ANNUAL PERFORMANCE REPORT

District Fisheries Management
Projects 1-4

Project Leader: Adam Martin, Western Fishery District Biologist Assistant Project Leader: Nick Simpson, WFD Assistant Biologist

Project Leader: Robert Rold, Northwestern Fishery District Biologist
Assistant Project Leader: Jeremy Shiflet, NWFD Assistant Biologist
Project Leader: Eric Cummins, Southwestern Fishery District Biologist Assistant Project Leader: Kayla Gerber, SWFD Assistant Biologist

Project Leader: Jeff Crosby, Central Fishery District Biologist
Assistant Project Leader: David Baker, CFD Assistant Biologist
Project Leader: Tom Timmermann, Northeastern Fishery District Biologist Assistant Project Leader: Justin Heflin, NEFD Assistant Biologist

Project Leader: Marcy Anderson, Southeastern Fishery District Biologist Assistant Project Leader: Bradley Hartman, SEFD Assistant Biologist

Project Leader: Kevin Frey, Eastern Fishery District Biologist Assistant Project Leader: Jason Russell, EFD Assistant Biologist

TABLE OF CONTENTS

Project 1 - District Fisheries Management, Lake and Tailwater Sampling
WFD. 1
NWFD 95
SWFD 156
CFD. 209
NEFD 322
SEFD 381
EFD 463
Project 2 - Stream Surveys
CFD 539
NEFD 555
SEFD 568
EFD 573
Project 3 - Technical Guidance
WFD. 535
NWFD 536
SWFD 538
CFD. 552
NEFD 566
SEFD 571
EFD 575
Project 4 - Habitat Summary 576
Fish Production for all Hatcheries 579

WESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Sampling conditions for each survey event are listed in Table 1.

Kentucky Lake

During the spring, 817 black bass were collected by diurnal electrofishing (120 PPS, DC current). During this sampling period, 767 largemouth bass ($66.7 \mathrm{fish} / \mathrm{hr}$) were collected from Blood River, Jonathan Creek, Big Bear, and Sugar Bay (Table 2). The catch rates (fish/hr) for largemouth bass between embayments varied (52.3 to $88.0 \mathrm{fish} / \mathrm{hr}$). This variation could be due to changing weather conditions during the sampling period. The highest catch rates came from Sugar Bay, while catch rates from other embayments may have been negatively affected by fluctuating elevation (Table 1).

The spring bass data was used to complete the lake specific assessment (Table 3). The lake specific assessment suggests that the largemouth bass population rated "Fair". Growth will be reassessed in 2020. The catch rate of age-1 largemouth bass in the sample was low. Future habitat plans will be focused on increasing recruitment of largemouth bass in the reservoir.

The size structure parameters used to assess the fishery by standards set in the Kentucky Lake Fish Management Plan (KLFMP) showed an average catch of (<8.0 in) bass (Table 4). The catch rate of intermediatesize bass (12.0-14.9 in) which was ($7.9 \mathrm{fish} / \mathrm{hr}$) was below the plan recommendation. The catch rate of harvestablesize bass ($\geq 15.0 \mathrm{in}$) was also down from previous years' data, and below the plan recommendation. The catch rate of trophy-size largemouth bass (≥ 20.0 in) was the highest since 2010 , but was still below the KLFMP recommendation.

Proportional Size Distributions (PSD) values were calculated for black bass collected from each embayment sampled during the spring (Table 5). The average PSD and RSD_{15} values for largemouth bass were 47 and 28 , respectively. These average values were used in the KLFMP assessment. The PSD value was below the assessment preferred range (55-75; Table 4). The RSD_{15} value was 28 , which falls inside the targeted range (RSD_{15} of 20-40).

During October, 370 black bass were collected by diurnal electrofishing (120 PPS, DC current) from two embayments; Blood River, and Jonathan Creek (Table 6). Largemouth bass comprised 78\% (44.6 fish/hr) of this sample. During the 2017 fall sample, the largemouth bass catch rate was 50.2 fish $/ \mathrm{hr}$.

Length and weight data were recorded from all bass collected during the fall sample to calculate relative weight values. The mean relative weight for harvestable-size largemouth bass was 90 (Table 8). This value was up from the 2017 estimated relative weight value of 88 , but is still below the preferred range of $95-105$. The relative weight of largemouth bass is one parameter that is being watched as an indicator of the effects of the population of silver and bighead carp in the lake. As silver and bighead carp numbers continue to increase, they could impact the plankton levels and hence the upper levels of the food chain.

Length-weight equations for black bass species at Kentucky Lake are:

$$
\begin{array}{ll}
\text { Largemouth bass } & \log _{10}(\text { weight })=-3.51800+3.18731 \times \log _{10}(\text { length }) \\
\text { Smallmouth bass } & \log _{10}(\text { weight })=-3.60913+3.26384 \times \log _{10}(\text { length })
\end{array}
$$

Otoliths were collected from a subsample of largemouth bass (<12.0 in) during fall sampling in 2018. Otoliths were used to age bass so that the catch rate and growth of age- 0 fish could be evaluated. The catch rate of age-0 largemouth bass during the fall sample was 18.6 fish/hr (Table 7). The 2018 year class appears to be below average, with good growth. The mean length of the age-0 largemouth bass was (5.7 in) at time of capture in the fall.

The age-length key from 2016 was also used to assess the age frequency of largemouth bass > age-1. Few older fish were collected this fall (Table 9). The low catch rates may have been impacted by poor sampling conditions (Table $1)$.

Trap nets were fished for crappie in Blood River and Jonathan Creek embayments for 80 net-nights (nn) during October and November. In addition, Ledbetter Bay was sampled for 40 nn . This is the third time Ledbetter Bay has been sampled for crappie. The combined sampling effort yielded 1,060 crappie (8.8 fish $/ \mathrm{nn}$), of which 3.3 fish/nn (37%) were white crappie and 5.6 fish/nn (63%) were black crappie (Table 10). The Blood River and Jonathan Creek data is listed as "sub-total" on this table. The total catch rate of crappie $>$ age- 0 was 8.4 fish/nn which is below the goal of $20.0 \mathrm{fish} / \mathrm{nn}$ set in the KLFMP (Table 11). The low total catch rate is a reflection of the weak spawns in 2016 and 2017. However, the catch rate of 3.1 fish $/ \mathrm{nn}$ for age- 0 crappie this fall was an encouraging sign of an average spawn in 2018.

The number of crappie ≥ 8.0 in and ≥ 10.0 in collected in trap nets was 6.5 and 2.6 fish $/ \mathrm{nn}$, respectively (Table 11). The KLFMP objective for crappie is to maintain a catch rate of at least $10.0 \mathrm{fish} / \mathrm{nn}$ for crappie $\geq 8.0 \mathrm{in}$, and $4.0 \mathrm{fish} / \mathrm{nn}$ for crappie $\geq 10.0 \mathrm{in}$. Neither objective was met this year.

Crappie at Kentucky Lake had typical growth rates in 2017. The growth management objective in the KLFMP is for age- 2 crappie collected in the fall to reach 9.5 inches in length. The average length of the age- 2 crappie collected this year was 9.9 in (Table 11).

Another management objective in the KLFMP is to maintain a catch rate of age-1 crappie of at least 11.0 fish/nn (Table 11). The catch rate for this age group of crappie was $1.6 \mathrm{fish} / \mathrm{nn}$. This is the second lowest catch rate ever recorded at Kentucky Lake and indicates another poor spawn in 2017. For a discussion of the potential impacts of environmental factors on the 2017 spawn, please refer to the 2017 Annual Performance Report.

These parameters are also used as part of the calculation for ranking the crappie fishery at Kentucky Lake. Overall, the crappie population at Kentucky Lake rated "fair" this year (Table 12). The crappie fishery will be assessed with a creel survey in 2020.

The fall trap netting data was used to calculate proportional size distributions and length-weight equations for crappie. PSD and RSD_{10} values are reported in Table 13. The PSD and RSD_{10} values are up considerably, and reflect a higher proportion of large-size crappie in the population from a good year class in 2015 and a lower proportion of small fish due to recent weak year classes.

The mean relative weights of keeper-size (>10.0 in) white crappie and black crappie were 94 and 89 , respectively (Table 14). These relative weights are not ideal, but are an improvement over 2017.

Length-weight equations for white and black crappie are listed below.

$$
\begin{array}{ll}
\text { White crappie } & \log _{10}(\text { weight })=-3.67771+3.34450 \times \log _{10} \text { (length) } \\
\text { Black crappie } & \log _{10}(\text { weight })=-3.65733+3.36569 \times \log _{10} \text { (length) }
\end{array}
$$

Tables 15 and 16 list the back-calculated lengths at age for white and black crappie, respectively. The low length at age-1 $(3.4 \mathrm{in})$ is concerning as this may be a reflection of the lower densities of large-bodied zooplankton reported by Hancock Biological Station this year (Hancock Biological Station, unpublished data). The age frequencies for white and black crappie collected are listed in Tables 17 and 18, respectively.

During the spring of 2018 , icthyoplankton sampling was conducted in the Jonathan Creek embayment of Kentucky Lake. Samples were conducted using a rectangular neuston net with a 100-micron mesh size, towed 50 feet behind a boat, at a speed of 1.5 mph . Tow duration was either 5 or 3 minutes depending on an a priori assessment of the expected concentration of icthyoplankton and leptodora to prevent clogging. A General Oceanics flowmeter was attached inside the mouth of the net to record the volume of water sampled during each run. Sampling was begun just after dusk and always followed the same site order. Each sampling event started closest to the main lake site and then progressed farther into the embayment (Appendix A).

Ichthyoplankton samples were preserved immediately in 95\% ethanol and stored in mason jars. All larval fish were sorted and identified to the lowest practical taxon using "A Practical Key to Identify Families, Genera, and Species of Fish Larvae Commonly Collected in Tennessee Reservoirs" (Sammons, 1999); "Preliminary Guide to the Identification of Larval Fishes in the Tennessee River" (TVA, 1976); and "Early Development of Four Cyprinids Native to the Yangtze River, China" (Chapman, and Wang, 2006) (Bolu Yi, et al. 1988). Once identified, fish were counted and measured for total length. In cases of more than 100 individuals in a sample, a random subsample of at least 30 individuals was measured and used to extrapolate the lengths of the fish from the entire sample. Larval crappies were not identified to species due to overlapping myomere counts between both species and their hybrids (Spier and Ackerson, 2004).

The geometric mean and median of the six sample sites were used to evaluate overall densities during each week (Table 19). The standard error and coefficients of variation of the mean and geometric mean were used to evaluate sample accuracy. In 2015 the peak weekly density of crappie occurred on May $12^{\text {th }}$ and was 70.50 crappie $/ 1000 \mathrm{~m}^{3}$. In 2016 the peak weekly density of crappie occurred on May $19^{\text {th }}$ and was only 3.88 crappie $/ 1000 \mathrm{~m}^{3}$. In 2017 the peak weekly density of crappie occurred on May $19^{\text {th }}$ and was 31.99 crappie $/ 1000 \mathrm{~m}^{3}$. In 2018 the peak weekly density of crappie occurred on May $19^{\text {th }}$ and was 27.74 crappie $/ 1000 \mathrm{~m}^{3}$. Based on these results, the spawn of crappie in Jonathan Creek in 2018 appears to have been better than 2016, but not as good as 2015. This will still need to be verified with trap netting in 2019. For the third year in a row the peak weekly density has occurred on May $19^{\text {th }}$.

In order to determine the hatch dates of crappies more precisely, based on growth rates, all crappie that were $8-11 \mathrm{~mm}$ in total length were assumed to represent a one-week cohort (Table 20). Just like last year, crappie in the $8-11 \mathrm{~mm}$ range appeared to be fully recruited to the gear, and were well represented in the sample. It is possible that crappie shorter than 8 mm were not located in the pelagic sample sites yet, and that crappie over 11 mm were more likely to avoid capture. This length range was also chosen because an 8 mm crappie would grow to 11.8 mm in one week (our sample interval), based on a growth rate of 0.67 mm per day after swim up. This was our estimated daily growth rate from daily otolith ring counts of Jonathan Creek crappie collected later in the year (next section).

In addition to weekly cohorts, we also estimated daily cohorts of hatched crappie. All crappie that were captured outside of the $8-11 \mathrm{~mm}$ length range were excluded from the hatch date analysis to minimize the effects of gear bias and the longer exposure to natural mortality of older fish (Table 21). A hatch date was then backcalculated for each individual fish using the assumed growth rate ($0.67 \mathrm{~mm} /$ day $)$ and the total length of each fish. A total length at hatch $(4 \mathrm{~mm})$ was factored into the regression for hatch date. This technique has been employed in other systems (Mitzner 1991). An incubation period of 95 hours (based on temperature) was also factored into the regression so that the day when fertilization occurred could be estimated.

The estimated hatching densities indicated that the spawn in Jonathan Creek lasted at least 22 days and extended at least until the middle of May (Table 21). The truncated spawning period was likely influenced by the rapid rise in water temperature this year. Because of our limited larval sampling window, we cannot be sure that crappie did not spawn before or after our sampling window. The literature reports most crappie spawns to be relatively short (1-2 months; Mitzner 1991 and Travnichek, et. al.1996). A strong peak in spawning activity was observed during the first week of May immediately following a brief lake elevation rise of 2 feet above normal. The lake was up to summer pool (359.0) by 17-April, but larval sampling did not indicate any successful spawning activity until 23-April when the lake was rising above summer pool elevation. The highest numbers of crappie were spawned after the lake returned to summer pool elevation and water temps climbed into the 60 's. Water temperatures quickly rose this year and the spawning activity appeared to end as temperarures reached the high 70's. Similar to prior-year surveys we found much higher densities of larval crappie farther into the embayment (Table 19; Appendix A).

In June 2018 an effort was made to capture YOY crappie using a benthic otter trawl. Crappie were identified to species using dorsal fin counts, and a subsample of otoliths was collected from approximately 200 crappie for daily ring count analysis. The subsample was collected randomly without regard to crappie species or size. Crappie trawling has typically been conducted in the fall to assess year class strength. However, an earlier sample was necessary for accurate daily ring counts since those counts can become unreliable in fish >100 days old
(Sweatman and Kohler, 1991). Trawling runs were conducted in Jonathan Creek because this is where the larval sampling occurred during the spring. To evaluate whether hatching periods and growth rates differed by embayment, trawling was also conducted at Blood River embayment. Otoliths were mounted convex side down using thermoplastic cement, sanded with 1200 grit sandpaper, and polished with 0.3 -micron alumina powder.

Each otolith was aged independently by two readers using a compound microscope at 100x-400x magnification. Reader agreement was typically within 1-2 days, but if the difference between readers was less than 10% of the fish's age, the counts were averaged and accepted. In 2018, no fish were excluded from Johnathan Creek or Blood River based on reader disagreement. We were able to estimate an average daily growth rate for both species of crappie by using the equation described by Sweatman and Kohler (1991) [(total length mm-4mm)/\#days old-4 days]. This growth rate estimate was coupled with the larval data to provide an accurate estimate of crappie hatch dates in Jonathan Creek as described earlier (Table 21). There is no way to practically differentiate between crappie species in the larval samples. Thusly, the estimated growth rate used in the larval hatch date back calculation combined both species together.

Differences in growth rates and hatch dates between species and embayments were initially compared with an F-test for variances. Due to unequal variances, the hatch dates and growth rates were then compared using Ttests for unequal variances. In Jonathan Creek the mean hatch date of white crappie (May $\left.13^{\text {th }}\right)(\mathrm{n}=78)$ was significantly later than the mean hatch date of black crappie (May $\left.10^{\mathrm{th}}\right)(\mathrm{n}=26)(\mathrm{t}=2.7 \mathrm{df}=37 \mathrm{P}=.005)$ (Table 22). Daily growth rates for black crappie were statistically significantly higher ($0.70 \mathrm{~mm} /$ day $)$ than white crappie ($0.067 \mathrm{~mm} /$ day $)(\mathrm{t}=1.68 \mathrm{df}=45 \mathrm{P}=0.049)$.

In Blood River, the average black crappie hatched significantly sooner (May $\left.10^{\text {th }}\right)(\mathrm{n}=9)$ than the average white crappie (May $\left.15^{\text {th }}\right)(\mathrm{n}=89)(\mathrm{t}=2.43 \mathrm{df}=9 \mathrm{P}=<0.02)$ (Table 22). Daily growth rates for black crappie were statistically significantly higher $(0.71 \mathrm{~mm} / \mathrm{day})$ than white crappie $(.067 \mathrm{~mm} / \mathrm{day})(\mathrm{t}=2.71 \mathrm{df}=14 \mathrm{P}=0.0084)$.

When both species were grouped together, crappie in Blood River and Jonathan Creek each had an average daily growth rate of $0.68 \mathrm{~mm} /$ day. The average crappie in Blood River hatched significantly later (May $14^{\text {th }}$), than the average crappie in Jonathan Creek (May $\left.12^{\text {th }}\right)(\mathrm{t}=3.17 \mathrm{df}=196 \mathrm{P}=<0.0009)$. The slight difference in hatch dates may be due to differences in embayment morphology or unknown temperature differences, but was more likely influenced by the higher proportion of white crappie collected in Blood River.

The catfish population was sampled at Kentucky Lake during June by using low pulse (15 PPS) electrofishing along the main lake river channel. A chase boat was utilized to help collect catfish around the electrofishing boat. One dipper was used in each boat. A total of 69 catfish were collected during 29 electrofishing runs (Table 23). Each run lasted 300 seconds, for a total sample time of 2.4 hours over a three-day period. Of the samples, blue catfish had the highest catch rate at 23.8 fish $/ \mathrm{hr}$, and made up 83% of the catfish collected. The catch rate was much lower than observed in most previous years, but consistent with last year's results. Relative weight values are listed in Table 24. The relative weight values are all high, suggesting the fish are healthy.

Otoliths were collected during catfish sampling in 2014. That age data was applied to the 2018 dataset to calculate age frequencies. Age frequency data for blue catfish is presented in Table 25.

Literature Cited

Chapman, D. C., ed., 2006, Early development of four cyprinids native to the Yangtze River, China: U. S. Geological Survey Data Series 239, 51 p.

Martin, A. D. 2012. Recruitment of black and white crappie populations in Kentucky Lake and Lake Barkley. Master's Thesis, Murray State University

Mitzner, L. 1991. Effect of environmental variables upon crappie young, year-class strength, and the sport fishery. North American Journal of Fisheries Management 11:534-542

Mcdonough, T. A., and J. P. Buchanan. 1991. Factors affecting abundance of white crappies in Chickamauga Reservoir, Tennessee, 1970-1989. North American Journal of Fisheries Management 11:513-524

Spier, T. W., and J. R. Ackerson. 2004. Effect of temperature on the identification of larval black crappies, white crappies, and F_{1} Hybrid Crappies. Transactions of the American Fisheries Society 133: 789-793

Sammons, S. 1999. A practical key to identify families, genera, and species of fish larvae commonly collected in Tennessee Reservoirs. U.S.G.S., Biological Resources Division. Tennessee Cooperative Fishery Research Unit.

Travnichek, V. H., M. J. Maceina, and R. A. Dunham. 1996. Hatching time and early growth of age-0 black crappies, white crappies, and their naturally produced F1 hybrids in Weiss Lake, Alabama. Transactions of the American Fisheries Society 125:334-337.

Tennessee Valley Authority. 1976. Preliminary guide to the identification of larval fishes in the Tennessee River. Technical Note B 19

Lake Barkley

Black bass were collected by diurnal electrofishing (120 PPS, DC current) during the spring at sampling sites historically used on Lake Barkley. A total of 513 black bass were collected at a rate of $48.9 \mathrm{fish} / \mathrm{hr}$ (Table 26). Spotted and smallmouth bass accounted for about 8% of the total black bass sampled. Catch rates declined slightly over last year, and were still below the long-term average. At best, it was felt that sampling yielded only fair results. Although sampling during some years $(2011,2012,2016)$ was believed to be affected by weather conditions, the lack of a strong spawn between 2009 and 2016 has likely reduced the overall numbers of bass in Lake Barkley. This might explain the drop in intermediate and large-size bass during the most recent study. The largemouth bass catch rate was 44.9 fish $/ \mathrm{hr}$ which falls below the ten-year average of 83.4 fish/hr (Table 27).

The overall PSD and RSD $_{15}$ values for largemouth bass at Lake Barkley, along with values for individual embayments are listed in Table 28. The PSD value (67) is within the objective goal (PSD of 55-75) established in the Barkley Lake Fish Management Plan (BLFMP). This value indicates a bass fishery with a balanced size structure. The RSD_{15} (51) was higher than the set goal (20-40). This higher value indicates that the bass population is slightly skewed toward larger fish. The spring catch rates of small ($\leq 8.0 \mathrm{in}$), medium (8.0-14.9 in), and larger ($\geq 15.0 \mathrm{in}$) largemouth bass all declined this year and remain lower than historical averages (Table 27).

The lake specific assessment score for Lake Barkley was "fair" (Table 29). The score was "good" for several years prior to 2010. Flood conditions in 2010, 2011, and 2013 as well as drought conditions in 2012 likely influenced sampling resulting in spurious lower ratings for these years. The fishery showed improvement in these ratings in 2017 and was again rated as "good". However, in 2018, low catch rates of 12.0- to 14.9-in largemouth bass and largemouth bass ≥ 15.0 in negatively affected the score. We calculated age- 3 largemouth bass mean length at capture as outlined by Murphy and Willis (1996) in addition to the traditional method. This method uses a weighted average based on the age-length key and includes all sampled fish per age class. Although differences are slight, we do feel that this calculation more accurately describes this metric, as all spring-sampled bass are included in the calculation. The annual mortality of largemouth bass older than a year was 26% as determined using catchcurve regression of fall-caught largemouth (Table 29).

Black bass were sampled in October to collect length-weight data to assess condition factors and to determine the strength of the 2018 year-class. A total of 271 bass were collected, with 89% being largemouth bass (Table 30). Largemouth bass were caught at a rate of $34.7 \mathrm{fish} / \mathrm{hr}$. This catch rate was much lower than previous years. Unseasonably warm water temperatures for the first couple weeks of October likely affected catch rates this year. Relative weights were determined for all bass, but very few spotted and smallmouth bass were collected (Table
31). The relative weight for harvestable-size ($\geq 15.0 \mathrm{in}$) largemouth bass was 102.5 . The length-weight equation for largemouth bass at Lake Barkley is:

$$
\operatorname{Largemouth~BassLog}_{10}(\text { weight })=-3.59927+3.29547 \times \log _{10}(\text { length })
$$

During 2015, largemouth bass age and growth data was collected in the fall instead of the spring. This statewide change in sampling procedure was made to simplify the reading of otoliths by eliminating the need to add an unseen annulus onto the outer edge. Age and growth data collected in the fall of 2015 were coupled with fall 2018 data to yield an estimate of the age distribution for largemouth bass. Catch rates for fall-caught fish by ageclass are shown in Table 32. Ages ranged from 0-11 and the most abundant age-class was age-0. Moderate catch rates of age- 1 and age- 2 bass were also observed.

Mean length of the age- 0 cohort of largemouth bass was 6.3 in (Table 33). It has been suggested that bass that reach at least 5.0 in by the fall will have a better chance of survival during their first winter. This year's catch rate of age- 0 largemouth bass ($9.6 \mathrm{fish} / \mathrm{hr}$) was below average.

Trap nets were fished for crappie in Little River and Donaldson Creek embayments for 79 net-nights (nn) during October and November. A total of 778 crappie were collected at a rate of 9.9 fish/nn (Table 34). Additionally, Crooked Creek (LBL) was sampled for 40 net-nights. Crooked Creek provided a reasonable sample ($6.4 \mathrm{fish} / \mathrm{nn}$), and will be sampled again in the future if possible. Eddy Bay was not sampled this year but may be added back to the sampling schedule in upcoming surveys if possible.

White crappie accounted for 70% of the total catch, and were caught at $5.8 \mathrm{fish} / \mathrm{nn}$. Black crappie accounted for the remaining 30% of the total catch, and were collected at a rate of $2.9 \mathrm{fish} / \mathrm{nn}$ (Table 34). Little River contained lower proportions of black crappie than Donaldson Creek and Crooked Creek. The mean relative weights for keeper-size (>10.0 in) black and white crappie were 99 and 102, respectively (Table 35). For historical comparisons, only data from Little River and Donaldson Creek were used in the standardized population parameters of Lake Barkley crappie in Table 36. The catch rate of harvestable-size ($\geq 10.0 \mathrm{in}$) crappie was $0.6 \mathrm{fish} / \mathrm{nn}$, which is lower than the ten-year average of $1.6 \mathrm{fish} / \mathrm{nn}$. The catch rate of quality-size ($\geq 8.0 \mathrm{in}$) crappie was $1.3 \mathrm{fish} / \mathrm{nn}$, which is below the management objective ($4.0 \mathrm{fish} / \mathrm{nn}$) set in the BLFMP. The catch rate of age- 1 crappie (2.0 fish/nn) was also below the management objective ($5.0 \mathrm{fish} / \mathrm{nn}$).

The length-weight equations of white and black crappie from Lake Barkley are:

$$
\begin{array}{ll}
\text { White crappie } & \log _{10}(\text { weight })=-3.95707+3.67571 \times \log _{10} \text { (length) } \\
\text { Black crappie } & \log _{10}(\text { weight })=-3.77626+3.56237 \times \log _{10} \text { (length) }
\end{array}
$$

Crappie collected in trap nets were used to determine stock densities. The PSD (64) and RSD_{10} (32) of white crappie were similar to the 2016 and 2017 samples, and suggests a balanced size distribution of white crappie (Table 37). The PSD (29) value of black crappie decreased from 2016 and 2017 samples, suggesting a shift towards more small fish in the population in 2018. The $\operatorname{RSD}_{10}(11)$ value of black crappie was identical to last year.

Otoliths from 263 crappie were used for age and growth analysis. Ages ranged from 0-4 years for white crappie and 0-3 years for black crappie (Tables 38 and 39). Growth continues to be good as crappie reached 10.0 in between age 1 and 2. The average lengths of age 2 white crappie and black crappie at capture were 11.8 in and 10.9 in, respectively (Table 36). In addition, we calculated age-2 crappie mean length at capture as outlined by Murphy and Willis (1996) going back to 2009. This method uses a weighted average based on the age-length key and includes all sampled fish per age class. Although differences are slight, we do feel that this calculation more accurately describes this metric, as all crappie are included in the calculation (Table 36).

Age frequencies were estimated by combining catch data with age data. Nearly three quarters of white crappies captured were age- 0 fish while age- 1 fish made up another 22% of the catch, suggesting average year classes in 2017 and 2018 and a weak 2016 year class (Table 40). Similar to last year, very few white crappie older than age- 3 were collected which contrasts our data suggesting relatively strong spawns in 2014 and 2015. The black crappie catch in Little River and Donaldson Creek was also dominated by age-0 fish, suggesting at least an average spawn in 2018 (Table 41).

Assessment of the crappie population yielded a rating of "Fair" at Lake Barkley in 2017 (Table 42). The catch of age-1 crappie was similar to 2017 but remains below the 10 -year average; however, catches of age- 0 fish were above average. While the catch rate of crappie ≥ 8.0 in was at a 10 year low in 2018 , the average length of age2 fish was at a 10-year high. As expected, the population of larger fish dropped in 2018, due to combined effects of mortality of the strong 2014 year class and in response to the weak 2016 year class. We are hopeful to see more large fish in the next couple of years following the potentially good spawn in 2018.

The catfish population was sampled at Lake Barkley during June-July by using low-pulse (15 PPS) boat electrofishing with one dipper along the main lake river channel. A chase boat with one dipper was also utilized to help collect catfish around the electrofishing boat for a total of two dippers. A total of 1154 catfish were collected during the 52 electrofishing runs made (Table 43). Each run lasted 300 seconds, for a total sample time of 4.3 hours over a four-day period. Of the sample, blue catfish had the highest catch rate at 244.8 fish $/ \mathrm{hr}$, and made up 92% of the catfish collected. Flathead catfish and channel catfish are likely underrepresented using this method as these fish were often observed, but were much harder to approach and dip than blue catfish. Relative weight values were all within or greater than ideal values of 95-105 and are listed in Table 44.

Age data from catfish collected in 2014 were used to calculate an age frequency for catfish collected during 2018. Age frequency data is presented in Table 45 for blue catfish and Table 46 for channel catfish. These tables should be used with caution as some larger size classes were unrepresented in 2014, and were therefore excluded from this age frequency data. Of the blue catfish, almost 80% of the sample consisted of age 1-3 fish.

Literature Cited

Murphy, B. R. and D. W. E. Willis. 1996. Fisheries techniques, second edition. American Fisheries Society, Bethesda, MD.

Lake Barkley Creel Survey

A random, non-uniform probability, roving creel survey was conducted on the Kentucky portion (45,600 a) of Lake Barkley from 16 February to 30 November 2018. The Kentucky portion of the lake was divided into eight creel areas (Appendix B). The survey was conducted five days per week, six hours per day. One hour each day was randomly chosen to conduct an angler count. The remaining five hours were dedicated to creeling anglers actively fishing. The overall temporal sampling scheme was twenty days per month, consisting of six weekend days and fourteen weekdays. Varying time period probabilities were assigned to each month. Higher geographic probabilities, resulting in more frequent interviews, were assigned to the Little River and Eddy Creek areas from March through May, and October and November, than were assigned to the other six areas. Equal probabilities were assigned to all areas from June to September. An angler attitude questionnaire concerning fishing on Lake Barkley was conducted by the creel clerk throughout the survey period (Appendix C).

During the 2018 creel, the typical angler was a male (88%) resident (75%) who was casting (57%) or still fishing (40%) from a boat (85%) (Table 47). Of the crappie anglers, 42% used a spider rig (defined as 3 or more poles per angler) for fishing. The average fishing trip for all anglers was 4.3 hours. There was a slight increase in the number of trips of $(94,732)$ since the last creel survey in 2016 . However, this is the second lowest number of trips ever recorded in a Lake Barkley creel survey, and represents only a 6% increase since 2016. Anglers also caught a record low number of fish $(364,496)$. Length frequencies of all harvested or released fish are presented in Table 48.

Table 49 provides fish catch and harvest statistics for the 2018 creel survey. Crappie anglers accounted for 20% of fishing trips to Lake Barkley in 2018 (24% in 2016, 17% in 2012). Estimated catch and harvest rates for crappie were below average. Crappie anglers caught 1.02 fish $/ \mathrm{hr}$ which is just below the long-term average of 1.14 fish $/ \mathrm{hr}$. However, of the crappie caught, 61% were above the harvestable size (Table 50). This higher proportion of legal-size crappie corresponds to fall trap netting data that suggest good year classes in 2014 and 2015. Ninety percent of crappie were caught from March - May (Table 51). As part of our efforts to evaluate harvest by method, crappie anglers were recorded as using the following methods: casting, still fishing (1-2 poles), spider rigging (3 poles), spider rigging ($4-5$ poles), spider rigging (>5 poles). During this survey, 42% of crappie anglers used 3 or
more poles. The percentage of crappie anglers using (>5 poles) increased to 19% in 2018 compared to only 8% of crappie anglers in 2016 (Table 52).

Black bass anglers accounted for 45% of all fishing trips to Lake Barkley during 2018 (Table 49). There were 42,476 black bass fishing trips in the 2018 creel, which is below the long-term average for Lake Barkley. During older surveys, any bass that was currently in the livewell was recorded as harvested. However, during recent surveys, anglers with bass in the livewell were asked if they intended to release them at the end of the day. In all cases, tournament anglers indicated that they intended to release their fish after the weigh-in. Additionally some non-tournament anglers simply chose to keep fish in the livewell for photographic or "mock tournament" purposes, but indicated that they would release them at the end of the day. As a comparison with previous surveys, bass kept in livewells by anglers were reported as harvested, even though they would be released at the end of the day. The harvest rate, which included tournament bass and "mock tournament" bass, was estimated to be 0.05 bass per hour for anglers actually targeting bass (Table 53). However, when tournament and "mock tournament" harvested bass were removed from the actual harvest, the harvest rate dropped to $0.003 \mathrm{bass} / \mathrm{hr}$. Largemouth bass accounted for 84% of the harvested black bass while smallmouth bass accounted for the remaining 16% of harvest. (Table 54).

About 6\% of all trips to Lake Barkley in 2018 targeted panfish (Table 49). This value approximately equals the historic average; however, it is lower than each creel survey at Lake Barkley going back to 1999. Catch and harvest rates of panfish were well below long-term averages. About 74% of the panfish were harvested during May (Table 55). Bluegill and redear sunfish accounted for 99.7% of the panfish harvested. Of the bluegill, only 56% of the fish caught were harvested, while 81% of the redear sunfish caught were harvested (Table 56). Although fish are observed by the creel clerk whenever possible, it is possible that a some percentage of misidentification took place by anglers when reporting panfish catch.

Catfish anglers accounted for 17% of all fishing trips on Lake Barkley in 2018 (Table 49). The number of trips for catfish was slightly below the long-term average but was an increase from the 2016 creel on Lake Barkley. The catfish fishery remains highly harvest oriented as 82% of the catfish caught were harvested (Table 57). Harvest rates for fish (>12.0 in) were 96% and 87% for blue catfish and channel catfish, respectively. To further understand the motivations of catfish anglers, we asked a subsample of anglers "If you fish for catfish in Lake Barkley, which is more important to you: catching trophy fish, or catching more keeper size fish to eat?". Only 10% of catfish anglers responded that they considered catching trophy fish to be more important (Appendix C). However, an additional 28% responded that both were equally important. While catfish management has traditionally pursued maximum sustainable yield, future investigations should attempt to monitor the motivations of catfish anglers to ensure management goals reflect the goals of anglers. The highest monthly total of catfish caught was reported in May (Table 58). These were likely anglers targeting channel catfish in the embayments. The total catch of channel catfish was more than double the catch of blue catfish (Table 57).

Only about 2% of the anglers fishing Lake Barkley during 2018 sought Morone (Table 49). This group includes; white bass, yellow bass, striped bass and hybrids. In an effort to quantify angler goals, this year we added a target code for anglers specifically targeting yellow bass. No anglers reported that they were specifically targeting yellow bass. Yellow bass represented approximately 77% of the Morones caught and made up 64% of the Morone harvest. However, white bass accounted for 76% of the harvested Morone weight. About 78% of yellow bass were released after being caught (Table 59). While the majority of yellow bass were released, 77% of the largest yellow bass caught (8.0-10.0 in) were harvested (Table 48). The harvest rates drop to 51% for 7.0 -in yellow bass with only 11% of yellow bass (<7.0 in) harvested. Although purely speculative, harvest rates might be increased in the future by encouraging harvest with social influencing or even by creating a length limit of (6.0 in) so that anglers begin to view harvesting legal size yellow bass as a goal. Based on monthly catch rates, the peak Morone fishing activity occurs during the summer months (Table 60).

Lake Barkley Winter Creel Survey

A random uniform probability roving creel survey was conducted in Eddy Creek (Appendix B, area 3), Little River (Appendix B, area 5), and the Kuttawa area of northern Lake Barkley (Appendix B, area 2) $(17,090$ acres) on Lake Barkley from 01 December 2018 through 15 February 2019. The primary objective of the survey was to assess the wintertime crappie fishery. The survey was conducted 15 days per month, six hours per day. One hour each day was randomly chosen to conduct an angler count. The remaining five hours was dedicated to creeling
anglers actively fishing. The overall temporal sampling scheme was 15 days per month, consisting of five weekend days and 10 weekdays. Varying time period probabilities were assigned to each month. Equal probabilities were assigned to all three areas. An angler attitude questionnaire concerning fishing on Lake Barkley was conducted by the creel clerk throughout the survey period (Appendix C).

During the winter creel, the typical angler was a male (96%) resident (99%) who was casting for crappie (60%) from a boat (77%) (Table 61). These results suggest that the wintertime crappie fishery draws much fewer non-resident anglers than was observed throughout the warmer months. Of the crappie anglers, 33% used a spider rig (defined as 3 or more poles per angler) for fishing. The average fishing trip for all anglers was 2.3 hours. Length frequencies of all harvested or released fish are given in Table 62.

Table 63 provides fish catch and harvest statistics for the 2018-2019 winter creel survey. Crappie anglers accounted for 20% of fishing trips to Lake Barkley in 2018 (24% in 2016, 17% in 2012) (Table 49). However, the winter creel showed that crappie anglers accounted for a much higher percentage of the fishing trips (64%; Table 63). Wintertime crappie anglers caught (0.75 fish $/ \mathrm{hr}$) which was slightly lower than the rate ($1.01 \mathrm{fish} / \mathrm{hr}$) observed in the warmer months of 2018 . Of the crappie caught, 34% were under harvestable size (Table 64). The catch rates for crappie were highest during January (Table 65). Low sample size (5 total interviews, only one interviewed angler targeting crappie) in the first half of February likely contributed to the low effort during that month. As part of our efforts to evaluate harvest by method, crappie anglers were recorded as using the following methods: casting, still fishing ($1-2$ poles), spider rigging (3 poles), spider rigging ($4-5$ poles), spider rigging (>5 poles). During this survey, 33% of crappie anglers used 3 or more poles. This percentage is lower than that observed in warmer months of 2018 (42%).

Black bass anglers accounted for 19.5% of all fishing trips to Lake Barkley during the 2018-2019 winter creel (Table 63). During older surveys, any bass that was currently in the livewell was recorded as harvested. However, during recent surveys, anglers with bass in the livewell were asked if they intended to release them at the end of the day. In all cases, tournament anglers indicated that they intended to release their fish after the weigh-in. Additionally some non-tournament anglers simply chose to keep fish in the livewell for photographic or "mock tournament" purposes, but indicated that they would release them at the end of the day. As a comparison with previous surveys, bass kept in livewells by anglers were reported as harvested, even though they would be released at the end of the day. Throughout the entire winter survey, no angler reported any harvest of black basses (Tables 66 and 67).

About 6\% of all trips were taken to catch panfish in Lake Barkley during 2018 (Table 49), whereas about 3% of all trips were taken to catch panfish in the 2018-2019 winter creel (Table 63). However, only one angler accounts for this targeted panfish angling. Such low sample size makes accurate extrapolation of data difficult, if not impossible, but it seems that the wintertime panfish fishery is very small (Tables 68 and 69).

Catfish anglers accounted for 17% of all fishing trips on Lake Barkley in 2018 (Table 49), whereas about 14% of all trips were taken to catch catfish in the 2018-2019 winter creel (Table 63). The catch of blue catfish more than doubled the catch of channel catfish, while no flathead catfish were caught. Catch and harvest of catfish was only observed in December; however, sample size is quite low (Tables 70 and 71).

Only about 3\% of the anglers fishing Lake Barkley during 2018 sought Morones (Table 49). This group includes; white bass, yellow bass, striped bass, and hybrids. During the 2018-2019 winter creel there were no anglers who indicated that they were targeting Morones (Table 63). Some white bass and yellow bass were harvested while a few striped bass were also caught during the winter creel (Tables 72 and 73).

Lake Beshear

Largemouth bass were collected by diurnal electrofishing (120 PPS, DC current) during April at Lake Beshear. One-hundred and forty-nine largemouth bass were collected at a rate of 59.6 fish/hr. (Table 74). The catch rate of harvestable-size ($\geq 12.0 \mathrm{in}$) largemouth bass was $43.6 \mathrm{fish} / \mathrm{hr}$ (Table 75). This year's sample falls slightly below the objective in the Lake Beshear Fish Management Plan (LBFMP) to maintain a catch rate of at least 45.0 fish $/ \mathrm{hr}$ for harvestable-sized largemouth bass. The catch of age- 1 fish was low this year ($6.0 \mathrm{fish} / \mathrm{hr}$), but low
recruitment is typical in Lake Beshear. Other objectives are to maintain high catch rates of bass ≥ 15.0 and $\geq 20.0 \mathrm{in}$. Ideally, these catch rates should be greater than 30.0 and $3.0 \mathrm{fish} / \mathrm{hr}$, respectively. The catch rates for these length groups of bass were above the management objectives. Lake Beshear continues to have a quality bass fishery with high numbers of bass ≥ 15.0 in. The fishery rated as "good" in 2018 (Table 76).

Largemouth bass were collected by diurnal electrofishing (120 PPS, DC current) in October (Table 74). The catch rate (86.8 fish $/ \mathrm{hr}$) was an improvement over last year, but the catch was skewed towards smaller fish. Sampling conditions were reported to be fair, although water temperatures were still around 80 degrees. Relative weight data suggests that larger bass ($\geq 15.0 \mathrm{in}$) are healthy with regard to their length-weight ratio. The average relative weight value was 98 for these larger bass and 85 for all sizes of bass. The length-weight equation for largemouth bass at Lake Beshear is:

$$
\log _{10}(\text { weight })=-3.53848+3.17297 \times \log _{10}(\text { length })
$$

Otoliths were removed from a subsample of largemouth bass ≤ 10.0 in to determine the mean fall length of the age- 0 cohort, and to determine their catch rate. The catch rate for age-0 largemouth bass was 50.7 fish $/ \mathrm{hr}$ (Table 77). The average length of an age- 0 bass was 5.3 in .

The catfish population at Lake Beshear was sampled in June using trotlines and tandem hoopnets. A total of 231 channel catfish were collected in the hoopnets for a catch rate of 57.8 fish/set, but the sample variation was highly influenced by one extraordinarily productive net location (Table 78). A total of 25 channel catfish and 10 blue catfish were collected on trotlines baited with cut bait (Table 79). The mean relative weights for channel catfish and blue catfish were 96 and 87, respectively (Table 80). Relative weights for larger fish were in excess of 100, which indicates that current stocking levels are appropriate.

Otoliths were removed from a subsample of fish to assess growth rates and monitor for successful natural spawns (Tables 81 and 82). Although sample size was low, the mean length of age-3 blue catfish was around 14.0 in (Table 83). Growth rates of channel catfish have improved since changing the stocking schedule to a 3 -year rotation (Table 84). The mean length at age- 3 from earlier channel catfish stockings was around (8.0 in), but the more recent stockings averaged around (15.0 in). Given the lack of significant natural reproduction, a mortality estimate was not appropriate. However, survival appears to be adequate based on the presence of older fish in the system (Tables 83 and 84).

Lake Pennyrile

Electrofishing for all species of sportfish in Lake Pennyrile was conducted on 25 April, 2018. Onehundred and one largemouth bass were captured at a rate of 101.0 fish/hr (Table 85). This catch rate is slightly below the 10 -year average of 111.0 fish $/ \mathrm{hr}$ (Table 86). The majority of largemouth bass were still below 15.0 in . Only two (2%) bass over 15.0 in were captured in this year's sample, while only nine (9\%) were 12.0 in or larger. The catch rate of fish ≥ 15.0 in ($2.0 \mathrm{fish} / \mathrm{hr}$) is slightly below the 10 -year average of $3.1 \mathrm{fish} / \mathrm{hr}$ (Table 86). The catch rate of largemouth bass $8.0-11.9$ in was $63.0 \mathrm{fish} / \mathrm{hr}$, which falls below the management objective of $80.0 \mathrm{fish} / \mathrm{hr}$. A high catch rate of intermediate-size largemouth bass is desirable in order to maintain good numbers of large sunfish in this system.

The catch rate of bluegill ≥ 8.0 in was above average at $27.0 \mathrm{fish} / \mathrm{hr}$. (Table 87). The catch rate for largesize ($\geq 8.0 \mathrm{in}$) redear was also above average at $27.0 \mathrm{fish} / \mathrm{hr}$. Over the past four years, the catch rate of large bluegill and redear sunfish has been above the 10-year average. The most probable explanation for these high catch rates is that there are too few large piscivorous predators and too little angler harvest to limit the abundance of large sunfish in the system.

PSD and RSD values for largemouth bass, bluegill and redear sunfish are listed in Table 88. The PSD value for largemouth bass suggests a population skewed toward small bass. The largemouth bass fishery is likely stunted which is our goal when managing for large panfish. PSD's and RSD's are generally above average for bluegill and redear, and skewed toward more large, adult fish.

An accurate lake specific assessment for Lake Pennyrile largemouth bass has not been possible in recent years without good age and growth estimates. In 2011 a small sample of bass were aged. In 2011, the largemouth bass population was rated as "fair" (Table 89). In more recent years, assessments have been completed using the age data from 2011. Due to the shift in management focus towards trophy sunfish, it is unlikely that largemouth bass populations will ever be rated highly.

A voluntary creel survey was also conducted at Lake Pennyrile from March 15, 2018-March 1, 2019. Creel survey cards and dropoff boxes were placed at the only 4 entry points around the lake. Cards were also made available inside the lodge facilities and the guest rooms at Lake Pennyrile State Park. The original survey design called for park staff to conduct a daily angler count on a randomized schedule, but park staff did not follow through with their part of the plan as designed.

Based on completed or mostly completed voluntary card returns ($n=67$), the majority (69%) of angler trips occurred during April and May (Table 90). Seventy-nine percent of anglers were Kentucky residents and the majority were fishing from the bank.

Length distributions for sportfish generally aligned with the results of our electrofishing survey. Seventythree percent of bluegill reported during the creel survey were >6.0 in (Table 91) compared to 64% being >6.0 in during our spring electrofishing survey (Table 87). The reported catch of black bass indicated a population skewed towards small fish, but interestingly, 83% of the legal size ($>12.0 \mathrm{in}$) bass were harvested. Few anglers reported catching catfish, despite 24% of anglers indicating they were targeting catfish. The low catfish catch strongly supports the stocking of more catfish in the future.

Catch rates for all anglers who reported their effort are provided in Table 92. Catch rates for anglers targeting specific species are reported in Table 93. The number of fishing trips and effort (angler hours) were highest for black bass (36 and 105.9, respectively) (Table 94). However, bluegill and redear effort was also high. Anglers often indicated that they intended to target multiple species during the same trip, therefore targeted effort and catch rates must be interpreted with caution. Currently the management plan for Lake Pennyrile is intended to improve the size structure of the sunfish population by maintaining a stunted overabundant largemouth bass population. Based on the results of this survey, we may need to consider some management actions such as targeted bass removal that would improve the largemouth bass size structure as well.

