	1000 Swift Camp Creek	1,000
	3000 Taylorsville Lake Tailwater	3,025
	4500 Three Springs Lake	4,500
	4500 Tom Wallace Park Lake	4,500
	8750 Trammel Creek	8,750
	1200 Triplett Creek	1,200
	1050 Triplett Creek - North Fork	1,050
	4500 Upper Sportsman's Lake	4,900
	2500 War Fork Creek	2,000
	4500 Waverly Park Lake	4,500
	4500 Waymond Morris Park	4,500
	1000 West Hickman Creek	1,000
	4500 Whitehall Park Lake	4,500
	8000 Wood Creek Lake	8,025
	2250 Yatesville Lake Tailwater	2,250
	1500 Yellow Creek Park Lake	1,500
		632,475


[^0]:    wfdbrsky.d17

[^1]:    wfdtpnb1.d17 and wfdtnagb.d17

[^2]:    * Includes effort and catch of non-crappie anglers

[^3]:    w fdpsdlb.d17 and w fdw rlb.d17

[^4]:    ${ }^{\text {a }}$ Largemouth bass $=8 \mathrm{in}$, spotted bass $=7$ in
    ${ }^{\mathrm{b}}$ Largemouth bass $=\mathrm{RSD}_{15}$, spotted bass $=\mathrm{RSD}_{14}$.
    nwd1psd.d17

[^5]:    ${ }^{\text {a }}$ Nocturnal sample
    nwd3psd.d17

[^6]:    nwd4bg.d17

[^7]:    * Washburn Lake renovated summer 1999 and restocked spring 2000
    nwd8psd.d17

[^8]:    nwd18bg.d17

[^9]:    A Largemouth bass $=$ RSD $_{15}$, spotted bass $=R_{\text {RD }}^{14}$.

    * No fish of sufficient size were collected during sampling. swdbrlbb.d17

[^10]:    ${ }^{\text {A }}$ Data collected by fall (September-November) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of LMB <10.0 in, and extrapolated to the entire catch of the fall sample.

[^11]:    ${ }^{\mathrm{a}}$ Bluegill= $\mathrm{RSD}_{8}$; redear sunfish $=\mathrm{RSD}_{9}$ swdbrgbg.d17

[^12]:    A Largemouth bass $=R S D_{15}$, spotted bass and smallmouth bass $=R_{14}$. swdgrlbb.d17

[^13]:    ${ }^{\text {a }}$ Bluegill $=\mathrm{RSD}_{8}$; redear sunfish= $\mathrm{RSD}_{9}$
    swdshlbg.D17

[^14]:    swdshlcc.d17

[^15]:    Intercept Value $=0.00$

[^16]:    Dataset = cfdgntvl.d17

[^17]:    * Age data not collected because no fish were captured at this age

[^18]:    Dataset = cfdwrher.d17

[^19]:    Dataset $=$ cfdwrbkl.d17

[^20]:    *Only includes wild largemouth bass CPUE for age-1 year class; stocked largemouth bass were marked by fin clip and removed from dataset.

[^21]:    Dataset = cfdpscor.d17-.d92

[^22]:    Dataset $=$ cfdpscor.d17

[^23]:    * Age data not collected
    ${ }^{\wedge}$ Calculations based on age data gathered in previous years
    -Instantaneous and annual mortality not calculated in years where age and growth data are not collected

[^24]:    Dataset = cfdhncor.d17-.d10

[^25]:    Dataset = cfdpskin.d17-.d92

[^26]:    * Age data not collected
    ${ }^{\wedge}$ Calculations based on age data gathered in previous years
    -Instantaneous and annual mortality not calculated in years where age and growth data are not collected

[^27]:    Intercept value $=0.00$
    Dataset = cfdagkin.d17

[^28]:    Dataset = cfdwrmcl.d17

[^29]:    * = No sample due to high water
    nedpsdgl.d17-d12; d09-d99

[^30]:    nedwrslc.d17

[^31]:    nedsunlr.d17, d15, d13-d98, d96-d95

[^32]:    *Largemouth bass - $\geq 8.0$ in = stock, $\geq 12.0$ in = quality, $\geq 15.0$ in = preferred
    *Smallmouth and spotted bass $-\geq 7.0$ in = stock, $\geq 11.0$ in = quality, $\geq 14.0$ in = preferred
    sedpsdcb.d17
    sedpsdlr.d17
    sedpsccl.d17
    sedpsdcl.d17
    sedpsdll.d17
    sedpsdwc.d17

[^33]:    ${ }^{a}$ diurnal sampling
    ${ }^{\text {b }}$ sampling effort was reduced to 1.5 hours beginning in 2015
    sedpsccl.d17

[^34]:    sedpsdw c.d17

[^35]:    * Includes supplemental spring stocked fish BBRWRCFL.D03-D05
    BBRSCCFL.D03
    EFDCLLSF.D06-D17
    EFDCLLAS.D08
    EFDCLLSS.D06-D17
    EFDCLLAF.D13

[^36]:    * Includes supplemental spring stocked fish EFDFLLSF.D03-D16
    EFDFLLSS.D04-D17
    EFDFLLAS.D04, D10

[^37]:    wfdmsrsp.d17

[^38]:    nedsflic.d17