Anglers submitted 25 general comments during the Lake Pennyrile creel survey (Appendix D). Several of the comments suggested increasing access to the lake for fishing from the bank or creating a launch site for personal watercraft. Many other anglers, especially catfish anglers, indicated poor or slow fishing and suggested stocking the lake with catfish. The remaining comments largely suggested good fishing and a relaxing atmosphere.

Ballard County Wildlife Management Area Lakes

During April-May of 2018, several Ballard County Wildlife Management Area lakes (Little Turner, Gravel Pit, Shelby, and Castor) were sampled with electrofishing (2-900-second runs at each lake). Little Turner, Shelby, and Castor are old oxbows of the Ohio River, which are primarily managed for waterfowl. The fisheries in these systems fluctuate greatly due to the nearly annual connection with the river during flood events. Each of the lakes shows potential for good panfishing, despite low numbers of bluegill >6.0 in (Table 95).

Gravel Pit Lake was created as a public fishing opportunity that would not routinely be connected to the river during flood events. This lake had good numbers of large panfish and catfish (Table 95). The largemouth bass population is stunted, but provides a great opportunity to catch high numbers of fish. This lake will be monitored more routinely in the future.

Table 1. 2018 yearly summary of sampling conditions by waterbody, species sampled, and date.

Water body	Location	Species	Date	Effort	Gear	Weather	Water temp. ${ }^{\circ} \mathrm{F}$	Water level	Secchi (in)	Water conditions	Pertinent sampling comments
Barkley	Nickel Branch	black bass	4/30/2018	2.5 hr	electrofishing	sunny/calm	59.0		29	elevation falling	good sample
Barkley	Fords Bay	black bass	5/7/2018	3.0 hr	electrofishing	sunny/calm	65.0	359.4	37	slightly rising	good sample
Barkley	Little River	black bass	5/11/2018	2.5 hr	electrofishing	sunny/breezy	72.0	359.3	33	stable	pollen on w ater surface, detection difficult
Barkley	Eddy Bay	black bass	5/9/2018	2.5 hr	electrofishing	sunny/breezy	69.0	359.5	32	stable	good sample
Barkley	Nickel Branch	black bass/shad	10/9/2018	2.0 hr	electrofishing	sunny/breezy		355.5		elevation falling	good sample
Barkley	Eddy Bay	black bass	10/16/2018	2.5 hr	electrofishing	partly cloudy	63.0	355.1		elevation falling	good sample
Barkley	Little River	black bass	10/18/2018	2.5 hr	electrofishing	sunny/ light wind	59.0	355.2		slightly rising	rapid drop in w ater temp this w eek
Pennyrile		sportfish	4/25/2018	1.0 hr	electrofishing	partly cloudy	59.0	high	19	calm	good sample
Barkley	Devils elbow	catfish	6/14/2018	1.67 hr	electrofishing	cloudy/light wind	82.5	359.5		calm/stable	good sample
Barkley	Nickel Branch	catfish	6/29/2018	1.0 hr	electrofishing	sunny/calm	83.0			calm	used chaseboat
Barkley	Cravens Bay	catfish	7/3/2018	0.25 hr	electrofishing	cloudy/w indy	88.0	359.8	28	choppy	sample cut short, poor w eather
Barkley	Cravens Bay	catfish	7/5/2018	1.42 hr	electrofishing	sunny/calm	88.0	359.8	28	calm/stable	discharge 28,000
Barkley	Crooked Creek	crappie	10-23-10/26	40 nn	trapnet	variable	57.1	354.9	25	stable	fair sample
Barkley	Little River	crappie	10-30-11-2	39 nn	trapnet	variable	57.3	354.9		variable	fair sample
Barkley	Donaldson Bay	crappie	11-6-11-9	40 nn	trapnet	cloudy/w indy	55.0	355.4	14	rising	muddy, high w ater
Kentucky	Jonathan Creek	crappie	3/30/2018	6 tow s	neustonic tow net	dusk	55.5	354.6			
Kentucky	Jonathan Creek	crappie	4/7/2018	6 tow s	neustonic tow net	dusk	53.5	355.5			
Kentucky	Jonathan Creek	crappie	4/15/2018	6 tows	neustonic tow net	dusk	52.1	358.2			
Kentucky	Jonathan Creek	crappie	4/21/2018	6 tows	neustonic tow net	dusk	59.3	359.3			
Kentucky	Jonathan Creek	crappie	4/28/2018	6 tows	neustonic tow net	dusk	61.7	360.9			
Kentucky	Jonathan Creek	crappie	5/5/2018	6 tows	neustonic tow net	dusk	66.3	359.3			
Kentucky	Jonathan Creek	crappie	5/12/2018	6 tow s	neustonic tow net	dusk	74.5	359.3			
Kentucky	Jonathan Creek	crappie	5/19/2018	6 tow s	neustonic tow net	dusk	78.5	359.5			
Kentucky	Jonathan Creek	crappie	5/25/2018	6 tow s	neustonic tow net	dusk	80.4	359.2			
Kentucky	Jonathan Creek	crappie	6/1/2018	6 tow s	neustonic tow net	dusk	81.6	359.6			
Kentucky	Jonathan Creek	crappie	6/9/2018	6 tows	neustonic tow net	dusk	82.9	359.3			
Kentucky	Jonathan Creek	crappie	6/16/2018	6 tow s	neustonic tow net	dusk	90.0	359.4			
Lake Beshear		black bass	4/26/2018	2.5 hr	electrofishing	cloudy	59.0	1 ' high	30	stable	good sample
Kentucky	Big bear	black bass	4/27/2018	2.5 hr	electrofishing	sunny	60.0	362.0	22	high w ater	fair sample. w ater cold, but in the bushes
Kentucky	Jonathan Creek	black bass	5/1/2018	2.5 hr	electrofishing	sunny/ light w ind	63.0	360.2	18	falling w ater	fair sample, fish pulling out of bushes
Kentucky	Blood River	black bass	5/3/2018	3.5 hr	electrofishing	cloudy/stormfont	64.0	359.3	21	falling w ater	split over 2 days. fair sample
Kentucky	Sugar Bay	black bass	5/8/2018	3 hr	electrofishing	sunny	66.0	359.4		falling slightly	good sample
Ballard WMA	gravel pit pond	sportfish	5/31/2018	. 5 hr	electrofishing	cloudy	84.4	normal	34	w indy/drizzle	fair sample
Ballard WMA	Castor	sportfish	6/1/2018	. 5 hr	electrofishing	sunny	82.0	normal		calm/stable	fair sample
Ballard WMA	Little Turner	sportfish	6/1/2018	. 5 hr	electrofishing	sunny	82.0	normal		calm	fair sample
Ballard WMA	Shelby	sportfish	6/1/2018	. 5 hr	electrofishing	sunny	82.0	normal		calm	fair sample
Kentucky	Fenton	catfish	6/11/2018	. 83 hr	low pulse	very w indy	83.6	359.3		choppy	poor sample/cut short

Table 1 (cont).

Water body	Location	Species	Date	Effort	Gear	Weather	Water temp. ${ }^{\circ} \mathrm{F}$	Water level	Secchi (in)	Water conditions	Pertinent sampling comments
Kentucky	Big bear	catfish	6/15/2018	1.3 hr	low pulse	cloudy/calm	83.3	359.4	48	calm	excluded, w rong settings/w eak amperage
Kentucky	Patterson Landing	catfish	6/25/2018	1.0 hr	low pulse	windy/cloudy	82.7	359.5	28	choppy	poor sample/fish deep
Lake Beshear		catfish	6/5-6/7 2018	3 nn	trotline/hoopnets	sunny	82.0	normal		stable	fair sample
Lake Beshear		black bass	10/8/2018	2.5 hr	electrofishing	sunny/ light wind	79.0	.5' high		calm	fair sample/hot w ater
Kentucky	Jonathan Creek	black bass	10/12/2018	2.5 hr	electrofishing	sunny/w indy	72.0	355.3		cam	fair sample/ few big fish shallow
Kentucky	Blood River	black bass	10/17/2018	2.5 hr	electrofishing	sunny/light wind	60.5	355.1		rising slightly	rapid drop in w ater temp this w eek
Kentucky	Jonathan Creek	black bass	10/19/2018	1.5 hr	electrofishing	sunny	62.2	355.5		stable	repeat sample only used for Wr
Kentucky	Ledbetter	crappie	10/22-10/26	40 nn	trapnet	variable	58.2	355.0	45	steady	fair sample
Kentucky	Jonathan	crappie	10/30-11/02	40 nn	trapnet	variable	56.0	354.8		variable	fair sample
Kentucky	Blood River	crappie	11/06-11/9	40 nn	trapnet	variable	54.0	355.5	13	w ater rising	fair sample

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 11.5 hours (22-30-minute runs) of diurnal electrofishing at Kentucky Lake during April-May 2018.

Area	Inch class																		Total	CPUE	Std err
	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Blood River																					
Smallmouth bass		2	3	1	2			1	1										10	2.9	1.7
Largemouth bass	3	11	33	14	11	22	23	10	4	4	13	15	6	2	7	3	1	1	183	52.3	4.7
Jonathan Creek																					
Smallmouth bass	1	1	1																3	1.2	1.2
Spotted bass						1					1								2	0.8	0.5
Largemouth bass	1	10	21	19	8	15	26	14	8	4	13	10	5	4	10	4	4	2	178	71.2	17.0
Big Bear																					
Largemouth bass	2	6	15	5	9	13	19	14	3	3	6	11	9	8	5	9	2	3	142	56.8	10.3
Sugar Bay																					
Smallmouth bass	4	10	8	4	1	1	3	1	2	1									35	11.7	3.4
Largemouth bass	6	50	48	29	13	25	25	16	10	10	13	8		4	4	1	2		264	88.0	4.9
Total																					
Smallmouth bass	5	13	12	5	3	1	3	2	3	1									48	4.2	1.4
Spotted bass						1					1								2	0.2	0.5
Largemouth bass	12	77	117	67	41	75	93	54	25	21	45	44	20	18	26	17	9	6	767	66.7	5.3

Table 3. Lake specific assessment for largemouth bass collected at Kentucky Lake from 2009-2018. This table includes the parameter estimates and the individual scores as well as the total score and assessment rating. The final two columns list the instantaneous mortality (Z) and \% annual mortality (A). Only data collected from Blood River, Big Bear, Jonathan Creek, and Sugar Bay were used for historical comparison.

Year	Mean length age-3 at capture	****Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	Length group			Total score	Assessment rating	Z	A
				12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
				CPUE	CPUE	CPUE				
2018	13.2**		24.7	7.9	12.2	1.3			***0.456	36.6
Score	2		2	1	1	2	8	F		
2017	13.2 **		95.8	14.1	16.4	1.1			${ }^{* * *} 0.513$	40.1
Score	2		4	2	3	2	13	G		
2016	13.2	13.7	4.0	25.9	19.1	0.8			***0.410	33.7
Score	2		1	4	3	1	11	F		
2015	13.9**		10.2	22.0	15.6	1.2			0.408	33.5
Score	4		1	3	2	2	12	G		
2014	13.9**		32.6	15.0	15.7	0.9			0.452	36.3
Score	4		2	1	2	1	10	F		
2013	13.9**		40.2	9.6	15.8	0.8			0.446	35.9
Score	4		2	1	2	1	10	F		
2012*	13.9	14.2	35.6	26.9	17.5	0.8			0.588	44.5
Score	4		2	2	2	1	11	F		
2011*	12.9	12.4	7.4	34.0	8.6	0.9				
Score	3		1	2	1	1	8	F		
2010*	13.8		34.4	42.9	12.4	1.3				
Score	4		2	3	1	1	11	F		
2009**	13.8		27.9	24.3	13.5	1.4			0.429	34.9
Score	4		2	2	1	1	10	F		
Average	13.5		31.3	22.3	14.7	1.0	10.4		0.464	36.938

Data from 1985 to 2008 is listed in previous annual reports.
Assessment quartiles w ere updated in 2015, previous years' APR's w ill list rating based on old assessment ranges.
** age and grow th data w as not collected this year, therefore used previous age data set estimates.
2010*, 2011* and 2013* samples w ere hampered by high water levels during flooding, sample was later than normal; overall a poor sample and not all embayments w ere sampled.

2012* sample w as hampered by low water levels during drought.
*** mortality rates w ere calculated from fall caught and aged fish.
${ }^{* * * *}$ Mean length calculated using a w eighted average applied to the entire sample
Rating
$5-7=$ Poor (P)
8-11 = Fair (F)
12-16 = Good (G)
17-20 $=$ Excellent (E)
(Kentucky Bass Database.xls)

Table 4. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Kentucky Lake during May $2009-2018$.

Year	$\begin{aligned} & \text { Mean length } \\ & \text { age-3 at } \\ & \text { capture (in) } \end{aligned}$	$\begin{aligned} & \text { *Mean length } \\ & \text { age-3 at } \\ & \text { capture (in) } \end{aligned}$	Age-1		Length group										Total			
					<8.0 in		12.0-14.9 in		≥ 15.0 in		≥ 18.0 in		≥ 20.0 in					
			CPUE	Std err	PSD	RSD_{15}												
2018	13.2	**13.7	24.7	3.5	23.7	3.4	7.9	1.1	12.2	1.5	5.0	0.9	1.3	<0.1	66.7	5.3	47	28
2017	13.2	**13.7	95.8	10.6	66.4	7.1	14.1	1.7	16.4	1.7	3.3	0.7	1.1	0.3	136.3	11.8	44	23
2016	13.2	**13.7	4.0	0.7	11.8	2.0	25.9	2.4	19.1	2.4	2.9	0.7	0.8	0.3	63.2	5.7	88	37
2015	13.9	14.2	10.2	1.1	3.9	0.7	22.4	2.1	14.1	1.3	5.3	0.6	1.1	0.3	60.4	4.2	65	25
2014	13.9	14.2	32.6	6.2	26.4	5.5	15.0	1.4	15.7	1.7	4.2	0.6	0.9	0.3	78.1	7.1	59	30
2013	13.9	14.2	40.2	7.0	30.5	6.4	9.6	1.3	15.8	1.6	3.3	0.5	0.8	0.3	78.2	7.1	53	33
2012	13.9	14.2	35.6	5.3	25.6	4.0	26.9	3.5	17.5	2.2	2.7	0.6	0.8	0.3	86.2	6.7	73	29
2011	12.4	12.4	7.4	1.6	5.1	1.1	34.0	5.4	8.6	2.0	3.7	1.0	0.9	0.6	61.1	7.7	76	15
2010	13.8	13.5	34.4	5.9	29.7	5.5	42.9	3.6	12.4	1.6	3.7	1.0	1.3	0.4	121.6	11.0	60	14
2009	13.8	13.5	27.9	5.0	29.5	5.3	24.3	2.2	13.5	1.2	4.2	0.6	1.4	0.3	112.6	10.3	46	16
- Average	13.3	13.5	31.3		25.3		22.3		14.5		3.8		1.0		86.4		61.1	25.0
KLFMP	≥ 12.0 in		≥ 30				>22		≥ 18				≥ 2				55-75	20-40

(Kentucky Bass Database.xls)
Data for 1985-2008 is listed in previous annual reports; KLFMP - Kentucky Lake Fish Management Plan objective goal.
*Mean length calculated using a w eighted average applied to the entire spring sample
**mean length in spring estimated by backcalulating lengths of fall aged fish and then estimating length frequency from spring sample

Table 5. PSD and RSD_{15} values calculated for largemouth bass collected during diurnal electrofishing at Kentucky Lake during April-May 2018; 95\% confidence limits are
shown in parentheses

No.			
Area	≥ 8.0 in	PSD	RSD_{15}
Blood River	122	$45(+/-9)$	$29(+/-7)$
Jonathan Creek	127	$50(+/-9)$	31 (+/-8)
Big Bear	114	$52(+/-8)$	41 (+/-8)
Sugar Bay	131	$40(+/-8)$	$15(+/-5)$
Total	494	$47(+/-6)$	$28(+/-4)$

wfdpsdky.d18

Table 6. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.5 hours (13-30-minute runs) of diurnal electrofishing at Kentucky Lake during October 2018.

Area / Species	Inch class																			Total	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Blood River																						
Smallmouth bass	1	18	12	8	4	1	2	4	1			1								52	20.8	10.9
Largemouth bass	3	10	7	9	7	2	3	8	9	6	1	3	2	2	2	1	2			77	30.8	5.6
Jonathan Creek																						
Smallmouth bass	2	9	2	1			1	1		2	2									20	5.0	1.4
Spotted bass		1	2				2	2			1									8	2.0	0.5
Largemouth bass	8	10	22	15	13	8	26	28	30	14	11	11	3	3	4	2	3	1	1	213	53.3	5.7
TOTAL																						
Smallmouth bass	3	27	14	9	4	1	3	5	1	2	2	1								72	11.1	4.6
Spotted bass		1	2				2	2			1									8	1.2	0.4
Largemouth bass	11	20	29	24	20	10	29	36	39	20	12	14	5	5	6	3	5	1	1	290	44.6	5.0

wfdwrk.d18

Table 7. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall, and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Kentucky Lake.

Year class	Age $0^{\text {A }}$		Age $0^{\text {A }}$		$\begin{gathered} \text { Age 0 } \\ \geq 5.0 \mathrm{in}^{\mathrm{A}} \\ \hline \end{gathered}$		Age $1^{\text {B }}$	
	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2018	5.7	0.1	18.6	2.8	13.0	2.48		
2017	5.9	0.1	28.9	5.2	18.2	3.6	24.7	3.5
2016	6.4	0.1	58.4	7.4	47.9	5.3	95.8	10.6
2015	4.6	0.1	32.6	8.6	9.1	1.5	4.0	0.7
2014	4.1	0.1	20.2	7.9	3.8	1.0	10.2	1.1
2013	5.7	0.1	31.3	5.2	21.5	4.1	32.6	6.2
2012	6.4	0.1	63.0	13.9	55.9	12.5	40.2	7.0
2011	5.7	0.1	75.9	8.3	54.1	6.4	35.6	5.3
2010	5.7	0.1	24.3	4.9	17.4	2.6	7.4	1.6
2009	5.0	0.1	30.9	5.4	16.7	2.8	34.4	5.9
Average	5.5		38.4		25.8		31.6	

${ }^{\text {A }}$ Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of LMB <8.0 in and extrapolated to the entire catch of the fall sample. Since 2010, bass up to 10.0 in have been collected for analysis.
${ }^{B}$ Data from diurnal electrofishing samples collected the following spring (April/May).
*2010, 2011 and 2013 spring data was poor due to high water levels.
*2012 spring data was poor due to low water levels.
Data from 1990 to 2008 is listed in previous year reports.
wfdwrky.dxx, wfdwragk.dxx, wfdpsdky.dxx

Table 8. Number of bass and relative weight (Wr) for each length group of black bass collected at Kentucky Lake during October 2018.

Species	Area	Length group									Total		
		8.0-11.9 in			12.0-14.9 in			≥ 15.0 in					
		No.	Wr	Std err									
Largemouth bass	Blood River	22	91	2	10	91	3	9	85	3	41	90	2
	Jonathan Creek	92	94	1	36	92	1	17	93	3	145	93	1
	Total	114	93	1	46	92	1	26	90	2	186	92	1

Species	Area	Length group									Total		
		7.0-10.9 in			11.0-13.9 in			≥ 14.0 in					
		No.	Wr	Std err									
Spotted bass	Total	4	93	3	1	94					5	93	3
Smallmouth bass	Total	13	88	2	5	88	2	1	81		19	88	1

wfdwrk2.d18

Table 9. Age frequency and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Kentucky Lake in October 2018.

Age	Inch class																		Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19				
0		9	19	28	20	16	6	10											108	49.1	18.6	2.8
1						1	1	10	24	13	4								53	24.1	10.6	2.4
2									2	6	4	1							13	5.9	2.7	0.5
3										6	2	5	2	1					16	7.3	3.2	0.6
4										4	4	3	2	1	1	1			16	7.3	3.4	0.6
5											2	1	3	1	2	2	1		12	5.5	2.2	0.6
6																			0	0.0	0.0	0.0
7																		2	2	0.9	0.4	0.3
Total	0	9	19	28	20	17	7	20	26	29	16	10	7	3	3	3	1	2	220	100		
\%	0	4	9	13	9	8	3	9	12	13	7	5	3	1	1	1	0	1	100			

wfdwrk.d18 and wfdllbkag.d16

Table 10. Species composition, relative abundance, and CPUE (fish/nn) of crappie collected by trap nets fished during 120 net-nights of effort at three embayments of Kentucky Lake during October-November 2018. The SubTotal is used for historical comparison and excludes the data for an embayment which historically had not been sampled.

Area		Inch class											Total	CPUE	Std err
	Species	2	3	4	5	6	7	8	9	10	11	12			
Blood River	White crappie	48	7		6	5	1	2	5	9	11	4	98	2.5	0.4
	Black crappie	74	14	2	9	8	10	34	82	50	18		301	7.5	1.2
Jonathan Cr.	White crappie	50	7	1	30	5	5	13	37	58	32	3	241	6.0	1.0
	Black crappie	38	9	16	28	10	16	69	70	21	3		280	7.0	1.2
Sub-Total	White crappie	98	14	1	36	10	6	15	42	67	43	7	339	4.2	0.6
	Black crappie	112	23	18	37	18	26	103	152	71	21		581	7.3	0.8
Ledbetter	White crappie	41	6	1	1						2		51	1.3	0.5
	Black crappie	48	20	1	1					9	10		89	2.2	0.4
TOTAL	White crappie	139	20	2	37	10	6	15	42	67	45	7	390	3.3	0.4
	Black crappie	160	43	19	38	18	26	103	152	80	31		670	5.6	0.6

wfdtpntk.d18

Table 11. Crappie population parameters used to manage the population at Kentucky Lake, with values determined from fall trap netting at Blood River and Jonathan Creek.

	Total CPUE (fish/nn) excluding age-0			CPUE (fish/nn) age-0			Mean length (in) age-2\qquad				CPUE (fish/nn)$\geq 8.0 \text { in }$			CPUE (fish/nn) age-1			$\begin{aligned} & \text { CPUE (fish/nn) } \\ & \geq 10.0 \text { in } \\ & \hline \end{aligned}$		
Year	WC	BC	Crappie	WC	BC	Crappie	WC	BC	Crappie	*Crappie	WC	BC	Crappie	WC	BC	Crappie	WC	BC	Crappie
2018	2.8	5.6	8.4	1.4	1.7	3.1	10.7	9.5	9.9	9.8	2.2	4.3	6.5	0.7	0.9	1.6	1.5	1.2	2.6
2017	3.6	9.6	13.1	0.4	0.7	1.1	9.6	8.2	8.9	8.7	3.4	7.3	10.6	0.3	1.2	1.5	1.1	1.2	2.4
2016	1.7	6.3	8.0	0.2	0.7	0.9	10.0	9.3	9.7	8.9	1.4	3.8	5.3	0.8	2.1	2.9	0.5	0.9	1.4
2015	7.7	15.0	22.7	2.2	2.1	4.3	9.7	8.8	9.2	8.4	4.4	4.9	9.3	4.1	5.8	9.9	1.2	0.5	1.7
2014	3.6	6.7	10.3	1.7	1.2	2.9	10.3	8.8	9.7	8.8	1.7	2.3	3.9	2.4	4.3	6.7	1.2	1.1	2.3
2013	2.5	7.4	9.9	2.5	3.1	5.5	10.4	8.8	9.4	9.5	2.4	6.3	8.7	0.5	1.8	2.3	1.7	2.9	4.6
$2012{ }^{\text {A }}$	4.2	8.7	12.9	0.0	0.2	0.2	10.5	9.6	10.0	9.7	3.4	7.0	10.4	2.8	2.5	5.3	1.4	3.1	4.5
2011	3.2	15.6	18.8	2.3	1.1	3.4	10.5	9.6	10.0	9.3	2.0	10.3	12.3	2.3	6.7	9.0	0.9	2.5	3.4
$2010^{\text {A }}$	5.2	13.5	18.7	9.1	3.7	12.8	11.5	10.4	10.6	10.6	2.7	5.7	8.4	4.1	9.0	13.0	1.9	3.3	5.2
2009	2.0	14.2	16.2	1.4	2.0	3.4	11.5	10.4	10.6	10.7	1.6	12.0	13.6	1.8	3.0	4.9	0.3	10.1	10.4
Averag	3.6	10.3	13.9	2.1	1.6	3.8	10.5	9.3	9.8	9.4	2.5	6.4	8.9	2.0	3.7	5.7	1.2	2.7	3.8
KLFMP			≥ 20			≥ 8			≥ 9.5 in				≥ 10			≥ 11			≥ 4

A Indicates year where age and grow th data w as not collected. Age and grow th data from the previous year was used to calculate the appropriate value.
*Mean length calculated using a w eighted average applied to the entire fall trapnet sample
Data from 1985 to 2008 is listed in previous annual reports.
KLFMP - Kentucky Lake Fish Management Plan objective goal.
Kentucky Lake Crappie Database

Table 12. Lake specific assessment for crappie collected at Kentucky Lake (Blood River and Jonathan Creek) from 2009-2018. This table includes the individual scores for each parameter, as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A).

Year	CPUE age-1 and older	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	CPUE age-0	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Mean length age-2 at capture	*Mean length age-2 at capture	Total score	Assessment rating	Z	A
2018	8.4	1.6	3.1	6.5	9.9	9.8			0.504	39.6
Score	1	1	2	2	3		9	F		
2017	13.1	1.5	1.1	10.6	8.9	8.7			0.805	55.3
Score	1	1	1	3	1		7	P		
2016	8.0	2.9	0.9	5.3	9.7	8.9			1.072	65.8
Score	1	1	1	1	2		6	P		
2015	22.7	9.9	4.3	9.3	9.2	8.4			0.925	60.3
Score	4	3	3	3	1		14	G		
2014	10.5	6.7	2.9	3.9	9.7	8.8			0.910	59.7
Score	1	1	2	1	2		7	P		
2013	9.9	2.3	5.5	8.7	9.4	9.5			0.657	48.2
Score	1	1	3	2	1		8	P		
2012	13.0	5.3	0.5	10.4	10.0	9.7			1.028	64.2
Score	1	1	1	3	3		9	F		
2011	18.8	9.0	3.4	12.3	10.0	9.3			0.916	60.0
Score	3	2	2	3	3		13	F		
2010	18.7	13.0	12.8	8.4	10.6	10.6			0.556	42.6
Score	3	3	4	2	4		16	F		
2009	16.2	4.9	3.4	13.6	10.6	10.7			0.758	53.1
Score	2	1	1	4	4		12	F		
Average	13.9	5.7	3.8	8.9	9.8	9.4	10.1		0.813	54.88

*Mean length calculated using a weighted average applied to the entire fall trapnet sample
Rating

```
1-7 = Poor (P)
8-12 = Fair (F)
13-17 = Good (G)
18-20 = Excellent (E)
```

Assessment Quartiles updated in 2016.
Kentucky Lake Crappie Database

Table 13. Proportional stock density (PSD) and relative stock density (RSD_{10}) of white and black crappie collected with trap nets (120 net-nights) at Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) during October and November 2018. 95\% confidence intervals are shown in parentheses.

Location	Species	N	PSD	RSD_{10}
Blood River	White crappie	43	72 (+14)	$56(+15)$
	Black crappie	211	$87(+4)$	$32(+7)$
Jonathan Creek	White crappie	183	$94(\pm 3)$	$29(\pm 6)$
	Black crappie	217	$70(\pm 4)$	$9(\pm 3)$
Sub Total	White crappie	226	$77(+5)$	$52(+6)$
	Black crappie	428	$81(+3)$	$21(+3)$
Ledbetter	White crappie	3	67 (+66)	$67(+66)$
	Black crappie	20	95 (+10)	$95(+10)$
Total	White crappie	229	$77(+6)$	$52(+7)$
	Black crappie	448	82 (+3)	25 (+4)

wfdtpntk.d18

Table 14. Number of fish and the relative weight (Wr) values for each length group of black and white crappie collected at Kentucky Lake during trapnetting in October and November 2018.

						gth	oup			
			0-7.9			.0-9.			10.0	
Species	Area	No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
White crappie	Blood River	12	81	2	7	95	7	24	95	2
	Jonathan Creek	35	85	3	49	85	2	91	93	1
	Ledbetter	1	97					2	100	2
	Total	48	84	2	56	86	2	117	94	1

Species	Area	Length group								
		5.0-7.9 in			8.0-9.9 in			>10.0 in		
		No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
Black crappie	Blood River	27	86	4	115	88	1	68	88	1
	Jonathan Creek	48	84	2	139	85	1	24	87	1
	Ledbetter	1	85					19	96	2
	Total	76	85	2	254	87	0	111	89	1

wfdtpntk.d18

Table 15. Mean back-calculated length (in) at each annulus of white crappie including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) in fall 2018. Supplemental otoliths were also collected at a crappie tournament.

		Age					
Year class	N	1	2	3	4	5	
2017	35	3.4					
2016	13	5.6	8.9				
2015	49	4.5	7.8	9.4			
2014	42	4.1	6.8	9.2	10.0		
2013	3	3.6	7.0	8.9	10.1	10.8	
Mean	142	4.2	7.5	9.3	10.0	10.8	
Smallest		2.6	5.1	6.7	8.4	9.7	
Largest		7.6	10.7	12.0	12.8	11.4	
Std err		0.1	0.1	0.1	0.1	0.5	
Low $95 \% \mathrm{Cl}$	4.0	7.3	9.1	9.8	9.7		
High $95 \% \mathrm{Cl}$	4.3	7.8	9.5	10.3	11.8		

* Intercept $=0$.
wfdtnagk.d18

Table 16. Mean back-calculated length (in) at each annulus of black crappie including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Kentucky Lake (Blood River, Jonathan Creek and Ledbetter Bay) in fall 2018. Supplemental otoliths were collected at a crappie tournament.

		Age						
Year class	N	1	2	3	4	5	6	7
2017	45	3.4						
2016	28	5.1	8.2					
2015	49	4.3	6.9	8.3				
2014	28	4.0	6.7	8.8	9.7			
2012	19	3.8	6.5	8.0	9.5	10.4	11.3	
2011	2	3.7	6.3	8.3	9.4	10.2	10.9	11.2
Mean	171	4.1	7.1	8.4	9.6	10.3	11.0	11.2
Smallest		0.4	4.7	5.9	8.0	8.9	10.3	10.7
Largest		7.5	12.2	13.7	11.2	11.5	11.4	11.7
Std err	0.1	0.1	0.1	0.1	0.1	0.3	0.5	
Low $95 \% \mathrm{Cl}$	3.9	6.8	8.2	9.4	10.1	10.3	10.2	
High 95\% Cl	4.2	7.3	8.6	9.8	10.6	11.7	12.2	

[^0]wfdtnagk.d18

Table 17. Age frequency and CPUE (fish/nn) of white crappie collected in trap nets fished for 80 net-nights in Kentucky Lake (Blood River and Jonathan Creek) during October and November 2018.

Age	Inch class											Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11	12				
0	98	14										112	33	1.4	0.3
1			1	36	10	4	4					55	16	0.7	0.1
2						1		4	8	7	1	21	6	0.3	0.1
3						1	9	28	23	19	3	83	24	1.0	0.2
4							3	11	35	15	2	66	19	0.8	0.2
5									2	2	1	5	1	0.1	<0.1
Total	98	14	1	36	10	6	16	43	68	43	7	342		4.28	
\%	29	4	0	11	3	2	5	13	20	13	2				

wfdtpntk.d18, wfdtnagk.d18

Table 18. Age frequency and CPUE (fish/nn) of black crappie collected in trap nets fished for 80 netnights in Kentucky Lake (Blood River and Jonathan Creek) during October and November 2018.

Age	Inch class										Total	\%	CPUE	Std err
	2	3	4	5	6	7	8	9	10	11				
0	112	23	2								137	24	1.7	0.4
1			16	37	12	9					74	13	0.9	0.2
2					5	7	4	6	19	6	47	8	0.6	0.1
3					1	10	81	108	7	2	209	36	2.6	0.4
4							18	19	31	6	74	13	0.9	0.1
5								19	14	7	40	6.9	0.5	0.1
7										1	1	0.2	0.0	0.0
Total	112	23	18	37	18	26	103	152	71	22	582		7.3	
\%	19	4	3	6	3	4	18	26	12	4				

wfdtpntk.d18, wfdtnagk.d18

Table 19. Length frequency, CPUE (fish/1000M ${ }^{3}$), median catch, and geometric mean catch (standard error given in parentheses) of each 0.5 mm class of crappie collected during nocturnal neustonic tow net sampling (72 tows) at 6 sample sites in the Jonathan Creek embayment of Kentucky Lake from 30
March-16 June 2018. See Appendix A for sample site locations.

Date	Location	mm class														CPUE	*Median *Geometric Mean	
		55.5	6	6.5	7	7.5	8	8.5	9	9.5	10		0.5	11	11.5			
3/30/2018	JC002															0	0.0	0.0
	JC003															0		
	JC004															0		
	JC006															0		
	JC007																	
	JC005															0		
4/7/2018	JC002															0	0.0	0.0
	JC003																	
	JC004															0		
	JC006															0		
	JC007															0		
	JC005															0		
4/15/2018	JC002															0	0.0	0.0
	JC003															0		
	JC004																	
	JC006															0		
	JC007															0		
	JC005															0		
4/21/2018	JC002															0	0.0	0.0
	JC003															0		
	JC004																	
	JC006															0		
	JC007															0		
	JC005															0		
4/28/2018	JC002															0	0.0	0.0
	JC003															0		
	JC004																	
	JC006															0		
	JC007															0		
	JC005															0		
5/5/2018	JC002															0	0.0	0.0
	JC003															0		
	JC004																	
	JC006															0		
	JC007															0		
	JC005															0		
5/12/2018	JC002				4				4							9	29.2	26.29 (15.10)
	JC003				5											5		
	JC004				9		18	4	4									
	JC006				4	4	4	4	4							21		
	JC007				8	12	28	24	8							80		
	JC005	4		4	65	17										92		
5/19/2018	JC002												4			4	32.0	27.74(35.07)
	JC003								4		4					7		
	JC004				7	4	26	11	30	26	55		26	22	7	214		
	JC006				4				8	15	23		8	8	4	68		
	JC007								4	4	4					12		
	JC005					4	4	8	8	4	12			4				
5/25/2018	JC002						12									12	15.3	13.13 (15.81)
	JC003					3			7	10	7		3	3		33		
	JC004				11		11	4	4	4	14		4	14	11	74		
	JC006						8		4		4					17		
	JC007															0		
	JC005										4					4		
6/1/2018	JC002															0	9.3	8.49 (7.30)
	JC003							8					4			12		
	JC004									3	3	3	3.5	3	10	24		
	JC006													4		4		
	JC007															0		
	JC005															0		
6/9/2018	JC002															0	4.7	3.41 (1.35)
	JC003															0		
	JC004															0		
	JC006															0		
	JC007															0		
	JC005															0		
6/16/2018	JC002															0	0.00	0.00
	JC003															0		
	JC004															0		
	JC006															0		
	JC007															0		
	JC005															0		

*includes all lengths of yoy crappie collected

Table 20. Geometric mean catch rates for pelagic larval fish captured in neuston tow nets from 30 March-16 June 2018 (six tows per sample night). Standard errors given in parentheses. Temperature (degrees Fahrenheit) and water elevation (feet above sea level) also provided.

Day	Geometric Mean (Standard Error)						
	Pomoxis spp.		Dorosoma spp.	Lepomis spp.	Atherinidae		
	$8.0-11.0 \mathrm{~mm}$	Total Catch	Total Catch		Total Catch	Temp	Elevation
3/30/2018	0.0	0.0	0.0	0.0	0.0	55.6	354.6
4/7/2018	0.0	0.0	0.0	0.0	0.0	55.6	355.8
4/15/2018	0.0	0.0	0.0	0.0	0.0	57.2	358.2
4/21/2018	0.0	0.0	0.0	0.0	0.0	67.5	359.2
4/28/2018	0.0	0.0	0.0	0.0	0.0	61.8	360.9
5/5/2018	0.0	0.0	1.28 (0.58)	0.0	0.0	66.3	359.4
5/12/2018	7.02 (25.87)	26.29 (15.10)	67.14 (47.92)	1.73 (0.88)	0.0	71.55	359.3
5/19/2018	25.50 (31.83)	27.74(35.07)	1316.37 (268.29)	52.78 (75.62)	1.31 (0.69)	74.71	359.34
5/25/2018	10.96 (15.07)	13.13 (15.81)	1651.97 (398.58)	38.33 (38.33)	4.18 (45.34)	79	359.5
6/1/2018	3.10 (37.55)	8.49 (7.30)	675.67 (606.86)	165.22 (122.73)	35.36 (29.19)	79.63	359.6
6/9/2019	0.0	3.41 (1.35)	1232.77 (309.34)	0.00	54.74 (32.89)	*82.9	359.2
6/16/2019	0.0	0.0	341.82 (252.39)	0.00	20.85 (9.25)	*90	359.5

* represents temperature readings taken during the larval sampling events

Table 21. Estimated crappie hatch dates in Jonathan Creek, derived using larval fish lengths back calculated using a growth rate derived from the daily ring counts of juveniles in 2018. Hatch dates from Jonathan Creek and Blood River derived solely from daily ring counts of juveniles also provided. "\# hatch" represents the time when crappie actually hatched on the nest. "\#spawned" represents the estimated time when crappie eggs were fertilized. Elevation (mean feet above sea level) and mean daily discharge (cubic feet/second) at Kentucky Dam also provided. Temperature readings (1 meter below surface) taken at Hancock Biological Station in main channel. Environmental variables were provided by TVA and Murray State University.

Jonathan Creek					Blood River		Environmental variables		
	Back calculated estimate larval crappie	Back calculated estimate larval crappie	Juvenile Daily ring count						
	\# hatch / $1000 \mathrm{~m}^{3}$	$\begin{aligned} & \text { \# spaw ned / } \\ & 1000 \mathrm{~m}^{3} \end{aligned}$	\# hatch	\# spaw ned	\# hatch	\# spaw ned	Elevation	Discharge (cfs)	Temp. F
16-Apr	0.0	0.0		1			358.62	98494	56.57
17-Apr	0.0	0.0					359.16	120782	57.13
18-Apr	0.0	0.0					358.9	136317	57.34
19-Apr	0.0	0.0	1				359.3	139,326	57.7
20-Apr	0.0	0.0					359.3	145,794	58.2
21-Apr	0.0	0.0					359.2	143,967	59.3
22-Apr	0.0	0.0					359.2	135,326	59.4
23-Apr	0.0	0.0					360.2	127,856	59.7
24-Apr	0.0	3.3		1			361.0	133,228	60.1
25-Apr	0.0	3.0					361.5	163,514	60.6
26-Apr	0.0	3.8					361.5	181,310	61.1
27-Apr	3.3	0.0	1			1	361.3	191,778	61.6
28-Apr	3.0	3.2					360.9	189,650	61.8
29-Apr	3.8	3.2		1			360.7	188,244	62.0
30-Apr	0.0	8.7			1		360.3	186,861	62.4
1-May	3.2	11.0		3		1	359.9	183,100	63.1
2-May	3.2	2.2	1	7			359.4	155,483	64.2
3-May	8.7	2.3		2		2	359.3	105,126	65.0
4-May	11.0	2.0	3	2	1	1	359.3	73,570	65.6
5-May	2.2	1.6	7	3		4	359.4	74,182	66.3
6-May	2.3	3.7	2		2	2	359.6	74,222	66.7
7-May	2.0	4.3	2	7	1	2	359.7	76,471	67.6
8-May	1.6	1.3	3	5	4	6	359.6	81,724	68.2
9-May	3.7	3.3		6	2	8	359.5	80,890	68.5
10-May	4.3	0.0	7	11	2	7	359.4	73,550	69.7
11-May	1.3	1.7	5	11	6	12	359.3	65,218	70.6
12-May	3.3	1.7	6	7	8	12	359.3	49,949	71.6
13-May	0.0	1.3	11	10	7	5	359.4	46,650	73.2
14-May	1.7	1.3	11	16	12	8	359.3	64,693	74.4
15-May	1.7	1.4	7	6	12	6	359.3	63,894	75.6
16-May	1.3	0.0	10	2	5	13	359.4	54,811	76.6
17-May	1.3	0.0	16	2	8	4	359.3	63,569	77.3
18-May	1.4	0.0	6	1	6	4	359.4	71,104	76.8
19-May	0.0	0.0	2		13	2	359.3	75,097	77.0
20-May	0.0	0.0	2		4		359.4	83,982	76.7
21-May	0.0	0.0	1		4		359.4	71,464	76.5
22-May	0.0	0.0			2		359.4	71,467	77.1
23-May	0.0	0.0					359.3	72,172	77.9
24-May	0.0	0.0					359.3	65,532	78.8
25-May	0.0	0.0					359.5	66,710	79.0
26-May	0.0	0.0					359.5	67,625	78.8
27-May	0.0	0.0					359.4	67,941	79.3
28-May	0.0	0.0					359.4	99,148	80.4
29-May	0.0	0.0					359.1	117,150	80.2
30-May	0.0	0.0					359.9	145,017	79.6
31-May	0.0	0.0					359.8	154,221	79.5
1-Jun	0.0	0.0					359.6	152,887	79.6
2-Jun	0.0	0.0					359.4	151,540	79.9
3-Jun	0.0	0.0					359.2	150,343	80.2
4-Jun	0.0	0.0					359.17	135,432	80.2

Table 22. Estimated hatch dates of black and white crappie in Jonathan Creek and Blood River, derived using daily ring counts of juveniles in 2018. "\# hatch" represents the time when crappie actually hatched on the nest. Elevation (mean feet above sea level) and mean daily discharge (cubic feet/second) at Kentucky Dam also provided. Temperature readings (1 meter below surface) taken at Hancock Biological Station in main channel. Environmental variables were provided by TVA and Murray State University.

	Jonathan Creek		Blood River		Environmental variables		
	White Crappie \#hatch	Black Crappie \#hatch	White Crappie \#hatch	Black Crappie \#hatch			
					Elevation	Discharge (cfs)	Temp. F
16-Apr					358.62	98494	56.57
17-Apr					359.16	120782	57.13
18-Apr					358.9	136317	57.34
19-Apr	1				359.3	139,326	57.7
20-Apr					359.3	145,794	58.2
21-Apr					359.2	143,967	59.3
22-Apr					359.2	135,326	59.4
23-Apr					360.2	127,856	59.7
24-Apr					361.0	133,228	60.1
25-Apr					361.5	163,514	60.6
26-Apr					361.5	181,310	61.1
27-Apr		1			361.3	191,778	61.6
28-Apr					360.9	189,650	61.8
29-Apr					360.7	188,244	62.0
30-Apr				1	360.3	186,861	62.4
1-May					359.9	183,100	63.1
2-May		1			359.4	155,483	64.2
3-May					359.3	105,126	65.0
4-May	1	2	1		359.3	73,570	65.6
5-May	4	3			359.4	74,182	66.3
6-May	1	1	2		359.6	74,222	66.7
7-May	1	1	1		359.7	76,471	67.6
8-May	1	2	1	3	359.6	81,724	68.2
9-May			1	1	359.5	80,890	68.5
10-May	5	2	1	1	359.4	73,550	69.7
11-May	3	2	6		359.3	65,218	70.6
12-May	5	1	7	1	359.3	49,949	71.6
13-May	9	2	7		359.4	46,650	73.2
14-May	10	1	12		359.3	64,693	74.4
15-May	6	1	10	2	359.3	63,894	75.6
16-May	8	2	5		359.4	54,811	76.6
17-May	15	1	8		359.3	63,569	77.3
18-May	3	2	6		359.4	71,104	76.8
19-May	2		12	1	359.3	75,097	77.0
20-May	1	1	4		359.4	83,982	76.7
21-May	1		4		359.4	71,464	76.5
22-May			2		359.4	71,467	77.1
23-May					359.3	72,172	77.9
24-May					359.3	65,532	78.8
25-May					359.5	66,710	79.0
26-May					359.5	67,625	78.8
27-May					359.4	67,941	79.3
28-May					359.4	99,148	80.4
29-May					359.1	117,150	80.2
30-May					359.9	145,017	79.6
31-May					359.8	154,221	79.5
1-Jun					359.6	152,887	79.6
2-Jun					359.4	151,540	79.9
3-Jun					359.2	150,343	80.2
4-Jun					359.17	135,432	80.2

Table 23. Length frequency and CPUE (fish/hr) of channel, blue, and flathead catfish collected from Kentucky Lake in June 2018 using low pulse (15 PPS) electrofishing along the main river channel. A chase boat was used. A total of 2.4 hours of sampling consisting of 29-300second runs.

Inch class																							Total	CPUE	Std err
Species	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	28	32	33	40	44	45			
Blue catfish	2	2	3	5	4	2	3	5	1	6	3	4	3	6	3	3	1	1					57	23.8	7.5
Channel catfish								2		1													3	1.3	0.9
Flathead catfish		1			1	1		1					1						1	1	1	1	9	3.8	1.7

wfdkcat.d18

Table 24. Relative weight (Wr) of each length group of blue, channel, and flathead catfish collected from Kentucky Lake during June 2018. Fish were collected using low pulse (15 PPS) electrofishing.

Species Blue catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	27	118	2	17	111	2	1	124		45	115	2
Length group												
Channel catfish	11.0-15.9 in			16.0-23.9 in			≥ 24.0 in			Total		
	N	Wr	Std err									
				3	99	3				3	99	3
Length group												
Flathead catfish	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	2	85	3	1	94		1	84		4	87	3

Table 25. Age frequency and CPUE (fish/hr) of blue catfish collected from low pulse (15 PPS) electrofishing at Kentucky Lake in June 2018.

Inch class																	*Total	\%	CPUE	Std err
Age	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25				
2	2	2															4	7	1.7	1.0
3			3	4	1												8	15	3.3	1.6
4				1	3	2	3	5	1								15	27	6.3	2.0
5										4	1	2		1			8	15	3.3	1.5
6										2	2	2		5			11	20	4.6	1.7
7													3		3		6	11	2.5	1.4
8																3	3	5	1.3	0.9
Total	2	2	3	5	4	2	3	5	1	6	3	4	3	6	3	3	55			
\%	4	4	5	9	7	4	5	9	2	11	5	7	5	11	5	5				

wfdkcat.d18 and wfdkcag.d14
*catfish larger than 25 inches not included because they were missing from the 2014 age sample

Table 26. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 10.5 hours (21-30-minute runs) of diurnal electrofishing at Lake Barkley from 30 April to 11 May 2018.

Area	Species	Inch class																			Total	CPUE	Std err
		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Lower																							
Donaldson Cr.	Smallmouth bass		4	1				1		1	1			3	1		1				13	13.0	13.0
	Spotted bass				1					1											2	2.0	2.0
	Largemouth bass	3	2	1	3	4			2	1	1			1			1				19	19.0	3.0
Fords	Smallmouth bass			1																	1	0.5	0.5
	Spotted bass												1								1	0.5	0.5
	Largemouth bass	2	7	8	12	2	1	2	1	1	1	1	2	4	2	8	11	7		1	73	36.5	7.0
Middle																							
Little River	Smallmouth bass				2	1		1		2											6	2.4	1.5
	Spotted bass							1													1	0.4	0.4
	Largemouth bass		3	3	5	2			7	4	6	4	2	2	7	7	5	9	1		67	26.8	10.5
Eddy Cr.	Smallmouth bass		2	3			1	3		2	1				1	1					14	5.6	3.3
	Largemouth bass	1	1	7	4	3	2	8	19	8	6	6	11	11	13	14	8	4	7		133	53.2	13.2
Upper																							
Demumbers Bay	Smallmouth bass				1		1														2	4.0	<0.1
	Largemouth bass		1	6	5	1	1	5	6	1		3	1	1	3	7	2	2	1		46	92.0	<0.1
Nickell Cr.	Smallmouth bass						1	1													2	2.0	<0.1
	Largemouth bass		1	5	4	3	7	8	4	3	2	3	4	2	5	7	4	2	2		66	66.0	6.0
Willow	Largemouth bass		1	3	5	5	7	9	8		1	2	4	3	3	7	8	1			67	67.0	5.0
Total	Smallmouth bass		6	5	3	1	3	6		5	2			3	2	1	1				38	3.6	1.4
	Spotted bass				1			1		1			1								4	0.4	0.2
	Largemouth bass	6	16	33	38	20	18	32	47	18	17	19	24	24	33	50	39	25	11	1	471	44.9	5.8

Table 27. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Lake Barkley during late April/early May since 2009. Mean length at capture of age-3 fish also provided.

Year	Mean length Mean length age-3 at age-3 at capture capture**		Age-1		Length group										Total			
			<8.0 in	8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in								
			CPUE	Std err														
2018					10.9	1.4	10.8	1.4	11.0	2.2	5.7	1.1	17.4	2.9	1.1	0.4	44.9	5.8
2017			26.5	5.1	19.0	3.8	11.7	2.5	9.7	1.3	26.8	3.5	1.7	0.5	67.2	6.2		
2016			10.8	1.8	6.6	1.2	6.0	1.2	14.9	2.3	22.2	3.2	1.0	0.4	49.7	4.9		
2015*	13.4	13.6	10.3	1.3	8.5	1.3	15.1	2.1	29.7	4.0	26.3	3.0	1.7	0.4	79.6	7.1		
2014			22.2	3.7	21.4	3.6	13.5	1.7	22.8	2.5	23.5	4.1	1.4	0.3	81.2	7.5		
2013			18.2	2.7	14.6	2.3	16.2	2.4	22.9	3.2	19.3	2.1	0.7	0.3	73.0	7.9		
2012	13.0	13.5	10.0	1.7	8.7	1.8	13.1	2.0	32.4	5.4	24.1	5.0	1.5	0.5	78.4	10.6		
2011	Did not sample due to flooding																	
2010			17.1	1.8	15.5	1.5	34.3	3.4	28.4	2.4	18.9	1.9	2.2	0.5	97.1	5.4		
2009			69.2	7.4	63.9	7.5	42.5	3.5	38.8	2.7	34.0	3.4	2.4	0.4	179.3	10.2		
Average	13.2	13.6	21.7		18.8		18.2		22.8		23.6		1.5		83.4			

(Revised_Barkley_Bass_Database.xlsx)
Data is available since 1985 in previous annual reports

* back-calculated fall age data used in 2015
**Mean length calculated using a w eighted average applied to the spring sample

Table 28. PSD and RSD $_{15}$ values calculated for largemouth bass collected during 10.5 hours (21-30-minutes runs) of spring diurnal electrofishing at each area of Lake Barkley from 30 April to 11 May 2018. 95% confidence intervals are shown in parentheses.

Area	No. ≥ 8.0 in	PSD	RSD_{15}
Donaldson	6	$50(+/-44)$	$33(+/-41)$
Fords	42	$88(+/-10)$	$79(+/-13)$
Little River	54	$80(+/-11)$	$44(+/-13)$
Eddy Creek	117	$68(+/-8)$	$49(+/-9)$
Demumbers Bay	33	$61(+/-17)$	$48(+/-17)$
Nickell	53	$58(+/-13)$	$42(+/-13)$
Willow	53	$55(+/-14)$	$42(+/-13)$
Total	358	$67(+/-5)$	$51(+/-5)$
wfdpsdb. d 18			

Table 29. Lake specific assessment for largemouth bass collected at Lake Barkley from 2009-2018. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings.
The final two columns list the instantaneous mortality rate (Z) and the annual mortality (A).

Year	Mean length age-3 at capture	Mean length age-3 at capture ${ }^{* *}$	$\begin{array}{r} \text { CPUE } \\ \text { age-1 } \\ \hline \end{array}$	Length group			Total score	Assessmentrating	Z	A
				12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
				CPUE	CPUE	CPUE				
2018	13.4	13.6	10.9	5.7	17.4	1.1			0.306	26.3
Score	4		1	1	1	1	8	F		
2017	13.4	13.6	26.5	9.7	26.8	1.7			0.322	27.5
Score	4		3	1	3	2	13	G		
2016	13.4	13.6	10.8	14.9	22.2	1.7			0.402	33.1
Score	4		1	1	2	1	9	F		
2015**	13.4	13.6	10.3	29.7	26.3	1.7			0.472	38.0
Score	4		1	2	2	1	10	F		
2014	13.0	13.5	22.2	22.8	23.5	1.4			0.649	47.8
Score	3		2	1	2	1	9	F		
2013	13.0	13.5	18.2	22.9	19.3	0.7			0.282	25.0
Score	3		1	1	1	1	7	P		
2012	13.0	13.5	10.0	32.4	24.1	1.5			0.431	35.0
Score	3		1	2	2	1	9	F		
2011	*	*	*	*	*	*				
$2010^{\text {A }}$	12.7	13.0	17.1	28.4	18.9	2.2			0.400	33.0
Score	2		1	1	1	2	7	P		
$2009{ }^{\text {A }}$	12.7	13.0	69.2	38.8	34.0	2.4			0.422	34.0
Score	2		4	2	3	3	14	G		
Average	13.0	13.4	21.7	22.8	23.6	1.6	9.6		0.4	33.3

Older data is listed in previous annual reports.
(Revised _Barkley_bass_Database.xlsx)

* data not available
** used back calculated lengths from fall
${ }^{* * *}$ Mean length calculated using a w eighted average applied to the spring sample
${ }^{\text {A }}$ age and grow th data w as not collected. Previous year data used for age estimates.

Rating
$5-7=\operatorname{Poor}(P)$
$8-11=$ Fair (F)
$12-16=$ Good (G)
$17-20=$ Excellent (E)

Table 30. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 7.0 hours of diurnal electrofishing (13-30-minute runs and 2-15-minute runs) for black bass in each area of Lake Barkley October 9, 16, and 18, 2018.

	Inch class																				Total	CPUE	Std err
Area / Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Little River																							
Smallmouth bass		1		2					2												5	2.0	0.6
Largemouth bass		5	6	4	8	6	4	2	4	9	5	4	11	3	5	3	7	1	1	1	89	35.6	4.8
Eddy Creek																							
Smallmouth bass			2	4				1	2												9	3.6	2.4
Spotted bass													1								1	0.4	0.4
Largemouth bass		1	2	5	7	5	3	1	5	7	12	11	13	3	12	7	4	3	1	1	103	41.2	7.4
Nickell Branch																							
Smallmouth bass			5	1	2				1	1	1	2						1			14	11.2	1.8
Largemouth bass			1	2	1	1			1	2	4	3			1	1					17	13.6	5.3
Willow Creek																							
Smallmouth bass											1										1	1.3	1.0
Largemouth bass				1	4	2		3	2	5	4	8	1	1	1						32	42.7	22.0
Total																							
Smallmouth bass		1	7	7	2				1	5	1	2	2					1			29	4.1	1.2
Spotted bass													1								1	0.1	0.1
Largemouth bass		6	9	12	20	14	7	6	12	23	25	26	25	7	19	11	11	4	2	2	241	34.7	4.8

Table 31. Number of fish and the relative weight (Wr) values for each length group of largemouth and smallmouth bass collected at Lake Barkley during 7.0 hours (13-30-minute runs and 2-15-minute runs) of diurnal electrofishing in October 2018.

Species	Area	Length group								
		8.0-11.9 in			12.0-14.9 in			≥ 15.0 in		
		No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
Largemouth bass	Little River	19	106	2	20	108	2	21	102	2
	Eddy Creek	16	103	3	36	100	1	31	104	1
	Nickell Branch	3	97	1	7	99	4	2	105	7
	Willow Creek	10	101	3	13	104	1	2	96	9
	Total	48	103	1	76	103	2	56	103	1

wfdwrb.d18

Table 32. Age frequency and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Lake Barkley in October 2018.

Age	Inch class																			Total	\%	CPUE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
0	6	9	12	20	14	7	1													69	29	9.6
1							5	11	22	13	2									53	22	7.6
2								1	1	12	16	11								41	17	5.9
3											7	10	5	1						23	10	3.3
4											1	2	1	6	3					13	5	1.9
5												2		7	5	3				17	7	2.4
6														2	1		1			4	2	0.6
7													1	3	1	8	2	2		17	7	2.4
8																				0	0	0.0
9																				0	0	0.0
11															1		1		2	4	2	0.6
Total	6	9	12	20	14	7	6	12	23	25	26	25	7	19	11	11	4	2	2	241	100	34.7
\%	1	2	3	4	3	2	1	3	5	5	6	5	2	4	2	2	1	0	0	100		

Table 33. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Lake Barkley.

Year class	Age-0 ${ }^{\text {A }}$		Age-0 ${ }^{\text {A }}$		Age-0 $\geq 5.0 \mathrm{in}^{\mathrm{A}}$		Age-1 ${ }^{\text {B }}$	
	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2018	6.3	0.2	9.6	2.1	7.6	1.5		
2017	4.8	0.1	25.1	4.8	10.2	3.0	10.9	1.4
2016	5.5	0.9	22.7	4.5	14.9	3.1	26.5	5.0
2015	4.7	0.1	46.4	6.5	16.6	6.5	10.8	1.8
2014	4.8	0.1	24.8	4.4	11.0	1.9	10.3	2.0
2013	5.8	0.1	55.0	8.7	43.3	6.0	22.2	3.7
2012	6.1	0.1	40.6	6.9	35.7	5.7	22.2	2.7
2011	5.5	0.1	18.6	2.7	13.4	2.4	10.0	1.7
2010	6.5	0.1	46.0	7.8	42.0	6.9	*	
2009	5.6	0.1	37.6	4.8	29.2	3.4	17.1	1.8
2008	6.2	0.1	55.6	6.7	50.2	6.3	69.2	7.4
Average	5.6		34.7		24.9		22.1	

${ }^{\text {A }}$ Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths, removed from a subsample of LMB <12.0 in.
${ }^{\text {B }}$ Data collected during the following spring (April/May) diurnal electrofishing sample.

* Data not collected in spring of 2011 due to flood conditions.
wfdwrb.dxx, wfdpsdb.dxx

Table 34. Length frequency and CPUE (fish/nn) of each inch class of white and black crappie collected by trap nets (119 net-nights) at Lake Barkley from 23 October-9 November 2018. Sub-Total is shown for comparisons with historical data which included only Little River and Donaldson Creek

Area	Species	Inch class													Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14			
Little River	White crappie	134	178	40	2	2		4	20	15	8	8	5	2	418	10.7	2.1
	Black crappie	38	62	7	3			3	1	1		1			116	3.0	0.9
Donaldson Creek	White crappie	28	17	12	26	10	9	8	11	5					126	3.2	0.5
	Black crappie	57	16	9	11	11	7	3	1	2	1				118	3.0	0.5
Sub-Total	White crappie	162	195	52	28	12	9	12	31	20	8	8	5	2	544	6.9	1.2
	Black crappie	95	78	16	14	11	7	6	2	3	1	1			234	3.0	0.5
Crooked Creek	White crappie	32	31	7		3	8	11	35	14	4	3			148	3.7	0.6
	Black crappie	18	12	5	18	9	9	10	14	6	6	1			108	2.7	0.4
TOTAL	White crappie	194	226	59	28	15	17	23	66	34	12	11	5	2	692	5.8	0.8
	Black crappie	113	90	21	32	20	16	16	16	9	7	2			342	2.9	0.4

wfdtpntb.d18

Table 35. Number of fish and the relative weight (Wr) values for each length group of black and white crappie collected by trap nets (119 net-nights) at Lake Barkley from 23 October-9 November 2018.

Species	Area	Length group								
		5.0-7.9 in			8.0-9.9 in			≥ 10.0 in		
		No.	Wr	Std err	No.	Wr	Std err	No.	Wr	Std err
White crappie	Crooked Creek	10	100	3	45	104	1	21	103	2
	Little River	4	86	5	24	98	1	38	101	1
	Donaldson Bay	44	89	2	19	105	1	5	110	5
	Total	58	91	2	88	102	1	64	102	1

wfdtpntb.d18

Table 36. Crappie population parameters used to manage the population at Lake Barkley for 2009-2018, with values determined from fall trap netting. To allow for historical comparisons, only data from Little River and Donaldson Creek are presented.

Year	Total CPUE (fish/nn) excluding age-0			CPUE (fish/nn) age-2			Mean length (in) age-2 at capture				$\begin{gathered} \mathrm{CPUE} \text { (fish/nn) } \\ \geq 8.0 \text { in } \end{gathered}$			$\begin{gathered} \text { CPUE (fish/nn) } \\ \text { age-1 } \\ \hline \end{gathered}$			$\begin{aligned} & \text { CPUE (fish/nn) } \\ & \geq 10.0 \text { in } \\ & \hline \end{aligned}$		
	WC	BC	Crappie	WC	BC	Crappie	WC	BC	Crappie	*Crappie	WC	BC	Crappie	WC	BC	Crappie	WC	BC	Crappie
2018	1.8	0.5	2.3	0.1	0.0	0.1	11.8	10.9	11.5	11.5	1.1	0.2	1.3	1.5	0.5	2.0	0.5	0.1	0.6
2017	1.5	1.6	3.1	0.6	0.4	1.0	11.2	9.9	10.7	10.5	1.4	1.0	2.4	0.7	1.1	1.7	1.0	0.3	1.3
2016	6.2	3.5	9.7	2.0	0.6	2.6	10.6	9.5	10.3	9.9	3.6	1.3	4.9	4.1	2.6	6.7	1.4	0.4	1.8
2015	11.4	3.1	14.4	0.3	1.6	1.9	11.6	9.9	10.5	10.1	3.2	1.9	5.1	10.8	1.4	12.2	0.9	0.9	1.8
2014	1.5	2.1	3.5	0.1	0.0	0.1	11.8	9.6	11.4	11.5	1.3	0.6	1.9	1.1	1.9	3.0	0.7	0.1	0.8
2013	2.2	0.8	3.0	0.8	0.4	1.2	11.1	10.6	10.9	11.0	2.2	0.8	3.0	0.3	0.0	0.4	1.9	0.6	2.5
2012	4.1	2.6	6.7	2.9	1.5	4.4	10.9	10.0	10.5	10.5	4.0	2.2	6.3	1.1	0.9	2.0	2.8	0.9	3.7
$2011^{\text {A }}$	4.6	2.8	7.4	0.3	0.2	0.5	11.6	10.5	11.1	10.4	3.0	0.7	3.6	4.2	2.6	6.8	0.8	0.2	1.0
2010	4.1	3.1	7.2	0.3	0.4	0.7	11.6	10.5	11.0	10.5	3.1	2.1	5.2	3.5	2.5	6.1	1.3	0.5	1.8
$2009^{\text {A }}$	1.3	1.0	2.3	0.2	0.2	0.4	11.3	11.3	11.3	11.0	1.7	0.9	2.6	1.1	0.7	1.7	0.7	0.3	1.0
Average	3.9	2.1	6.0	0.8	0.5	1.3	11.4	10.3	10.9	10.7	2.5	1.2	3.6	2.8	1.4	4.3	1.2	0.4	1.6

*Mean length calculated using a w eighted average applied to the whole fall trapnet sample
A Indicates year where age and grow th data was not collected. Age and grow th data from the previous year w as used to calculate the appropriate value.
Data from 1985 to 2008 is listed in previous annual reports.
Revised_Barkley_Crappie_Database

Table 37. Proportional stock density (PSD) and relative stock density (RSD_{10}) of white and black crappie collected by trap-nets (119 net-nights) at Lake Barkley from 23 October-9 November 2018. Sub-Total uses only data collected from Little River and Donaldson Creek. Numbers in parentheses represent 95\% confidence intervals.

Location	Species	N	PSD	RSD_{10}
Little River	White crappie	66	$94(+/-6)$	$58(+/-12)$
	Black crappie	9	$67(+/-33)$	$22(+/-29)$
Donaldson	White crappie	69	$35(+/-11)$	$7(+/-6)$
	Black crappie	36	$19(+/-13)$	$8(+/-9)$
Sub-Total	White crappie	135	$64(+/-8)$	
	Black crappie	$\mathbf{4 5}$	$29(+/-13)$	$\mathbf{3 2 (+ / - 8)}$
Crooked Creek (+/-9)				
	White crappie	78	$86(+/-8)$	$27(+/-10)$
	Black crappie	73	$51(+/-12)$	$18(+/-9)$
Total	White crappie	$\mathbf{2 1 3}$	$\mathbf{7 2 (+ / - 6)}$	$\mathbf{3 0 (+ / - 6)}$
	Black crappie	$\mathbf{1 1 8}$	$\mathbf{4 2 (+ / - 9)}$	$\mathbf{1 5 (+ / - 7)}$
wfdtpntb d18 wfdtpnb1 18				

wfdtpntb.d18 wfdtpnb1.d18

Table 38. Mean back-calculated length (in) at each annulus of white crappie including the range in length at each age and the 95\% confidence interval of each age group. Otoliths were collected from Lake Barkley (Little River, Donaldson Creek, and Crooked Creek) from 23 October-9 November 2018. Additional otoliths were collected at a fishing tournament on 12 November 2018.

		Age			
Year class	N	1	2	3	4
2017	113	3.8			
2016	8	4.8	9.1	10.7	
2015	9	4.6	8.5	10.3	11.7
2014	11	4.4	8.4		
				10.5	11.7
Mean	141	4.0	8.6	9.1	10.7
Smallest		1.9	6.7	12.0	13.1
Largest		8.6	11.2	0.2	0.3
Std err		0.1	0.2	10.1	11.2
Low 95\% Cl		3.8	8.3	10.9	12.3
High 95\% Cl		4.2	9.0		

* Intercept $=0$.
wfdtnagb.d18

Table 39. Mean back-calculated length (in) at each annulus of black crappie including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Lake Barkley (Little River, Donaldson Creek, and Crooked Creek) from 23 October-9 November 2018. Additional otoliths were collected at a fishing tournament on 12 November 2018.

		Age		
Year class	N	1	2	3
2017	59	3.6		
2016	5	4.6	8.5	
2015	1	3.0	5.5	7.7
Mean	65	3.6	8.0	7.7
Smallest		2.7	5.5	7.7
Largest		5.7	9.8	7.7
Std err		0.1	0.7	
Low 95\% Cl		3.4	6.7	
High 95\% Cl			9.8	
* Intercept $=0$.				
wfdtnagb.d18				

Table 40. Age frequency and CPUE (fish/nn) of white crappie collected during 119 net-nights at Lake Barkley (Little River, Donaldson Creek, and Crooked Creek) from 23 October-9 November 2018. Little River and Donaldson Creek also shown separately for historical comparison.

Little River and Donaldson Creek

Inch class

	Age	2	3	4	5	6	7	8	9	10	11	12	13	14	Total	$\%$	CPUE
0	162	195	40	7	1									405	74	5.1	1.1
1			12	21	11	9	12	31	18	4				118	22	1.5	0.2
2									2	2	2			6	1	0.1	<0.1
3										1	3	2		6	1	0.1	<0.1
4										1	3	3	2	9	2	0.1	0.1
Total 162	195	52	28	12	9	12	31	20	8	8	5	2	544		6.9	1.2	
$\%$	30	36	10	5	2	2	2	6	4	1	1	1	0				

Lake Barkley Total

Inch class														Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12	13	14				
0	194	226	45	7	1									473	68	4.0	0.7
1			14	21	14	17	23	66	31	6				192	28	1.6	0.2
2									3	3	3			9	1	0.1	<0.1
3										1	5	2		8	1	0.1	<0.1
4										2	4	3	2	11	2	0.1	<0.1
Total	194	226	59	28	15	17	23	66	34	12	12	5	2	693		5.8	0.8
\%	28	33	9	4	2	2	3	10	5	2	2	1	0				

wfdtpnb1.d18 and wfdtnagb.d18

Table 41. Age frequency and CPUE (fish/nn) of black crappie collected during 119 net-nights at Lake Barkley (Little River, Donaldson Creek, and Crooked Creek) from 23 October-9 November 2018. Little River and Donaldson Creek also shown separately for historical comparison.

Little River and Donaldson Creek

Inch class												Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12				
0	95	78	15	5								193	82	2.4	0.5
1			1	9	11	7	6	2	2			38	16	0.5	0.1
2									1	1	1	3	1	0.04	0.0
3									1			1	0	0.01	<0.1
Total	95	78	16	14	11	7	6	2	4	1	1	235		3.0	0.5
\%	40	33	7	6	5	3	3	1	2	0	0				

Lake Barkley Total

Inch class												Total	\%	CPUE	Std err
Age	2	3	4	5	6	7	8	9	10	11	12				
0	113	90	20	11								234	68	2.0	0.3
1			1	21	20	16	16	13	5	2		94	27	0.8	0.1
2								3	2	5	2	12	4	0.1	<0.1
3									2			2	1	<0.1	<0.1
Total	113	90	21	32	20	16	16	16	9	7	2	342		2.9	0.4
\%	33	26	735	9	6	5	5	5	3	2	1				

wfdtpnb1.d18 and wfdtnagb.d18

Table 42. Lake specific assessment for crappie collected at Lake Barkley (Little River and Donaldson Creek) from 2009-2018. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A).

Year	CPUE age-1 and older	CPUE age-1	$\begin{aligned} & \text { CPUE } \\ & \text { age-0 } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Mean length age-2 at capture	*Mean length age-2 at capture	Total score	Assessment rating	Z	A
2018	2.3	2.0	7.6	1.3	11.5	11.5			0.849	57.2
Score	1	2	4	1	4		12	F		
2017	3.1	1.7	7.9	2.4	10.7	10.5			0.949	61.0
Score	1	2	4	1	3		11	F		
2016	9.7	6.7	1.5	4.9	10.3	9.9			1.472	77.0
Score	4	4	1	3	2		14	G		
2015	14.5	12.2	5.0	5.1	10.5	10.1			0.680	49.3
Score	4	4	3	3	3		17	G		
2014	3.5	3.0	9.2	1.9	11.2	11.5			0.418	34.2
Score	1	2	4	1	4		12	F		
2013	3.0	0.4	2.8	3.0	10.9	11.0			0.788	54.5
Score	1	1	2	2	4		10	F		
2012	6.7	2.0	0.4	6.3	10.5	10.5			0.857	57.6
Score	2	2	1	4	3		12	F		
2011	7.4	6.8	10.0	3.6	10.9	10.4			1.188	69.5
Score	3	4	4	2	4		17	G		
2010	7.2	6.3	23.3	5.2	10.9	10.5			1.209	70.1
Score	3	4	4	3	4		18	E		
2009	2.3	1.7	5.3	2.6	11.3	11.0			1.330	73.5
Score	1	1	3	2	4		11	F		
Average	6.0	4.3	7.3	3.6	10.9		13.4		0.974	60.39

Rating
1-7 = Poor (P)
8-12 = Fair (F)
13-17 = Good (G)
18-20 = Excellent (E)
*Mean length calculated using a weighted average applied to the entire fall trapnet sample
(Revised_Barkley_Crappie_Database.xlsx)

Table 43. Length frequency and CPUE (fish/hr) of channel, blue, and flathead catfish collected from Lake Barkley in June-July 2018 using low pulse (15 PPS) electrofishing along the main lake river channel. A chase boat was used. A total of 4.3 hours of sampling consisting of $52-300$-second runs.

Species	Inch class																																	Total	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	34	35	37	46			
Blue catfish	1	4	4	44	82	232	250	87	56	43	34	58	59	33	28	23	10	5			2					2	1		1				1	1060	244.8	25.2
Channel catfish		1	8	8	1	22	12	5	7	1	3	1	1																					70	16.2	4.6
Flathead catfish														2		2		1	2	1		3	2	1	3		1	1		2	2	1		24	5.5	1.8

w fdcatb.d18

Table 44. Relative weight (Wr) of each length group of blue, channel, and flathead catfish collected from Lake Barkley during June-July 2018. Fish were collected using low pulse (15 PPS) electrofishing.

Species Blue catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	269	97	1	10	99	4	1	111		280	97	1
Length group												
Channel catfish	11.0-15.9 in			16.0-23.9 in			≥ 24.0 in			Total		
	N	Wr	Std err									
	12	97	3							12	97	3
Flathead catfish	Length group											
	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	4	100	5	14	103	2	3	106	5	21	103	2

wfdcatb.d18

Table 45. Age frequency and CPUE (fish/hr) of blue catfish (<21.0 in TL) collected from low pulse (15 PPS) electrofishing at Lake Barkley in June-July 2018. Age and growth data from 2014 was used to calculate the appropriate values

Age	Inch class																		*Total	\%	*CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20				
1	1	4	4	44	82	77													212	20	49.0	7.1
2						155	250	87	42										534	51	123.3	14.2
3									14	43	34								91	9	21.0	3.3
4												58	59						117	11	27.0	4.5
5														22		7			29	3	6.7	1.4
6														11	28	16	3		58	6	13.4	2.1
7																	7		7	1	1.6	0.7
9																		5	5	0	1.2	0.5
Total	1	4	4	44	82	232	250	87	56	43	34	58	59	33	28	23	10	5	1053		*243.2	25.2
\%	0	0	0	4	8	22	24	8	5	4	3	6	6	3	3	2	1	0				

wfdcatb.d18 and wfdcatag.d14

* fish >21.0 in TL were excluded, as these fish were not represented in the 2014 age data set.

Table 46. Age frequency and CPUE (fish/hr) of channel catfish (<14.0 in TL) collected from low pulse (15 PPS) electrofishing at Lake Barkley in June-July 2018. Age and growth data from 2014 was used to calculate the appropriate values.

Age	4	5	6	7	9	10	11	12	13		*Total	$\%$	${ }^{*}$ CPUE
1	1	8	8	1						18	38	4.2	1.0
2					12	3	1			16	34	3.7	1.7
3						3	6	1		10	21	2.3	1.2
4									3	3	6	0.7	0.5
Total	1	8	8	1	12	6	7	1	3	47		$* 15.7$	4.6
$\%$	2	17	17	2	26	13	15	2	6				

wfdcatb.d18 and wfdcatag.d14

* fish >14.0 in TL were excluded, as these fish were not represented in the 2014 age data set.

Table 47. Fishery statistics derived from a creel survey at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

Table 48. Length distribution for each species of fish harvested or released (lengths of released fish were estimated by anglers) at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Inch class																								
Species	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
White crappie	H								6,601	22,247	16,306	4,687	2,443	263											
	R		193		644	966	3,670	14,680	1,159	322	1,352	773	193												
Black crappie	H								1,520	1,124	463	1,123													
	R				118	1,770	2,006	826	236	117															
Largemouth bass	H										165		55	439	110		220	110			54				
	R						1,708	285	6,605	1,651	16,114	2,904	12,356	6,434	7,003	3,644	5,808	1,196	1,423	456	285	342		55	
Smallmouth bass	H													109	55							55			
	R				265	53	796	53	955		1,592	478	584	265	955	372	106	265	53	55					
Spotted bass	R			48					95		48														
Bluegill	H	55	818	1,963	8,778	12,103	2,398																		
	R 54	161	6,136	11,680	2,099	323	108																		
Redear sunfish	H					280	112	337	841	112	168	57													
	R				51	101	152		152																
Longear sunfish R		604	3,457	329	55																				
Warmouth Green sunfish	R	59			117																				
	H	96																							
Channel catfish	H						159		740		9,622	3,912	8,141	5,974	4,652	2,643	2,802	159	1,269		53		158		
	R			212	159		1,640	53	582		1,693	1,005	952	740	476	264	529	106	264						
Blue catfish	H						154		257		3,347	618	3,965	2,111	3,913	824	2,060	103	1,133	309	309	51	206		
	R						1,546		1,596	299	399		50				50		249				50		
Flathead catfish	H													55					164						
	R												52												
White bass	H								1,019	1,555	2,789	536	161	54	107	53									
	R				807	461	1,325	58	1,959	576	1,959	864	864	173	58	58	58								
Yellow bass	H			1,341	3,248	3,248	2,217	1,186																	
	R 106	2,593	6,033	12,913	14,553	3,122	476	370	160																
Sauger Yellow perch	R													55											
	H								55																
	R								55																
Drum	H						111		56		111		112												
	R				62	62	373		683	62	1,056		373	683	994	62	311		435	435			62		
Skipjack herring	H								62																
	R						135	135		271	135		272												
Carp	R																						43		
Gar	R										51						102								

Table 48 (cont).

Species	Inch class																							
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	44	45	46	47	48	49	56	Total
White crappie	H																							52,547
	R																							23,952
Black crappie	H																							4,230
	R																							5,073
Largemouth bass	H																							1,153
	R																							68,269
Smallmouth bass	H																							219
	R																							6,847
Spotted bass	R																							191
Bluegill	H																							26,115
	R																							20,561
Redear sunfish	H																							1,907
	R																							456
Longear sunfish R																								4,445
Warmouth Green sunfish	R																							176
	H																							96
Channel catfish	H																							40,284
	R																							8,727
Blue catfish	H	154	51	51		154		104																19,874
	R			50																				4,289
Flathead catfish																								219
	R			53																				105
White bass																								6,274
	R																							9,220
Yellow bass	H																							11,240
	R																							40,326
$\begin{aligned} & \text { Sauger } \\ & \text { Yellow perch } \end{aligned}$	R																							55
	H																							55
	R																							55
Drum	H																							390
	R			186																				5,839
Skipjack herring	H																							62
	R																							948
Carp	R																							43
Gar	R			51						50														254

No. caught	76,678	69,422	7,065	191	85,803	76,500	9,303	76,678	49,011	324	24,064	53,756	46,676	2,364	4,445	176	96
(per acre)	(1.68)	(1.52)	(0.15)	T	(1.88)	(1.68)	(0.20)	(1.68)	(1.07)	(0.01)	(0.53)	(1.18)	(1.02)	(0.05)	(0.10)	T	T
No. harvested	1,372	1,153	219	0	56,778	52,547	4,230	60,378	40,284	219	19,874	28,118	26,115	1,907	0	0	96
(per acre)	(0.03)	(0.03)	T	(0.00)	(1.25)	(1.15)	(0.09)	(1.32)	(0.88)	T	(0.44)	(0.62)	(0.57)	(0.04)	(0.00)	(0.00)	T
\% of total no. harvested	0.8	0.7	0.1	0.0	34.5	31.9	2.6	36.7	24.5	0.1	12.1	17.1	15.9	1.2	0.0	0.0	0.1
Lb. harvested	3,036	2,507	529	0	42,201	38,896	3,305	67,342	39,719	575	27,048	5,731	4,574	1,155	0	0	2
(per acre)	(0.07)	(0.05)	(0.01)	(0.00)	(0.93)	(0.85)	(0.07)	(1.48)	(0.87)	(0.01)	(0.59)	(0.13)	(0.10)	(0.03)	(0.00)	(0.00)	T
\% of total llb. harvested	2.4	2.0	0.4	0.0	33.9	31.2	2.7	54.1	31.9	0.5	21.7	4.6	3.7	0.9	0.0	0.0	T
Mean length (in)		16.3	17.3			11.6	11.1		13.6	19.2	15.8		3.6	9.2			3.0
Mean w eight (lb)		2.29	2.42			0.76	0.75		0.83	2.80	1.36		0.17	0.55			0.02
No. of fishing trips for that species	42,476				19,316			16,307				5,256					
\% of all trips	44.8				20.4			17.2				5.5					
Hours fished for that species	183,124				83,275			70,304				22658					
(per acre)	(4.02)				(1.83)			(1.54)				(0.50)					
No. harvested fishing for that species	598				56,258			49,220				23,527					
Lb harvested fishing for that species	1,326				41,836			57,822				4,501					
No./hour harvested fishing for that species	T				0.66			0.80				1.71					
\% success fishing for that species	1.0				49.6			54.4				45.3					

Table 49 (cont.).

	$\begin{aligned} & \bar{\oplus} \\ & \overline{0} \\ & \stackrel{\Pi}{\circ} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { E } \\ & \hline 1 \end{aligned}$		ঢ゙	$\begin{aligned} & \text { O} \\ & \text { O゙ } \end{aligned}$		
No. caught	55	67,061	15,494	51,567	6,229	1,010	254	43	109	
(per acre)	T	(1.47)	(0.34)	(1.13)	(0.14)	(0.02)	(0.01)	T	T	
No. harvested	0	17,515	6,274	11,241	390	62	0	0	55	
(per acre)	(0.00)	(0.38)	(0.14)	(0.25)	T	T	(0.00)	(0.00)	T	
\% of total no.										
harvested	0.00	10.64	3.81	6.83	0.24	0.04	0.00	0.00	0.03	
Lb. harvested	0	5,927	1,423	1,423	253	17	0	0	24.7	
(per acre)	(0.00)	(0.13)	(0.03)	(0.03)	(0.01)	T	(0.00)	(0.00)	T	
\% of total lb.										
harvested	0.00	4.76	3.62	1.14	0.20	0.01	0.00	0.00	0.02	
Mean length (in)			12.8	7.0	11.5	10.0			10.0	
Mean w eight (lb)			0.88	0.13	0.70	0.28			0.45	
No. of fishing										
trips for that species		2,332								8,999
\% of all trips		2.5								9.5
Hours fished for that species		10053								$38,796$
(per acre)		(0.22)								(0.85)
No. harvested fishing for that species		14,217								
Lb harvested fishing for that species		4,107								
No./hour harvested fishing for that species		2.37								
\% success fishing for that species		44.9								16.6

$\mathrm{T}=<0.005$

Table 50. Crappie catch and harvest statistics derived at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	White crappie				Black crappie			
	Harvested	Released		Total	Harvested	Released		Total
	≥ 10.0 in	<10.0 in	≥ 10.0 in		≥ 10.0 in	<10.0 in	≥ 10.0 in	
*Total no. of crappie	52,547	20,153	3,799	76,500	4,230	4,720	353	9,303
\% of crappie harvested by number	92.5				7.5			
*Total weight of crappie (lb)	38,896	6,535	1,231	46,662	3,305	1,126	85	4,516
\% of crappie harvested by weight	92.2				7.8			
Mean length (in)	11.6				11.1			
Mean weight (lb)	0.76				0.75			
*Catch rate (fish/hr)	0.19				0.02			
*Harvest rate (fish/hr)	0.115				0.009			

[^1]Table 51. Monthly crappie angling success at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Total no. of crappie caught	Total no. of crappie harvested	$*$ *Total no. of crappie harvested	No. of crappie fishing trips	Hours fished for crappie	Crappie caught by crappie anglers	Crappie caught/ hour by crappie anglers	Crappie harvested by crappie anglers	Crarvested/ hour by crappie anglers
Mar	16,568	8,944	8,944	2,394	10,322	16,567	1.20	8,943	0.65
Apr	27,151	20,703	19,006	8,226	35,465	26,879	0.82	18,802	0.57
May	33,926	23,328	23,328	5,262	22,684	33,270	1.42	23,054	0.98
Jun	389	389	389	415	1,790	389	0.50	389	0.50
Jul	256	170	170	249	1,073	213	0.11	128	0.07
Aug	716	239	239	213	918	717	0.63	239	0.21
Sept	1,117	744	744	646	2,785	1,054	0.52	744	0.37
Oct	3,345	2,154	2,154	1,500	6,465	3,300	0.51	2,154	0.33
Nov	2,335	1,805	1,805	412	1,774	2,336	1.38	1,805	1.06
Total	85,803	58,475	$* 56,778$	19,316	83,275	84,725		56,258	
Mean	9,534	6,497	$* 6,309$	2,146	9,253	9,414	0.98	6,251	0.66

${ }^{*}$ harvest which excluded crappie kept in a livewell, but which the angler stated they intended to release as part of an organized tournament

Table 52. Crappie angling methods at Lake Barkley (45,600 acres) from 1 March through 30
November 2018.

Year	Casting $(1$ pole)	Still-fishing $(1-2$ poles $)$	Spider Rig $(3$ poles $)$	Spider Rig $(4-5$ poles)	Spider Rig $(>5$ poles)
2018	48.1%	9.9%	18.2%	4.5%	19.2%
2016	57.4%	3.3%	26.5%	4.7%	8.0%
Mean	52.78%	6.62%	22.36%	4.61%	13.61%

| Table 53. Monthly black bass angling success at Lake Barkley (45,600 | acres) from 1 March through 30 November 2018. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* harvest which excluded bass kept in a livewell, but which the angler stated they intended to release

Table 54. Black bass catch and harvest statistics derived at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Largemouth bass				Smallmouth bass				Spotted bass			
	Harvest	Release		Total	Harvest	Release		Total	Harvest	Release		Total
	≥ 15.0 in	12.0-14.9 in	≥ 15.0 in		≥ 15.0 in	12.0-14.9 in	≥ 15.0 in			12.0-14.9 in	≥ 15.0 in	
Total no. of bass	13,220	31,229	14,733	69,422	1,430	2,633	895	7,065	0	48	0	191
Total no. of bass	$(1,153)$		$(* 26,646)$		(*219)		(*2,071)					
\% of bass harvested by number	84.1				15.9				0.0			
Total weight of bass (lb)	34,001	38,044	17,947	102,465	3,224	2,077	704	7,668	0	20	0	80
Total weight of bass (lb)	$(2,507)$		$(* 37,806)$		(*529)		$(* 2,023)$					
\% of bass harvested by weight	82.6				17.4				0.0			
Mean length (in)	17.1				16.7							
Mean weight (lb)	2.63				2.21							
**Catch rate (fish/hr)	0.17				0.02				0.0005			
**Harvest rate (fish/hr)	0.03				0.004				0.00			

[^2]Table 55. Monthly panfish angling success at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

Month	Total no. of panfish caught	Total no. of panfish harvested	No. of panfish fishing trips	Hours fished by panfish anglers	Panfish caught by panfish anglers	Panfish caught/ hour by panfish anglers	Panfish harvested by panfish anglers	Panfish harvested/ hour by panfish anglers
Apr	543	272	0	0	0	0.00	0	0.00
May	39,826	21,415	4,002	17,253	32,123	3.03	18,246	1.72
Jun	3,164	888	363	1,566	389	0.33	111	0.10
Jul	1,959	1,533	359	1,550	1,874	3.41	1,533	2.79
Aug	1,098	382	142	612	765	1.37	287	0.51
Sept	5,149	3,536	323	1,392	4,777	6.16	3,350	4.32
Oct	2,016	92	0	0	0	0.00	0	0.00
Total	53,756	28,118	5,189	22,373	39,928		23,527	
Mean	7,679	4,017	741	3,196	5,704	2.89	3,361	1.71

Table 56. Panfish catch and harvest statistics derived from Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Bluegill				Redear sunfish			
	Harvested	Released		Total	Harvested	Released		Total
		6.0-7.9 in	≥ 8.0 in			6.0-7.9 in	≥ 8.0 in	
Total no. of panfish	26,115	2,422	108	46,676	1,907	152	304	2,364
\% of panfish harvested by number	92.9				6.8			
Total weight of panfish (lb)	4,574	178	7	6,084	1,155	57	116	1,328
\% of panfish harvested by weight	79.8				20.2			
Mean length (in)	6.3				9.2			
Mean weight (lb)	0.17				0.55			
*Catch rate (fish/hr)	0.11				0.01			
*Harvest rate (fish/hr)	0.064				0.005			

* includes effort and catch of non-panfish anglers

Table 57. Catfish catch and harvest statistics derived at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Blue catfish				Channel catfish				Flathead catfish			
	Harvest	Release		Total	Harvest	Release		Total	Harvest	Release		Total
	$8.0-11.9$ in ≥ 12.0 in				$8.0-11.9$ in ≥ 12.0 in				$8.0-11.9$ in ≥ 12.0 in			
Total no. of catfish	19,874	3,441	849	24,164	40,284	2,275	6,081	49,011	219	0	105	324
\% of catfish harvested by number	32.9				66.7				0.4			
Total weight of catfish (lb)	27,048	1,645	406	29,099	39,719	1,521	4,071	45,558	575	0	522.6	1,098
\% of catfish harvested by weight	40.2				59.0				0.9			
Mean length (in)	15.8				13.6				19.2			
Mean weight (lb)	1.36				0.83				2.80			
*Catch rate (fish/hr)	0.06				0.12				0.001			
*Harvest rate (fish/hr)	0.049				0.099				0.0005			

Table 58. Monthly catfish angling success at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Total no. of catfish	Total no. of catfish caught	No. of catfish fishing trips	Hours fished by catfish anglers	Catfish caught by catfish anglers	Catfish caught/ hour by catfish anglers	Catfish harvested by catfish anglers	Catfish harvested// hour by catfish anglers
Month	293	293	748	3,226	293	0.15	293	0.15
Apr	3,326	3,122	1,331	5,737	2,444	0.80	2,376	0.78
May	29,118	25,731	4,706	20,288	19,339	1.07	18,520	1.03
Jun	8,215	4,996	2,750	11,856	6,661	0.71	4,052	0.43
Jul	11,415	8,859	2,129	9,178	10,222	0.84	8,135	0.67
Aug	5,922	5,206	1,539	6,633	5,778	0.91	5,205	0.82
Sept	6,389	4,404	1,507	6,497	6,017	1.26	4,156	0.87
Oct	7,652	6,598	1,112	4,793	5,682	1.14	5,316	1.07
Nov	1,168	1,168	486	2,097	1,167	0.61	1,167	0.61
Total	73,499	60,378	16,307	70,304	57,603		49	
Mean	8,167	6,709	1,812	7,812	6,400	0.94	5,469	0.80

Table 59. Morone catch and harvest statistics derived at Lake Barkley (45,600 acres) from 1 March through 30 November 2018

* includes effort and catch of non-morone anglers

Table 60. Monthly Morone angling success at Lake Barkley (45,600 acres) from 1 March through 30 November 2018.

	Total no. of Morone caught	Total no. of Morone harested	No. of Morone fishing trips	Hours fished by Morone anglers	Morones caught by Morone anglers	Morones caught/ hour by Morone anglers	Morones harvested by Morone anglers	Morvenes bour Mon anglers
Month								

Table 61. Fishery statistics derived from a creel survey at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Table 62. Length distribution for each species of fish harvested or released (lengths of released fish were estimated by anglers) at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019

Species	Inch class																								
	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
White crappie	H									1,532	2,089	975	556												
	R				139	139		3,899	278	975	278	139	139		140										
Black crappie	H									532	799														
	R							133																	
Largemouth bass	H																								
	R			0			143				572	143	1,002	429				144							
Smallmouth bass Spotted Bass	H																								
	R																								
	H																								
	R																								
Bluegill	H																								
	R		852																						
Redear sunfish	H																								
	R																								
Longear sunfish																									
	R																								
Warmouth	H																								
	R																								
Green sunfish	R																								
Channel catfish	H													295						147			147		
	R																								
Blue catfish	H										884			147			147								
	R																								
Flathead catfish																									
	R																								
White bass	H								706		282														
	R			139	139		974		139	139	974		419												
Striped bass	H																								
	R																		147						
Yellow bass	H				852		853																		
	R			1,242		497	248																		
Sauger	H																								
	R																								
Bullhead	R																								
Buffalo	R																								
Drum	H																								
	R																						133		
Shad	R																								
Skipjack herring																									
	R																								
Common Carp	R																								
Silver Carp	R																								
Grass Carp	R																								
Golden Shiner	R																								
Yellow perch	H										133														
	R																								

Species	Inch class																							
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	44	45	46	47	48	49	56	Total
White crappie	H																							5,152
	R																							6,126
Black crappie	H																							1,331
	R																							133
Largemouth bass	H																							0
	R																							2,433
Smallmouth bass Spotted Bass	H																							0
	R																							0
	H																							0
	R																							0
Bluegill	H																							0
	R																							852
Redear sunfish	H																							0
	R																							0
Longear sunfish H																								0
	R																							0
Warmouth	H																							0
	R																							0
Green sunfish	R																							0
Channel catfish	H																							589
	R																							0
Blue catfish	H																							1,178
	R	147																						147
Flathead catfish																								0
	R																							0
White bass	H																							988
	R																							2,923
Hybrid striped bass	H																							0
	R																							147
Yellow bass	H																							$1,705$
	R																							1,987
Sauger	H																							0
	R																							0
Bullhead Buffalo	H																							0
	R																							0
Drum	H																							0
	R																							133
Shad	R																							0
Skipjack herring	H																							0
	R																							0
Common CarpSilver Carp	R																							0
	R																							0
Grass Carp Golden Shiner Yellow perch	R																							0
	H																							0
	H																							133
	R																							0

Table 63. Fish harvest statistics derived from a creel survey at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

											ᄃ 0 0 0 0 0 0 0			$\begin{aligned} & \overline{\overline{\overline{0}}} \\ & \frac{\overline{\mathrm{D}}}{\mathrm{~m}} \end{aligned}$				
No. caught (per acre)	$\begin{aligned} & 2,433 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 2,433 \\ & (0.14) \end{aligned}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{aligned} & 12,743 \\ & (0.75) \end{aligned}$	$\begin{aligned} & 11,278 \\ & (0.66) \end{aligned}$	$\begin{aligned} & 1,464 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 1,915 \\ & (0.11) \end{aligned}$	$\begin{gathered} 589 \\ (0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{aligned} & 1,326 \\ & (0.08) \end{aligned}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{gathered} 852 \\ (0.05) \end{gathered}$	$\begin{gathered} 852 \\ (0.05) \end{gathered}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$			
No. harvested (per acre)	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{aligned} & 6,483 \\ & (0.38) \end{aligned}$	$\begin{aligned} & 5,152 \\ & (0.30) \end{aligned}$	$\begin{aligned} & 1,331 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 1,767 \\ & (0.10) \end{aligned}$	$\begin{gathered} 589 \\ (0.03) \end{gathered}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$	$\begin{aligned} & 1,178 \\ & (0.07) \end{aligned}$	$\begin{gathered} 0 \\ (0.00) \end{gathered}$									
$\%$ of total no. harvested					58.5	46.5	12.0	16.0	5.3		10.6							
Lb. harvested (per acre)					$\begin{aligned} & 5,665 \\ & (0.33) \end{aligned}$	$\begin{aligned} & 4,517 \\ & (0.26) \end{aligned}$	$\begin{aligned} & 1,149 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 2,055 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 1,227 \\ & (0.07) \end{aligned}$		$\begin{gathered} 828 \\ (0.05) \end{gathered}$							
$\%$ of total lb. harvested					66.1	52.7	13.4	24.0	14.3		9.7							
Mean length (in)						12.1	11.6		18.8		13.1							
Mean w eight (lb)						0.88	0.86		2.08		0.70							
No. of fishing trips for that species	2,246				7,377			1,551					349					
\% of all trips	19.5				64.0			13.5					3.0					
Hours fished for that species (per acre)	$\begin{aligned} & 5,204 \\ & (0.30) \end{aligned}$				$\begin{aligned} & 17,094 \\ & (1.00) \end{aligned}$			$\begin{array}{r} 3,595 \\ (0.21) \end{array}$					$\begin{gathered} 810 \\ (0.05) \end{gathered}$					
No. harvested fishing for that species	0				6,483			1,620					0					
Lb harvested fishing for that species	0				5,665			1,902					0					
No./hour harvested fishing for that species	0.00				0.41			0.47					0.00					
\% success fishing for that species					35.1			18.2										

Table 63 (cont.).

Table 64. Crappie catch and harvest statistics derived at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

	White crappie				Black crappie			
	Harvested	Rele	ased	Total	Harvested	Rele	ased	Total
	≥ 10.0 in	<10.0 in	≥ 10.0 in		≥ 10.0 in	<10.0 in	≥ 10.0 in	
*Total no. of crappie	5,152	4,177	1,949	11,278	1,331	133	0	1,464
\% of crappie harvested by number	79.5				20.5			
*Total weight of crappie (lb)	4,517	1,786	832	7,135	1,149	50	0	1,199
\% of crappie harvested by weight	79.7				20.3			
Mean length (in)	12.1				11.6			
Mean weight (lb)	0.88				0.86			
*Catch rate (fish/hr)	0.41				0.05			
*Harvest rate (fish/hr	0.187				0.048			

[^3]Table 65. Monthly crappie angling success at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Month	Total no. of crappie caught	Total no. of crappie harvested	*Total no. of crappie harvested	No. of crappie fishing trips	No. of interviews targeting crappie	Hours fished for crappie	Crappie caught by crappie anglers	Crappie caught/hour by crappie anglers	Crappie harvested by crappie anglers	Crappie harvested/ hour by crappie anglers
Dec	5,155	2,357	2,357	4,089	35	9,475	5,155	0.54	2,357	0.25
Jan	7,587	4,126	4,126	2,939	24	6,809	7,587	1.11	4,126	0.61
Feb	0	0	0	**349.47	1	**809.81	0	0.00	0	0.00
Total	12,743	6,483	*6483	7,377	60	17,094	12,742		6,483	
Mean	4,248	2,161	*2161	2,459	20	5,698	4,247	0.55	2161.00	0.28

* harvest which excluded crappie kept in a livew ell, but which the angler stated they intended to release as part of an organized tournament
**Use w ith caution; Extrapolated effort for this month in which no anglers interview ed successfully caught crappie

Table 66. Monthly black bass angling success at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019

Month	Total no. o bass caught	Total no. of bass harvested	*Total no. of bass harvested	No. of black bass fishing trips	No. of interviews targeting bass	Hours fished by bass anglers	Bass caught by bass anglers	Bass caught/ hour by bass anglers	Bass harvested by bass anglers	*Bass harvested by bass anglers	Bass harvested/ hour by bass anglers	*Bass harvested/ hour by bass anglers
Dec	1,767	0	0	935	8	2,166	1,767	0.82	0	0	0.00	0.00
Jan	666	0	0	612	5	1,419	532	0.38	0	0	0.00	0.00
Feb	0	0	0	**698.95	2	**1619.62	0	0.00	0	0	0.00	0.00
Total	2,433	0	0	2,246	15	5,204	2,299		0	0		
Mean	811	0	*0	749	5	1,735	766	0	0	*0	0	0

* harvest w hich excluded bass kept in a livew ell, but which the angler stated they intended to release
**Use with caution; Extrapolated effort for this month in which no anglers interview ed successfully caught black bass

Table 67. Black bass catch and harvest statistics derived at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Table 68. Monthly panfish angling success at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Month	Total no. of panfish caught	Total no. of panfish harvested	No. of panfish fishing trips	No. of interviews targeting panfish	Hours fished by panfish anglers	Panfish caught by panfish anglers	Panfish caught/ hour by panfish anglers	Panfish harvested by panfish anglers	Panfish harvested/ hour by panfish anglers
Dec	0	0	0	0	0	0	0.00	0	0.00
Jan	0	0	0	0	0	0	0.00	0	0.00
Feb	852	0	349	1	810	852	1.05	0	0.00
Total	852	0	349	1	810	852		0	
Mean	284	0	116	0	270	284	0	0	0

Table 69. Panfish catch and harvest statistics derived from Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

	Bluegill				Redear sunfish			
	Harvested	Released		Total	Harvested	Released		Total
		6.0-7.9 in	≥ 8.0 in			6.0-7.9 in	≥ 8.0 in	
Total no. of panfish	0.0	0	0.0	852	0	0	0	0.0
\% of panfish harvested by number								
Total weight of panfish (lb)				36				
\% of panfish harvested by weight								
Mean length (in)								
Mean weight (lb)								
*Catch rate (fish/hr)	0.03							
*Harvest rate (fish/hr)								

Table 70. Monthly catfish angling success at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Month	Total no. of catfish caught	Total no. of catfish harvested	No. of catfish fishing trips	No. of interviews targeting catfish	Hours fished by catfish anglers	Catfish caught by catfish anglers	Catfish caught/ hour by catfish anglers	Catfish harvested by catfish anglers	Catfish harvested/ hour by catfish anglers
Dec	1,915	1,767	467	4	1,083	1,767	1.63	1,620	1.50
Jan	0	0	*929	6	*2153	0	0.00	0	0.00
Feb	0	0	*155	1	*359	0	0.00	0	0.00
Total	1,915	1,767	1,551	11	3,595	1,767		1,620	
Mean	638	589	517	4	1,198	589	1	540	0

*Use with caution; Extrapolated effort for this month in which no anglers interview ed successfully caught catfish

Table 71. Catfish catch and harvest statistics derived at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Table 72. Monthly Morone angling success at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

Month	Total no. of Morone caught	Total no. of Morone harvested	No. of Moron e fishing trips	No. of interviews targeting Morone	Hours fished by Morone anglers	Morones caught by Morone anglers	Morones caught/ hour by Morone anglers	Morones harvested by Morone anglers	Morones harvested/ hour by Morone anglers
Dec	2,504	589	0	0	0	0	0.00	0	0.00
Jan	2,263	399.3	0	0	0	0	0.00	0	0.00
Feb	2,984	1,705	0	0	0	0	0.00	0	0.00
Total	7,750	2,693	0	0	0	0		0	
Mean	2583	898	0	0	0	0	0	0	0

Table 73. Morone catch and harvest statistics derived at Lake Barkley (Eddy Creek, Little River, northern Lake Barkley) from 1 December 2018 through 15 February 2019.

White bass				Yellow bass			Hybrid striped bass				Striped bass			
Harvest	Release		Total	Harvest	elease	Total	Harvest			Total	Harvest			Total
$12.0-14.9$ in ≥ 15.0 in							12.0 -14.9 in ≥ 15.0 in				≥ 15.0 in 12.0 -14.9 in ≥ 15.0 in			
988	1,393	0	3,911	1,705	0	3,692	0	0	0	0.0	0	0	147	147
36.7				63.3										
530	677		1,953	225		356							470.7	471

\% of Morone
harvested by weight 70.2
29.8

Mean length (in) $\quad 10.5 \quad 7.0$
Mean weight (lb) $0.52 \quad 0.13$
$\begin{array}{lll}\text { *Catch rate (fish/hr) } & 0.14 & 0.13\end{array}$
0.01
*Harvest rate
(fish/hr) 0.036

* includes effort and catch of non-morone anglers

Table 74. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected during diurnal electrofishing at Lake Beshear during 2018.

Season	Inch class																				Total	CPUE	Std err
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Spring	5	5		5	2	6	5	6	6	3	5	6	11	5	18	25	16	11	7	2	149	59.6	4.6
Fall	9	44	51	17	13	24	28	10	4	5	3	3	2	1	1	1		1			217	86.8	5.2

[^4]Table 75. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Lake Beshear during April or May of 2009 to 2018.

Year	Mean length age-3 at capture	*Mean length age-3 at capture	Age-1		Length group															
					CPUE	.0 in Std err	$\begin{array}{r} \geq 12 \\ \text { CPUE } \end{array}$	$2.0 \text { in }$ Std err		14.9 in Std err	$\begin{aligned} & \geq 15 \\ & \text { CPUE } \end{aligned}$	0 in Std err	$\begin{aligned} & \geq 18 \\ & \text { CPUE } \end{aligned}$.0 in Std err	$\begin{aligned} & \quad \geq 20 \\ & \text { CPUE } \end{aligned}$.0 in Std err	CPUE	Std err	PSD	RSD_{15}
2018	13.8	13.8	6	1.3	6.8	0.8	43.6	2.7	5.6	1	38	3	24.4	2	8	1.8	59.6	4.6	83	72
$2017{ }^{\text {A }}$	13.8	13.8	6.4	1.3	20.0	3.9	43.6	3.1	12.0	2.4	31.6	4.6	19.2	4.2	4.8	2.4	72.8	5.9	69	50
2016AB	13.8	13.8	30.4	4.0	16.4	3.4	67.2	8.3	10.8	2.3	56.4	7.0	32.8	4.8	5.6	1.2	102.8	6.5	78	65
$2015^{\text {B }}$	13.8	13.8	4.4	1.5	4.4	1.5	78.4	4.5	17.6	3.5	60.8	3.4	28.0	3.0	8.0	0.6	91.6	3.9	90	70
$2014{ }^{\text {A }}$	13.3	13.4	1.9	0.9	3.2	1.4	61.6	5.6	18.0	2.3	43.6	6.1	20.4	2.3	4.4	1.2	83.6	6.8	77	54
$2013{ }^{\text {A }}$	13.3	13.4	33.8	9.6	37.5	10.3	63.0	11.8	18.0	5.5	45.0	7.2	23.5	5.6	6.0	1.4	127.0	18.4	70	50
$2012^{\text {A }}$	13.3	13.4	27.6	5.5	34.4	4.9	46.8	3.6	8.8	2.2	38.0	4.6	18.4	1.8	4.4	1.0	114.8	7.0	58	47
2011	13.3	13.4	11.7	2.2	13.5	1.7	65.0	9.2	17.5	4.8	47.5	5.9	23.5	3.0	5.5	1.7	92.5	10.3	82	60
$2010^{\text {A }}$	13.8	13.9	22.3	4.9	9.0	1.7	51.0	6.9	11.3	1.3	39.7	6.1	14.0	3.8	3.7	1.9	82.7	15.7	69	54
$2009^{\text {A }}$	13.8	13.9	5.2	1.6	3.6	1.7	35.6	3.0	6.0	0.6	29.6	2.9	13.6	1.7	4.4	1.6	47.2	4.6	82	68
Average	13.6	13.7	15.0		14.9		55.6		12.6		43.0		21.8		5.5		87.5		75.8	58.9
LBFMP	≥ 12.0 in		≥ 10				≥ 45		≥ 15		≥ 30				≥ 3				55-75	20-40

(Lake Beshear Bass Database.xls)
Data for 1985-2008 is listed in previous year reports
${ }^{\text {A }}$ age and grow th data w as not collected. Previous year data used for age estimates.
${ }^{B}$ age and grow th data w as collected in the Fall. Mean length age- 3 w as calculated from back
calculations. Spring CPUE age-1 w as determined from back-calculations and extrapolation with
spring data. Mortality w as determined from fall age frequency data.
LBFMP - Lake Beshear Fish Management Plan objective goal.
*mean length calculated using a w eighted average applied to entire catch

Table 76. Lake specific assessment for largemouth bass collected at Lake Beshear from 2009-2018. This table includes the parameter estimates and the individual score as well as the total score and assessment rating. The final two columns list the instantaneous mortality (Z) and annual mortality (A).

Year	Mean length age-3 at capture	*Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \\ & \hline \end{aligned}$	Length group			Total score	Assessment rating	Z	A
				12.0-14.9 in	≥ 15.0 in	≥ 20.0 in				
				CPUE	CPUE	CPUE				
2018	13.8	13.8	6.0	5.6	38.0	8				
Score	3		3	1	3	4	14	G		
2017	13.8	13.8	6.4	12.0	31.6	4.8			0.349	29.4
Score	3		3	3	2	3	14	G		
2016	13.8	13.8	30.4	10.8	56.4	5.6			0.423	34.5
Score	3		4	2	4	4	17	E		
$2015{ }^{\text {B }}$	13.8	13.8	4.4	17.6	60.8	8.0			0.457	36.7
Score	3		2	4	4	4	17	E		
$2014{ }^{\text {A }}$	13.3	13.4	1.9	18.0	43.6	4.4			0.145	13.5
Score	3		1	4	4	3	15	G		
$2013{ }^{\text {A }}$	13.3	13.4	33.8	18.0	45.0	6.0			0.355	29.9
Score	3		4	4	4	4	19	E		
$2012{ }^{\text {A }}$	13.3	13.4	27.6	8.8	38.0	4.4			0.291	25.2
Score	3		4	2	3	3	15	G		
2011	13.3	13.4	11.7	17.5	47.5	5.5			0.194	17.6
Score	3		3	4	4	4	18	G		
$2010{ }^{\text {A }}$	13.8	13.9	22.3	11.3	39.7	3.7			0.297	25.7
Score	3		4	3	3	2	15	G		
$2009{ }^{\text {A }}$	13.8	13.9	5.2	6.0	29.6	4.4			0.142	13.2
Score	3		2	1	2	3	11	G		
Average	13.6	13.7	15.0	12.6	43.0	5.5	15.5		0.294	25.1

Data from 1985 to 2008 is listed in previous year reports.
A age and growth data was not collected. Previous year data used for age estimates.
${ }^{B}$ age and growth data was collected in the Fall. Mean length age-3 was calculated from back calculations. Spring CPUE age-1 was determined from back-calculations and extrapolation with spring data. Mortality was determined from fall age frequency data.

Assessment Quartiles were updated in 2016

Rating
1-7 = Poor (P)
8-11 = Fair (F)
$12-16=\operatorname{Good}(G)$
$17-20=$ Excellent (E)
Lake Beshear Bass Data Base

Table 77. Age-0 CPUE (fish/hr) and mean length (in) of largemouth bass collected in the fall, and CPUE of age-1 largemouth bass collected the following spring during diurnal electrofishing at Lake Beshear.

Year class	Age $0^{\text {A }}$		Age $0^{\text {A }}$		Age $0 \geq 5.0 \mathrm{in}^{\text {A }}$		Age $1^{\text {B }}$	
	Mean length	Std err	CPUE	Std err	CPUE	Std err	CPUE	Std err
2018	5.3	0.1	50.7	4.3	29.6			
2017	4.1	0.1	38.0	2.9	6.5	1.9	6.0	1.3
2016	4.4	0.1	50.5	6.0	10.0	4.0	6.4	1.3
2015	3.9	0.1	34.5	7.0	3.5	1.5	30.4	4.0
2014	4.8	0.1	24.8	4.4	11.0	1.9	4.4	1.5
2013	4.1	0.1	25.0	7.0	4.5	2.6	1.9	0.9
2012	6.3	0.1	34.0	8.8	33.2	7.4	33.8	9.6
2011	5.0	0.1	41.6	14.8	23.6	7.6	27.6	5.5
2010	4.9	0.1	54.0	4.6	22.0	4.5	11.7	2.2
2009	3.6	0.1	24.8	5.3	2.0	0.6	22.3	4.9
Average	4.6		37.8		14.6		16.1	

A Data collected by fall (October) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of LMB <10.0 in, which were extrapolated to the entire catch of the fall sample, and length frequencies.
${ }^{B}$ Data collected during the following spring (April/May) diurnal electrofishing sample.

WFDWRLB.Dxx, WFDWRAGB.Dxx, WFDPSDLB.Dxx

Table 78. Length frequency and CPUE (fish/set) of channel catfish collected from Lake Beshear in June 2018 using hoopnets. Four tandem hoop nets were baited with Zote brand soap and fished for 3 consecutive nights.

Species	Inch class																Total	CPUE	Std err
	7	8	9	11	12	13	14	15	16	17	18	19	20	21	22	23			
Channel catfish	3	78	43	2	3	26	27	23	5	3	1	2	11	2	1	1	231	57.8	26.6

Table 79. Length frequency and CPUE (fish/hr) of channel and blue catfish collected from Lake Beshear in June 2018 using trotlines. A total of eight, 100 hook/night sets were used. Trotlines were baited with cutbait.

Species	Inch class														Total	CPUE	Std err
	8	9	12	13	14	15	16	17	18	19	21	22	23	27			
Blue catfish				5	1	2	1							1	10	1.3	0.5
Channel catfish	5	2	1	2	3	4	2	1	1	1	1	1	1		25	3.1	0.7
wfdcatlb.d18																	

Table 80. Relative weight (Wr) of each length group of blue and channel catfish collected from Lake Beshear during June 2018. Fish were collected using trotlines and hoopnets.

Species	Length group											
Blue catfish	12.0-19.9 in			20.0-29.9 in			≥ 30.0 in			Total		
	N	Wr	Std err									
	9	85	3	1	109					10	87	4
Length group												
Channel catfish	11.0-15.9 in			16.0-23.9 in			≥ 24.0 in			Total		
	N	Wr	Std err									
	57	89	1	33	109	3				90	96	2

wfdcatb.d18

Table 81. Age frequency of blue catfish collected at Lake Beshear in June 2018. No CPUE was calculated since multiple sampling methods
were used

	Inch class						
Age	13	14	15	16	28		
3	5	1	2	1		9	90
11					1	1	10
Total	5	1	2	1	1	10	
$\%$	50	10	20	10	10		

wfdcatlb.d18 and wfdlbcag.d18

Table 82. Age frequency of channel catfish collected from Lake Beshear in June 2018. No CPUE was calculated since multiple methods were used.

Age	Inch class															Total	\%
	8	9	11	12	13	14	15	16	17	18	19	20	21	22	23		
1	83	45														128	50
3			2	4	28	30	27	6	4	1	1					103	40
6												3		1		4	2
10															2	2	1
11								1			1	6	2	1		11	4
12												2	2			4	2
13										1	1					2	1
14														1		1	0
Total	83	45	2	4	28	30	27	7	4	2	3	11	4	3	2	255	
\%	33	18	1	2	11	12	11	3	2	1	1	4	2	1	1		

wfdcatlb.d18 and wfdlbcag.d18

Table 83. Mean back-calculated length (in) at each annulus of blue catfish including the range in length at each age and the 95% confidence interval of each age group. Otoliths were collected from Lake Beshear in June 2018.

		Age											
Year class	N	1	2	3	4	5	6	7	8	9	10	11	
2015	9	6.6	10.6	14.3									
2007	1	5.4	9.0	12.4	14.0	16.2	18.5	20.3	22.3	27.8	27.1	28.2	
Mean	10	6.5	10.5	14.1	14.0	16.2	18.5	20.3	22.3	27.8	27.1	28.2	
Smallest		5.4	8.8	12.4									
Largest		8.3	12.4	16.3									
Std err		0.3	0.3	0.3									
Low $95 \% \mathrm{Cl}$		5.9	9.8	13.4									
High $95 \% \mathrm{Cl}$		7.1	11.2	14.8									

* Intercept $=0$.
wfdllbcag.d18

Table 84. Mean back-calculated length (in) at each annulus of channel catfish including the range in length at each age and the 95\% confidence interval of each age group. Otoliths were collected from Lake Beshear in June 2018.

		Age																		
Year class	N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
2017	19	8.2																		
2015	46	5.9	10.7	14.5																
2012	3	7.7	10.4	15.4	17.6	19.5	21.3													
2008	1	5.2	7.3	11.2	13.5	15.3	17.4	19.3	20.7	22.4	23.0									
2007	9	3.8	6.5	8.5	10.4	11.9	13.4	14.8	16.3	17.7	19.1	20.3								
2006	2	3.5	6.5	8.2	9.9	11.5	12.7	14.3	15.6	16.8	17.9	19.5	20.6							
2005	2	3.3	5.1	6.7	8.3	9.7	10.9	11.9	13.3	14.2	15.3	16.7	17.8	19.0						
2004	1	3.2	5.6	8.2	9.9	11.2	12.8	14.6	16.0	17.3	18.4	19.4	20.5	21.6	22.4					
1999	1	2.3	3.7	6.5	7.6	8.5	9.3	10.2	10.9	11.6	12.2	12.8	13.6	14.5	15.2	16.1	16.9	17.7	18.4	19.2
Mean	83	6.1	9.6	13.1	11.5	13.0	14.5	14.7	16.1	17.4	18.6	19.6	19.5	19.9	22.4	16.1	16.9	17.7	18.4	19.2
Smallest		3.0	4.8	6.0	7.5	8.9	10.3	11.6	13.0	14.0	15.1	16.3	17.4	18.5						
Largest		10.9	13.8	18.4	18.2	20.0	22.5	19.3	20.7	22.4	23.0	22.8	21.1	21.6						
Std err		0.2	0.3	0.4	0.7	0.8	0.8	0.5	0.5	0.6	0.6	0.5	0.7	0.9						
Low 95\% Cl		5.7	9.1	12.4	10.0	11.5	12.9	13.7	15.1	16.3	17.6	18.6	18.1	18.1						
High 95\% CI		6.5	10.2	13.9	12.9	14.5	16.1	15.6	17.0	18.5	19.7	20.6	20.8	21.7						
* Intercept = wfdllbcag.d18																				

Table 85. Species composition, relative abundance, and CPUE (fish/hr) of fish collected during 1.0 hour (4-900s-runs) of diurnal electrofishing at Lake Pennyrile on 25 April, 2018.

Species	Inch class																Total	CPUE	Std err
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	16	20			
Largemouth bass			1	11	12	5		21	10	20	12	2	2	3	1	1	101	101.0	21.3
Bluegill	4	31	51	24	19	39	95	27									290	290.0	35.2
Redear sunfish		2	12	13	8	11	13	18	9								86	86.0	19.1
White crappie								1	1		1						3	3.0	1.9
Longear sunfish		2	15	7	18	4											46	46.0	14.4
Yellow bullhead								1	2								3	3.0	1.0
Warmouth		4	9	16	9	11	6										55	55.0	3.8
Topminnow		1															1	1.0	1.0

wfdpsdp.d18

Table 86. Spring, diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Pennyrile Lake from 2009-2017.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	Std err										
2018	29.0	5.0	63.0	16.8	7.0	2.5	2.0	2.0	1.0	1.0	101.0	21.3
2017	35.0	11.0	67.0	9.7	4.0	1.6	5.0	1.9	1.0	1.0	111.0	18.4
2016	44.0	9.7	62.0	6.2	13.0	3.0	3.0	1.9	1.0	1.0	122.0	10.0
2015	44.0	3.6	68.8	8.1	8.8	2.9	3.2	1.5	0.8	0.8	124.8	10.6
2014	17.0	3.0	36.0	5.2	7.0	3.0	1.0	1.0			61.0	8.2
2013	63.0	11.8	48.0	4.9	11.0	3.0	2.0	1.2	1.0	1.0	124.0	12.3
2012*												
2011	32.0	10.4	68.0	7.7	12.0	2.5	1.6	1.0	0.8	0.8	113.6	18.3
2010	46.4	9.3	64.3	10.7	12.5	3.3	7.1	1.6	4.5	1.8	130.4	17.0
2009*												
Mean	38.8		59.6		9.4		3.1		1.4		111.0	
wfdpsdp.dxx												
Data from 1990 to 2008 is listed in previous year reports.												

Table 87. Spring electrofishing CPUE (fish/hr) for each length group of bluegill and redear sunfish collected at Lake Pennyrile during May from 2009-2018.

Species	Year	Length group								Total	
		<3.0 in		$3.0-5.9$ in		6.0-7.9 in		≥ 8.0 in			
		CPUE	Std err								
Bluegill											
	2018	35.0	12.8	94.0	20.8	134.0	9.0	27.0	7.7	290.0	35.2
	2017	6.0	2.58	87.0	13.3	42.0	22.5	19.0	9.2	154.0	35.4
	2016	45.0	16.4	65.0	3.4	51.0	12.3	41.0	18.4	202.0	49.1
	2015	30.4	3.0	84.0	11.4	64.8	13.9	32.0	5.7	211.2	
	2014			12.0	4.3	15.0	6.6			27.0	7.9
	2013*	1.0	1.0	18.0	5.8	21.0	6.2			40.0	12.1
	2012	Did Not Sample									
	2011	1.6	1.0	36.8	20.2	41.6	14.2	5.6	1.6	85.6	35.7
	2010	3.6 1.9 Did Not Sample			17.2	40.2	6.2	6.3	2.7	131.3	17.0
	2009										
	Mean	17.5		59.8		51.2		21.8		142.6	
		Length group									
		<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		Total	
Redear sunfish											
	2018	2.0	1.2	33.0	12.8	24.0	5.4	27.0	4.1	86.0	19.1
	2017			15.0	3.0	14.0	10.4	25.0	18.4	54.0	30.4
	2016			16.0	5.9	15.0	3.0	30.0	7.4	61.0	15.8
	2015	0.8	0.8	12.0	2.5	4.8	1.5	32.8	15.3	50.4	
	2014			8.0	5.4	17.0	5.7	8.0	3.7	33.0	12.5
	2013*			4.0	2.3	9.0	5.5	12.0	2.8	25.0	6.6
	2012	Did Not	Sample								
	2011			9.6	4.5	17.6	8.1	28.0	11.9	55.2	21.4
	2010			3.6	1.9	8.9	2.3	17.9	5.0	30.4	5.4
	2009	Did Not	Sample								
	Mean	1.4		12.6		13.8		22.6		49.4	

wfdpsdp.dxx

Data from 1990 to 2008 is listed in previous year reports.
*2013 sample collected in June due to water conditions at normal sample time in May

Table 88. PSD and RSD values obtained for largemouth bass, bluegill and redear sunfish collected during 1.0 hour of diurnal electrofishing (4-900s-runs) at Lake Pennyrile on 25 April 2018. 95\% confidence intervals are in parentheses.

Species	N	PSD	RSD^{*}
Largemouth bass	72	$13(+/-8)$	$3(+/-4)$
Bluegill	255	$63(+/-6)$	$11(+/-4)$
Redear sunfish	72	$56(+/-12)$	$13(+/-8)$

* Largemouth $=R_{\text {RD }}^{15}$, Bluegill $=R S D_{8}$, Redear sunfish $=R S D_{9}$.
wfdpsdp.d18

Table 89. Lake specific assessment for largemouth bass collected at Pennyrile Lake from 2009-2018. This table includes the parameter estimates and the individual scores as well as the total scores and assessment ratings. The final columns list the instantaneous mortality (Z) and annual mortality (A) in years when age and growth was collected.

Year	Mean length								
	Age-1 CPUE	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	age-3 at capture	Total score	Assessment rating	Z	A
2018	29.0	7.0	2.0	1.0	11.7				
Score	1	1	2	4	4	12	F		
2017	28.0	4.0	5.0	1.0	11.7				
Score	1	1	4	4	4	14	G		
2016	38.0	13.0	3.0	1.0	11.7				
Score	2	2	2	4	4	14	G		
2015	36.0	8.8	3.2	0.8	11.7				
Score	2	1	2	4	4	13	G		
2014	19.8	7.0	1.0		11.7				
Score	1	1	1		4	7	P		
2013	10.6	11.0	2.0	1.0	11.7				
Score	1	2	2	4	4	13	G		
2012	Did not sample								
Score									
2011	31.0	12.0	1.6	0.8	11.7			0.488	38.6
Score	1	2	1	4	4	12	F		
2010	36.1	12.3	7.1	4.5					
Score	2	2	4	4	1	13	G		
2009	Did not s	mple							
Score									
Average	28.6	9.4	3.1	1.3	11.7				

Rating

[^5]Table 90. Fishery statistics derived from a creel survey at Lake Pennyrile (47 acres) from 15 March 2018 through 1 March 2019.

Creel Card Returns		Frequency	(\%)
	Blank card	5	(6.3)
	Irrelevant messages	5	(6.3)
	Comments only	3	(3.8)
	Incomplete card	15	(18.8)
	Complete card	52	(65.0)
Reported Fishing Trips by Month			
	April	19	(30.6)
	May	24	(38.7)
	June	8	(12.9)
	July	6	(9.7)
	August	2	(3.2)
	September	3	(4.8)
Effort per Fishing Trip (hours)			
	0-1.0	7	(10.9)
	>1.0-2.0	22	(34.4)
	>2.0-3.0	13	(20.3)
	>3.0-4.0	10	(15.6)
	>4.0-5.0	4	(6.3)
	>5.0-6.0	7	(10.9)
	>6.0-7.0	1	(1.6)
License Status			
	Resident	50	(79.4)
	Non-resident	13	(20.6)
Method			
	Cork or bobber	23	(34.8)
	Bottom fishing	18	(27.3)
	Casting and retrieving	42	(63.6)
	Fly fishing	2	(3.0)
Target Species			
	Bluegill	29	(46.0)
	Black bass	38	(60.3)
	Catfish	15	(23.8)
	Crappie	17	(27.0)
	Redear	18	(20.6)
	Anything	13	(28.6)
Mode			
	Boat	19	(29.2)
	Bank	31	(47.7)
	Dock	23	(35.4)

Table 91. Length distribution for each species harvested (H) or released (R) (lengths estimated by anglers) at Lake Pennyrile (47 acres) from 15 March 2018 through 1 March 2019.

Table 92. CPUE (fish/hr) for sportfish species harvested (H) or released (R) (lengths estimated by anglers) by all anglers who reported effort (total reported effort $=185.5 \mathrm{hr}$) at Lake Pennyrile (47 acres) from 15 March 2018 through 1 March 2019.

		Inch class				
Species		$3-5$ in	$6-7$ in	≥ 8 in	Total	
Bluegill	H	0.01	0.32	0.16	0.49	
	R	0.33	0.32	0.12	0.78	
Redear	H	0.01	0.07	0.06	0.14	
	R	0.17	0.02		0.19	
		$5-7$ in	$8-9$ in	≥ 10 in	0.18	
Crappie	H	0.04	0.11	0.02	0.01	
	R	0.01				
					0.17	
Black bass	H	0.02	0.02	0.13	0.01	
	R	0.21	0.35	0.03		
Catfish	R	0.01	0.01	0.01		

Table 93. CPUE (fish/hr) for sportish species harvested (H) or released (R) (lengths estimated by anglers) by anglers specifically targeting each species who reported effort at Lake Pennyrile (47 acres) from 15 March 2018 through 1 March 2019.

Target species	Inch class					
		3-5 in	6-7 in	≥ 8 in		Total
Bluegill	H	0.01	0.59	0.22		0.82
	R	0.53	0.57	0.19		1.28
Redear	H		0.23	0.21		0.44
	R	0.19	0.02			0.21
		5-7 in	8-9 in	≥ 10 in		
Crappie	H	0.12	0.31	0.06		0.48
	R	0.02				0.02
		<8 in	8-11 in	12-14 in	15-19 in	
Black bass	H	0.04		0.23	0.01	0.27
	R	0.34	0.51	0.04		0.89
		8-11 in	12-14 in	≥ 15 in		
Catish	R	0.04	0.02	0.02		0.08

Table 94. Effort statistics derived from a creel survey at Lake Pennyrile (47 acres) from 15 March 2018 through 1 March 2019 including only trips that included reported effort.

	Bluegill	Redear	Crappiecies		Black bass	Cattish	Anything
	28	12	15	36	13	18	Total
No. of fishing trips targeting that species*							
Hours fished for that species**	99.0	52.2	68.8	105.9	51.3	47.9	$\mathbf{1 8 5 . 5}$

[^6]Table 95. Species composition, relative abundance, and CPUE (fish/hr) of sportish collected from Ballard Wildlife Management Area lakes during April-May 2018. A total of 0.5 hrs (2 - 900 -second runs) of electrofishing was conducted at each lake.

Area	Inch class																		Total	CPUE	Std err
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18			
Little Turner																					
Bluegill		2	7	7	3	3	1												23	46.0	2.0
Largemouth bass					1				1	1	1	2	3	1					10	20.0	8.0
Gravel pit																					
Bluegill	11				5	4	16	1											55	110.0	34.0
Redear sunfish								1											1	2.0	2.0
Largemouth bass						1	11	5	2	20	12	6	2						59	118.0	34.0
Channel catfish											1		3			1	1	4	10	20.0	
White crappie									1	3	2								6	12.0	12.0
Shelby																					
Bluegill		11	15	9	1	5													41	82.0	26.0
Spotted bass				1		1			1	1		1							5	10.0	6.0
Largemouth bass			1	6	1			1			1	1			1				12	24.0	12.0
Castor																					
Bluegill	2	6	3	14	4	5	2												36	72.0	16.0
Redear sunfish					1		1												2	4.0	4.0
Largemouth bass				2	3	1	1		1	3	4	1	3		1				20	40.0	8.0

[^7]Appendix A. 2018 Larval fish sample sites in Jonathan Creek embayment, Kentucky Lake.

Appendix B. Lake Barkley creel survey areas, 2018.

Appendix C. LAKE Barkley ANGLER ATTITUDE SURVEY 2018.

1. Have you been surveyed this year? Yes - stop survey
2. Name \qquad (Optional)
and Zip Code \qquad
3. How many times do you fish Lake Barkley each year?

First time here $5.6 \% \quad 1$ to $49.6 \% \quad 5-1019.7 \% \quad$ More than 1065.2%
4. Which species of fish do you fish for at Lake Barkley (check all that applies)?

Redear 16.7\% Bluegill 23.4\% Black Bass 60.2\% Crappie 53.2\% Catfish 33.7\% White bass 17.0\% Yellow bass 7.5\%
Other- Asian carp 0.3\%; Striped bass, Sauger, Anything each 0.6\%
5. Which one species do you fish for most at Lake Barkley (check only one)?

Redear 1.7\% Bluegill 3.4\% Black Bass 45.0\% Crappie 29.5\% Catfish 16.1\% White bass 3.4\% Yellow
bass 0.6\% Other- Anything 0.3\%

Answer the following questions for each species you fish for - (see question 4)

Redear Anglers

6. In general, what level of satisfaction or dissatisfaction do you have with redear fishing at Lake Barkley? Very satisfied 13.3\% Somewhat satisfied $45.0 \% \quad$ Neutral 21.7\% Somewhat dissatisfied 11.7\%
Very dissatisfied 3.3\% No opinion 5.0\%
6a. If you responded with somewhat or very dissatisfied in question (6) - what is the single most important reason for your dissatisfaction?
Number of fish 100.0\% Size of fish 0.0\% Not happy with regulations 0.0\% Don't know how to catch them 0.0\%

Bluegill Anglers

7. In general, what level of satisfaction or dissatisfaction do you have with the bluegill fishing at Lake Barkley? Very satisfied 41.9\% Somewhat satisfied 31.4\% Neutral 7.0\% Somewhat dissatisfied 7.0\% Very dissatisfied 2.3\% No opinion 10.5\%

7a. If you responded with somewhat or very dissatisfied in question (7) - what is the single most important reason for your dissatisfaction?
Number of fish 85.7% Size of fish 14.3% Not happy with regulations 0.0%

Black Bass Anglers

8. In general, what level of satisfaction or dissatisfaction do you have with the black bass fishing at Lake Barkley? Very satisfied 15.7\% Somewhat satisfied 32.7\% Neutral 14.3\% Somewhat dissatisfied 19.8\% Very dissatisfied 10.6\% No opinion 6.9\%

8a. If you responded with somewhat or very dissatisfied in question (8) - what is the single most important reason for your dissatisfaction?
Number of fish 88.3% Size of fish 1.7% Not happy with regulations 0.0% Other- Too many tournaments, No grass, Water level too low each 1.7\%; Asian carp 5.0\%

Crappie Anglers

9. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Lake Barkley? Very satisfied 17.7\% Somewhat satisfied 35.9\% Neutral 14.6\% Somewhat dissatisfied 15.6\% Very dissatisfied 4.7\% No opinion 11.5\%

9a. If you responded with somewhat or very dissatisfied in question (9) - what is the single most important reason for your dissatisfaction?
Number of fish $97.1 \% \quad$ Size of fish 0.0\% Not happy with regulations 0.0\% Other- Poor weather 2.9\%

Catfish Anglers

10. In general, what level of satisfaction or dissatisfaction do you have with the catfish fishing at Lake Barkley? Very satisfied 73.8\% Somewhat satisfied 18.0\% Neutral 2.5\% Somewhat dissatisfied 0.8\% Very dissatisfied $0.0 \% \quad$ No opinion 4.9\%

10a. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction?
Number of fish 100.0% Size of fish 0.0% Not happy with regulations 0.0% Too much commercial fishing 0.0%

White Bass Anglers

11. In general, what level of satisfaction or dissatisfaction do you have with the white bass fishing at Lake Barkley? Very satisfied $61.3 \% \quad$ Somewhat satisfied $25.8 \% \quad$ Neutral $3.2 \% \quad$ Somewhat dissatisfied 6.5% dissatisfied $0.0 \% \quad$ No opinion 3.2%

11a. If you responded with somewhat or very dissatisfied in question (11) - what is the single most important reason for your dissatisfaction?
Number of fish 75.0% Size of fish 0.0% Not happy with regulations 0.0% Other- Asian
carp 25.0\%

All Anglers

12. Are you satisfied with the current size and creel limits on all sport fish at Lake Barkley? Yes 94.4\% No 5.6\% 12 a . If you responded "No" to Question 11, which species are you dissatisfied with and what size and creel limits would you prefer? Creel Limit (CL), Length Limit (LL), Slot Limit (SL)

Crappie-15 CL, 11" LL, 12" LL, 12-15" SL
Bass - Largemouth 12" LL, Smallmouth 12" LL, Spotted 15" LL
Catch photo release bass tournaments only, limit bass tournament anglers to 3 fish, ban all bass tournaments
13. Are you aware that the Kentucky Department of Fish and Wildlife creates and maintains shallow water stakebeds marked with white poles, and deepwater brushpiles marked with white buoys as fish attractors in Lake Barkley? Yes 81.0\% No 19.0\%

13a. When you fish Lake Barkley, how regularly do you fish around Department placed fish attractors? Always 0.7\% Frequently 16.1\% Occasionally 37.8\% Rarely 23.4\% Never 22.0\%

13b. If you answered "Rarely" or "Never", what is the single most important reason you don't fish around Department placed fish attractors?
Over fished 2.4\% No boat 7.1\% No success 7.1\% Don't know their location 33.3\% Wrong water depth 9.5\% Fishes own stuff 24.6% Boat too big 0.0% Get snagged 0.8% Other- only while crappie fishing, only in fall and spring, only in spring, only fishes the channel, doesn't fish for crappie, no experience with attractors, only fishes ledges each 0.8%; wrong species, $1^{\text {st }}$ time at Lake Barkley each 1.6%; only fishes docks 2.4%; only catfishes 4.0%
14. If you fish for crappie, do you spider rig (three or more poles per angler at the same time) as your primary method of crappie fishing?
Yes 13.9\% No 41.8\% Don't Fish 44.3\%
$\begin{array}{lllllllllllllll}\text { 14a. If "Yes", how many poles do you use? } 3 \text { 26.1\% } & 4 & 52.2 \% & 5 & 2.2 \% & 6 & 8.7 \% & >6 & 10.9 \%\end{array}$
15. Do you support or oppose a pole limit while fishing for crappie? Support 23.1\% Oppose 14.1\% No Opinion 62.8\%

15a. If you support a pole limit, what should be the pole limit per person?
$18.8 \% \quad 233.8 \% \quad 340.0 \% \quad 4 \quad 15.0 \% \quad 5 \quad 2.5 \% \quad 6 \quad 0.0 \% \quad>6 \quad 0.0 \%$
16. If you fish for catfish, do you fish with multiple poles at the same time? Yes 15.1\% No 20.1\% Don't Fish 64.8\%

16a. If "Yes", how many poles do you use? $2 \quad 69.2 \% \quad 3 \quad 19.2 \% \quad 4 \quad 11.5 \% \quad 5 \quad 0.0 \% \quad 6 \quad 0.0 \% \quad>6 \quad 0.0 \%$
17. Do you support or oppose a pole limit while fishing for catfish? Support 13.5\% Oppose 24.6\% No Opinion 61.9\%

17a. If you support a pole limit, what should be the pole limit per person?
$123.5 \% \quad 223.5 \% \quad 329.4 \% \quad 423.5 \% \quad 50.0 \% \quad 6 \quad 0.0 \% \quad>6 \quad 0.0 \%$
18. If you fish for catfish in Lake Barkley, which is more important to you: catching trophy fish, or catching more keeper size fish to eat?

Trophy fish 10.6\% Catching keeper fish to eat 61.0\% Both equally important 27.6\% No opinion 0.8\%
19. If you fish for bluegill, what do you consider to be a keeper size (inches) fish?
$618.4 \% \quad 75.3 \% \quad 8 \quad 3.9 \% \quad 9 \quad 0.3 \% \quad 10 \quad 0.0 \%$ don't fish 71.0% Other-3 0.3\%; 50.8%
19a. Which do you consider to be more important: Catching more keeper size bluegill, or more trophy size ($>10 \mathrm{in}$) bluegill?
More keepers 95.2\% More trophy size 3.8% No Opinion 1.0\%
20. If you fish for redear sunfish, what do you consider to be a keeper size (inches) fish? $6 \quad 7.2 \% \quad 7 \quad 1.9 \% \quad 8 \quad 12.3 \% \quad 9 \quad 1.7 \% \quad 10 \quad 3.3 \%$ don't fish 72.4% Other- $30.3 \% ; 50.6 \% ; 120.3 \%$

20a. Which do you consider to be more important: Catching more keeper size redear, or more trophy size (>10in) redear? More keepers $84.4 \% \quad$ More trophy size $15.6 \% \quad$ No Opinion 0.0%
21. Currently, sunfish (bluegill, longear, and redear <6 inches) are allowed to be used as bait. How often do you use sunfish as bait?
Always $0.3 \% \quad$ Frequently $0.6 \% \quad$ Occasionally $3.3 \% \quad$ Rarely $7.0 \% \quad$ Never 88.9\%
22. Are you aware that Asian carps are generally considered to be an excellent fish to eat? Yes 66.3\% No 33.7\%

Appendix D. Comments from Lake Pennyrile Voluntary Creel Survey Cards.

- Wish it would be easier to use/load my own boat wihth electric trolling motor. In the past, have accessed the back of the lake in my own canoe and had good fishing
- Been coming to Pennyrile for 20-22 years- seems like the bluegill was a bit slower this year and the bass had picked up
- 15 people fishing
- Fantastic bluegill fishing-I have fished here for the last 3 years in June. Quit and relaxing fishing. Keep it like this!!!
- 2-3 years- no catfish whatsoever. Seemed like bluegill and redear were a little slow. Love coming here to fish. Estimate 325 miles from Letcher County. A hidden gem in my opinion
- Please build a dock just for fishing
- All were returned
- Need ramp to bring own small boat or kayak
- Make more spots available from the banks
- More bank access around lake along trail
- We fish in here, a big joke
- My son played around with a net and got 2 mud turtles
- Stock the lake, used to catch fish here
- A God @*!\# waste of time and money
- Came back today, not as good as yesterday
- I come frequently and love it. The staff is very friendly
- Very peaceful and quiet
- Very difficult to locate fish!
- Sucked
- Whatever you did the other year to the water killed all the fish. When you turned the water blue you killed the fishing. I used to catch a lot of fish. Not a thing now.
- It was great!!
- The fishing was fruitless
- There is no fish at all!!!
- Need to clear out places to fish from shore/ very grown up (vegetation)
- Nothing Terrible

NORTHWESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Table 1 presents a summary of conditions encountered while sampling at state-owned or managed lakes and ACOE reservoirs during the 2018 field season.

Nolin River Lake

Crappie Sampling

Nolin River Lake was sampled for crappie November 5-6 (Tables 2-6). Trap nets were set on the $5^{\text {th }}$, but heavy rain that night caused the lake to rise several feet and the nets had to be pulled on the $6^{\text {th }}$. The lake remained high for several weeks and nets could not be re-set. Sampling data are being included, but no inferences as to population structure or catch rate should be made. Weights and otoliths were collected from a sample of each inch class. Length at age data indicate excellent growth, which has been the case for the last several years.

Rough River Lake

Black bass Sampling

Spring sampling for largemouth bass could not be conducted in 2018 due to high water levels throughout the sampling period; therefore, population structure and catch rate data could not be collected. Rough River Lake was sampled in October to collect age-growth and length-weight data (Tables 7-10). Both the length at age data and condition data are good and very similar to those data collected in previous years.

Crappie Sampling

Trap netting to sample Rough River Lake's crappie population was conducted the last week of October (Tables 1115). A total of 507 crappie (417 white crappie) were collected during 71 net-nights for a total CPUE of 7.1 fish/nn. Weights were taken and otoliths removed from a representative sample of each inch class. The CPUE's observed were much lower than anything previously recorded. The low catch rates are most likely due to the unseasonably warm temperature and stable weather pattern encountered during the week of sampling. The length and age distribution of the population is satisfactory and similar to past observations. Growth rate is similar to that collected over the last few years, but is still lower than growth rates observed from 2002-2009. Growth rates began declining in 2011 as the result of several overly abundant year classes back to back. Length at age continues to remain rangy with age groups showing significant overlap of inch classes.

Hybrid Striped Bass Sampling

Gill netting to monitor the hybrid striped bass population was conducted during last week of October (Tables 1620). The Northwestern Fishery District ran nets on the South Fork and the Urban Fisheries Research Section ran nets on the North Fork. Catch rates in 2018 were slightly higher than the last couple of years, but in-line with previous collections. The catch rate of age-1 fish was significantly greater than it has been in many years. Growth rate is excellent as it has been for the last couple of years. Growth was fairly consistent from 1999 to 2014 and then began increasing in 2016. The age composition of the hybrid population in 2018 was unlike what is typically found. In 2018, age-0 (31.7\%) and age-1 (59.8\%) fish accounted for 91.5% of the population. In previous surveys, a higher percentage of age- 2 to age- 5 fish have been present in the population. Gill netting will continue in 2019 as part of a project to detect differences in survival and growth rate of reciprocal and original crosses. The hybrid striped bass population continues to be relatively stable and thriving. Mortality estimates for 2018 were the highest of record. This is supported by sampling data that indicated a lower frequency of larger/older fish. In addition, a creel survey was conducted at Rough River Lake in 2018 with which to cross-reference. The creel survey indicated a substantial increase in hybrids caught and harvested in 2018 compared to previous surveys, which mirrors the sampling data
and mortality estimates. Another creel survey and continued net sampling will be conducted in 2019 to see if this trend continues.

In response to frequent angler complaints about not being able to find or catch fish during the summer months, a radio telemetry project was initiated in 2018 to determine summer locations and patterns. Hybrid striped bass were collected via electrofishing from the upper lake/river area (Eveleigh to Adkins Camp boat ramps). Thirty-nine hybrid striped bass from 15.8-22.3 in were surgically implanted with VEMCO V13T transmitters ($13 \mathrm{x} 43 \mathrm{~mm}, 12.0 \mathrm{~g}$ air). Twelve VEMCO VR2W receivers were deployed throughout the lake on May 11, 2018. Receivers will remain in place through 2020. All data will be compiled, analyzed and reported in 2020.

Channel Catfish Sampling

Gill netting to assess the channel catfish population was conducted concurrently with hybrid striped bass sampling. A total of 74 channel catfish were collected over 10 net-nights for a CPUE of 7.4 fish per net-night (Tables 21-22). The catch rate and length distribution documented in 2018 is similar to previous collections. Weights were recorded for each catfish sampled and indicate condition (Wr) is good and similar to previous collections.

Dissolved Oxygen - Temperature Profiles

Dissolved oxygen and temperature profiles were conducted in June, July, August, and October in 2018 (Tables 2326) to document seasonal changes in water temperature and dissolved oxygen levels throughout the water column. Profiles were conducted at five sites (upper, middle, and lower South Fork and middle and lower North Fork) along the main channel of the lake. Profiles have been conducted since 2013 as part of two ongoing projects. One documenting survival and growth of stocked original and reciprocal hybrid striped bass, and the other monitoring seasonal movement and habitat use with radio telemetry equipment. D.O./temp profiles collections will continue through 2020.

Creel Survey

A random, stratified, roving, creel survey was scheduled for 16 days per month at Rough River Lake from April 01 to October 31, 2018 to estimate angling pressure and angler catch/harvest statistics (Tables 27-33). The survey did not begin until April $11^{\text {th }}$ due to lake conditions. Creel interviews and angler attitude surveys were collected using an iPad for the first time in 2018.

For survey purposes, the lake is divided into North Fork and South Fork sections with one section being surveyed per day (6-hour time period) during either a morning or afternoon time period. Each section (North and South forks) was further divided into three equal subsections that were randomly and progressively counted and interviewed spending an equal amount of time (2-hours) in each.

As has been the case in previous creel surveys conducted at Rough River Lake (1993, 1997, 1999, 2005, and 2010), the estimated angling effort declined from the preceding survey (22.95 man-hours/acre in 2018 vs. 24.50 manhours/acre in 2010). This decline has been minimal in the 2000's (<5 man-hours/acre) but was more precipitous in the 1990's. Despite the decline in angler effort, estimates for the total number of fish caught $(371,981)$ and harvested $(133,895)$ in 2018 were increases from $210(213,787$ fish caught and 68,683 harvested).

Black bass were the most sought after species in 2018, as they have been in every survey, with 11.52 man-hours per acre expended toward them. Black bass are followed by crappie with 5.57 man-hours per acre, hybrid striped bass at 1.4 man-hours per acre, and panfish and catfish very similar at 0.93 and 0.89 man-hours per acre, respectively. Those anglers indicating they were fishing for "Anything" expended 2.63 man-hours per acre. In 2018, an estimated 20.85 largemouth bass per acre were caught and 1.74 largemouth bass per acre were harvested averaging 15.1 in . The estimated 20.85 fish/acre caught is the highest ever recorded and is almost double the second highest value of 11.10 fish/acre in 1997. The 1.74 fish harvested/acre and average length of 15.1 in are also the highest values recorded for those statistics but are similar to prior estimates.

The estimated 5.57 hours per acre expended by crappie anglers in 2018 is the lowest amount of angling pressure for crappie recorded in any previous survey. Despite angling pressure in 2018 being the lowest recorded, the 30.37
white crappie caught per acre, the 16.70 white crappie harvested per acre, and the 2.99 white crappie harvested per hour are the highest values recorded to date for those parameters. The mean length of harvested white crappie in 2018 was similar to previous observations.

Overall, with the exception of black bass, angling pressure was lower in 2018. At the same time, the numbers of fish caught and harvested increased in 2018, indicating an increased rate of success for anglers.

The 1.40 angler-hours per acre estimated in 2018 for hybrid striped bass is similar to what has been estimated in past surveys, however, the 4.28 hybrid striped bass caught, 1.52 hybrid striped bass harvested per acre, and 0.91 hybrid striped bass harvested per hour greatly exceed these parameter values recorded in previous surveys. The mean length (16.7 in) of harvested hybrid striped bass is similar to previous surveys.

An angler attitude (AA) survey was conducted during the creel survey to determine angler preferences, satisfaction, and general knowledge of KDFWR projects (Figure 1). The number of angler attitude surveys completed in 2018 $(\mathrm{N}=793)$ is nearly four times greater than collected during the previous creel survey in 2010. Each respondent was asked for their home zip code. Ninety percent of respondents were Kentucky residents with the remaining ten percent originating from up to 13 different states. There is likely an overrepresentation of non-residents caused by data entry error (zip code). In general, species preference and satisfaction results are similar to the AA survey from 2010. Bass and crappie are, by far, the primary species most frequently targeted (80.9%). The vast majority of anglers (97.8% of bass anglers and 99.8% of crappie anglers) were "Satisfied" with the fishery (very or somewhat satisfied). Only 23 anglers indicated that they fish primarily for hybrid striped bass (2.9%), while 144 (18.2%) respondents indicated that they do fish for hybrids. Ninety-five percent of hybrid anglers were "Satisfied" with the fishery. The vast majority of respondents fish at Rough River Lake more than 10 times per year (73.6%), while another 22.7% fish at Rough River Lake between five and ten times annually. These two groups encompass 96.3% of respondents, which is a 20% increase from the 2010 survey. Questions 11-15 relate to habitat improvement efforts and were asked for the first time at Rough River Lake in 2018. The majority of respondents indicated they were aware that we (KDFWR) place fish habitat structures within the lake ($69.9 \%, \mathrm{~N}=554$), and $94.8 \%(\mathrm{~N}=525)$ indicated that they have fished around the structures previously. The majority of respondents discovered the structures while the lake was at winter pool (67.0%), while 16.6% learned about the structures from the KDFWR website. Furthermore, 75.1% of respondents indicated they were aware that the locations of KDFWR-placed structures are available on our website. Finally, 76.2% of respondents feel that the addition of these structures has improved their fishing success. The summation of the habitat structure questions affirms the emphasis we have placed on habitat improvement in recent years and provides the evidence desired to continue such efforts.

Figure 1. Results of Rough River Lake angler attitude survey conducted April 01-October 31, 2018.
ROUGH RIVER LAKE ANGLER ATTITUDE SURVEY 2018 ($\mathrm{N}=793$)

Have you been surveyed this year? Yes - stop survey No - continue

1. Home Zip Code 114 unique zip codes
2. Which species of fish do you fish for at Rough River Lake (check all that apply)?

Bass 61.3\% Bluegill 40.2\% Crappie 58.3\% Hybrid Striped Bass 18.2\% Channel Catfish 21.1\% Flathead
Catfish 12.0\%
3. Which one species do you fish for most at Rough River Lake (check only one) ($\mathbf{N}=\mathbf{7 9 1}$)?

Bass 44.6\% Bluegill 8.8\% Crappie 36.3\% Hybrid Striped Bass 2.9\% Channel Catfish 6.3\% Flathead
Catfish 1.0\%

-Answer the following questions for each species you fish for - (see question 3)

Bass Anglers

4. What level of satisfaction or dissatisfaction do you have with bass fishing at Rough River Lake? ($\mathbf{N}=\mathbf{4 5 1}$)
Very satisfied $\mathbf{2 7 . 1} \% \quad$ Somewhat satisfied $\mathbf{7 0 . 7 \%} \quad$ Neutral $1.8 \% \quad$ Somewhat dissatisfied $0.4 \% \quad$ Very dissatisfied 0\% No opinion 0\%
5. If you responded with somewhat or very dissatisfied in question (4) - What is the single most important reason for your Dissatisfaction? $(\mathbf{N}=\mathbf{2})$

Number of fish 50\% Size of fish 50\% Not happy with regulations 0\% Too many anglers 0\% Other 0\%

Crappie Anglers

6. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Rough River Lake? ($\mathbf{N}=\mathbf{4 2 9}$)

Very satisfied 58.3% Somewhat satisfied $\mathbf{4 1 . 5 \%}$ Neutral 0.1\% Somewhat dissatisfied 0\%
Very dissatisfied 0\% No opinion 0\%
7. If you responded with somewhat or very dissatisfied in question (6) - What is the single most important reason for your Dissatisfaction? ($\mathbf{N}=\mathbf{0}$)
Number of fish N/A Size of fish N/A Not happy with regulations N/A Too many anglers N/A Other N/A

Hybrid Striped Bass Anglers

8. In general, what level of satisfaction or dissatisfaction do you have with hybrid striped bass fishing at Rough River Lake? ($\mathbf{N}=$ 127)

Very satisfied 11.8\% Somewhat satisfied 83.5\% Neutral 3.9\% Somewhat dissatisfied 0.8\% Very
dissatisfied 0\% No opinion 0\%
9. If you responded with somewhat or very dissatisfied in question (8) - What is the single most important reason for your

Dissatisfaction? $(\mathbf{N}=\mathbf{1})$
Number of fish 0\% Size of fish 100\% Not happy with regulations 0\% Too many anglers 0\%
Other 0\%

All Anglers

10. On average, how many times do you fish Rough River Lake in a year? $(\mathbf{N}=\mathbf{7 9 3})$

First time $\mathbf{0 . 8 \%} \quad 1$ to $4 \mathbf{2 . 9 \%} 5$ to 10 22.7\% More than 10 73.6\%
11. Are you aware KDFWR places fish habitat (i.e. fish attractors/structures) within the lake? $(\mathbf{N}=\mathbf{7 9 3}) \quad$ Yes $69.9 \% \quad$ No 30.1\%
12. How often do you fish around KDFWR placed fish attractors/structures at Rough River Lake? ($\mathbf{N}=\mathbf{5 5 4}$) Very often $\mathbf{1 . 6 \%} \quad$ Often $\mathbf{9 . 4} \% \quad$ Sometimes $58.5 \% \quad$ Not very often $\mathbf{2 5 . 3} \% \quad$ Never 5.2\%
13. How did you find these attractors/structures at Rough River Lake? $(\mathbf{N}=549)$ On my own 9.7\% Winter pool 67.0\% Friend/word of mouth 6.2\% KDFWR website 16.6\% Other 0.5\%
14. Do you feel the addition of KDFWR placed attractors/structures has improved your fishing success? $(\mathrm{N}=554) \quad$ Yes 76.2\% No 23.8\%
15. Are you aware the locations of all KDFWR placed attractors/structures are available on our website? $(\mathbf{N}=554) \quad$ Yes 75.1% No 24.9\%

Lake Malone

Largemouth Bass Sampling

Electrofishing to assess the largemouth bass population at Lake Malone was conducted during April (Tables 34-37). With the exception of fish < 8.0 in , catch rates for the remaining length groups increased from 2017 to 2018. The three most abundant inch classes were those currently protected by the slot limit ($12.0-14.9 \mathrm{in}$). Catch rate for fish ≥ 15.0 in was among the highest recorded, while catch rate for fish ≥ 20.0 in was the highest documented to date. Total CPUE is similar to previous collections. While Lake Malone has historically been plagued by an overabundance of bass < 12.0 in, catch rates for fish < 12.0 in declined somewhat in 2017 and 2018. CPUE of age-1 fish has historically been mediocre at Lake Malone, however catch rates for the length groups used for assessment do not appear to be negatively affected, and it is possible we are not effectively sampling these smaller fish. Based on sampling data, the largemouth bass population at Lake Malone is in Good- to- Excellent condition based on statewide assessment values. Age-growth data will be collected in 2019 or 2020.

Mauzy Lake

Largemouth Bass Sampling

Electrofishing to assess the largemouth bass population at Mauzy was conducted in April (Tables 36, 38-42). The catch rate of largemouth bass less than 12.0 in remains high and in line with the past several years. There was a slight uptick in catch rate of larger fish (≥ 15.0 and $\geq 20.0 \mathrm{in}$) in 2018 but overall the fishery is dominated by 8.0 - to 12.0 -in fish. Mauzy was sampled again in October to collect fish for age and growth analysis. The catch was anemic due to very clear water and excessive Eurasian watermilfoil. Fifty-six fish were collected and used for age-growth determination. Mean length at age data has decreased once again and is the lowest recorded since 2001. The back calculated lengths at age-1 show a decline since 2013. The lake has not had consecutive years of stable pool elevation in the past decade. The lake was again drawn down during the winter of 2018-2019 in an attempt to control vegetation. However, consistent rains prevented the lake from remaining down at a stable elevation for much of the winter and it is yet to be determined if the drawdown will be successful in reducing the vegetation. Lake fertilization efforts were discontinued in 2008 and could be contributing to increases in water clarity, aquatic vegetation growth, and a decline in fish growth. A fertilization program will be re-initiated in 2019 in hopes of offsetting these negative effects.

Bluegill Redear Sunfish Sampling

Electrofishing to assess the bluegill and redear sunfish populations was conducted in May (Tables 43-49). In 2018, bluegill catch rate was the lowest documented since 2000. Catch rates in 2018 declined for bluegill < 3.0 and 3.0-5.9 in, but nearly doubled for 6.0- to 7.9-in fish compared with 2017. Bluegill were collected in October for age-growth analysis. Back-calculated mean length at age-2 (3.1 in) was the lowest documented since 2001. Years to reach 6.0 in is still greater than 5 years as it was in 2015 when fish were last aged.

Beginning in 2014, catch rates for redear sunfish topped those of bluegill. Redear sunfish CPUE in 2018 was down slightly from the two previous years but still within the expected range. Catch rates for redear sunfish 3.0-5.9 in and 6.0-7.9 in decreased in 2018 while the catch rate for fish ≥ 8.0 in increased once again. We have yet to see a redear top the 9.0 -in mark, which is surprising given the prolific submersed aquatic vegetation present the past few years. Redear were collected in October in conjunction with bluegill and largemouth bass for age-growth analyses. Back calculated mean length at age-3 (6.2 in) and years to 8.0 in (≥ 6) continues to be poor. Back-calculated lengths at age suggest growth may be improving slightly but not to the desired ranges. Lake fertilization efforts will hopefully increase redear growth as well.

Ultimately, Mauzy Lake would benefit from another, more complete, renovation. Plans to dredge and deepen extensive shallow areas, upgrade existing bank fishing access, install fish habitat, lime the lake basin, renovate the fishery, and construct a headwater wetland will be created in 2019 and will then be in place to move forward when possible. Mauzy Lake is wholly contained within a WMA and renovation efforts could easily be accomplished.

Carpenter Lake

Largemouth Bass

Largemouth bass were sampled at Carpenter Lake in April 2018 (Tables 36, 50-54). Total CPUE was within the range of previous samples. Catch rate for fish 12.0-14.9 in is the highest recorded (CPUE 108.0 fish $/ \mathrm{hr}$), surpassing 2017's catch rate of $100.0 \mathrm{fish} / \mathrm{hr}$. Catch rate for fish $\geq 15.0 \mathrm{in}(49.3 \mathrm{fish} / \mathrm{hr})$ was the highest recorded since a nocturnal sample in 2001 ($66.7 \mathrm{fish} / \mathrm{hr}$). The catch rate for bass 8.0-11.9 in was the lowest on record ($17.3 \mathrm{fish} / \mathrm{hr}$) and will need to be followed in upcoming years to determine if it was simply a sampling anomaly, or if the fish are not present in the population. Bass were collected again in October for age-growth analysis. Mean length age- 3 at capture was 11.3 in and the best documented since the 2003 age-growth analysis. The bass population at Carpenter is relatively stable and performing as expected.

Saugeye will be stocked in 2019 in an attempt to reduce the gizzard shad and crappie spp. populations.

Bluegill/Redear Sunfish Sampling

Electrofishing to assess the bluegill and redear sunfish populations was conducted in May (Tables 45, 53, 55-58). Total catch rate for bluegill is within the range of collections over the past eight years. Beginning in 2011, the total catch rate for bluegill increased substantially and has mostly lingered within this "new" range since. Catch rate for 3.0- to 5.9 -in bluegill was the highest on record (528.0 fish/hr.), while the catch rate for bluegill 6.0-7.9 in was the third lowest on record ($8.1 \mathrm{fish} / \mathrm{hr}$.). Bluegill were collected for age-growth determination in October. Backcalculated mean length age-2 decreased slightly from 2015, but remains high. Back-calculated length at age data suggests growth may be declining for fish ages 2 and 3. Bluegill greater than 8.0 in have not been collected in Carpenter Lake since 2007. Gizzard shad were first discovered in the lake in 2006 and are most likely negatively affecting the bluegill population. After two failed shad eradication efforts, saugeye will be stocked at 70 fish/acre beginning in 2019 in an attempt to reduce the gizzard shad and small crappie populations and increase bass predation on the bluegill. Increased predation on the bluegill should positively affect bluegill growth and produce bluegill greater than 8.0 inches in the future.

Forty redear sunfish were collected in May in conjunction with bluegill sampling. Total catch rate and catch rates for standard length groups are all within expected ranges. Redear sunfish less than 3.0 in have not been collected since 2010. That is likely a result of sampling inefficiencies rather than lack of reproduction as evidenced by the CPUE of 3.0- to 5.9-in fish observed this year. Numbers remain fairly low but quality-fish are available. Only three redear sunfish were collected in October, therefore age-growth analyses were postponed.

New Kingfisher Lakes

Largemouth Bass

Electrofishing to assess the largemouth bass population at New Kingfisher Lake was conducted in April and October (Tables 36, 59-62). A total of 59 largemouth bass were collected in 0.375 hours of spring sampling, but only 16 fish were collected in the fall. Largemouth bass recruitment seems to be limited, possibly due to egg and fry predation by the overabundant sunfish population. Stocking of advanced largemouth bass fingerlings is planned for fall 2019, pending spring sampling results. Catch rate for fish greater than 15.0 and 20.0 in is the highest collected in New Kingfisher Lake. The largemouth bass fishery should continue to grow over the next few years as multiple year classes develop and stabilize.

Bluegill Redear Sunfish Sampling

The sunfish population was sampled via electrofishing in May (Tables 45, 63-65). Total bluegill CPUE was the highest collected since 1999 with bluegill 3.0-5.9 in accounting for 90% of the total. The first bluegill greater than 8.0 in (at least for the last 30 years) was sampled in New Kingfisher in 2018. Growth is likely slower than ideal due to sheer number of sunfish in the lake. Total sunfish CPUE does not take into account the presence of green sunfish
and warmouth. A shoreline rotenone treatment will be conducted during summer 2019 to reduce undesirable sunfish as well as knock back some of the overabundant bluegill/redear sunfish. Until the largemouth bass population grows and stabilizes, sunfish growth and size structure will suffer. Age-growth data will be collected in a few years after populations have stabilized.
Gizzard shad were documented in both spring and fall samples. The bluegill population will be monitored to ensure adequate growth and size structure develops. If not, shad control methods (winter rotenone treatments and/or saugeye stocking if it proves successful in Carpenter Lake) will be invoked.

Old Kingfisher Lake

Largemouth Bass

Electrofishing to assess the largemouth bass population was conducted at Old Kingfisher Lake in April and October (Tables 36, 66-69). A total of 35 bass were collected in April ranging from 5.0 to 20.0 in . Total CPUE declined from 2017 to 2018. There are noticeable gaps in the length distribution. Growth does not appear to be fast enough that fish are skipping inch classes, but too few fish were collected in October for growth analysis. The large group of less than 8.0 -in fish documented in 2017 is not visible within the 2018 sampling data. This population will continue to be tracked spring and fall to dictate future management steps. Depending on spring electrofishing results, advanced fingerling largemouth bass may be stocked in fall 2019.

Bluegill Redear Sunfish Sampling

The sunfish population at Old Kingfisher Lake was sampled via electrofishing in May (Tables 45, 70-72). Total bluegill CPUE was 1149.7 fish $/ \mathrm{hr}$, which is similar to the 2017 total CPUE (1333.3 fish $/ \mathrm{hr}$). Catch rate for each length group declined. The majority (78%) of fish collected were 4.0 to 5.0 in . A shoreline rotenone treatment will be attempted summer 2019 to reduce undesirable sunfish as well as knock back some of the overabundant bluegill/redear sunfish. Until the largemouth bass population grows and stabilizes, sunfish growth and size structure will suffer. Age-growth data will be collected after populations have stabilized. Gizzard shad were documented during 2018 at Old Kingfisher Lake and will be monitored along with the sunfish to determine if shad control strategies need to be employed. Two potential options for controlling the shad are winter shad eradications and saugeye stocking.

Old and New Kingfisher are now connected by a six-foot metal culvert and should presumably develop nearly identical fish populations. If, after several years, both Old and New Kingfisher show similar population characteristics, sampling data may be combined and reported together as Kingfisher Lake.
*Old and New Kingfisher were drawn down December 2012 to complete renovation work. The lakes were allowed to dry during 2013 and renovation work was completed during the summer of 2014. As water levels increased, channel catfish, bluegill and advanced fingerling largemouth bass were stocked in fall of 2015.

Washburn Lake

Largemouth Bass

Electrofishing to assess the largemouth bass population at Washburn Lake was conducted in April and October (Tables 36, 73-76). The population has been relatively stable over the past several years and comprised mostly of fish less than 12.0 in with one or two larger fish collected. Catch rate for bass less than 12.0 in declined in 2018 but it appears those fish have moved into the 12.0 - to $14.9-\mathrm{in}$ and $\geq 15.0-\mathrm{in}$ length groups. Catch rates for those two groups are among the highest recorded. Total CPUE fell within the expected range. Age-growth data collected in 2017 show back-calculated mean length at age continues to decline from a high of 13.1 inches in 2007. The fertility issue has yet to be resolved and water clarity can range from 8 -foot + to <18 in within a week's time. Submerged aquatic vegetation has also become an issue that requires chemical treatment multiple times a year. There are likely several factors contributing to the poor quality of this fishery. A different formulation of fertilizer (powder, 10-52-4) will be used in 2019 and will hopefully have the desired effect, improve fish growth, and limit nuisance aquatic vegetation growth. Fifty-four grass carp were also stocked in 2019 to help with aquatic vegetation control.

Bluegill Redear Sunfish Sampling

The sunfish population was sampled via electrofishing in May (Tables 45, 77-83). Approximately equal numbers of bluegill and redear sunfish were collected again in 2018. Total bluegill catch rate is the highest recorded since renovation (2001). Catch rate for 3.0- to 5.9-in bluegill increased substantially and is the highest on record. Catch rates for other length groups are within the normal range for Washburn. Bluegill were collected in October for agegrowth determination. Back-calculated mean length at age-2 (3.5 in) has been declining since 2003 and continued in 2018. It appears fish are growing slowly for their first two to three years and then growth rate is increasing to expected rates. This needs to be confirmed with a subsequent age sample if adequate 6.0 - to 8.0 -in fish can be collected. CPUE of fish greater than 6.0 in is very good but their ages are uncertain.

Redear sunfish have been on a general rise since 2012. Sampling conducted in May revealed the highest total catch rate for redear sunfish to date. There were substantial increases in catch rate for 6.0 - to 7.9 -in and ≥ 8.0-in length groups. Thirty-six redear were collected in October for age-growth analysis. All growth parameters are excellent for redear sunfish at Washburn Lake, in addition to CPUE of fish $\geq 8.0 \mathrm{in}$. While there has yet to be a $10.0+$ in fish collected, data indicate those fish could be seen in 2019 and subsequent years. A reduction in submerged aquatic vegetation may impact redear growth and will be monitored in successive years.

Despite a decent sunfish fishery, Washburn Lake needs another renovation. Plans to dredge and deepen extensive shallow areas, create more bank fishing access, install fish habitat, lime the lake, renovate the fishery, and replace the existing water control structure will be created in 2019. The current water control tower leaks profusely and could fail at any time, requiring plans to be in place to move forward with a renovation when necessary.

Table 1. Annual summary of sampling conditions by waterbody, species sampled and date for Northwestern Fishery District lakes during 2018

Water body	Species	Date	$\begin{aligned} & \text { Time } \\ & \text { (24hr) } \end{aligned}$	Gear	Weather	Water temp. F	Water level	Secchi (in)	Conditions	Pertinent sampling comments
Nolin River Lake	Crappie	11/5-\&6	930	Trap Net	Cloudy 55°, heavy rain overnight 11/4	60	508.25	44"	Poor	Heavy rain, lake rising, pulled nets after 1 night
Rough River Lake	HSB	5/2,8,9	930	Shock	-	66-71.1	504.3-501.8	-	Good	Collect HSB for telemetry project
Rough River Lake	HSB	5/11	930	Deploy	-	76.9	500.8	-	Good	Deploy VR2W for HSB telemetry project
Rough River Lake	HSB	6/7	930	Temp/DO	Sunny, calm, 85°	82.6-86.2	495.5	33-56"	Good	
Rough River Lake	HSB	7/18	830	Temp/DO	Sunny, 75°	85.2-88.3	495.15	37-51"	Good	
Rough River Lake	HSB	8/23	1015	Temp/DO	Sunny, 80°	82.4-84.2	495.2	30-66"	Good	
Rough River Lake	HSB	10/5	930	Temp/DO	Sunny	77.3-79.8	495.63	-	Good	
Rough River Lake	LMB	10/12\&18	930	Shock	Sunny, breezy, 50°	68.4-74.5	494.8-493.8	24-44"	Fair	Fish collection for A\&G
Rough River Lake	Crappie	10/23-10/26	930	Trap Net	Sunny to cloudy, clear to rainy, 50-70 ${ }^{\circ}$	57-64	492-488	14-26"	Good	
Rough River Lake	HSB	10/30-31	930	Gill Net	Sunny to cloudy, breezy, 65°, front coming in 10/31	60-62	488-487.19	24 "	Good	Urban crew ran nets on NF
Lake Malone	LMB	4/27	1030	Shock	Sunny, light breeze, 65°	61.3	pool	$26 "$	Good	
Lake Malone	LMB	4/30	1030	Shock	Sunny, breezy, $\sim 10 \mathrm{mph}$ w ind, 58°	61.5	pool	20	Good	
Mauzy Lake	LMB	4/18	1000	Shock	Sunny, windy ($15-20 \mathrm{mph}$), 70°	57.7	+ 1^{\prime}	$37{ }^{\prime \prime}$	Good	
Mauzy Lake	BG/RE	5/14	1000	Shock	Sunny, clear, 80°	79.5	pool	80	Fair	
Mauzy Lake	ALL	10/8	1000	Shock	Sunny, clear, 80°	78.6	pool	$108{ }^{\prime \prime}$	Poor	Fish collection for A\&G
Carpenter Lake	LMB	4/25	900	Shock	Sunny, 60°	59.9	pool	34 "	Good	
Carpenter Lake	BG/RE	5/17	1000	Shock	Partly sunny, light breeze, 75°	79.0	pool	$24 "$	Good	
Carpenter Lake	ALL	7/10	1015	Temp/DO	- -	79	pool	22-24"	Good	
Carpenter Lake	ALL	10/9	1000	Shock	Partly sunny, windy 75°	78.4	pool	19 "	Good	Fish collection for A\&G
New Kingfisher Lake	LMB	4/25	1130	Shock	Sunny, 65°	62.4	pool	32 "	Good	
New Kingfisher Lake	BG/RE	5/17	1200	Shock	Partly sunny, light breeze, 80°	80.8	pool	$30 "$	Good	
New Kingfisher Lake	ALL	7/10	1140	Temp/DO	-	91.5	pool	29 "	Good	
New Kingfisher Lake	LMB	10/9	1300	Shock	Partly sunny, windy 75°	83.8	- ${ }^{1}$	22 "	Good	
Old Kingfisher Lake	LMB	4/25	1030	Shock	Sunny, 65°	61.9	pool	22 "	Good	
Old Kingfisher Lake	BG/RE	5/17	1330	Shock	Partly sunny, light breeze, 80°	82.4	pool	22 "	Good	
Old Kingfisher Lake	ALL	7/10	1045	Temp/DO	-	88.9	pool	$30 "$	Good	
Old Kingfisher Lake	LMB	10/9	1200	Shock	Partly sunny, windy 75°	79.3	pool	$16 "$	Good	
Washburn Lake	LMB	5/1	1000	Shock	Sunny, 70°, light breeze	65.1	pool	63 "	Good	
Washburn Lake	BG/RE	5/15	1000	Shock	Sunny, 75°	82.9	pool	24 "	Good	
Washburn Lake	ALL	10/10	930	Shock	Cloudy, 75°	78.4	pool	68"	Poor	Water clear, no veg, fish collection for A\&G

Table 2. Length frequency and CPUE (fish/nn) for each species of crappie collected in 19 net-nights of sampling at Nolin River Lake during November 2018.

Species	Inch class											Total	CPUE	SE
	2	3	4	5	6	7	8	9	10	11	12			
White crappie	4	353	422	112			4	2	12	11	2	922	48.5	17.6
Black crappie	2	83	33	1	3	4	1	2	5	1	1	136	7.2	2.1

nwd1tn.d18

Table 3. PSD and RSD ${ }_{10}$ values calculated for crappie collected in trap nets from Nolin River Lake during November 2018; 95\% confidence limits are in parentheses.

Lake/Species	No.	PSD	RSD $_{10}$
Nolin River Lake			
White crappie	143	$22(\pm 7)$	$17(\pm 6)$
Black crappie	18	$55(\pm 24)$	$39(\pm 23)$
nwd1tn 18			

Table 4. Mean back calculated lengths (in) at each annulus for white crappie collected at Nolin River Lake in November 2018.

Age											
Year		Age									
class	No.	1	2	3	4	5	6	7	8		
2017	4	4.7									
2016	24	5.3	8.7								
2010	1	4.2	7.2	9.2	10.9	11.4	12.0	12.5	12.7		
Mean		5.2	8.6	9.2	10.9	11.4	12.0	12.5	12.7		
No.	29	29	25	1	1	1	1	1	1		
Smallest		3.9	6.2	9.2	10.9	11.4	12.0	12.5	12.7		
Largest		6.8	10.7	9.2	10.9	11.4	12.0	12.5	12.7		
Std error		0.1	0.2								
$95 \% \mathrm{Cl}(\pm)$		0.2	0.3								

[^8]Table 5. Age-frequency and CPUE (fish/nn) per inch class of white crappie trap netted for 19 net-nights at Nolin River Lake in November 2018.

Age	Inch class											No.	CPUE	SE	Age \%
	2	3	4	5	6	7	8	9	10	11	12				
0	4	353	422	112								891	36.4		96.6
1							3		1			4	0.2	0.1	0.4
2							1	2	11	11	1	26	1.4	0.5	2.8
8											1	1	0.1	0.1	0.1
Total	4	353	422	112			4	2	12	11	2	922	48.5	17.6	
(\%)	0.4	38.3	45.8	12.1			0.4	0.2	1.3	1.2	0.2				100.0

nwd1tn.d18, nwd1wca.d18

Table 6. Population assessment for white crappie based on fall trapnetting at Nolin River Lake from 2001-2018 (scoring based on statewide assessment).

Year	CPUE (excluding age 0)	CPUE age 1	$\begin{aligned} & \text { CPUE } \\ & \text { age } 0 \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \\ & \hline \end{aligned}$	Mean length age 2+ at capture	Instantaneous mortality (z)	Annual mortality (A) $\%$	Total score	Assessment rating
2018*	1.6	0.2	36.4	1.6	10.7 (4)				
2017									
2016	5.6 (2)	2.6 (2)	5.6 (4)	3.3 (3)	10.7 (4)	1.112	67.1	15	Good
2015									
2014	14.0 (3)	9.5 (4)	1.5 (2)	10.4 (4)	10.2 (3)	1.14	68.2	16	Good
2013									
2012	6.7 (3)	4.5 (3)	1.1 (2)	3.2 (2)	10.1 (3)	1.112	67.1	13	Good
2011	5.7 (2)	4.4 (3)	1.6 (3)	3.5 (3)	10.9 (4)	1.274	72.3	15	Good
2010	6.7 (3)			6.0 (4)					
2009	14.1 (3)	11.7 (4)	1.2 (2)	8.9 (4)	10.4 (4)	1.638	80.6	17	Excellent
2008	6.0 (2)	3.5 (3)	2.4 (3)	4.8 (3)	10.4 (4)	0.976	62.3	15	Good
2007	7.4 (3)	3.7 (3)	0.4 (1)	6.1 (4)	10.4 (4)	0.882	58.6	15	Good
2006	5.9 (2)	3.2 (2)	2.0 (3)	4.4 (3)	9.7 (3)	0.876	58.3	13	Good
2005	8.8 (3)	3.6 (3)	1.4 (2)	7.4 (3)	9.7 (3)	0.749	52.7	15	Good
2004	8.6 (3)	4.2 (3)	5.1 (4)	6.9 (4)	9.7 (3)	0.630	46.7	17	Excellent
2003	13.2 (3)	8.0 (4)	2.0 (3)	8.7 (4)	9.8 (3)	1.107	66.9	17	Excellent
2002	12.0 (3)	10.0 (4)	4.3 (4)	8.8 (4)	9.5 (2)	1.571	79.2	17	Excellent
2001	10.2 (3)	4.8 (3)	2.6 (3)	3.9 (3)	9.1 (2)	0.910	59.7	14	Good

* One day of sampling

Table 7. Length frequency and CPUE (fish/hr) for black bass collected in 3 hrs of electrofishing at Rough River Lake during October 2018.

Species	Inch class																			Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Largemouth bass	26	56	32	35	34	29	41	43	35	25	24	13	14	8	6	4	6	3	2	436	145.3	24.2
Spotted bass	6	5	2	8	8	3	5	2	1	5	1	1								47	15.7	4.1

nwd2lmb.d18

Table 8. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Rough River Lake during October 2018.
Standard errors are in parentheses.

	Length group										
	$8.0-11.9 \mathrm{in}$								$12.0-14.9 \mathrm{in}$		≥ 15.0 in
Species	No.	Wr	No.	Wr	No.	Wr					
Largemouth bass	83	$88(1)$	62	$91(1)$	41	$96(1)$					
nwd2lmb.d18											

Table 9. Mean back calculated lengths (in) at each annulus for largemouth bass collected at Rough River Lake in October 2018.

		Age								
Year class	No.	1	2	3	4	5	6	7	8	9
2017	48	5.4								
2016	23	6.3	10.8							
2015	16	5.1	10.5	13.2						
2014	8	5.8	10.4	13.0	14.5					
2013	1	6.7	11.8	15.2	16.9	17.7				
2012	5	6.6	9.4	12.0	13.7	15.1	16.2			
2011	2	5.2	8.5	10.5	12.0	13.2	14.6	15.8		
2009	3	6.6	12.4	14.5	16.1	17.3	18.4	19.1	19.6	21.7
Mean		5.7	10.6	13.0	14.4	15.6	16.5	17.8	19.6	21.7
No.		106	58	35	19	11	10	5	3	3
Smallest	3.4	6.7	10.4	11.4	12.1	12.2	15.8	18.4	21.7	
Largest		10.3	13.5	16.1	17.7	19.3	20.4	20.9	21.4	21.7
SE	0.2	0.2	0.3	0.4	0.7	0.8	1.0	0.9		
95\% CI (\pm)	0.3	0.4	0.5	0.9	1.4	1.5	1.8	1.8		
nwd2lmba.d18										

Table 10. Population assessment for largemouth bass based on spring electrofishing at Rough River Lake from 1999-2018 (scoring

Year	Mean length age 3 at capture	CPUE age 1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
$2018{ }^{\text {a }}$	13.2* (3)								
$2017{ }^{\text {a }}$									
2016		33.8 (3)	29.3 (3)	23.3 (4)	2.0 (4)			> 14	G-E
$2015{ }^{\text {a }}$									
2014									
2013	12.3 (2)		32.4 (4)	31.3 (4)	3.3 (4)			> 14	G-E
2012		36.4 (3)	29.3 (3)	32.00 (4)	3.6 (4)			> 14	G-E
$2011^{\text {a }}$ a ${ }^{\text {a }}$									
$2010^{\text {a }}$									
2009	12.6 (3)	28.4 (3)	42.7 (4)	17.6 (3)	0.7 (3)	0.884	58.7	16	Good
$2008{ }^{\text {a }}$									
2007	13.6 (4)	27.1 (3)	27.8 (3)	13.1 (3)	0.2 (2)	0.576	42.3	15	Good
2006	13.6 (4)	22.0 (2)	28.2 (3)	11.3 (2)	0.4 (2)	0.773	53.8	13	Good
2005	13.6 (4)	28.0 (3)	38.9 (4)	14.2 (3)	0.7 (3)	0.759	53.2	17	Good
2004	13.6 (4)	38.8 (3)	12.9 (1)	9.8 (2)	0.2 (2)	0.862	57.8	12	Good
2003	12.5 (3)	44.3 (4)	20.0 (2)	18.4 (3)	0.7 (3)	0.797	54.9	15	Good
2002	12.5 (3)	7.9 (1)	2.0 (1)	1.6 (1)	0.0 (1)			7	Poor
2001	12.5 (3)	28.0 (3)	16.4 (2)	3.1 (1)	0.0 (1)			10	Fair
2000	12.5 (3)	10.5 (1)	21.8 (2)	5.3 (1)	1.8 (4)			11	Good
1999	12.5 (3)	3.0 (1)	21.3 (2)	8.9 (2)	0.4 (2)			10	Fair

${ }^{\text {a }}$ Unable to sample due to high water

* Back-calculated from age-growth table

Table 11. Length frequency and CPUE (fish/nn) for each species of crappie collected in 71 net-nights of sampling at Rough River Lake during October 2018.

Species	Inch class											Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13			
White crappie	34	131	37	25	87	31	33	22	11	4	2	417	5.9	1.1
Black crappie		1	8	61	18	2						90	1.3	0.3

nwd2tn.d18

Table 12. PSD and RSD_{10} values calculated for crappie collected in trap nets from Rough River Lake during October 2018; 95\% confidence limits are in parentheses.

Lake/Species	No.	PSD	RSD_{10}
Rough River Lake			
White crappie	252	$41(\pm 7)$	$15(\pm 4)$
Black crappie	89	$2(\pm 3)$	0

nwd2tn.d18

Table 13. Mean back calculated lengths (in) at each annulus for white crappie collected at Rough River Lake in October 2018.

Year		Age							
class	No.	1	2	3	4	5	6	7	
2017	32	4.7							
2016	18	4.7	7.4						
2015	13	4.8	7.0	8.8					
2014	10	4.3	6.6	8.5	9.7				
2011	1	4.9	7.5	9.2	10.4	11.2	11.9	12.5	
Mean		4.7	7.1	8.7	9.8	11.2	11.9	12.5	
No.		74	42	24	11	1	1	1	
Smallest		3.5	5.8	6.7	7.3	11.2	11.9	12.5	
Largest		6.8	8.9	11.0	12.6	11.2	11.9	12.5	
SE		0.1	0.1	0.3	0.5				
95\% Cl (\pm)		0.1	0.2	0.5	0.8				
nwd2wca.d18									

Table 14. Age-frequency and CPUE (fish/nn) per inch class of white crappie collected 71 in net-nights at Rough River Lake during October 2018.

Age	Inch class											No.	CPUE	SE	Age (\%)
	3	4	5	6	7	8	9	10	11	12	13				
0	34	131	37									202	2.8		48.2
1				23	51	17	15	2				108	1.5	0.3	25.8
2				2	29	3	15	9	2			60	0.8	0.2	14.3
3					7	8	3	6	5	2		31	0.4	0.1	7.4
4						3		6	5	2	1	17	0.2	0.1	4.1
5															
6															
7											1	1	<0.1	0.0	0.2
Total	34	131	37	25	87	31	33	23	12	4	2	419			
(\%)	8.1	31.3	8.8	6.0	20.8	7.4	7.9	5.5	2.9	1.8	0.5				100.0

nwd2wca.d18, nwd2tn.d18

Table 15. Population assessment for white crappie based on fall trapnetting at Rough River Lake from 2000-2018 (scoring based on statewide assessment).

Year	$\begin{gathered} \text { CPUE } \\ \text { (excluding } \\ \text { age-0) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	CPUE age-0	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Mean length age 2+ at capture	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2018	3.0 (1)	1.5 (1)	2.8 (1)	1.5 (1)	9.2 (3)	0.612	54.2	7	Poor
2017									
2016									
2015	38.9 (4)	25.5 (4)	1.4 (1)	7.2 (3)	9.3 (3)			15	Good
2013	18.6 (3)	3.8 (2)	6.0 (2)	9.0 (3)	8.3 (1)			11	Fair
2012*									
2011	15.6 (3)	10.3 (3)	1.0 (1)	4.9 (2)	9.2 (3)	1.230	70.9	12	Fair
2010	10.2 (2)	5.8 (2)	1.9 (1)	3.4 (2)					
2009	28.1 (4)	26.1 (4)	12.4 (4)	7.8 (3)	10.8 (4)	2.040	87.1	19	Excellent
2008	4.6 (2)	3.1 (2)	20.0 (4)	4.3 (2)	10.7 (4)	1.030	64.3	14	Good
2006	8.2 (2)	7.5 (3)	2.3 (1)	4.0 (2)	10.7 (4)	2.180	88.7	12	Fair
2005	4.6 (2)	3.5 (2)	4.6 (2)	3.3 (2)	10.4 (4)	0.869	58.1	12	Fair
2004	8.2 (2)	5.5 (2)	1.8 (1)	7.1 (3)	10.4 (4)	0.734	52.0	12	Fair
2003	13.1 (3)	10.8 (3)	18.9 (4)	9.9 (3)	10.6 (4)	1.066	65.5	17	Good
2002	8.4 (3)	4.5 (2)	4.5 (2)	7.3 (3)	10.3 (4)	0.871	58.5	14	Good
2000	4.0 (1)	1.4 (1)	2.1 (1)	3.1 (2)	9.2 (3)	1.160	68.7	8	Fair

* No drawdown few fish collected

Table 16. Length frequency and CPUE (fish/nn) for hybrid striped bass collected in 10 net-nights of sampling at Rough River Lake during late October 2018.

	Inch class																			Total	CPUE	SE
Species	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25			
Hybrid striped bass	8	38	69	39	11	1	43	132	117	19	10	16	6	3	6	1			1	520	52.0	11.9

Table 17. Number of fish and the relative weight (Wr) for each length group of hybrid striped bass collected at Rough River Lake during November 2018. Standard errors are in parentheses.

| | Length group | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Species | $8.0-11.9 \mathrm{in}$ | | 22.0-14.9 in | | $\geq 15.0 \mathrm{in}$ | |
| | No. | Wr | No. | Wr | No. | Wr |
| | | | | | | |
| Hybrid striped bass | 156 | $93(1)$ | 176 | $87(1)$ | 179 | 86 (1) |

nwd2gn.d18

Table 18. Mean back calculated lengths (in) at each annulus for hybrid striped bass collected at Rough River Lake in November 2018.

		Age										
Year class	No.	1	2	3	4	5	6	7	8	9	10	11
2017	261	9.8										
2016	28	11.7	16.9									
2015	6	10.2	16.1	18.1								
2014	6	9.2	16.0	19.0	20.7							
2013	2	10.5	15.8	18.6	19.9	20.6						
2012	1	6.9	14.0	16.8	18.2	19.4	19.7					
2007	1	9.6	16.8	20.1	20.6	22.6	23.9	24.5	24.8	25.2	25.4	25.5
Mean		9.9	16.5	18.5	20.3	20.8	21.8	24.5	24.8	25.2	25.4	25.5
No.	305	305	44	16	10	4	2	1	1	1	1	1
Smallest		6.2	14.0	16.8	18.2	19.4	19.7	24.5	24.8	25.2	25.4	25.5
Largest		13.2	18.3	20.1	21.2	22.6	23.9	24.5	24.8	25.2	25.4	25.5
SE		0.1	0.1	0.2	0.3	0.7	2.1					
95\% Cl (\pm)		0.1	0.2	0.4	0.6	1.4	4.1					

nwd2hsba.d18

Table 19. Age-frequency and CPUE (fish/nn) per inch class of hybrid stiped bass collected in 10 net-nights of sampling at Rough River Lake during November 2018.

Age	Inch class																	No.	CPUE	SE	Age (\%)
	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	25				
0	8	38	69	39	11													165	16.5		31.7
1						1	43	132	117	18								311	31.1	7.4	59.8
2										1	10	12	5					28	2.8	0.8	5.4
3												4	1		1			6	0.6	0.2	1.1
4														1	5			6	0.6	0.4	1.1
5														1		1		2	0.2	0.1	0.1
6														1				1	0.1	0.1	0.1
11																	1	1	0.1	0.1	0.1
Total	8	38	69	39	11	1	43	132	117	19	10	16	6	3	6	1	1	520			
(\%)	1.5	7.3	13.3	7.5	2.1	0.1	8.3	25.4	22.5	3.6	1.9	3.1	1.1	0.1	1.1	0.1	0.1				100.0

nwd2gn.d18, nwd2hsba.d18

Table 20. Population assessment for hybrid striped bass based on fall gill net sampling at Rough River Lake from 1999-2018 (scoring based on statewide assessment).

	CPUE (excluding age 0)	Mean length age 2+ at capture	CPUE ≥ 15.0 in	CPUE age 1	Instantaneous mortality (z)	Annual mortality $($ A) $\%$	Total score	Assessment rating
2018	$35.5(4)$	$18.2(4)$	$17.9(4)$	$31.1(4)$	1.698	81.7	16	Excellent
2017	$16.8(3)$	$18.5(4)$	$16.7(4)$	$8.2(4)$	0.635	47.0	15	Excellent
2016	$22.3(3)$	$17.6(3)$	$21.0(4)$	$4.8(3)$	0.523	40.7	13	Good
2014	$43.8(4)$	$16.8(2)$	$32.6(4)$	$14.2(4)$	0.457	36.7	14	Excellent
2012	$35.1(4)$	$16.7(2)$	$25.1(4)$	$11.6(4)$	0.717	51.2	14	Excellent
2010	$60.2(4)$	$16.8(2)$	$34.5(4)$	$28.9(4)$	0.525	40.8	14	Excellent
2008	$25.1(4)$	$16.3(1)$	$19.3(4)$	$6.3(3)$	0.544	42.0	12	Good
2006	$23.7(4)$	$16.9(2)$	$14.5(4)$	$8.9(4)$	0.447	36.1	14	Excellent
2003	$33.9(4)$	$16.5(2)$	$30.9(4)$	$3.1(2)$	0.680	49.8	12	Good
2001	$29.9(4)$	$15.9(1)$	$16.8(4)$	$13.1(4)$			13	Good
1999	$26.4(4)$	$16.5(2)$	$18.5(4)$	$8.1(4)$			14	Excellent

Table 21. Length frequency and CPUE (fish/nn) for channel catfish collected in 10 net-nights of sampling at Rough River Lake during November 2018.

Species	Inch class														Total	CPUE	SE
	13	14	15	16	17	18	19	20	21	22	23	24	25	26			
Channel catfish	1	1	2	5	7	3	9	11	10	8	11	1	3	2	74	7.4	2.3

Table 22. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Rough River Lake during November 2018. Standard errors are in parentheses.

	Length group											
	$11.0-15.9 \mathrm{in}$								$16.0-23.9 \mathrm{in}$		$\geq 24.0 \mathrm{in}$	
Species	No.	Wr	No.	Wr	No.	Wr						
Channel catfish	4	$78(4)$	64	$85(1)$	6	$94(5)$						
nwd2gn.d18												

Table 23. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 07 June 2018.

Table 24. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 18 July 2018.

	Location									
	Site: 1	8:23 AM	Site: 2	10:23 AM	Site: 3	11:02 AM	Site: 5	8:50 AM	Site: 6	9:28 AM
Depth	Temp	DO								
Surface	85.2	6.90	87.0	6.79	88.3	8.08	86.2	7.09	86.8	6.43
2	85.5	6.88	87.0	6.79	88.3	8.11	86.4	7.05	86.7	6.44
4	85.8	6.87	87.0	6.77	87.7	8.10	86.5	7.03	86.6	6.38
6	85.8	6.85	87.0	6.76	87.1	7.22	86.5	6.99	86.5	6.36
8	85.8	6.83	86.7	6.51	86.2	4.91	86.4	6.36	86.4	6.38
10	85.7	6.73	86.4	6.21	85.1	2.73	86.0	5.04	86.1	4.79
12	85.6	6.60	86.3	6.15	83.5	1.36	85.2	3.41	85.4	1.67
14	83.3	1.80	86.2	5.68	81.3	0.94	84.0	1.19	84.5	0.20
16	80.9	0.29	81.7	0.34	77.8	0.44	81.1	0.23	81.6	0.16
18	78.9	0.18	79.6	0.23	75.3	0.42	79.0	0.18	79.2	0.14
20	76.8	0.16	77.0	0.21	72.9	0.21	77.5	0.18	76.5	0.13
22	75.3	0.15	75.1	0.17	71.8	0.17	76.7	0.17	74.9	0.12
24										
25	74.0	0.14	73.0	0.2			73.9	0.14	73.3	0.12
26						deep				
27			72.1	0.1						
28									28 f	deep
29			70.3	0.1						
30										
35				deep						
40										
45										
50		eep						eep		
55										
Secchi		51"		46"		37"				8"

Table 25. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 23 August 2018.

	Location									
	Site: 1	11:52 AM	Site: 2	12:35 PM	Site: 3	1:03 PM	Site: 5	11:34 AM	Site: 6	10:17 AM
Depth	Temp	DO								
Surface	82.7	6.34	84.2	6.54	83.5	9.41	83.2	7.30	82.4	6.81
2	82.5	6.27	84.2	6.52	82.6	8.96	83.1	7.37	82.4	6.74
4	82.0	6.12	83.4	6.75	81.6	8.42	82.7	7.33	82.1	6.50
6	81.6	5.85	82.5	6.31	81.2	7.59	82.1	6.91	81.8	5.50
8	81.5	5.66	82.2	5.84	81.0	7.20	82.0	6.45	81.6	5.67
10	81.5	5.54	82.0	5.45	80.8	7.16	81.9	6.39	81.6	5.75
12	81.4	5.53	81.9	5.20	80.3	6.03	81.7	6.02	81.6	5.78
14	81.4	5.60	81.9	5.29	76.8	0.37	81.4	4.90	81.6	5.68
16	81.2	5.68	81.9	5.22	76.2	0.31	81.3	3.97	81.4	5.06
18	80.9	4.27	81.9	5.15	76.1	0.27	81.0	2.67	80.8	3.42
20	79.8	0.70	79.9	0.58	76.0	0.25	79.6	0.35	79.5	0.44
22										
24					75.7	0.22				
25	77.2	0.26	77.6	0.3			76.3	0.23	76.7	0.22
26						ep				
27										
28							29	deep	29	deep
29										
30										
35				deep						
40										
45										
50		deep								
55										
Secchi		66"		48"		"		51"		51"

Table 26. Dissolved oxygen (ppm) and temperature profile conducted at three sites on Rough River Lake on 5 October 2018.

Table 27. Fishery statistics derived from a creel survey at Rough River Lake (5,200 acres) from 01 April through October 302018.

Fishing trips	
No. of fishing trips (per acre)	29,586 (5.80)
Fishing pressure	
Total man-hours (S.E.)	117,059 (2,423.66)
Man-hours/acre	22.95
Catch/harvest	
No. of fish caught (S.E.)	371,981 (23,738.02)
No. of fish harvested (S.E.)	133,895 (10,857.79)
Lb of fish harvested	97,699
Harvest rates	
Fish/hour	1.15
Fish/acre	26.25
Lb/acre	19.16
Catch rates	
Fish/hour	3.31
Fish/acre	72.94
Miscellaneous characteristics (\%)	
Male	90.1\%
Female	10.0\%
Resident	95.0\%
Non-resident	5.0\%
Method (\%)	
Still fishing	26.8\%
Casting	67.3\%
Trolling	4.0\%
Crappie Spider-Rig 3	0.5\%
Crappie-Casting	0.1\%
Crappie-Still < 3	0.3\%
Jugging Trotline $^{\text {a }}$	1.1\%
Mode (\%)	
Boat	91.9\%
Bank	3.9\%
Dock	4.1\%
Other	0.1\%

	Black bass group	$\begin{aligned} & \text { Largemouth } \\ & \text { bass } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Spotted } \\ \text { Bass } \\ \hline \end{gathered}$	Crappie group	White crappie	$\begin{gathered} \text { Black } \\ \text { crappie } \end{gathered}$	Panfish group	Bluegill	Longear sunfish	Catfish group	Channel catfish	Flathead catfish	Morone group	Hybrid Striped Bass	Anything group	Carp	Drum	Buffalo
No. caught	134,796	106,341	28,454	161,778	154,874	6,904	44,470	43,839	631	7,909	6,570	1,339	21,828	21,828		324	845	32
(per acre)	26.43	20.85	5.58	31.72	30.37	1.35	8.72	8.60	0.12	1.55	1.29	0.26	4.28	4.28		0.06	0.17	0.01
No. harvested	9,858	8,890	968	91,616	85,168	6,448	18,266	17,782	484	6,271	5,087	1,183.60	7,770	7,770			113	
(per acre)	1.93	1.74	0.19	17.96	16.70	1.26	3.58	3.49	0.09	1.23	1.00	0.23	1.52	1.52			0.02	
$\%$ of total no. harvested	7.36	6.64	0.72	68.42	63.61	4.82	13.64	13.28	0.36	4.68	3.80	0.88	5.8	5.80			0.08	
Lb harvested	16,799	15,989	811	44,005	40,632	3,373	2,174	2,125	49	15,180	9,810	5,370	19,332	19,332				
(per acre)	3.29	3.14	0.16	8.63	7.97	0.66	0.43	0.42	0.01	2.98	1.92	1.05	3.79	3.79			0.04	
\% of total lb harvested	17.20	16.37	0.83	45.04	41.59	3.45	2.23	2.18	0.05	15.54	10.04	5.5	19.79	19.79			0.21	
Mean length (in)		15.10	12.47		10.11	9.85		5.80	5.57		18.05	21.23		16.71			16.75	
Mean w eight (lb)		1.78	0.83		0.47	0.50		0.12	0.10		1.91	3.86		2.40			2.02	
No. of fishing trips for that species	14,853			7,182			1,196			1,152			1,807		3,396			
\% of all trips	50.20			24.27			4.04			3.89			6.11		11.48			
Hours fished for that species	58,765			28,414			4,733			4,558			7,151		13,438			
(per acre)	11.52			5.57			0.93			0.89			1.4		2.63			
No. harvested fishing for that species	8,747			83,485			10,834			4,843			6,677					
Lb harvested fishing for that species	15,109			40,119			1,333			12,940			17,004					
No./hour harvested fishing for that species	0.13			2.99			2.93			1.03			0.91					
\% success fishing for that species	22.02			91.28			77.22			84.51			77.57		48.28			

	Anything group	Drum	$\begin{gathered} \text { Illegal } \\ \text { HSB } \end{gathered}$	illegal white crappie	Illegal bass
No. caught				782	
(per acre)				0.15	
No. harvested				782	
(per acre)				0.15	
\% of total no.					
harvested				0.01	
Lb harvested (per acre)					
\% of total lb					
harvested					
Mean length (in)				8	

Mean w eight (lb)
No. of fishing
trips for that
species
\% of all trips
Hours fished for
that species
(per acre)
No. harvested
fishing for that
species
Lb harvested
fishing for that
species
No./hour
harvested
fishing for that
species
\% success
fishing for that
species

Table 29. Length distribution for each species of fish harvested or released at Rough River Lake (5,200 a) during 01 April - 30 October 2018.

Species	Inch class																														
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	30	32	34	35	36
Largemouth bass																															
Harvested								230		620	758	1,286	2,665	2,205	666	322	23	69	23		23										
Released						6,647	2,470	59,117	422	11,868	1,667	3,112	6,847	3,092	823	964	60	281	40		41										
Spotted Bass																															
Harvested								41		515	288	82	42																		
Released				142	102	5,201	467	17,309	264	3,454	305	203	20		20																
White crappie																															
Harvested						782	12,761	52,965	13,565	4,201	782	89		23																	
Released							1,112	791	471	342	21	21	23																		
Black crappie																															
Harvested							972	4,822	505	149																					
Released									22																						
Hybrid striped bass																															
Harvested										558	24	194	1,773	1,748	631	996	97	1,044	437	73	146	24		25							
Released						73	24	2,033		6,809	49	220	2,743	955	171	539		367			24	24		27							
Channel catfish																															
Harvested										165		165	1,545	474	62	474	41	1,236	21	103	21	391	62	185	21	21	100				
Released						22	22	131		501		22	327	44		22		349	22				20								
Flathead catfish																															
Harvested										53		26	26	53	53	105		447		79			26	26			184		79		27
Released																26		78				26					26				
Bluegill																															
Harvested		2,585	1,366	12,780	925	84	21	21																							
Released	803	18,023	6,058	1,151	22																										
Longear sunfish																															
Harvested			242	242																											
Released		147																													
Drum																															
Harvested										38				19		38		18													
Released				18				36		71		54																			
Buffalo																															
Harvested																															
Released																		32													

Illegal white crappie

 HarvestedTable 30. Monthly black bass angling success at Rough River Lake (5,200 a) from 01 April - 30 Oct. 2018 creel survey period; data does not include bass < 8.0 in that were caught and released.

Month	Total no. of bass caught	Total no. of bass harvested	No. of black bass fishing trips	Hours fished by bass anglers	Bass caught by bass anglers	Bass caught/hr by bass anglers	Bass harvested by bass anglers	Bass harvested/hr by bass anglers
Apr	11,872	2,668	2,098	8,300	11,601	1.16	2,591	0.26
May	13,614	486	1,361	5,383	11,854	2.01	347	0.06
Jun	17,037	1,244	2,002	7,921	14,516	1.74	1,021	0.12
Jul	13,844	1,467	1,824	7,217	12,607	1.69	1,261	0.17
Aug	17,288	589	2,139	8,461	16,406	1.83	505	0.06
Sep	38,334	2,547	3,301	13,061	37,741	2.78	2,423	0.18
Oct	22,807	856	2,128	8,421	22,173	2.64	599	0.07
Total	134,796	9,858	14,853	58,765	126,898	13.85	8,747	0.92
Mean						1.98	1,250	0.13

Table 31. Black bass catch and harvest statistics derived from a creel survey at Rough River Lake (5,200 a) from 01 April - October 30, 2018.

	Largemouth bass						Spotted bass			
	Harvest			Catch and release			Harvest	Catch and release		
	< 15.0 in	≥ 15.0 in	Total	< 15.0 in	≥ 15.0 in	Total	Total	< 15.0 in	≥ 15.0 in	Total
Total no. of bass	2,894	5,996	8,890	85,303	12,147	97,450	968	27,203	39	27,242
\% of black bass harvested			90.00				10			
Total weight of fish (lb)			15,989				811			
\% of bass harvested by			95.00				5			
Mean length			15.10				12.47			
Mean weight			1.78				0.83			
Rate (f/hr)			0.07				0.01			

Table 32. Monthly hybrid striped bass angling success at Rough River Lake (5,200 a) from 01 April - 30 Oct. 2018 creel survey period.

Month	Total no. of hybrid striped bass caught	Total no. of hybrid striped bass harvested	No. of hybrid striped bass fishing trips	Hours fished by hybrid striped bass anglers	Hybrid striped bass caught by HSB anglers	Hybrid striped bass caught/hour by HSB anglers	Hybrid striped bass harvested by HSB anglers	Hybrid striped bass harvested/hour by HSB anglers
April	1,199	696	133	525	580	0.45	464	0.36
May	4,168	1,204	194	769	3,473	4.76	1,019	1.40
June	6,604	2,074	607	2,403	4,722	1.99	2,010	0.85
July	4,928	1,650	368	1,454	4,286	2.73	1,604	1.02
Aug	2,944	1,304	301	1,192	2,755	2.36	1,283	1.10
Sept	906	328	178	703	672	1.43	297	0.63
Oct	1,079	514						
Total	21,828	7,770	1,807	7,151	16,488	13.72	6,677	5.36
Mean						2.28	1,113	0.91

Table 33. Monthly crappie angling success at Rough River Lake (5,200 a) from 01 April - 30 Oct. 2018 creel survey period.

Month	Total no. of crappie caught	Total no. of crappie harvested	No. of crappie fishing trips	Hours fished by crappie anglers	Crappie caught by crappie anglers	Crappie caught/hour by crappie anglers	Crappie harvested by crappie anglers	Crappie harvested/hour by crappie anglers
April	8,662	7,695	1,381	5,463	7,618	1.66	6,767	1.48
May	34,174	18,569	1,211	4,792	26,672	5.58	15,165	3.17
June	34,552	19,238	900	3,560	31,171	7.82	17,484	4.38
July	14,440	8,022	476	1,885	13,454	5.96	7,518	3.33
Aug	16,931	8,371	693	2,741	15,921	5.26	7,929	2.62
Sept	21,753	12,205	1,067	4,220	19,909	5.24	11,517	3.03
Oct	31,265	17,516	1,454	5,754	30,272	5.17	17,105	2.92
Total	161,778	91,616	7,182	28,414	145,017	36.63	83,485	20.93
Mean						5.25	11,926	2.99

Table 34. Length frequency and CPUE (fish/hr) of largemouth bass collected during 2.5 hours of 30-minute diurnal electrofishing at Lake Malone in April 2018.

	Inch class																				Total	CPUE	SE
Species	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22			
Largemouth bass	1	2	3	4	4	11	19	27	37	48	52	51	41	27	20	14	19	11	12	4	407	162.8	17.8

Table 35. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Lake Malone 19992018.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	SE										
2018	5.6	1.7	37.6	7.2	60.4	7.2	59.2	7.8	10.8	2.6	162.8	17.8
2017	14.0	3.2	32.0	6.8	44.8	8.1	37.2	9.2	5.6	1.3	128.0	16.8
2015	18.8	2.7	81.6	7.7	60.8	5.3	42.8	7.2	8.4	1.2	204.0	17.2
2014	9.6	1.3	44.4	9.6	23.2	4.6	29.8	3.3	5.0	0.6	107.0	16.7
2012	46.4	18.4	123.6	18.1	48.8	10.9	48.8	10.3	2.8	1.0	267.6	44.5
2011	45.6	10.3	56.0	7.3	35.2	7.7	34.4	6.8	4.0	1.1	171.2	26.8
2010	37.2	8.8	49.6	5.0	49.6	5.4	62.0	7.1	3.6	1.6	198.4	16.3
2009	10.0	1.4	29.6	4.4	51.2	7.6	37.2	3.6	5.6	0.4	128.0	11.7
2008	18.8	6.5	78.8	6.6	77.2	5.0	43.6	8.1	6.4	1.5	218.4	12.4
2007	29.2	4.0	80.4	10.4	30.8	2.0	37.6	10.3	3.6	1.3	178.0	17.8
2006	31.6	3.7	81.6	14.3	22.4	2.1	28.0	5.9	5.2	1.6	163.6	19.8
2005	32.4	4.8	69.2	14.3	32.0	8.7	53.6	5.7	8.4	1.2	187.2	30.1
2004	28.4	3.9	53.6	5.7	26.4	4.2	53.2	3.9	6.0	1.6	161.6	12.8
2003	57.0	3.3	76.5	6.8	35.0	5.0	57.5	4.9	9.5	2.8	226.0	12.1
$2002^{\text {a }}$	8.6	3.3	43.4	5.0	43.4	8.5	41.7	7.6	8.0	3.0	137.1	17.5
$2001^{\text {a }}$	18.0	8.1	66.0	12.0	50.0	8.0	31.3	6.3	0.7	0.7	165.3	15.6
$2000^{\text {a }}$	13.3	3.4	46.0	4.2	51.3	7.8	24.0	4.0	2.0	0.9	134.7	14.5
$1999{ }^{\text {a }}$	n/d		48.7	9.8	61.3	7.0	23.3	4.9	2.7	1.3	133.3	12.7

[^9]Table 36. PSD and $R^{2} D_{15}$ values obtained for largemouth bass taken in spring electrofishing samples at NWFD state-owned lakes during 2018; 95\% confidence intervals are in parentheses.

Lake	Species	No. ≥ 8.0 in	PSD	RSD $_{15}$
Malone	Largemouth	393	$76(\pm 4)$	$38(\pm 5)$
Mauzy	Largemouth	199	$19(\pm 5)$	$10(\pm 4)$
Carpenter	Largemouth	131	$90(\pm 5)$	$28(\pm 8)$
New Kingfisher	Largemouth	55	$78(\pm 11)$	$71(\pm 13)$
Old Kingfisher	Largemouth	17	$82(\pm 19)$	$65(\pm 23)$
Washburn	Largemouth	137	$26(\pm 8)$	$5(\pm 4)$

nwd3psd.d18
nwd4psd.d18
nwd5psd.d18
nwd6psd.d18
nwd7psd.d18
nwd8psd.d18

Table 37. Population assessment for largemouth bass based on spring electrofishing at Lake Malone from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	CPUE age-1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2018		5.6 (1)	60.4 (4)	59.2 (4)	10.8 (4)			≥ 14	G - E
2017		12.8 (1)	44.8 (3)	37.2 (4)	5.6 (4)			≥ 13	Good
2015	10.8 (3)*		60.8 (4)	42.8 (4)	8.4 (4)			≥ 16	G - E
2014		7.8 (1)	23.2 (2)	29.8 (3)	5.0 (4)			≥ 11	F-G
2012		31.2 (2)	48.8 (3)	48.8 (4)	2.8 (3)			≥ 13	Good
2011		41.2 (2)	35.2 (3)	34.4 (4)	4.0 (4)			≥ 14	G - E
2010	10.4 (2)	15.1 (1)	49.6 (3)	62.0 (4)	3.6 (3)	0.397	32.7	13	Good
2009	10.3 (2)	8.8 (1)	51.2 (4)	37.2 (4)	5.6 (4)	0.293	25.4	15	Good
2008	10.3 (2)	16.4 (2)	77.2 (4)	43.6 (4)	6.4 (4)	0.357	30.0	16	Good
2007	10.3 (2)	29.2 (2)	30.8 (2)	37.6 (4)	3.6 (3)	0.330	28.1	13	Good
2006	11.5 (4)	20.2(2)	22.4 (2)	28.0 (3)	5.2 (4)	0.526	40.9	15	Good
2005	11.5 (4)	19.0 (2)	32.0 (2)	53.6 (4)	8.4 (4)	0.387	32.0	16	Good
2004	11.5 (4)	19.0 (2)	26.4 (2)	53.2 (4)	6.0 (4)	0.365	31.1	16	Good
2003	11.5 (4)	35.0 (2)	35.0 (3)	48.0 (4)	8.5 (4)	0.416	34.1	17	Excellent
2002	11.5 (4)	6.0 (1)	43.4 (3)	41.7 (4)	8.0 (4)			16	Good
2001	12.9 (4)	14.0 (1)	50.0 (4)	31.3 (4)	0.7 (1)			14	Good

* Back calculated from age table

Table 38. Length frequency and CPUE (fish/hr) of largemouth bass collected during 1.0 hour of diurnal electrofishing at Mauzy Lake in April 2018.

Species	Inch class																						Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24			
Largemouth bass	8	11	7	1	8	30	40	57	35	8	7	3	4	3	1	1	2		6	1		1	234	234.0	11.5

Table 39. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Mauzy Lake during spring 1999-2018.

	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2018	35.0	2.5	162.0	10.4	18.0	1.2	19.0	3.0	8.0	3.3	234.0	11.5
2017	110.7	17.3	212.0	14.0	40.0	4.6	12.0	2.3	5.3	1.3	374.7	34.7
2015	40.0	12.1	133.0	21.8	20.0	7.8	15.0	1.9	5.0	3.8	208.0	37.1
2014	65.0	7.2	110.0	3.5	21.0	3.4	35.0	5.7	13.0	6.8	231.0	8.4
2013	80.0	24.3	98.7	19.6	13.3	4.8	34.7	4.8	4.0	2.3	226.7	25.3
2012	96.0	16.5	42.0	2.6	20.0	4.9	40.0	9.1	15.0	3.4	198.0	12.8
2011	48.0	11.6	21.3	3.5	58.7	2.7	40.0	4.6	10.7	3.5	168.0	8.0
2010	26.7	3.5	78.7	13.1	21.3	2.7	44.0	10.1	17.3	8.1	170.7	26.7
$2009{ }^{\text {a }}$												
2008	104.0	31.4	147.0	16.3	21.0	5.0	83.0	9.3	7.0	1.9	355.0	48.2
2007	46.0	5.3	49.0	12.3	40.0	2.8	64.0	17.5	0.0		199.0	31.0
2006	68.0	14.1	40.0	4.0	24.0	4.0	60.0	4.6	0.0		192.0	21.2
2005	52.0	8.6	25.0	6.6	147.0	11.5	21.0	7.9	4.0	1.6	245.0	22.3
2004	20.0	9.2	132.0	2.3	5.3	1.3	6.7	1.3	0.0		164.0	10.6
$2003{ }^{\text {b }}$	98.6	18.7	163.2	31.9	73.6	6.1	20.8	6.4	2.8	2.8	356.3	58.7
$2002^{\text {c }}$	36.0	14.1	169.3	40.6	9.3	1.3	6.7	2.7	1.3	1.3	221.3	45.4
$2001{ }^{\text {c }}$	12.0	2.3	246.7	53.5	26.7	10.7	4.0	2.3	0.0		289.3	64.2
$2000^{\text {c }}$	37.3	5.8	224.0	20.5	2.7	1.3	5.3	3.5	0.0		269.3	25.3
$1999{ }^{\text {c }}$	n/d		165.3	8.7	17.3	5.4	4.0	2.3	1.3	1.3	186.7	14.1

${ }^{\text {a }}$ Lake drawn down for repairs in 2009
${ }^{\text {b }}$ Lake renovated in 2003
${ }^{\text {c }}$ Nocturnal sample
nwd4psd.d18

Table 40. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.75 hour of diurnal electrofishing at Mauzy Lake in October 2018.

Species	Inch class															Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17			
Largemouth bass	1	24	5	9	12	9	18	20	4	1	1				1	105	140.0	18.5
nwd4Imb.d18																		

Table 41. Mean back calculated lengths (in) at each annulus for largemouth bass collected at Mauzy Lake in October 2018.

Year		Age					
class	No.	1	2	3	4	5	
2017	27	4.9					
2016	15	5.3	8.4				
2015	13	5.5	8.3	9.8			
2013	1	5.6	8.2	9.9	10.9	11.6	
Mean		5.2	8.4	9.8	10.9	11.6	
No.	56	56	29	14	1	1	
Smallest		3.9	7.5	9.2	10.9	11.6	
Largest		6.5	10.5	10.3	10.9	11.6	
SE		0.1	0.1	0.1			
95% CI (\pm)		0.3	0.3	0.4			

nwd4Imba.d18

Table 42. Population assessment for largemouth bass based on spring electrofishing at Mauzy Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 15.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Instantaneous } \\ & \text { mortality } \\ & (\mathrm{z}) \\ & \hline \end{aligned}$	Annual mortality $(\mathrm{A}) \%$	Total score	Assessment \qquad
2018	9.8 (1)*	27.0 (2)	18.0 (1)	19.0 (3)	8.0 (4)			11	Fair
2017		78.7 (4)	40.0 (3)	12.0 (2)	5.3 (4)			≥ 14	G-E
2015	10.2 (2)*		20.0 (2)	15.0 (2)	5.0 (4)			≥ 13	Good
2014		40.0 (2)	21.0 (2)	35.0 (4)	13.0 (4)			≥ 13	Good
2013		63.1 (3)	13.3 (1)	34.7 (4)	4.0 (4)			≥ 13	Good
2012	13.6 (4) ${ }^{\text {a }}$	74.0 (3)	20.0 (2)	40.0 (4)	15.0 (4)	0.965	61.9	17	Excellent
2011		61.3 (3)	56.7 (4)	40.0 (4)	10.7 (4)			≥ 16	G - E
2010			21.3 (2)	44.0 (4)	17.3 (4)			≥ 11	F-G
$2009{ }^{\text {b }}$									
2008	12.2 (4)	99.0 (4)	21.0 (2)	83.0 (4)	7.0 (4)	0.466	37.3	18	Excellent
2007	12.2 (4)	21.0 (2)	40.0 (3)	64.0 (4)	0.0 (0)	0.374	31.2	13	Good
2006	10.3 (2)	24.0 (2)	24.0 (2)	60.0 (4)	0.0 (0)	0.755	53.0	10	Fair
2005	10.3 (2)	34.0 (2)	147.0 (4)	21.0 (3)	4.0 (4)			15	Good
2004	10.3 (2)	2.7 (1)	5.3 (1)	6.7 (2)	0.0 (0)	0.884	58.7	6	Poor
$2003{ }^{\text {c }}$	10.3 (2)	86.8 (4)	73.6 (4)	20.8 (3)	2.8 (3)			16	Good
2002	10.3 (2)	25.3 (2)	9.3 (1)	6.7 (2)	1.3 (2)			9	Fair
2001	10.3 (2)	5.3 (1)	26.7 (2)	4.0 (2)	0.0 (0)			7	Poor

[^10]Table 43. Length frequency and CPUE (fish/hr) for bluegill and redear sunfish collected during 0.875 hour of electrofishing at Mauzy Lake in May 2018.

Species	Inch class								Total	CPUE	SE
	1	2	3	4	5	6	7	8			
Bluegill	3		10	9	27	37	28		114	130.3	27.8
Redear sunfish			2	17	17	74	152	69	331	378.3	52.5

nwd4bg.d18

Table 44. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (2000-2018) and redear sunfish (2007-2018) collected at Mauzy Lake during spring samples.

Bluegill	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2018	3.4	2.4	52.6	13.3	74.3	19.5	0.0		0.0		130.3	27.8
2017	13.3	7.9	197.3	24.4	37.3	9.61	0.0		0.0		248.0	30.8
2015	17.3	12.1	165.3	27.1	44.0	7.1	0.0		0.0		226.7	31.2
2014	10.3	2.3	253.7	55.6	104.0	21.0	0.0		0.0		368.0	69.1
2013	91.2	21.1	417.6	54.0	73.6	11.1	0.0		0.0		582.4	60.9
2012	23.0	7.8	553.0	108.5	55.0	14.3	0.0		0.0		631.0	126.7
2011	182.4	72.9	726.4	144.1	216.0	51.4	121.6	43.3	0.0		1246.4	195.0
2010	238.4	76.5	280.0	41.0	97.6	34.0	0.0		0.0		616.0	74.4
$2009^{\text {a }}$												
$2008^{\text {a }}$												
2007	101.3	11.1	621.3	39.6	38.7	8.9	0.0		0.0		761.3	44.5
2006	96.0	27.9	614.0	137.7	10.0	7.6	0.0		0.0		720.0	163.4
2005	289.7	45.5	596.2	101.3	14.1	5.8	0.0		0.0		900.0	86.6
2004	101.1	18.0	84.6	17.5	64.8	12.0	1.1	1.1	0.0		251.7	36.1
$2003{ }^{\text {b }}$												
2002	9.3	3.5	94.7	19.6	125.3	29.2	1.3	1.3	0.0		230.7	48.0
2001	5.3	3.5	65.3	16.2	137.3	27.9	1.3	1.3	0.0		209.3	40.7
2000	1.3	1.3	52.0	4.0	73.3	5.3	4.0	2.3	0.0		130.7	10.9

Redear	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2018	0.0		41.1	10.8	258.3	39.2	78.9	20.3	0.0		378.3	52.5
2017	0.0		109.3	22.9	304.0	50.6	37.3	16.2	0.0		450.7	54.4
2015	0.0		140.0	17.4	254.7	53.9	18.7	7.4	0.0		413.3	59.5
2014	1.1	1.1	112.0	19.7	208.0	26.1	27.4	6.0	0.0		348.6	33.1
2013	0.0		72.0	11.0	161.6	26.0	65.6	15.5	0.0		299.2	40.8
2012	0.0		107.0	13.7	39.0	7.6	33.0	8.6	0.0		179.0	21.9
2011	3.2	2.0	8.0	6.2	32.0	32.0	35.2	26.4	0.0		78.4	65.3
2010	0.0		16.0	10.1	240.0	48.3		7.3	0.0		270.4	61.0
$2009{ }^{\text {a }}$												
$2008^{\text {a }}$												
2007	2.7	1.7	41.3	13.1	14.7	3.8	6.7	5.2	0.0		65.3	12.6
${ }^{\text {a }}$ Lake draw n dow n for repairs in 2008-2009												
${ }^{\text {b }}$ Lake renovated in 2003 nw d4bg.d18												

Table 45. PSD and RSD ${ }^{\text {a }}$ values obtained for bluegill and redear sunfish collected in spring electrofishing samples at NWFD stateowned lakes during 2018; 95\% confidence intervals are in parentheses.

Lake	Species	No.	PSD	RSD $^{\text {a }}$
Mauzy	Bluegill	111	$59(\pm 10)$	0
	Redear sunfish	329	$67(\pm 5)$	0
Carpenter	Bluegill	433	$9(\pm 3)$	0
	Redear sunfish	39	$36(\pm 15)$	$8(\pm 8)$
New Kingfisher	Bluegill	360	$8(\pm 3)$	0
	Redear sunfish	11	$82(\pm 24)$	$18(\pm 23)$
Old Kingfisher	Bluegill	336	$17(\pm 4)$	0
	Redear sunfish	1	-	-
Washburn	Bluegill	146	$34(\pm 8$	$8(\pm 5)$
	Redear sunfish	152	$68(\pm 8)$	$4(\pm 3)$
aluegill $=$ RSD 2 redear $=$ RSD				

$\overline{\mathrm{a}}$ Bluegill $=\mathrm{RSD}_{8}$, redear $=\mathrm{RSD}_{9}$
nwd4bg.d18
nwd5bg.d18
nwd6bg.d17
nwd7bg.d18
nwd8bg.d18

Table 46. Mean back calculated lengths (in) at each annulus for bluegill collected at Mauzy Lake in October 2018.

Year class	No.	1	2	3	4	5	6
	5	2.1					
2017	4	1.8	3.1				
2015	3	1.7	3.3	4.7			
2014	2	1.6	2.8	4.2	5.5		
2013	2	1.7	2.8	4.0	5.3	5.9	
2012	1	1.5	3.1	4.0	5.2	6.2	6.6
Mean		1.8	3.0	4.3	5.4	6.0	6.6
No.	17	17	12	8	5	3	2
Smallest		1.2	2.2	3.9	5.2	5.7	6.6
Largest		3.1	4.3	5.4	5.6	6.2	6.6
SE		0.1	0.2	0.2	0.1	0.1	-
95\% Cl (\pm)		0.3	0.3	0.4	0.2	0.3	-

nwd4bga.d18

Table 47. Population assessment for bluegill based on spring electrofishing at Mauzy Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-2 at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \\ \hline \end{gathered}$	$\begin{gathered} \text { CPUE } \\ \geq 6.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Instantaneous } \\ & \text { mortality } \\ & (z) \\ & \hline \end{aligned}$	Annual mortality $\text { (A) } \%$	Total score	Assessment \qquad
2018	3.1 (1)*	≥ 5 (1)	74.3 (3)	0.0 (1)			7	Fair
2017			37.3 (2)	0.0 (1)			≥ 5	P-G
2015	3.4 (1)	≥ 5 (1)	44.0 (2)	0.0 (1)			5	Poor
2014			104.0 (4)	0.0 (1)			≥ 7	F-G
2013			73.6 (3)	0.0 (1)			≥ 5	P-G
2012	4.0 (2)	4-4+ (2)	55.0 (3)	0.0 (1)	0.884	58.7	8	Fair
2011			337.6 (4)	121.6 (4)			≥ 10	G-E
2010			97.6 (4)	0.0 (1)			≥ 7	F-G
$2009{ }^{\text {a }}$								
$2008{ }^{\text {a }}$								
2007	3.3 (1)	4-4+ (2)	38.7 (2)	0.0 (1)	0.642	35.8	6	Poor
2006	3.7 (2)	4-4+ (2)	10.0 (1)	0.0 (1)	0.755	53.0	6	Poor
2005	4.3 (2)	2-2+ (4)	14.1 (1)	0.0 (1)			8	Fair
2004	4.3 (2)	2-2+(4)	65.9 (3)	1.1 (2)			11	Good
$2003{ }^{\text {b }}$								
2002	4.3 (2)	2-2+(4)	126.7 (4)	1.3 (2)			12	Good
2001	4.3 (2)	2-2+ (4)	138.7 (4)	1.3 (2)			12	Good

[^11]Table 48. Mean back calculated lengths (in) at each annulus for redear sunfish collected at Mauzy Lake in October 2018.

Year		Age							
class	No.	1	2	3	4	5	6	7	8
2017	1	2.6							
2016	12	2.2	4.2						
2015	10	2.6	4.7	6.2					
2014	2	2.6	4.7	6.0	7.2				
2013	3	2.4	4.1	5.6	6.3	7.2			
2012	4	2.6	4.3	5.2	6.0	6.5	7.1		
2010	1	2.6	3.9	4.7	5.5	6.0	6.8	7.3	7.8
Mean		2.5	4.4	5.8	6.3	6.7	7.0	7.3	7.8
No.	33	33	32	20	10	8	5	1	1
Smallest		1.9	3.3	4.7	5.5	6.0	6.6	7.3	7.8
Largest		3.6	6.0	6.9	7.5	7.7	7.5	7.3	7.8
SE	0.1	0.1	0.1	0.2	0.2	0.2			
95\% Cl (\pm)		0.2	0.2	0.3	0.4	0.4	0.3		
nwd4bga.d18									

Table 49. Population assessment for redear sunfish based on spring electrofishing at Mauzy Lake from 2007-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { Years to } \\ & 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018	6.2 (1)*	≥ 6 (1)	78.9 (4)	0.0 (1)			7	Fair
2017			37.3 (4)	0.0 (1)			≥ 7	F-G
2015	5.9 (2)	≥ 6 (1)	18.7 (4)	0.0 (1)			8	Fair
2014			27.4 (4)	0.0 (1)			≥ 7	F-G
2013			65.6 (4)	0.0 (1)			≥ 7	F-G
2012	7.6 (4)	4-4+ (3)	33.0 (4)	0.0 (1)			12	Good
2011			35.2 (4)	0.0 (1)			≥ 7	F-G
2010			14.4 (3)	0.0 (1)			≥ 6	P-G
$2009{ }^{\text {a }}$								
$2008{ }^{\text {a }}$								
2007	8.2 (4)	3-3+ (4)	6.7 (2)	0.0 (1)	0.790	54.6	11	Good

Table 50. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.75 hours of 15 -minute diurnal electrofishing at Carpenter Lake in April 2018.

Species	Inch class																			Total	CPUE	SE
	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Largemouth bass	1	14	8	7		3	4	1	5	7	31	43	14	15	2	3	2		1	161	214.7	10.4

Table 51. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Carpenter Lake 19992018.

	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2018	40.0	9.2	17.3	7.4	108.0	12.0	49.3	13.1	1.3	1.3	214.7	10.4
2017	32.0	2.3	44.0	12.9	100.0	20.8	24.0	4.6	5.3	2.7	200.0	38.6
2016	97.3	31.5	57.3	5.8	65.3	11.4	33.3	5.3	12.0	6.1	254.3	41.9
2015	21.3	5.8	86.7	3.5	12.0	2.3	17.3	2.7	0.0		137.3	4.8
2014	16.0	6.7	131.2	17.6	48.0	13.2	30.4	5.9	12.8	5.4	225.6	37.0
2013	80.0	26.2	138.7	9.6	20.0	4.0	22.7	1.3	5.3	1.3	261.3	38.5
2012	40.0	16.7	74.7	15.0	46.7	7.4	22.7	12.7	1.3	1.3	184.0	46.7
2011	182.7	15.4	166.7	9.6	73.3	13.1	9.3	3.5	4.0	4.0	432.0	30.2
2010	73.3	19.4	198.7	39.6	10.7	5.8	12.0	4.6	2.7		294.7	34.7
2009	102.7	18.7	166.7	26.3	18.7	4.8	8.0	2.3	0.0		296.0	27.2
2008	136.0	17.7	229.0	28.8	9.0	2.5	11.0	4.1	1.0	1.0	385.0	50.3
2007	45.3	7.4	128.0	24.3	12.0	2.3	10.7	3.5	1.3		196.0	31.8
2006	97.3	12.0	134.7	8.7	24.0	1.3	9.3	2.3	0.0		265.3	55.4
2005	157.3	3.5	165.3	48.6	30.7	3.5	2.7	1.3	0.0		356.0	54.6
2004	80.0	16.7	128.0	28.0	22.7	3.5	21.3	8.7	2.7		252.0	47.7
2003	181.3	49.3	97.3	11.4	18.7	4.8	36.0	12.2	1.3		333.3	63.4
$2002^{\text {a }}$	12.0	4.6	52.0	4.6	12.0	0.0	21.3	3.5	0.0		97.3	4.8
$2001^{\text {a }}$	14.7	8.7	29.3	5.3	90.7	9.3	66.7	2.7	1.3		201.3	17.6
$2000^{\text {a }}$	2.7	1.3	45.3	7.1	48.0	2.3	0.0				96.0	8.3
$1999{ }^{\text {a }}$	1.3	1.3	142.7	18.5	29.3	13.5	1.3	1.3			174.7	31.0

Table 52. Mean back calculated lengths (in) at each annulus for largemouth bass collected at Carpenter Lake in October 2018.

Year class		No.	Age		
	1	2	3		
2017	16	5.6			
2016	17	5.4	9.4		
2015	3	6.9	9.6	11.3	
Mean		5.6	9.4	11.3	
No.	36	36	20	3	
Smallest		3.8	7.9	10.9	
Largest		8.1	11.2	11.9	
SE		0.2	0.2	0.3	
95\% CI (\pm)		0.4	0.4	0.6	
nwd5Imba.d18					

Table 53. Length frequency of fish collected during of diurnal electrofishing at Carpenter Lake in October 2018. Fish were collected for age and growth only, no CPUE.

Species	Inch class																			Total
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	22	
Bluegill	1		11	14	10	10														46
Redear sunfish					1				1		1									3
Largemouth bass				6	11	2		7	8	7	3	9	5	10	5	4	1	2	1	81

Table 54. Population assessment for largemouth bass based on spring electrofishing at Carpenter Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ 12.0-14.9 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \\ \hline \end{gathered}$	Instantaneous mortality (z)	Annual mortality $(\mathrm{A}) \%$	Total score	Assessment rating
2018	11.3 (3)*	40.0 (3)	108.0 (4)	49.3 (4)	1.3 (2)			16	Good
2017		34.7 (3)	100.0 (4)	24.0 (3)	5.3 (4)			≥ 15	G - E
2016		97.3 (4)	65.3 (4)	33.3 (4)	12.0 (4)			≥ 17	Excellent
2015	10.6 (2)*		12.0 (1)	17.3 (3)	0.0 (1)			≥ 8	P - F
2014		16.0 (2)	48.0 (4)	30.4 (4)	12.8 (4)			≥ 15	G - E
2013		69.3 (4)	20.0 (2)	22.7 (3)	5.3 (4)			≥ 14	G - E
2012		12.0 (2)	46.7 (4)	22.7 (3)	1.3 (2)			≥ 12	F-G
2011		182.7 (4)	73.3 (4)	9.3 (2)	4.0 (4)			≥ 15	G-E
2010	10.1 (1)	72.0 (4)	10.7 (1)	12.0 (2)	2.7 (3)	0.438	35.5	11	Fair
2009	10.3 (2)	97.9 (4)	18.7 (2)	8.0 (2)	0.0 (1)			11	Fair
2008	10.3 (2)	120.3 (4)	9.0 (1)	11.0 (2)	1.0 (2)	0.561	42.9	11	Fair
2007	10.3 (2)	39.9 (3)	12.0 (1)	10.7 (2)	1.3 (2)	0.560	42.9	10	Fair
2006	11.6 (4)	78.7 (4)	24.0 (2)	9.3 (2)	0.0 (1)	1.160	68.7	13	Good
2005	11.6 (4)	132.0 (4)	30.7 (3)	2.7 (1)	0.0 (1)			13	Good
2004	11.6 (4)	56.0 (4)	22.7 (2)	21.3 (3)	2.7 (3)	1.155	68.5	16	Good
2003	11.6 (4)	162.7 (4)	54.7 (4)	36.0 (4)	1.3 (2)	0.943	61.1	18	Excellent
2002	11.6 (4)	12.0 (2)	12.0 (1)	21.3 (3)	0.0 (1)			11	Fair
2001	11.6 (4)	8.0 (2)	90.7 (4)	66.7 (4)	1.3 (2)			16	Good

* Back calculated from age table

Table 55. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected during 0.75 hour of electrofishing at Carpenter Lake in May 2018.

Species	Inch class									Total	CPUE	SE
	2	3	4	5	6	7	8	9	10			
Bluegill	13	134	194	68	33	4				446	594.7	93.9
Redear sunfish		1		15	10	2	9	2	1	40	53.3	6.4

nwd5bg.d18

Table 56. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (1999-2018) and redear sunfish (2010-2018) collected at Carpenter Lake during spring samples.

Bluegill	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2018	17.3	6.0	528.0	85.3	49.3	8.1	0.0		0.0		594.7	93.9
2017	89.3	27.9	348.0	38.8	170.7	22.0	0.0		0.0		608.0	84.3
2016	8.0	3.6	133.3	30.5	156.0	25.0	0.0		0.0		297.3	52.5
2015	2.7	1.7	125.3	17.9	220.0	52.9	0.0		0.0		348.0	65.5
2014	5.3	4.0	352.0	34.6	332.0	34.1	1.3		0.0		690.7	49.7
2013	20.0	9.2	138.7	27.1	312.0	42.5	0.0		0.0		470.7	70.8
2012	1.6	1.6	144.0	31.9	147.2	22.3	0.0		0.0		292.8	49.7
2011	16.0	10.4	400.0	157.5	180.8	50.5	0.0		0.0		596.8	214.4
2010	10.7	6.4	100.0	18.6	101.3	19.0	0.0		0.0		212.0	30.8
2009	17.3	9.6	124.0	24.4	140.0	17.9	0.0		0.0		281.3	42.9
2008	0.0		88.0	18.8	150.0	50.7	0.0		0.0		238.0	68.5
2007	2.7	2.7	61.3	17.7	168.0	38.5	1.3	1.3	0.0		233.3	9.1
2006	1.3	1.3	57.3	10.0	102.7	12.1	0.0		0.0		161.3	21.3
2005	12.1	9.8	190.1	17.1	98.9	6.8	18.7	9.0	0.0		319.8	23.1
2004	12.3	4.6	26.2	7.1	46.2	11.4	1.5	1.5	0.0		86.2	20.4
2003	7.7	2.8	102.6	23.0	47.4	13.2	3.9	1.7	0.0		161.5	34.1
2002	2.3		8.1		17.2		1.2		0.0		28.7	0.0
2001			198.7	74.7	152.0	22.7	41.3	12.7	0.0		392.0	108.9
2000			4.0	2.3	10.7	4.8	12.0	6.1	0.0		26.7	9.6
1999			10.7	2.6	82.7	10.9	12.0	8.0	0.0		105.3	18.0

nw d5bg.d18

Redear	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	Std. err.										
2018	0.0		21.3	3.4	16.0	4.1	16.0	2.9	1.3	1.3	53.3	6.4
2017	0.0		29.3	19.0	17.3	5.2	22.7	10.0	1.3	1.3	69.3	19.8
2016	0.0		1.3	1.3	8.0	2.9	12.0	6.4	2.7	1.7	21.3	7.9
2015	0.0		2.7	2.7	10.7	3.4	40.0	9.9	1.3	1.3	53.3	11.4
2014	0.0		0.0		10.7	4.0	72.0	11.7	0.0		82.7	11.4
2013	0.0		1.3	1.3	9.3	2.5	12.0	2.7	0.0		22.7	2.5
2012	0.0		8.0	3.6	41.6	20.3	6.4	3.0	0.0		56.0	25.2
2011	0.0		32.0	24.4	28.8	17.6	16.0	5.7	0.0		76.8	43.1
2010	0.0		2.7	2.7	16.0	4.6	9.3	2.5	0.0		28.0	6.5

Table 57. Mean back calculated lengths (in) at each annulus for bluegill collected at Carpenter Lake in October 2018.

Year		Age			
class	No.	1	2	3	4
2017	10	2.5			
2016	20	3.8	4.8		
2015	3	3.4	5.0	5.6	
2014	1	2.7	5.3	5.8	5.9
Mean		3.3	4.8	5.6	5.9
No.	34	34	24	4	1
Smallest		1.8	3.5	4.9	5.9
Largest		4.8	5.8	6.2	5.9
SE		0.2	0.1	0.3	
95\% CI (\pm)		0.4	0.3	0.5	
nwd5bga.d18					

nwd5bga.d18

Table 58. Population assessment for bluegill based on spring electrofishing at Carpenter Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-2 at capture	$\begin{aligned} & \text { Years to } \\ & 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A)\%	Total score	Assessment rating
2018	4.8 (4)*	3-3+ (3)	49.3 (2)	0.0 (1)			10	Good
2017			170.7 (4)	0.0 (1)			≥ 7	F-G
2016			156.0 (4)	0.0 (1)			≥ 7	F-G
2015	4.9 (4)	4-4+ (2)	220.0 (4)	0.0 (1)			11	Good
2014			333.3 (4)	1.3 (2)			≥ 8	F-E
2013			312.0 (4)	0.0 (1)			≥ 7	F-G
2012			147.2 (4)	0.0 (1)			≥ 7	F-G
2011			180.8 (4)	0.0 (1)			≥ 7	F - G
2010	4.9 (4)	3-3+ (3)	101.3 (4)	0.0 (1)	0.615	45.9	12	Good
2009	4.6 (3)	3-3+ (3)	140.0 (4)	0.0 (1)			11	Good
2008	4.6 (3)	$3-3+(3)$	150.0 (4)	0.0 (1)	0.571	43.9	11	Good
2007	4.6 (3)	3-3+ (3)	169.3 (4)	1.3 (2)	0.386	32.0	12	Good
2006	5.6 (4)	2-2+ (4)	84.6 (3)	0.0 (1)	1.657	80.9	12	Good
2005	5.6 (4)	2-2+ (4)	117.6 (4)	18.7 (4)			16	Excellent
2004	5.6 (4)	2-2+ (4)	47.7 (2)	1.5 (2)			12	Good
2003	5.6 (4)	2-2+ (4)	53.3 (2)	4.0 (3)	1.427	76.0	13	Good
2002	5.6 (4)	2-2+ (4)	18.4 (1)	1.2 (2)			11	Good
2001			145.7 (4)	41.3 (4)			≥ 10	G - E

* Back calculated from age table

Table 59. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hour of 7.5 -minute diurnal electrofishing at New Kingfisher Lake in April 2018.

Species	Inch class															Total	CPUE	SE
	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	1	3	6	3	3			2	2	6	8	17	2	4	2	59	157.3	29.7

Table 60. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at New Kingfisher Lake during spring samples 1999-2018.

	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2018	10.7	5.3	32.0	4.6	10.7	10.7	104.0	12.2	5.3	2.7	157.3	29.7
$2017{ }^{\text {c }}$	56.0	21.2	2.7	2.7	26.7	2.7	61.3	30.1			146.7	43.7
2012-2016	No sampling											
2011	213.3	75.9	128.0	28.1	24.0	4.6	16.0	8.0			381.3	99.6
2010	178.7	48.5	112.0	25.5	34.7	9.6	16.0	8.0			341.3	84.2
2009	109.3	37.3	24.7	2.7	21.3	2.7	0.0				165.3	37.3
$2008{ }^{\text {b }}$	282.7	37.3	240.0	33.3	56.0	9.2	0.0				578.7	71.8
2007	98.7	27.8	392.0	92.7	21.3	2.7	2.7	2.7			514.7	112.8
2006	189.3	14.1	333.3	46.3	10.7	2.7	0.0				533.3	62.9
2005	287.2	97.4	428.2	53.5	41.0	6.8	12.8	5.1			769.2	141.2
2004	161.5	45.1	243.6	45.6	12.8	6.8	2.6	2.6			420.5	92.5
2003	105.6	28.2	425.0	55.5	8.3	4.8	0.0				538.9	59.8
$2002{ }^{\text {a }}$	116.3		258.1		4.7		0.0				379.1	
$2001{ }^{\text {a }}$	89.7		364.1		20.5		2.6				476.9	
$2000^{\text {a }}$	137.8		493.3		24.4		6.7				662.2	
$1999{ }^{\text {a }}$			315.6		17.8		2.2				335.6	

${ }^{\text {a }}$ Nocturnal sample
${ }^{\text {b }}$ Major fish kill 9/5/08
${ }^{\text {c }}$ First standardized sample since renovation
nwd6psd.d18

Table 61. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.333 hour of diurnal electrofishing at New Kingfisher Lake in October 2018.

	Inch class															Total	CPUE	SE
Species	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Largemouth bass	3	1		1	1		1	1	2			2	1	1	2	16	42.7	14.9

Table 62. Population assessment for largemouth bass based on spring electrofishing at New Kingfisher Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{aligned} & \text { CPUE } \\ & \text { age } 1 \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	Instantaneous mortality (z)	Annual mortality (A) $\%$	Total score	Assessment rating
2018		10.7 (2)	10.7 (1)	104.0 (4)	5.33 (4)			≥ 12	F - G
$2017{ }^{\text {c }}$			26.7 (3)	61.3 (4)	0.0 (1)			≥ 10	F-G
2012-2016	No sampling - Renovation								
2011		192.0 (4)	24.0 (2)	16.0 (2)	0.0 (1)			≥ 10	F-G
2010			34.7 (2)	16.0 (2)	0.0 (1)			≥ 7	P-G
2009	10.5 (2)	77.3 (4)	21.3 (2)	0.0 (1)	0.0 (1)			10	Fair
$2008{ }^{\text {b }}$	10.5 (2)	250.7 (4)	56.0 (4)	0.0 (1)	0.0 (1)	0.562	43.0	12	Fair
2007	10.5 (2)	96.0 (4)	21.3 (2)	2.7 (1)	0.0 (1)	0.608	39.2	10	Fair
2006	11.0 (3)	149.3 (4)	10.7 (1)	0.0 (1)	0.0 (1)	1.335	73.7	10	Fair
2005	11.0 (3)	248.7 (4)	41.0 (3)	12.8 (2)	0.0 (1)			13	Good
2004	11.0 (3)	94.9 (4)	12.8 (1)	2.6 (1)	0.0 (1)	1.230	70.8	10	Fair
2003	11.0 (3)	100.0 (4)	8.3 (1)	0.0 (1)	0.0 (1)	1.330	73.6	10	Fair
$2002{ }^{\text {a }}$	11.0 (3)	116.3 (4)	4.7 (1)	0.0 (1)	0.0 (1)			10	Fair
$2001^{\text {a }}$	11.0 (3)	89.7 (4)	20.5 (2)	2.6 (1)	0.0 (1)			11	Fair

${ }^{\text {a }}$ Nocturnal sample
${ }^{\text {b }}$ Major fish kill 9/5/08
${ }^{\text {c }}$ First standardized sample since renovation

Table 63. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected in 0.375
hours of electrofishing at New Kingfisher Lake in May 2018.

	Inch class										
Species	2	3	4	5	6	7	8	9	Total	CPUE	SE
Bluegill	8	67	142	123	26	1	1		368	981.3	335.4
Redear sunfish			2			5	2	2	11	29.3	17.5

nwd6bg.d18

Table 64. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at New Kingfisher Lake during spring samples 1999-2018.

Year	Length group										Total	
	< 3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
	CPUE	SE										
2018	21.3	17.5	885.3	314.5	72.0	12.2	2.7	2.7	0.0		981.3	335.4
2017	18.7	5.3	853.3	203.7	85.3	28.2	0.0		0.0		957.3	222.3
2012-2016	No sampling											
2011	8.0	4.6	338.7	37.3	413.3	97.6	0.0		0.0		760.0	92.3
2010	130.7	27.1	274.7	30.8	80.0	21.2	0.0		0.0		485.3	47.2
2009	194.7	21.3	338.7	35.3	74.7	30.1	0.0		0.0		608.0	53.3
$2008{ }^{\text {b }}$	42.7	5.3	242.7	65.5	37.3	14.9	0.0		0.0		322.7	85.2
2007	5.3	2.7	69.3	26.3	45.3	5.3	0.0		0.0		120.0	33.3
2006	16.0	13.5	104.0	33.8	14.0	2.0	0.0		0.0		134.0	44.0
2005	0.0		53.9	7.7	12.8	6.8	10.3	6.8	0.0		76.9	8.9
2004	0.0		15.4	8.9	23.1	11.8	0.0		0.0		38.5	4.4
2003	12.8	6.8	56.4	2.6	15.4	7.7	5.1	2.6	0.0		89.7	5.1
$2002^{\text {a }}$			9.3		62.8		7.0		0.0		79.1	0.0
$2001^{\text {a }}$			61.5		66.7		7.7		0.0		135.9	0.0
$2000^{\text {a }}$			31.1		66.7		11.1		0.0		109.0	0.0
1999 ${ }^{\text {a }}$			6.7		20.0		4.4		0.0		31.1	0.0

[^12]Table 65. Population assessment for bluegill based on spring electrofishing at New Kingfisher Lake from 2001-2018 (scoring based on statewide assessment).

Year	Mean length age-2 at capture	Years to 6.0 in	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018			74.7 (3)	2.7 (3)			≥ 8	F-G
$2017{ }^{\text {c }}$			85.3 (3)	0.0 (1)			≥ 6	P-G
2012-2016			No sampling					
2011			413.3 (4)	0.0 (1)			≥ 7	F-G
2010			80.0 (4)	0.0 (1)			≥ 7	F-G
2009	4.3 (2)	3-3+(3)	74.7 (3)	0.0 (1)			9	Fair
$2008{ }^{\text {b }}$	4.3 (2)	$3-3+(3)$	37.3 (2)	0.0 (1)	2.140	88.2	8	Fair
2007	4.3 (2)	3-3+ (3)	45.3 (2)	0.0 (1)	0.574	42.6	8	Fair
2006	5.7 (4)	2-2+(4)	14.0 (1)	0.0 (1)	1.587	79.5	10	Good
2005	5.7 (4)	2-2+ (4)	23.1 (1)	10.3 (3)			12	Good
2004	5.7 (4)	2-2+ (4)	23.1 (1)	0.0 (1)			10	Good
2003	5.7 (4)	2-2+ (4)	21.6 (1)	5.4 (2)	0.865	57.9	11	Good
$2002{ }^{\text {a }}$	5.7 (4)	2-2+ (4)	69.8 (3)	7.0 (2)			13	Good
$2001^{\text {a }}$	5.7 (4)	2-2+(4)	64.4 (3)	6.7 (2)			13	Good

${ }^{\text {a }}$ Nocturnal sample
${ }^{\text {b }}$ Major fish kill 9/5/08
${ }^{\text {c }}$ First standardized sample since renovation

Table 66. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.310 hour of diurnal electrofishing at Old Kingfisher Lake in April 2017.

Inch class																	Total	CPUE	SE
Species	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	3	7	8	3				2	1		1	3	3	1	2	1	35	112.9	0.0

Table 67. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Old Kingfisher Lake during spring sampling 2018.

	Length group										Total	
	< 8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
Year	CPUE	SE										
2018	58.1	0.0	9.7	0.0	9.7	0.0	35.5	0.0	3.2	0.0	112.9	0.0
*2017	148.3	0.0	3.2	0.0	28.4	0.0	47.3	0.0	3.2	0.0	227.1	0.0

*First standardized sample since renovation
nwd7psd.d18

Table 68. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.535 hours of diurnal electrofishing at Old Kingfisher Lake in October 2018.

	Inch class																Total	CPUE	SE
Species	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Largemouth bass	1	1		1	4			1					1	1	1	1	12	22.4	0.0

Table 69. Population assessment for largemouth bass based on spring electrofishing at Old Kingfisher Lake 2017-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	CPUE age 1	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \geq 20.0 \text { in } \end{gathered}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018			9.7 (1)	35.5 (4)	3.2 (3)			≥ 10	F - G
2017*			28.4 (3)	47.3 (4)	3.2 (3)			≥ 12	F-E

[^13]Table 70. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected in 0.294 hours of electrofishing at Old Kingfisher Lake in May 2018.

Species	Inch class						Total	CPUE	SE
	2	3	4	5	6	7			
Bluegill	2	18	145	117	55	1	338	1149.7	0.0
Redear sunfish						1	1		

Table 71. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Old Kingfisher Lake during spring sampling 2017-2018.

Year	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
	CPUE	SE										
2018	2.0	0.0	280.0	0.0	56.0	0.0	0.0		0.0		1149.7	0.0
2017*	58.7	14.1	965.3	100.6	309.3	72.2	0.0		0.0		1333.3	178.0

*First standardized sample since renovation
nwd7bg.d18

Table 72. Population assessment for bluegill based on spring electrofishing at Old Kingfisher Lake for 2018 (scoring based on statewide assessment)

Year	Mean length age-2+ at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018			56.0 (3)	0.0 (1)			≥ 6	P-G
2017			309.3 (4)	0.0 (1)			≥ 7	F-G

[^14]Table 73. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hours of 7.5 -minute diurnal electrofishing runs at Washburn Lake in April 2018.

Species	Inch class															Total	CPUE	SE
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Largemouth bass	6	17	3	7	43	35	16	13	10	6	3	2		1	1	163	434.7	44.4
nwd8psd.d18																		

Table 74. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Washburn Lake during spring samples 2001-2018.

Year	Length group										Total	
	<8.0 in		8.0-11.9 in		12.0-14.9 in		≥ 15.0 in		≥ 20.0 in			
	CPUE	SE										
2018	69.3	14.1	269.3	48.5	77.3	14.9	18.7	7.1	0.0		434.7	44.4
2017	258.7	31.4	306.7	9.6	42.7	7.1	5.3	2.7	5.3	2.7	613.3	46.3
2015	66.7	22.8	253.3	61.5	8.0	4.6	10.7	2.7	8.0	4.6	338.7	44.9
2014	90.7	7.1	333.3	30.8	8.0	4.6	10.7	2.7	5.3	2.7	442.7	23.3
2012	213.3	39.8	218.7	46.3	16.0	0.0	8.0	0.0	5.3	2.7	456.0	77.7
2011	205.3	44.9	133.3	35.3	2.7	2.7	5.3	2.7	0.0		346.7	78.6
2010	96.0	28.1	80.0	16.7	5.3	5.3	2.7	2.7	2.7	2.7	184.0	45.5
2009	104.0	60.0	82.7	39.8	0.0		10.7	5.3	0.0		197.3	104.3
2008	170.7	42.9	61.3	21.8	16.0	0.0	13.3	9.6	0.0		261.3	59.6
2007	133.3	35.3	80.0	4.6	16.0	4.6	21.3	9.6	0.0		250.7	30.8
2006	96.0	9.2	98.7	39.3	64.0	0.0	18.7	5.3	2.7	2.7	277.3	25.4
2005	43.6	11.2	146.2	16.0	28.2	5.1	2.6	2.6	2.6	2.6	220.5	25.3
2004	46.2	4.4	353.9	49.5	0.0		0.0		0.0		400.0	51.2
2003	123.1	33.5	438.5	49.5	0.0		0.0		0.0		561.5	52.4
2002	50.0		321.4		0.0		0.0		0.0		371.4	0.0
2001	260.0		8.0		0.0		0.0		0.0		268.0	0.0

[^15]Table 75. Length frequency and CPUE (fish/hr) of largemouth bass collected during 0.375 hour of diurnal electrofishing at Washburn Lake in October 2017.

Species	Inch class																	Total	CPUE	SE
	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			
Largemouth bass	11	7	2	7	19	12	6	12	4	1							1	82	218.70	2.70

Table 76. Population assessment for largemouth bass based on spring electrofishing at Washburn Lake 2003-2018 (scoring based on statewide assessment).

Year	$\begin{aligned} & \text { Mean length } \\ & \text { age-3 } \\ & \text { at capture } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \text { age-1 } \end{aligned}$	$\begin{gathered} \text { CPUE } \\ \text { 12.0-14.9 in } \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 15.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 20.0 \text { in } \end{aligned}$	Instantaneous Mortality (z)	Annual Mortality $\text { (A) } \%$	Total score	Assessment Rating
2018			77.3 (4)	18.7 (3)	0.0 (1)			≥ 10	F - G
2017	10.4 (2)	258.7 (4)	42.7 (3)	5.3 (1)	5.3 (4)	0.939	60.9	14	Good
2015			8.0 (1)	10.7 (2)	8.0 (4)			≥ 9	F-G
2014		90.7 (4)	8.0 (1)	10.7 (2)	5.3 (4)			≥ 12	F-G
2012			16.0 (1)	8.0 (2)	5.3 (4)			≥ 9	F-G
2011			2.7 (1)	5.3 (2)	0.0 (1)			≥ 6	P-F
2010	10.7 (2)	96.0 (4)	5.3 (1)	0.0 (1)	0.0 (1)	0.819	55.9	9	Fair
2009	13.1 (4)	99.7 (4)	0.0 (1)	10.7 (2)	0.0 (1)			12	Fair
2008	13.1 (4)	165.9 (4)	16.0 (1)	13.3 (2)	0.0 (1)	1.117	67.3	12	Fair
2007	13.1 (4)	131.2 (4)	16.0 (1)	21.3 (3)	0.0 (1)	0.944	61.1	13	Good
2006	11.2 (3)	94.7 (4)	64.0 (4)	18.7 (3)	2.7 (3)	0.669	48.8	17	Excellent
2005	11.2 (3)	41.0 (3)	28.2 (2)	2.6 (1)	2.6 (3)			12	Good
2004	11.2 (3)	48.3 (3)	0.0 (1)	0.0 (1)	0.0 (1)			9	Fair
2003	11.2 (3)	131.6 (4)	0.0 (1)	0.0 (1)	0.0 (1)			10	Fair

Table 77. Length frequency and CPUE (fish/hr) for bluegill and redear sunfish collected in 0.375 hours of electrofishing at Washburn Lake in May 2018.

Species	Inch class									Total	CPUE	SE
	1	2	3	4	5	6	7	8	9			
Bluegill	1	8	32	45	20	14	24	11		155	413.3	55.7
Redear			10	19	21	9	49	48	6	162	432.0	127.6

nwd8bg.d18

Table 78. Spring electrofishing CPUE (fish/hr) for each length group of bluegill (2001-2018) and redear sunfish (2012-2018) collected at Washburn Lake during spring samples.

Bluegill	Length group										Total	
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in			
Year	CPUE	SE										
2018	24.0	12.2	258.7	27.8	101.3	33.4	29.3	16.2	0.0		413.3	55.7
2017	72.0	25.7	144.0	25.7	42.7	19.2	37.3	20.8	0.0		296.0	8.0
2015	26.0	13.6	152.0	18.2	122.0	17.4	8.0	4.6	0.0		308.0	20.8
2014	0.0		181.3	64.1	133.3	9.6	8.0	4.6	0.0		322.7	55.9
2013	10.7	7.1	101.3	16.2	109.3	58.5	2.7	2.7	0.0		224.0	46.2
2012	30.0	11.9	158.0	27.6	64.0	23.3	22.0	6.8	0.0		274.0	49.1
2011	24.0	10.7	93.3	16.5	33.3	10.4	5.3	2.7	0.0		156.0	19.6
2010	53.3	16.2	152.0	57.9	32.0	0.0	0.0		0.0		237.3	41.7
2009	60.0	15.1	80.0	19.0	138.0	10.0	0.0		0.0		278.0	20.8
2008	2.7	2.7	152.0	37.8	168.0	48.7	0.0		0.0		322.7	69.5
2007	58.7	14.1	245.3	37.1	40.0	12.2	0.0		0.0		344.0	54.5
2006	58.7	50.7	138.7	39.3	32.0	16.0	0.0		0.0		229.3	81.6
2005	161.5	31.9	155.8	18.9	9.6	3.7	0.0		0.0		326.9	39.3
2004	80.8	7.4	48.1	3.7	11.5	5.0	21.2	10.6	0.0		161.5	13.0
2003	7.7	3.1	71.2	12.7	113.5	39.9	0.0		0.0		192.3	39.9
2002			46.5		102.3		0.0		0.0		148.8	0.0
2001			28.0		64.0		4.0		0.0		96.0	0.0

* Washburn Lake renovated summer 1999 and restocked spring 2000 nw d8bg.d18

Redear	Length group											
	<3.0 in		3.0-5.9 in		6.0-7.9 in		≥ 8.0 in		≥ 10.0 in		Total	
Year	CPUE	SE										
2018	0.0		133.3	18.7	154.7	63.7	144.0	50.8	0.0		432.0	127.6
2017	0.0		178.7	57.8	45.3	9.6	53.3	29.3	0.0		227.3	29.7
2015	0.0		44.0	12.4	74.0	23.0	94.0	29.5	0.0		212.0	55.1
2014	0.0		5.3	2.7	85.3	14.9	98.7	30.8	0.0		189.3	39.8
2013	0.0		96.0	20.1	85.3	2.7	0.0		0.0		181.3	22.8
2012	0.0		28.0	12.4	2.0	2.0	0.0		0.0		30.0	11.0

nw d8bg.d18

Table 79. Length frequency of fish collected during diurnal electrofishing at Washburn Lake in October 2018. Fish were collected for age and growth only, no CPUE.

	Inch class								
Species	2	3	4	5	6	7	8	9	Total
Bluegill	7	14	13	9	2				45
Redear sunfish		2	10	10	12	2	1		37
Largemouth bass		2	10	12	6		1	31	
nwd8all.d18									

Table 80. Mean back calculated lengths (in) at each annulus for bluegill collected at Washburn Lake

in October 2018.			
Year		Age	
class	No.	1	2
2017	27	2.1	
2016	8	1.9	3.5
Mean		2.1	3.5
No.	35	35	8
Smallest		1.3	2.8
Largest		3.5	4.4
SE		0.1	0.2
95\% CI (\pm)		0.2	0.4
nwd8bga.d18			

nwd8bga.d18

Table 81. Population assessment for bluegill based on spring electrofishing at Washburn Lake 2003-2018 (scoring based on statewide assessment).

Year	Mean length age-2 at capture	$\begin{gathered} \text { Years to } \\ 6.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 6.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018	3.5 (1)	4-4+ (2)	130.7 (4)	29.3 (4)			11	Good
2017			80.0 (3)	37.3 (4)			≥ 9	F-G
2015			130.0 (4)	8.0 (4)			≥ 10	F-G
2014			141.3 (4)	8.0 (4)			≥ 10	F-G
2013			112.0 (4)	2.7 (3)			≥ 9	F-G
2012			86.0 (3)	22.0 (4)			≥ 9	F-G
2011			38.7 (2)	5.3 (4)			≥ 8	P-G
2010			32.0 (2)	0.0 (1)			≥ 5	P - F
2009	4.7 (3)	3-3+ (3)	138.0 (4)	0.0 (1)	0.599	45.1	11	Good
2008	5.3 (4)	2-2+ (4)	168.0 (4)	0.0 (1)	2.046	87.1	13	Good
2007	5.3 (4)	2-2+(4)	40.0 (2)	0.0 (1)	1.050	65.0	11	Good
2006	5.3 (4)	2-2+ (4)	32.0 (2)	0.0 (1)			11	Good
2005	5.4 (4)	2-2+ (4)	9.6 (1)	0.0 (1)			10	Good
2004	5.4 (4)	2-2+ (4)	32.7 (2)	22.0 (4)			14	Excellent
2003	5.4 (4)	2-2+ (4)	118.0 (4)	0.0 (1)			13	Good

Table 82. Mean back calculated lengths (in) at each annulus for redear sunfish collected at
Washburn Lake in October 2018.

Year		Age		
class	No.	1	2	3
2017	18	2.5		
2016	17	2.4	4.3	
2015	1	4.2	7.3	8.4
Mean		2.5	4.5	8.4
No.	36	36	18	1
Smallest		1.7	3.4	8.4
Largest		4.2	7.3	8.4
SE		0.1	0.2	
$95 \% \mathrm{Cl}(\pm)$		0.2	0.5	

$\xrightarrow{95 \%}(\pm)$
nwd8bga.d18

Table 83. Population assessment for redear sunfish based on spring electrofishing at Washburn Lake 2003-2018 (scoring based on statewide assessment).

Year	Mean length age-3 at capture	$\begin{gathered} \text { Years to } \\ 8.0 \text { in } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CPUE } \\ & \geq 8.0 \text { in } \end{aligned}$	$\begin{aligned} & \text { CPUE } \\ & \geq 10.0 \text { in } \\ & \hline \end{aligned}$	Instantaneous mortality (z)	Annual mortality (A) \%	Total score	Assessment rating
2018	8.4 (4)	3-3+ (4)	144.0 (4)	0.0 (1)			13	Good
2017			53.3 (4)	0.0 (1)			≥ 9	F-G
2015			94.0 (4)	0.0 (1)			≥ 10	F-G
2014			98.7 (4)	0.0 (1)			≥ 10	F-G
2013			0.0 (1)	0.0 (1)			≥ 9	P-F
2012			0.0 (1)	0.0 (1)			≥ 4	P-F

SOUTHWESTERN FISHERY DISTRICT

Project 1: Lake and Tailwater Fishery Surveys

FINDINGS

Lake sampling conditions are summarized in Table 1.

Barren River Lake (10,000 acres)

Black Bass

Spring black bass were not sampled due to high water levels (8-10 ft. above summer pool)
Fall young of year sampling (Tables 2 and 3) suggested a very good 2018 year-class. Largemouth bass made up the majority of the fall sample (93%), while spotted bass only made up 6% of the sample (Table 2). Smallmouth bass remain poorly represented in samples. Age-0 CPUE ($215.2 \mathrm{fish} / \mathrm{hr}$; Table 3) and age-0 CPUE $\geq 5.0 \mathrm{in}$ ($48.8 \mathrm{fish} / \mathrm{hr}$) was higher than the average from the past 15 years. Age-0 largemouth bass mean length (3.9 in) was average compared to most years.

Marion County Lake (25 acres)

Sunfish

Diurnal electrofishing results for bluegill and redear sunfish are presented in Tables 4-9. The overall catch rate for bluegill ($101.7 \mathrm{fish} / \mathrm{hr}$) was the lowest it has ever been since 2002 , while the catch rate for redear ($56.0 \mathrm{fish} / \mathrm{hr}$) was also low relative to previous years (Tables 4-6). The size structure of both populations was very good (bluegill PSD $=44$, redear PSD $=61$) when compared to previous years (Table 7). The catch rate of ≥ 6.0-in bluegill ($36.6 \mathrm{fish} / \mathrm{hr}$) was one of the third lowest since 2005 and the catch rate of ≥ 8.0-in bluegill ($6.9 \mathrm{fish} / \mathrm{hr}$) was slightly above average; these factors resulted in a "Good" rating in the population assessment (Table 8). The catch rate of ≥ 8.0-in redear ($26.3 \mathrm{fish} / \mathrm{hr}$) decreased from the previous sample in 2016 but met the management objective of $25.0 \mathrm{fish} / \mathrm{hr}$ (Table 9). The catch rate of ≥ 10.0-in fish (10.3 fish $/ \mathrm{hr}$) was the highest it has been since 2005 ; these factors resulted in an "Excellent" rating in the redear population assessment (Table 9).

West Fork Drakes (88 acres)

Black Bass

Results of diurnal bass electrofishing in early May (Tables 10-13) seemed to indicate a lower-density largemouth population (114.0 fish $/ \mathrm{hr}$) with a decent size structure (PSD 40). Similar to previous years, the largemouth bass length frequency was truncated after 12.0-14.0 in. Lack of larger fish seems to suggest moderate harvest and/or fishing pressure. The lake is in an urban setting, located just outside of Franklin, KY and seems to have the right recipe for higher pressure and maybe harvest. The lake is a shallow river-run system with good productivity (secchi depths in 2- to 3 -foot range) and immense shallow cover or nursery areas. The largemouth bass population assessment decreased from previous years to "Fair" due to a decrease in the number larger ≥ 15.0-in fish (Table 13).

Sunfish

Electrofishing results for bluegill and redear from early May were the second lowest since sampling started in 2007 (Tables 14-16). This was characterized by an overall decrease in the number of larger fish (≥ 3.0-in bluegill and ≥ 6.0-in redear). This decrease in the number of larger redear influenced the size structure ($\mathrm{PSD}=38$) but the population assessment rating remained "Fair" (Tables 17-19). Bluegill size structure ($\mathrm{PSD}=14$) and population assessment decreased to "Fair", due to a very low catch rate of ≥ 6.0-in fish.

Green River Lake (8,210 Acres)

Muskie

Muskellunge sampling remains problematic as multiple attempts (Table 1) were made with diurnal and nocturnal electrofishing with poor results. Prior to this year, sampling results seemingly did not reflect the true population status as prior creel data (angler catch rates and attitude surveys) suggested the fishery was staying true to historic trends. Creel data for 2018 (presented later) does not offer such assurances. Fyke netting for muskie will be attempted again in 2019 in order to better assess the population. Due to poor sampling results, no catch data is presented for this year. Muskie growth rates and condition data will be presented in the Fish Habitat Branch Annual Performance Report.

Black Bass

Nocturnal bass electrofishing was conducted on the upper and lower ends of each lake arm (Green River and Robinson Creek) during late-April and early- to-mid May (Table 20). The overall largemouth CPUE of 137.2 fish $/ \mathrm{hr}$ dipped from last year's high mark due to a poor 2017 year class. The catch rate of largemouth ≥ 15.0 in (45.8 fish $/ \mathrm{hr}$) remains well above average (Tables 21 and 23). Largemouth bass size structure indices were similar to previous years ($\mathrm{PSD}=69$; RSD=37; Table 22). The population assessment for largemouth bass remained "Excellent"; similar to the last ten years (Table 23).

Spotted bass catch rate ($43.8 \mathrm{fish} / \mathrm{hr}$) remained near historic levels (approximately $50.0 \mathrm{fish} / \mathrm{hr}$). The population continues to produce notable numbers of fish >12.0 inches in length (PSD $=33$; Table 22), which was rare prior to alewife introduction in 2004, when few spotted bass achieved such lengths.

Fall YOY sampling (Tables 24 and 25) suggests a very good largemouth bass year class in 2018 as age- 0 overall CPUE ($72.2 \mathrm{fish} / \mathrm{hr}$) and age- $0 \mathrm{CPUE} \geq 5.0 \mathrm{in}$ ($36.8 \mathrm{fish} / \mathrm{hr}$) were both well below average. Mean age- 0 largemouth bass length (5.2 in) was slightly above average.

Crappie

Trap netting for crappie was conducted during mid-November (Table 1). The white crappie population remains strongly dominated by 6.0- to 7.0 -in fish from multiple persisting year classes (Table 26 and 28). White crappie size structure index ($\mathrm{PSD}=47$; Table 27) improved markedly from previous years. Mean age- $2+$ size (8.7 in) of white crappie improved to its best mark in the last 10 years (Table 32). Age-2+ crappie lengths in years prior to the persisting population increase were typically 9.0 -in plus. The white crappie population assessment remained "Good"; similar to most years. The length-weight equation for white crappie in 2018 was similar to previous years:

$$
\log _{10}(\text { weight })=-3.84944+3.53456 \times \log (\text { length })
$$

Black crappie remain at low densities in trapnet samples ($n=35$; Table 26), but are represented by multiple year classes ($\mathrm{n}=6$; Table 29).

Walleye/White bass

Experimental gill net sampling for white bass and walleye was conducted during mid-November (Table 1). White bass CPUE (8.8 fish/nn) continued to slide from a high in 2015 with diminished contribution from the strong 2014 year class (age-4+; Table 34). The moderate 2015 year class currently supports this fishery (41% of catch; Table 34) and indicates good natural reproduction resulting from lower adult densities during that time frame. Growth rates (mean length age- $2+=13.9 \mathrm{in}$; Table 36) and condition indices for all length groups ($\mathrm{Wr}=93-94$; Table 37) of white bass remains excellent. The white bass population assessment remained "Good". The length-weight equation for white bass ($\mathrm{n}=82$) was similar to previous years:

$$
\log _{10}(\text { weight })=-3.40854+3.06587 * \log _{10}(\text { Length })
$$

Walleye CPUE ($2.1 \mathrm{fish} / \mathrm{nn}$) dipped slightly from 2017, but is represented by multiple year classes (Tables 33 and 35). Growth rate (19.5 inches by age- $2+$; Table 38) and condition indices for all length groups ($\mathrm{Wr}=95-99$; Table 39) remain excellent. The walleye population assessment fell to "Fair" due to lower CPUE of larger fish. The length-weight equation for walleye $(\mathrm{n}=23)$ was similar to previous years:

$$
\log _{10}(\text { weight })=-3.65988+3.18484^{*} \log _{10}(\text { Length })
$$

Green River Lake Creel (8,210 acres)

Creel survey: A roving, daytime creel survey was conducted from March 15 - November 30; results are presented in Tables 40-49. Anglers made an estimated 26,847 trips and fished for 109,033 hours with the average trip approximating 4.06 hours. Total trips dipped slightly from $2014(28,374)$, but were still much lower than 2009 $(40,095)$ and previous years. There was a notable drop in hours fished from previous years $(152,198$ in 2014; 169,561 in 2009). Trip length (4.06 hours) dipped from 2014 (5.36 hours); however, trip length has varied greatly over the years (ranging from 3.4 to 6 hours). Overall catch (2.2 fish/hour) and harvest rate (0.73 fish/hour) returned to more normal levels from highs noted in 2014 (Table 40). Bass narrowly returned to top billing as most soughtafter fish, accounting for 44.3% of the effort followed by crappie (43.3%) and catfish (5 \%; Table 41).

Crappie angler success returned to normal levels (61\%) from a high in 2014 of 78% (Table 41). Crappie harvest rate (1.43 crappie/hr; Table 43) slid slightly from 2017, but remained well above the average harvest rate from the previous creel (0.75 crappie/hr). Crappie harvest was highest in November (2.43 fish/hour). Crappie angler hours $(47,188)$ dropped well below the previous creel $(80,249$ in 2014$)$, but trips $(11,619)$ were only slightly above previous years.

Bass angler trips (11,905; Table 44) were slightly higher than previous surveys (10,543 on 2009; 10,485 in 2014). Overall catch rate by bass anglers ($0.55 \mathrm{fish} / \mathrm{hr}$) was similar to recent years. Bass size ranges caught by all anglers were similar to previous years (Table 41 and 48).

Catfish angler hours $(5,211)$ and trips $(1,283)$ remained similar to 2014 (5,543 hours and 1,033 trips $)$, but were in stark contrast to 2009 (15,639 hours; 3,698 trips). Differences in effort are not reflective of the fishery quality as catch ($0.62 \mathrm{fish} / \mathrm{hr}$) and harvest (0.52 fish/hr) rates remained similar to previous years (Table 45).

Muskie angler hours plummeted to an all-time low (710 hours; Table 46), well below the previous two surveys (4,234 hours in 2014; 5,198 in 2009) and well below historic values (11,671 in 2003; 20,980 in 1998). Muskie anglers only accounted for $7 \%(n=21)$ of total muskies caught ($n=292$). Legal-size muskie (36 in) catch rate was 33.8 hours/fish. Anecdotally, we have spoken to a few muskie anglers that fished the lake in 2018 and they did not notice any change in numbers or size range of muskie.

Walleye angler trips (131) and hours (529) fell off further from 2014 (422 hours; 2,265 trips) and 2009 (6,701 hours; 1,585 trips) surveys (Table 47). The 2009 creel survey marked the highest angler use of walleye since creation of the fishery in the late 1990's. Anecdotal conversation with walleye anglers that fished the lake in 2018 did not suggest a major drop off in the fishery.

Angler attitude survey: Results of the angler attitude survey are presented in Figure 1. Only 181 anglers were interviewed for attitude information, much lower than previous surveys that ranged from 508 to 987 . Angler use of Green River Lake was dominated by anglers who fish there more than 10 times annually (q. 3; 66.3\%), similar to previous years. Similar to creel data (trips and hours), anglers targeted bass most often (q. $5 ; 46.8 \%$) and in general (q.4; 59.7%). Angler satisfaction with bass (87.6%), catfish (89.3%) and crappie (92.9%) was overwhelmingly good (responses falling in the "very satisfied or somewhat satisfied" categories). Not enough anglers were interviewed to assess satisfaction with other fisheries.

Bass anglers identified "fish size" (q. 6a; 66.7\%) as the primary reason for satisfaction with the fishery. "Fish number" was also a significant reason (38.1\%) for satisfaction with the bass fishery.

Crappie angler satisfaction with the fishery was skewed toward "number of fish" (q.7a; 63\%) versus quality or size (27.2%); dissimilar to the previous survey (2014) where satisfaction equally divided between "size of fish" (49.8\%)
and "number of fish" (46.8\%).
Similarly, catfish angler satisfaction with the fishery flipped from the 2014 survey to "number of fish" (q. 8a; 76.5%) with fish size (23.5%) the being next most important factor of satisfaction. Similar to the previous surveys (2009 and 2014), "hook and line" was the most common method used by catfish anglers (q. 9; 53.6\%). Only 35.7\% of catfish anglers used jugs to pursue catfish, similar to the 2014 survey. Low sample size ($\mathrm{n}=19$ for 2018 and $\mathrm{n}=31$ in 2014) may explain low use when compared to 2009 where 81% of catfish anglers claimed to use jugs to pursue catfish. Jug fishermen fished, on average, 13 days annually with the range spanning from 5 to 40 days. No catfish anglers in this survey identified themselves as noodlers/hand grabbers. The low number of angler interviews seems the likely factor as this segment of anglers represented 19% of catfish anglers in 2014.

Few muskie anglers were contacted in angler surveys ($n=9$, only 4 interviews for AAS), and is likely just reflective of low angler contacts overall. However, as noted in the creel data, this fishery seems to have slipped in use by anglers over the years, though satisfaction with the fishery has remained high. Other methods for monitoring this population such as angler diaries/reporting may be in order.

Anglers, overall, were very satisfied with current regulations (q. 14; 80.6\%). Anglers that did express displeasure (q. 14), desired a higher crappie size limit.

Most anglers (88.4\%; q. 15) were aware KDFWR does fish attractor work at Green River Lake and produces a map with sites depicted (78.5%; q. 16). The majority of anglers still seemingly preferred to find fish habitat on their own (q.16a), as use of printed maps (38.5%) and/or website site maps and/or coordinates (44.3\%) rated lower. Angler preferences for fish attractor material was split between "any/all" (42.4%) and "natural brush" (47.4%), with no anglers expressing devotion to plastics. Seemingly reflective of the lack of use of the website and printed maps, was angler lack of awareness of plastic pallet tree sites (q.18; 87.6\%). Anglers also noted difficulty locating such structures with electronics. Limited angler review (q. 18a; $n=21$) of plastic pallet trees was mixed, with "less hang ups/snagging" being the predominant benefit and "fewer fish" being the primary complaint.

Metcalfe County Lake (22 acres)

Bluegill

Information from diurnal bluegill sampling on May 1 (Table 1) is presented in Tables 49-52. Overall CPUE (710.0 fish/hr) was similar to recent surveys. Size structure index (PSD = 26) dipped below historic values (PSD = 37-47 for 2005-2016). The bluegill population assessment remained "Good", similar to previous years.

Mill Creek Lake (109 acres)

Sunfish

Results of diurnal sunfish electrofishing on May 1 are presented in Tables 53-56. The overall bluegill CPUE (462.9 fish/hr) was similar to previous years (Table 54). The bluegill population size structure remains dominated by intermediate-size fish ($420.6 \mathrm{fish} / \mathrm{hr}$; PSD = 5) , similar to previous years (Tables 54-55). The population assessment remains "Poor" (Table 63), though the bass population is well balanced. The presence of a substantial gizzard shad population and lower productivity seem the likely factor hindering population improvement.

Channel catfish

Channel catfish were sampled with tandem set hoop nets in mid-September with moderate success ($5.1 \mathrm{fish} / \mathrm{set}-$ night; Table 57). Fish were present up to the 22.0-in inch class (Table 58). Condition ($\mathrm{Wr}=85$) of channel catfish was fair for the $11.0-$ to 15.9 -in length group, and good $(\mathrm{Wr}=89$; Table 59$)$ for the 16.0 - to 23.9 -in length group. Hoopnets picked up redear size ranges that were missing or perhaps underrepresented during electrofishing sampling in May.

Spurlington Lake (25 acres)

Sunfish

The sunfish population was sampled by diurnal electrofishing on April 20 (Table 1 and Table 60). The catch rate of the 3.0 - to 5.9 -in bluegill length group ($604.0 \mathrm{fish} / \mathrm{hr}$) returned to normalcy; however, the 6.0 - to 7.9 -in length group catch rate (52.0 fish $/ \mathrm{hr}$) was significantly lower than recent years (Table 61). Bluegill size structure is dominated by intermediate-size fish ($\mathrm{PSD}=11$; Table 63), but the population assessment remained "Excellent" (Table 64), similar to previous years. A redear population assessment is not available due to the lack of fish numbers for suitable age data. Spring redear sampling was outperformed by late summer/early fall hoopnetting in 2017 (golden opportunity missed for age data collection).

Shanty Hollow Lake (136 acres)

Black Bass

Nocturnal bass sampling on April 26 yielded an overall largemouth bass CPUE of 249.3 fish/hr (Table 65), similar to historic data. The size structure index ($\mathrm{PSD}=38$, Table 67) was similar to previous years; however, the population still suffers from persisting poor recruitment to larger length classes (15.0-in plus; Table 66). The population assessment slipped to "Good" due to a lower CPUE of 20-in plus fish (Table 68). Removal of smallersize bass ($\mathrm{n}=171$) plus resumption of fertilization in 2016 did not seem to improve bass size structure or bluegill production. Chronic low water levels ($6-12 \mathrm{ft}$. reductions) from late-summer through fall still plague the lake annually and likely serve to confound bass and sunfish interactions.

Table 1. Lake sampling conditions in the Southwestern Fisheries District in 2018.

Lake	Date	Species	Weather	Water temp. surface (F)	Conductivity (umhos)	Secchi (in.)	Comments
Barren River	9/11	YOY bass	overcast/calm	80		24	summer pool \& steady w/ 496 cfs outflow
	9/11	YOY bass	overcast/calm			52	summer pool \& steady w/ 496 cfs outflow
	9/12	YOY bass	partly sunny/calm	79	206		summer pool \& steady w/ 110 cfs outflow
	9/12	YOY bass	partly sunny/calm				summer pool \& steady w/ 110 cfs outflow
Green River	1/30	Muskie EF	sunnys 30 's air temp	38-39			$1-\mathrm{ft}$ above w inter pool \& falling with 3000 cfs outflow (6 fish)
	2/8	Muskie EF			120	18	2 -ft above winter pool \& rising w/ 1500 cfs outflow (3 fish)
	2/9	Muskie EF			130	12-16	2 -ft above winter pool \& falling w/ 1400 cfs outflow (5 fish)
	2/13	Muskie EF			130	26	$5-\mathrm{ft}$ above summer pool \& steday w/ 2100 cfs outflow (no fish)
	2/15	Muskie EF			126	-	$5-\mathrm{ft}$ above summer pool \& steday w/ 2100 cfs outflow (4 fish)
	3/23	Muskie EF	overcast	45	130	30	$2.5-\mathrm{ft}$ above w inter pool \& falling w ith 4655 cfs outflow (3 fish)
	3/27	Muskie NEF	w indy/cloudy	49	132	26	$5-\mathrm{ft}$ above w inter pool \& steady w/4100 cfs outflow (1 fish)
	4/30	Bass	sunny/calm	63-65	122		summer pool \& steady w/ 407 cfs outflow
	5/1	Bass	sunny/calm	66	118		summer pool \& steady w/ 407 cfs outflow
	5/2	Bass	partly sunny/w indy	66	113		summer pool \& steady w/ 407 cfs outflow
	5/3	Bass	partly sunny/w indy	61	108		summer pool \& steady w/ 407 cfs outflow
	10/29	YOY bass	sunny/calm	63		26	summer pool \& steady w/ 458 cfs outflow
	10/30	YOY bass	sunny/calm	64-65			summer pool \& steady w/ 458 cfs outflow
	10/30	YOY bass	sunny/calm	64-65	139	34	summer pool \& steady w/ 458 cfs outflow
	10/31	YOY bass	overcast/w indy		149	48	summer pool \& steady w/ 458 cfs outflow
	11/8-11/9	Crappie	overcast/w indy	53-56		6-26	3 -ft above summer pool \& rising w/2000 cfs outflow
	11/14-11/15	Crappie	overcast/w indy	53-55		30	1-ft above summer pool \& falling w/ 4222-1686 cfs outflow
	11/29-11/30	White Bass \& Walleye	overcast/calm	42-48			6 -ft below summer pool \& falling w/ 2000 cfs outflow
Marion	4/30	Bluegill \& Redear	sunny/calm	70-72	113	42	Normal
Metcalfe	5/1	Bluegill	sunny/w indy	71	239	28	Normal
Mill Creek	5/1	Bluegill, Redear, \& Crappie	sunny/w indy	65-71	219	28	Normal
	9/7-9/10	Channel catfish	sunny/calm; overcast/calm	79-83			Normal
Shanty Hollow	4/26	Bass	overcast/calm	60-61	112	72	
	8/29-8/31	Channel cattish	overcast/calm	85		36	
Spurlington	4/30	Bluegill \& Redear	sunny/calm	66-71	160	24	Normal
West Fork Drakes Cr.	5/10	Bass, Bluegill \& Redear	sunny/w indy	68-71	235	27	Normal

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of diurnal electrofishing at Barren River Lake on September 11-12, 2018.

Area	Species	Inch class																		Total	CPUE	Std err
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
Peninsula	Smallmouth bass		1			1	1													3	2.0	0.0
	Spotted bass	41	9		8	1	1	3	1	1	4	1	1	2	1					74	49.3	8.5
	Largemouth bass	218	52	9	5	7	5	5	5	6	4	5	2	2	1					326	217.3	37.6
Beaver Creek	Smallmouth bass																			0		
	Spotted bass																			0		
	Largemouth bass	52	120	11	25	61	73	16	2	7	13	8	9	7	3					407	271.3	27.4
Peter Creek	Smallmouth bass																			0		
	Spotted bass	1		5		1						1		1						21	14.0	9.0
	Largemouth bass	81	200	26	10	15	7	1	11	7	4	2	3	4	4	3	2	2	1	383	255.3	79.3
Walnut Creek	Smallmouth bass																			0		
	Spotted bass		1	2																3	2.0	2.0
	Largemouth bass	99	105	25	22	23	19	1	11	11	6	4	1	3		1			1	332	221.3	49.3
TOTAL	Smallmouth bass		1			1	1													3	0.5	0.3
	Spotted bass	42	22	7	8	2	1	3	1	1	4	2	1	3	1					98	16.3	6.5
	Largemouth bass	450	477	71	62	106	104	23	29	31	27	19	15	16	8	4	2	2	2	1448	241.3	23.3

swdbrlyy.d18

Table 3. Indices of year-class strength at age-0 and age-1 and mean length (in.) of largemouth bass collected during diurnal fall electrofishing at Barren River Lake 2002-2018.

Year-class	Age-0 ${ }^{\text {A }}$		Age-0 ${ }^{\text {A }}$		Age-0 $\geq 5.0 \mathrm{in}^{\text {A }}$		Age-1 ${ }^{\text {B }}$	
	Mean length	Std. error	CPUE	Std. error	CPUE	Std. error	CPUE	Std. error
2002	4.0	0.05	171.7	25.8	34.2	4.1	26.9	3.7
2003	4.4	0.04	198.0	30.8	84.0	18.7	44.9	13.3
2004	3.7	0.04	108.4	22.2	20.8	3.9	11.2	2.5
2005	3.7	0.04	160.7	25.6	25.3	4.2	17.5	3.6
2006	3.4	0.02	299.7	87.2	21.8	5.6	18.0	4.8
2007	4.2	0.06	61.5	12.8	14.0	2.5	13.8	1.5
2008	3.8	0.03	307.5	46.9	59.7	10.5	18.9	4.4
2009	3.2	0.02	401.3	76.1	36.8	8.6	35.7	5.2
2010	5.7	0.05	166.6	19.1	105.0	18.7	ND	
2011	4.5	0.05	175.5	33.7	65.7	10.8	43.8	9.4
2012	5.1	0.08	70.0	16.7	32.7	11.0	ND	
2013	3.9	0.03	369.3	92.2	61.5	10.0	44.5	13.1
2014	4.4	0.08	108.5	27.5	33.0	6.3	19.2	na
2015	3.8	0.03	167.7	23.5	18.7	3.4	8.0	1.7
2016	4.3	0.04	191.8	38.9	46.5	13.9	39.5	12.1
2017	4.0	0.04	150.2	36.3	23.5	3.8	ND	
2018	3.9	0.05	215.2	24.1	48.8	13.2		

[^16]```
swdbrlbb.d02-d17
swdbrlag. d02-d18
swdbrlyy. d02-d18
```

Table 4. Length frequency and CPUE (fish/hr) of each inch class of bluegill and redear sunfish collected by 0.875 hours of diurnal electrofishing ( $7-0.125$-hour runs) at Marion Co. Lake on 30 April 2018.

| Species | Inch class |  |  |  |  |  |  |  |  |  | Total | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |  |  |
| Bluegill | 4 | 12 | 11 | 13 | 17 | 16 | 10 | 6 |  |  | 89 | 101.7 | 20.0 |
| Redear sunfish |  |  |  |  | 7 | 12 | 7 | 6 | 8 | 9 | 49 | 56.0 | 11.7 |

swdmclbg.d18

Table 5. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Marion Co. Lake 2002-2018. Standard errors are in parentheses.

| Year | Length group |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $<3.0$ in | 3.0-5.9 in | 6.0-7.9 in | $\geq 8.0$ in |  |
| 2002 | 57.1 | 152.0 | 78.9 | 16.0 | 304.0 |
|  | (30.3) | (40.5) | (6.4) | (3.5) | (67.2) |
| 2003 | 164.0 | 212.0 | 118.7 | 5.3 | 500.0 |
|  | (33.9) | (34.1) | (23.9) | (4.0) | (60.4) |
| 2004 | 303.0 | 255.0 | 35.0 | 1.0 | 594.0 |
|  | (59.0) | (38.7) | (10.0) | (1.0) | (85.9) |
| 2005 | 102.0 | 210.0 | 63.0 | 3.0 | 378.0 |
|  | (18.6) | (31.9) | (16.7) | (2.1) | (53.1) |
| 2006 | 77.3 | 501.3 | 25.3 | 4.0 | 608.0 |
|  | (15.1) | (25.5) | (7.6) | (2.7) | (34.1) |
| 2007 | 73.0 | 291.0 | 39.0 | 3.0 | 406.0 |
|  | (22.8) | (39.5) | (7.5) | (1.5) | (50.1) |
| 2008 | 60.0 | 73.0 | 130.0 | 11.0 | 274.0 |
|  | (31.6) | (13.6) | (14.6) | (4.0) | (45.1) |
| 2009 | 48.0 | 109.7 | 58.3 | 1.1 | 217.1 |
|  | (22.2) | (20.9) | (10.6) | (1.1) | (35.4) |
| 2010 | 55.0 | 72.0 | 25.0 | 5.0 | 157.0 |
|  | (27.7) | (10.5) | (9.1) | (2.1) | (25.8) |
| 2011 | 499.4 | 107.4 | 73.1 | 14.9 | 694.9 |
|  | (112.4) | (16.3) | (10.7) | (2.7) | (126.5) |
| 2012 | 270.0 | 213.0 | 32.0 | 7.0 | 522.0 |
|  | (86.0) | (45.5) | (4.3) | (3.8) | (95.5) |
| 2014 | 49.0 | 267.0 | 112.0 | 1.0 |  |
|  | (19.0) | (72.6) | (28.9) | (1.0) | (101.8) |
| 2016 | 52.0 | 138.0 | 141.0 | 9.0 | 340.0 |
|  | (18.0) | (24.5) | (39.6) | (4.1) | (65.4) |
| 2018 | 18.3 | 46.9 | 29.7 | 6.9 | 101.7 |
|  | (9.5) | (11.9) | (9.0) | (3.7) | (20.0) |

swdmclbg.d02-d18

Table 6. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Marion Co. Lake 2002-2018. Standard errors are in parentheses.

|  |  |  | Length group |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | $<3.0$ in | 3.0-5.9 in | 6.0-7.9 in | $\geq 8.0$ in | $\geq 10.0$ in |  |
| 2002 | 1.1 | 51.4 | 11.4 | 57.1 |  | 121.1 |
|  | (1.1) | (11.3) | (4.2) | (13.0) |  | (19.2) |
| 2003 | 5.3 | 46.7 | 9.3 | 28.0 | 2.7 | 89.3 |
|  | (2.7) | (9.3) | (4.8) | (10.7) | (2.7) | (15.4) |
| 2004 | 2.0 | 40.0 | 18.0 | 7.0 | 1.0 | 67.0 |
|  | (2.0) | (15.1) | (7.1) | (3.8) | (1.0) | (16.3) |
| 2005 |  | 34.0 | 30.0 | 25.0 | 3.0 | 89.0 |
|  |  | (5.8) | (9.8) | (7.3) | (1.5) | (16.5) |
| 2006 |  | 17.3 | 17.3 | 24.0 | 2.7 | 58.7 |
|  |  | (6.7) | (7.0) | (6.2) | (1.7) | (12.8) |
| 2007 |  | 21.0 | 7.0 | 11.0 | 1.0 | 39.0 |
|  |  | (6.2) | (2.4) | (6.6) | (1.0) | (11.9) |
| 2008 | 1.0 | 37.0 | 9.0 | 28.0 | 6.0 | 75.0 |
|  | (1.0) | (15.6) | (3.2) | (9.1) | (3.3) | (16.1) |
| 2009 |  | 52.6 | 34.3 | 17.1 | 2.3 | 104.0 |
|  |  | (10.2) | (6.9) | (5.4) | (2.3) | (14.8) |
| 2010 | 7.0 | 20.0 | 20.0 | 15.0 |  | 62.0 |
|  | (7.0) | (6.1) | (6.9) | (2.8) |  | (12.5) |
| 2011 | 1.1 | 14.9 | 45.7 | 74.3 | 4.6 | 136.0 |
|  | (1.1) | (5.9) | (10.7) | (23.4) | (4.6) | (39.5) |
| 2012 | 1.0 | 3.0 | 5.0 | 48.0 |  | 57.0 |
|  | (1.0) | (2.1) | (2.1) | (18.1) |  | (18.0) |
| 2014 | 1.0 | 38.0 | 20.0 | 25.0 | 5.0 | 84.0 |
|  | (1.0) | (12.4) | (6.6) | (5.9) | (2.1) | (21.7) |
| 2016 | 3.0 | 19.0 | 8.0 | 52.0 | 2.0 | 82.0 |
|  | (2.1) | (6.4) | (3.0) | (8.9) | (1.3) | (8.7) |
| 2018 |  | 8.0 | 21.7 | 26.3 | 10.3 | 56.0 |
|  |  | (2.5) | (3.8) | (9.8) | (5.4) | (11.7) |

swdmclbg.d02-d18

Table 7. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear sunfish collected by diurnal electrofishing at Marion Co. Lake on 30 April 2018. Numbers in parentheses
represent 95\% confidence intervals

| Species | No. of fish <br> 2stock size | PSD | RSD $^{\text {A }}$ |
| :---: | :---: | :---: | :---: |
| Bluegill | 73 | $44(12)$ | $8(6)$ |
| Redear sunfish | 49 | $61(14)$ | $35(14)$ |

[^17]Table 8. Bluegill population assessments from 2007-2018 at Marion County Lake (scoring based on statewide assessment).

*No age data, values carried over from years w ith age data
sw dmclag.d07, sw dmclag.d12
sw dmclbg.d05-d18

Table 9. Redear sunfish population assessments from 2007-2018 at Marion County Lake (scoring based on statewide assessment).

|  | Year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 |  | 2008 |  | 2009 |  | 2010 |  |  | 2011 |  | $\underline{2012}$ |  |  | 2014 |  | 2016 |  | 2018 |  |
| Parameter | Value | Score | Value | Score | Value | Score | Value |  | Score | Value | Score | Value |  | core | Value | Score | Value | Score | Value | Score |
| Mean length age-3 at capture | 8.3* | 4 | 8.3* | 4 | 8.3* | 4 | 8.3* |  | 4 | 8.3* | 4 | 8.3 |  | 4 | 8.3* | 4 | 8.3* | 4 | 8.3* | 4 |
| Years to 8.0 in | 2.8* | 4 | 2.8* | 4 | 2.8* | 4 | 2.8* |  | 4 | 2.8* | 4 | 2.8 |  | 4 | 2.8* | 4 | 2.8* | 4 | 2.8* | 4 |
| CPUE $\geq 8.0$ in | 11.0 | 3 | 28.0 | 4 | 17.1 | 3 | 15.0 |  | 3 | 74.3 | 4 | 48.0 |  | 4 | 25.0 | 4 | 52.0 | 4 | 26.3 | 4 |
| CPUE $\geq 10.0$ in | 1.0 | 3 | 6.0 | 4 | 2.3 | 4 | 0.0 |  | 0 | 4.6 | 4 | 0.0 |  | 0 | 5.0 | 4 | 2.0 | 4 | 10.3 | 4 |
| Instantaneous mortality ( z ) | NA |  |  |  |  |  |  |  |  |  |  |  | NA |  |  |  |  |  |  |  |
| Annual mortality (A) | NA |  |  |  |  |  |  |  |  |  |  |  | NA |  |  |  |  |  |  |  |
| Total score: | 14 |  | 16 |  | 15 |  | 11 |  |  | 16 |  | 12 |  |  | 16 |  | 16 |  | 16 |  |
| Assessment rating | Excellent |  | Excellent |  | Excellent |  | Good |  |  | Excellent |  | Good |  |  | Excellent |  | Excellent |  | Excellent |  |

*No age data or too little for calculation, values carried over from years w ith age data
NA (data not amenable to calculations)
sw dmclag.d07, sw dmclag.d12
sw dmclbg.d05-d18

Table 10. Largemouth bass length frequency and CPUE (fish/hr) collected during 1.0 hour (4-900-sec runs) of diurnal electrofishing at West Fork Drakes Reservoir 10 May 2018.

| Species | Inch class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | CPUE | Std err |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  |  |  |
| Largemouth bass | 5 | 18 | 5 | 7 | 1 | 5 | 6 | 18 | 18 | 12 | 6 | 9 | 1 |  | 1 | 2 | 114 | 114.0 | 24.6 |

swdwfdbb.d18

Table 11. Spring diurnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at West Fork Drakes Reservoir from 2007-2018. Missing years are non-sampling years.

|  | Length group |  |  |  |  |  |  |  |  |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | <8.0 in |  | 8.0-11.9 in |  | 12.0-14.9 in |  | $\geq 15.0$ in |  | $\geq 20.0$ in |  |  |  |
| Year | CPUE | Std. <br> error | CPUE | Std. error | CPUE | Std. error | CPUE | Std. <br> error | CPUE | Std. <br> error | CPUE | Std. error |
| 2007 | 27.0 | 15.3 | 31.9 | 5.7 | 29.9 | 5.8 | 6.0 | 2.7 | 2.0 | 1.3 | 95.0 | 23.7 |
| 2009 | 42.0 | 11.0 | 47.0 | 5.7 | 16.0 | 2.3 | 9.0 | 2.5 | 1.0 | 1.0 | 114.0 | 11.5 |
| 2012 | 45.0 | 8.4 | 104.0 | 16.3 | 31.0 | 3.0 | 12.0 | 1.6 | 5.0 | 1.0 | 192.0 | 25.8 |
| 2015 | 28.0 | 7.3 | 42.0 | 7.4 | 67.0 | 10.5 | 8.0 | 2.3 | 2.0 | 1.2 | 145.0 | 10.0 |
| 2018 | 36.0 | 16.3 | 47.0 | 15.3 | 27.0 | 11.5 | 4.0 | 4.0 | 0.0 |  | 114.0 | 24.6 |

Table 12. Proportional stock density (PSD) and relative stock density $\left(\mathrm{RSD}_{15}\right)$ for largemouth bass collected by spring diurnal electrofishing at West Fork Drakes Reservoir on 10 May 2018. Numbers in parentheses represent $95 \%$ confidence intervals.

| Species | No. of fish <br> $\geq$ stock size | PSD | $\mathrm{RSD}_{15}$ |
| :---: | :---: | :---: | :---: |
| Largemouth bass | 78 | $40(11)$ | $5(5)$ |
| swdwfdbb.d18 |  |  |  |

swdwfdbb.d18

Table 13. Population assessment of largemouth bass based on diurnal spring sampling at West Fork Drakes Reservoir from 2007-2018 (scoring based on statewide assessment). Missing years are non-sampling years.

| Parameter | Year |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{2007}$ |  | $\underline{2009}$ |  | $\underline{2012}$ |  | $\underline{2015}$ |  | $\underline{2018}$ |  |
|  | Value | Score |
| Mean length age-3 at capture | 11.3 | 3 | 11.3 | 3 | 11.3 | 3 | 11.3* | 3 | 11.3* | 3 |
| Spring CPUE age-1 | 19.0 | 2 | 34.0 | 3 | 21.0 | 2 | 28.0 | 3 | 28.0 | 3 |
| Spring CPUE 12.0-14.9 in | 29.9 | 3 | 16.0 | 2 | 31.0 | 3 | 67.0 | 4 | 27.0 | 3 |
| Spring CPUE $\geq 15.0$ in | 6.0 | 2 | 9.0 | 2 | 12.0 | 2 | 8.0 | 2 | 4.0 | 1 |
| Spring CPUE $\geq 20.0$ in | 2.0 | 3 | 1.0 | 2 | 5.0 | 4 | 2.0 | 3 | 0.0 | 1 |
| Instantaneous mortality (z) |  |  |  |  | -0.45 |  |  |  |  |  |
| Annual mortality (A)\% |  |  |  |  | 36.3 |  |  |  |  |  |
| Total score |  | 3 |  | 2 |  | 4 |  |  |  |  |
| Assessment rating |  |  |  | ir |  | od |  |  |  |  |

*No age data collected, value carried over from 2012
swdwfdag.d12
swdwfdbb.d07-18

Table 14. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected by 0.5 hours ( $4-450-\mathrm{sec}$ runs) of diurnal electrofishing at West Fork Drakes Reservoir on 10 May 2018.

| Species | Inch class |  |  |  |  |  |  |  | Total | CPUE | Std. <br> error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  |
| Bluegill | 1 | 20 | 36 | 71 | 34 | 22 | 1 |  | 185 | 370.0 | 58.3 |
| Redear sunfish |  |  |  | 3 | 13 | 24 | 22 | 3 | 65 | 130.0 | 43.3 |

swdwfdbg.d18

Table 15. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at West Fork Drakes Reservoir from 2007-2018. Standard errors are in parentheses. Missing years are non-sampling years.

|  | Length group |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Year | $<3.0$ in | $3.0-5.9$ in | $6.0-7.9$ in | $\geq 8.0$ in | Total |
| 2007 | 10.0 | 392.0 | 156.0 | 0.0 | 558.0 |
|  | $(7.6)$ | $(68.4)$ | $(25.0)$ |  | $(88.3)$ |
| 2009 | 38.0 | 390.0 | 180.0 | 0.0 | 608.0 |
|  | $(13.6)$ | $(68.7)$ | $(51.7)$ |  | $(115.5)$ |
| 2012 | 8.0 | 264.0 | 90.0 | 0.0 | 362.0 |
|  | $(4.6)$ | $(72.3)$ | $(29.1)$ |  | $(73.0)$ |
| 2015 | 24.0 | 376.0 | 194.0 | 0.0 | 594.0 |
|  | $(3.3)$ | $(28.5)$ | $(6.0)$ |  | $(33.5)$ |
| 2018 | 42.0 | 282.0 | 46.0 | 0.0 | 370.0 |
|  | $(31.7)$ | $(34.2)$ | $(8.3)$ |  | $(58.3)$ |

swdwfdbg.D07-D18

Table 16. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at West Fork Drakes Reservoir from 2007-2018. Standard errors are in parentheses. Missing years are non-sampling years.

|  | Length group |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | $<3.0$ in | $3.0-5.9$ in | $6.0-7.9$ in | $\geq 8.0$ in | $\geq 10.0$ in | Total |
| 2007 | 0.0 | 38.0 | 32.0 | 18.0 |  | 88.0 |
|  |  | $(22.2)$ | $(12.7)$ | $(8.3)$ |  | $(36.5)$ |
| 2009 | 2.0 | 112.0 | 198.0 | 8.0 | 0.0 | 320.0 |
|  | $(2.0)$ | $(50.3)$ | $(32.9)$ | $(4.6)$ |  | $(80.5)$ |
| 2012 | 0.0 | 92.0 | 104.0 | 0.0 | 0.0 | 196.0 |
|  |  | $(29.3)$ | $(37.2)$ |  |  | $(59.0)$ |
| 2015 | 10.0 | 30.0 | 132.0 | 28.0 | 0.0 | 200.0 |
|  | $(3.8)$ | $(11.9)$ | $(20.8)$ | $(10.1)$ |  | $(37.4)$ |
| 2018 | 0.0 | 32.0 | 92.0 | 6.0 | 0.0 | 130.0 |
|  |  | $(9.8)$ | $(32.7)$ | $(3.8)$ |  | $(43.3)$ |

[^18]Table 17. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear sunfish collected by diurnal electrofishing at West Fork Drakes Reservoir on 10 May 2018. Numbers in parentheses represent 95\% confidence intervals.

| Species | No. of fish <br> $\geq$ stock size | PSD | RSD $^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| Bluegill | 164 | $14(5)$ | 0 |
| Redear | 65 | $38(11)$ | 0 |

[^19]Table 18. Bluegill population assessments from 2007-2018 at West Fork Drakes Reservoir (scoring based on statewide assessment). Missing years are non-sampling years.

| Parameter | Year |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 |  | $\underline{2009}$ |  | $\underline{2012}$ |  |  | $\underline{2015}$ |  |  | 2018 |  |  |
|  | Value Score |  | Value | Score | Value Score |  |  | Value | S | Score | Value Score |  |  |
| Mean length age-2 at capture | 4.2 | 2 | 4.2 | 2 | 4.2* |  | 2 | 4.2* |  | 2 | 4.2* |  | 2 |
| Years to 6.0 in | 3.4 | 3 | 3.4 | 3 | $3.4 *$ |  | 3 | $3.4 *$ |  | 3 | $3.4 *$ |  | 3 |
| CPUE $\geq 6.0$ in | 156.0 | 4 | 180.0 | 4 | 88.0 |  | 3 | 194.0 |  | 4 | 46.0 |  | 2 |
| CPUE $\geq 8.0$ in | 0.0 | 1 | 0.0 | 1 | 0.0 |  | 1 | 0.0 |  | 1 | 0.0 |  | 1 |
| Instantaneous mortality (z) |  |  | -1.03168 |  |  |  |  |  |  |  |  |  |  |
| Annual mortality (A) |  |  | 64.4 |  |  |  |  |  |  |  |  |  |  |
| Total score: | 10 |  | 10 |  | 9 |  |  | 10 |  |  |  | 8 |  |
| Assessment rating: | Good |  | Good |  | Fair |  |  | Good |  |  | Fair |  |  |

*No age data collected; values carried over from 2009
ND - no age data collected
swdwfdag.d09
swdwfdbg.D07 - D18

Table 19. Redear sunfish population assessments from 2007-2018 at West Fork Drakes Reservoir (scoring based on statewide assessment). Missing years are non-sampling years.

| Parameter | Year |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 |  | 2009 |  | 2012 |  | 2015 |  | 2018 |  |
|  | Value | Score |
| Mean length age-3 at capture | 6.6 | 2 | 6.6 | 2 | 6.6* | 2 | 6.6* | 2 | 6.6* | 2 |
| Years to 8.0 in | 5 | 2 | 5 | 2 | 5* | 2 | 5* | 2 | 5* | 2 |
| CPUE $\geq 8.0$ in | 18.0 | 3 | 8.0 | 2 | 0.0 | 1 | 28.0 | 4 | 6.0 | 2 |
| CPUE $\geq 10.0$ in | 0.0 | 1 | 0.0 | 1 | 0.0 | 1 | 0.0 | 1 | 0.0 | 1 |
| Instantaneous mortality (z) |  |  | -0.642 |  |  |  |  |  |  |  |
| Annual mortality (A) |  |  | 47.4 |  |  |  |  |  |  |  |
| Total score: | 8 |  | 7 |  | 6 |  | 9 |  | 7 |  |
| Assessment rating | Fair |  | Fair |  | Poor |  | Fair |  | Fair |  |

* No age data collected; values carried over from 2009

ND - data collected
swdwfdag.d09
swdwfdbg.D07-D18

Table 20. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of nocturnal electrofishing at Green River Lake from April 30-May 3, 2018.

| Area | Species | Inch class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | CPUE Std err |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |  |  |  |
| Green River Arm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Holmes Bend | Smallmouth bass |  | 1 |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 1.3 | 1.3 |
|  | Spotted bass |  | 1 |  | 1 | 2 | 5 | 8 | 7 | 3 | 1 | 2 | 2 |  |  |  |  |  |  |  |  | 32 | 21.3 | 5.9 |
|  | Largemouth bass |  | 1 | 3 | 11 | 31 | 19 | 7 | 37 | 39 | 38 | 21 | 24 | 20 | 17 | 19 | 12 | 7 | 4 | 3 | 1 | 314 | 209.3 | 25.5 |
| Ramp 1 | Smallmouth bass | 2 | 1 |  |  | 7 | 9 | 1 | 2 |  | 2 |  |  | 1 |  |  |  |  |  |  |  | 25 | 16.7 | 9.7 |
|  | Spotted bass | 1 | 1 |  | 7 | 9 | 15 | 20 | 9 | 5 | 5 | 10 | 3 | 5 | 1 | 1 |  |  |  |  |  | 92 | 61.3 | 2.9 |
|  | Largemouth bass |  |  | 3 | 5 | 11 | 11 | 8 | 16 | 28 | 27 | 20 | 17 | 17 | 7 | 10 | 6 | 7 | 3 |  |  | 196 | 130.7 | 7.7 |
| Robinson Creek Arm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Smith Ridge | Smallmouth bass |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | 1 | 0.7 | 0.7 |
|  | Spotted bass |  |  |  | 3 | 3 | 4 | 8 | 3 | 1 | 4 | 2 |  | 2 |  |  |  |  |  |  |  | 30 | 20.0 | 10.3 |
|  | Largemouth bass |  |  | 1 |  | 1 | 3 |  | 5 | 10 | 12 | 9 | 8 | 7 | 16 | 8 | 14 | 9 | 2 | 1 |  | 106 | 70.7 | 10.9 |
| Lone Valley | Smallmouth bass |  | 1 |  | 1 | 3 |  | 2 | 3 | 1 | 1 | 1 | 1 |  | 2 |  | 1 |  |  |  |  | 17 | 11.3 | 1.8 |
|  | Spotted bass |  |  | 3 | 12 | 8 | 19 | 25 | 12 | 8 | 9 | 7 | 3 | 3 |  |  |  |  |  |  |  | 109 | 72.7 | 10.9 |
|  | Largemouth bass | 5 | 1 | 4 | 1 | 2 | 5 | 8 | 10 | 21 | 15 | 25 | 25 | 30 | 15 | 14 | 18 | 6 | 1 | 1 |  | 207 | 138.0 | 8.1 |
| TOTAL | Smallmouth bass |  | 2 | 3 |  | 1 | 10 | 9 | 4 | 5 | 1 | 3 | 1 | 1 | 2 | 2 |  | 1 |  |  |  | 45 | 7.5 | 3.0 |
|  | Spotted bass | 1 | 2 | 3 | 23 | 22 | 43 | 61 | 31 | 17 | 19 | 21 | 8 | 10 | 1 | 1 |  |  |  |  |  | 263 | 43.8 | 7.9 |
|  | Largemouth bass | 5 | 2 | 11 | 17 | 45 | 38 | 23 | 68 | 98 | 92 | 75 | 74 | 74 | 55 | 51 | 50 | 29 | 10 | 5 | 1 | 823 | 137.2 | 16.1 |

sw dgrlbb.d18

Table 21. Spring diurnal electrofishing CPUE (fish/hr) of largemouth bass by length group collected at Green River Lake during late-April to early-mid May since 1997.

| Year | Length group |  |  |  |  |  |  |  |  |  | Total |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | <8.0 in |  | 8.0-11.9 in |  | 12.0-14.9 in |  | $\geq 15.0$ in |  | $\geq 20.0$ in |  |  |  |
|  | CPUE | Std. <br> error | CPUE | Std. <br> error | CPUE | Std. error |
| 1997 | 3.7 | 1.0 | 22.3 | 2.5 | 23.3 | 2.8 | 23.2 | 2.1 | 1.2 | 0.5 | 72.5 | 5.2 |
| 1998 | 33.5 | 7.7 | 9.0 | 1.8 | 8.8 | 2.0 | 17.5 | 1.8 | 2.0 | 0.7 | 68.8 | 8.6 |
| 1999 | 21.4 | 3.8 | 53.5 | 7.2 | 19.4 | 4.0 | 14.3 | 1.7 | 2.8 | 0.8 | 108.6 | 12.5 |
| 2000 | 2.5 | 0.9 | 41.0 | 4.4 | 24.2 | 3.4 | 14.7 | 3.4 | 3.2 | 1.0 | 82.3 | 8.6 |
| 2001 | 10.2 | 2.5 | 26.7 | 3.0 | 32.2 | 6.5 | 12.5 | 1.5 | 1.7 | 0.4 | 81.5 | 7.8 |
| 2002 | 5.0 | 1.1 | 9.5 | 1.5 | 20.5 | 2.5 | 13.0 | 2.5 | 1.2 | 0.4 | 48.0 | 4.2 |
| 2003 | 5.8 | 1.4 | 12.3 | 2.1 | 5.8 | 1.8 | 18.2 | 3.0 | 1.8 | 0.7 | 42.2 | 4.1 |
| 2004 | 17.3 | 2.7 | 22.8 | 2.1 | 11.6 | 1.8 | 15.6 | 2.6 | 0.9 | 0.3 | 67.3 | 6.4 |
| 2005 | 67.8 | 8.0 | 30.7 | 2.8 | 11.7 | 1.9 | 16.8 | 2.5 | 1.5 | 0.7 | 127.0 | 12.5 |
| 2006 | 15.1 | 2.0 | 44.4 | 3.6 | 23.1 | 2.8 | 18.9 | 2.1 | 0.3 | 0.2 | 96.2 | 5.3 |
| 2007 | 3.8 | 1.0 | 20.5 | 2.5 | 33.7 | 5.8 | 22.2 | 3.6 | 0.5 | 0.3 | 80.2 | 10.3 |
| 2008 | 22.8 | 9.5 | 25.8 | 4.7 | 27.8 | 4.0 | 30.2 | 2.7 | 0.8 | 0.4 | 106.7 | 17.0 |
| 2009 | 7.2 | 1.8 | 11.3 | 3.4 | 13.0 | 2.7 | 42.8 | 7.9 | 1.7 | 0.8 | 74.3 | 12.3 |
| 2010 | no data due to flooding |  |  |  |  |  |  |  |  |  |  |  |
| 2011 | no data due to flooding |  |  |  |  |  |  |  |  |  |  |  |
| 2012 | 16.5 | 4.3 | 54.8 | 6.3 | 35.3 | 6.4 | 38.0 | 5.4 | 1.3 | 0.5 | 144.7 | 16.3 |
| 2013 | 4.2 | 0.7 | 23.7 | 3.7 | 44.0 | 4.8 | 52.8 | 5.3 | 3.3 | 0.7 | 124.7 | 11.7 |
| 2014 | no data due to flooding |  |  |  |  |  |  |  |  |  |  |  |
| 2015 | 9.2 | 1.8 | 23.3 | 6.0 | 23.7 | 3.7 | 51.7 | 5.9 | 2.7 | 0.7 | 107.8 | 15.0 |
| 2016 | 15.0 | 3.7 | 13.0 | 2.7 | 25.0 | 4.7 | 40.0 | 5.8 | 2.5 | 0.7 | 93.5 | 9.1 |
| 2017 | 21.8 | 5.9 | 41.5 | 6.3 | 40.8 | 6.4 | 59.8 | 4.7 | 4.0 | 0.9 | 164.0 | 11.7 |
| 2018 | 13.3 | 3.8 | 37.8 | 6.4 | 40.2 | 4.2 | 45.8 | 4.4 | 2.7 | 0.7 | 137.2 | 16.1 |

sw dgrlbb.D97-D18

Table 22. PSD and RSD values for each black bass species collected during 6.0 hours (12-0.50-hour runs) of nocturnal electrofishing by area at Green River Lake from April 30 - May 3, 2018. $95 \%$ confidence intervals are in parentheses.


[^20]Table 23. Population assessment of largemouth bass based on nocturnal spring sampling at Green River Lake from 2007-2018 (scoring based on statewide assessment).

| Parameter | Year |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2007 |  | 2008 |  | 2009 |  | $\underline{2012}$ |  | $\underline{2013}$ |  | 2015 |  | $\underline{2016}$ |  | 2017 |  | $\underline{2018}$ |  |
|  | Value | Score |
| Mean length age-3 at capture | 14.4 | 4 | 14.4 | 4 | 14.6 | 4 | 14.6 | 4 | 14.6 | 4 | 13.1 | 4 | 13.1 | 4 | 13.1 | 4 | 13.1 | 4 |
| Spring CPUE age-1 | 3.8 | 1 | 22.8 | 3 | 7.2 | 1 | 15.5 | 2 | 3.8 | 1 | 16.0 | 2 | 17.3 | 2 | 34.5 | 3 | 17.7 | 2 |
| Spring CPUE 12.0-14.9 in | 33.7 | 4 | 27.8 | 3 | 13.0 | 1 | 35.3 | 4 | 44.0 | 4 | 23.7 | 3 | 25.0 | 2 | 40.8 | 4 | 40.2 | 4 |
| Spring CPUE $\geq 15.0$ in | 22.2 | 4 | 30.2 | 4 | 42.8 | 4 | 39.3 | 4 | 52.8 | 4 | 51.7 | 4 | 40.0 | 4 | 59.8 | 4 | 45.8 | 4 |
| Spring CPUE $\geq 20.0$ in | 0.5 | 3 | 0.8 | 3 | 1.7 | 4 | 1.3 | 4 | 3.3 | 4 | 2.7 | 4 | 2.5 | 4 | 4.0 | 4 | 2.7 | 4 |
| Instantaneous mortality (z) |  |  |  |  | -0.610 |  |  |  |  |  | -0.473 |  |  |  |  |  |  |  |
| Annual mortality (A)\% |  |  |  |  | 45.7 |  |  |  |  |  | 37.71 |  |  |  |  |  |  |  |
| Total score |  | 16 |  | 17 |  | 14 |  | 16 |  | 17 |  | 17 |  | 16 |  | 19 |  | 18 |
| Assessment rating |  | Good |  | Excellent |  | Good |  | Good |  | Excellent |  | Excellent |  | Good |  | Excellent |  | Excellen |
| sw dgrlag.D03, D09, 15 sw dgrlbb.D02-D18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 24. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours (12-0.50-hour runs) of diurnal electrofishing at Green River Lake on October 29-31, 2018.

| Area | Species | Inch class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | CPUE Std err |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |  |  |  |
| Green River Arm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Holmes Bend | Smallmouth bass |  | 1 |  | 1 |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  | 3 | 2.0 | 1.2 |
|  | Spotted bass |  | 50 | 43 | 14 | 6 | 8 | 9 | 9 | 2 | 2 | 2 |  | 2 |  |  |  |  |  |  |  |  | 147 | 98.0 | 30.6 |
|  | Largemouth bass |  | 19 | 41 | 38 | 25 | 12 | 6 | 6 | 8 | 6 | 1 | 7 | 4 | 1 | 3 | 1 | 2 | 1 | 1 |  | 1 | 183 | 122.0 | 8.3 |
| Ramp 1 | Smallmouth bass |  | 23 | 8 | 3 | 7 | 6 |  | 2 | 3 | 1 |  | 2 | 1 |  |  |  | 1 |  |  |  |  | 57 | 38.0 | 11.7 |
|  | Spotted bass | 14 | 55 | 13 | 12 | 9 | 9 | 5 | 3 | 5 |  | 1 |  |  | 1 |  |  |  |  |  |  |  | 127 | 84.7 | 27.9 |
|  | Largemouth bass | 2 | 12 | 14 | 23 | 23 | 11 | 1 | 3 | 1 | 1 | 4 | 2 | 4 | 4 |  | 1 | 3 | 1 |  |  |  | 110 | 73.3 | 7.4 |
| Robinson Creek Arm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Smith Ridge | Smallmouth bass |  | 3 |  |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  | 4 | 2.7 | 2.7 |
|  | Spotted bass | 3 | 74 | 70 | 9 | 6 | 7 | 8 | 5 | 8 | 5 | 2 | 2 |  |  |  |  |  |  |  |  |  | 199 | 132.7 | 12.1 |
|  | Largemouth bass |  | 28 | 43 | 23 | 20 | 24 | 11 | 7 | 7 | 12 | 1 | 7 | 2 | 1 | 1 | 1 |  |  |  |  | 1 | 189 | 126.0 | 31.4 |
| Lone Valley | Smallmouth bass | 3 | 45 | 9 | 3 | 6 |  |  | 2 |  |  | 3 | 1 | 1 |  |  |  |  |  |  |  |  | 74 | 49.3 | 3.7 |
|  | Spotted bass | 27 | 81 | 9 | 13 | 9 | 9 | 8 | 7 | 5 | 5 | 3 | 1 | 2 | 3 | 2 |  |  |  |  |  |  | 184 | 122.7 | 14.4 |
|  | Largemouth bass | 15 | 34 | 4 | 4 | 1 | 1 |  | 1 | 1 | 1 |  | 2 | 2 | 2 |  | 2 | 2 | 3 |  |  |  | 75 | 50.0 | 8.7 |
| TOTAL | Smallmouth bass | 3 | 72 | 17 | 7 | 13 | 6 |  | 4 | 3 | 1 | 5 | 3 | 2 |  | 1 |  | 1 |  |  |  |  | 138 | 23.0 | 6.9 |
|  | Spotted bass | 44 | 260 | 135 | 48 | 30 | 33 | 30 | 24 | 20 | 12 | 8 | 3 | 4 | 4 | 2 |  |  |  |  |  |  | 657 | 109.5 | 11.3 |
|  | Largemouth bass | 17 | 93 | 102 | 88 | 69 | 48 | 18 | 17 | 17 | 20 | 6 | 18 | 12 | 8 | 4 | 5 | 7 | 5 | 1 |  | 2 | 557 | 92.8 | 12.2 |

sw dgrlyy.d18

Table 25. Largemouth bass mean length (in) at age-0 and catch rates at age 0 and age 1 collected at Green River Lake since 2002.

| Year class | Age $0^{\text {A }}$ |  | Age $0^{\text {A }}$ |  | Age $0 \geq 5.0$ in $^{\text {A }}$ |  | Age $1^{\text {B }}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Mean length | Std. error | CPUE | Std. error | CPUE | Std. error | CPUE | Std. error |
| 2002 | 3.9 | 0.1 | 32.7 | 9.7 | 5.3 | 1.2 | 7.3 | 1.6 |
| 2003 | 3.9 | 0.1 | 32.8 | 9.7 | 5.5 | 1.2 | 11.9 | 2.1 |
| 2004 | 5.0 | 0.1 | 60.8 | 9.0 | 28.0 | 3.6 | 65.3 | 7.7 |
| 2005 | 5.2 | 0.1 | 31.7 | 7.4 | 16.8 | 4.3 | 14.3 | 2.4 |
| 2006 | 4.3 | 0.1 | 13.5 | 3.4 | 3.7 | 1.2 | 3.8 | 1.0 |
| 2007 | 4.2 | 0.1 | 21.8 | 5.3 | 5.8 | 2.2 | 22.8 | 9.5 |
| 2008 | 4.8 | 0.1 | 23.7 | 5.8 | 11.5 | 3.6 | 7.2 | 1.8 |
| 2009 | 3.7 | 0.1 | 66.8 | 9.8 | 11.5 | 3.9 | ND |  |
| 2010 | 4.8 | 0.1 | 45.0 | 8.1 | 18.3 | 4.9 | ND |  |
| 2011 | 3.9 | 0.1 | 28.8 | 7.5 | 5.8 | 1.5 | 15.5 | 4.0 |
| 2012 | 4.2 | 0.1 | 16.5 | 4.2 | 5.0 | 2.0 | 3.8 | 0.8 |
| 2013 | 5.9 | 0.1 | 26.0 | 15.4 | 19.3 | 12.9 | ND |  |
| 2014 | data collected too late in year for reasonable comparisons |  |  |  |  |  |  |  |
| 2015 | 5.7 | 0.1 | 65.0 | 22.6 | 44.7 | 15.8 | 17.5 | 4.2 |
| 2016 | 5.1 | 0.1 | 55.3 | 8.7 | 30.3 | 7.9 | 34.7 | 8.8 |
| 2017 | 4.8 | 0.1 | 19.0 | 6.6 | 7.0 | 2.5 | 17.7 | 4.5 |
| 2018 | 5.2 | 0.1 | 72.2 | 9.4 | 36.8 | 6.9 |  |  |

${ }^{\text {A }}$ Data collected by fall (late-Sept through early November) diurnal electrofishing. Mean lengths were determined by otoliths taken from a subsample of LMB <9.0 in and extrapolated to the entire catch of the fall sample.
${ }^{B}$ Data collected during the following spring (May) nocturnal electrofishing.
swdgrlbb.D02-D18
swdgrlag. D02-D18
swdgrlyy. D02-D13, 15-

Table 26. Length frequency and CPUE (fish/nn) for each inch class of crappie collected by trap net (59 net-nights) at Green River Lake on November 7-9 and 13-15, 2018.

| Species | Inch class |  |  |  |  |  |  |  |  |  |  | Total | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |  |  |
| White crappie | 4 | 91 | 110 | 34 | 268 | 355 | 185 | 188 | 166 | 42 | 6 | 1449 | 24.6 | 5.0 |
| Black crappie |  |  | 3 | 5 | 3 | 11 | 7 | 4 | 1 | 2 |  | 36 | 0.6 | 0.2 |

swdgrltn.d18

Table 27. Proportional stock density (PSD) and relative stock density ( $\mathrm{RSD}_{10}$ ) of white crappie collected by trap nets ( 59 netnights) at Green River Lake from mid-November 2018. Numbers in parentheses represent $95 \%$ confidence intervals.

| Species | N | PSD | $\mathrm{RSD}_{10}$ |
| :---: | :---: | :---: | :---: |
| White crappie | 1244 | $47(3)$ | $17(2)$ |

## swdgrltn.D18

Table 28. Age frequency and CPUE (fish/nn) of white crappie collected during 59 net-nights at Green River Lake during mid-November 2018.

|  | Inch class |  |  |  |  |  |  |  |  |  |  |  | Total | Percent | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |  |  |  |  |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 4 | 91 | 110 | 8 |  |  |  |  |  |  |  |  | 213 | 14.7 | 3.6 | 0.7 |
| 1 |  |  |  | 26 | 186 | 118 | 8 |  |  |  |  |  | 338 | 23.2 | 5.7 | 1.3 |
| 2 |  |  |  |  | 23 | 74 | 56 | 85 | 17 |  |  |  | 255 | 17.5 | 4.3 | 1.1 |
| 3 |  |  |  |  | 47 | 89 | 72 | 60 | 42 | 15 |  |  | 325 | 22.3 | 5.5 | 1.3 |
| 4 |  |  |  |  |  | 30 | 40 | 17 | 75 | 15 | 3 |  | 180 | 12.4 | 3.1 | 0.8 |
| 5 |  |  |  |  | 12 | 30 |  | 9 | 17 | 4 | 3 |  | 75 | 5.2 | 1.2 | 0.3 |
| 6 |  |  |  |  |  |  | 8 | 9 | 8 |  | 1 | 1 | 27 | 1.9 | 0.5 | 0.1 |
| 7 |  |  |  |  |  | 15 |  | 9 | 8 | 9 |  |  | 41 | 2.8 | 0.7 | 0.2 |
| Total | 4 | 91 | 110 | 34 | 268 | 356 | 184 | 189 | 167 | 43 | 7 |  | 1454 | 100.0 | 24.6 |  |
| \% | 0 | 6 | 8 | 2 | 19 | 25 | 13 | 13 | 11 | 3 | 1 | 0 | 100 |  |  |  |

[^21]Table 29. Age frequency and CPUE (fish/nn) of black crappie collected during 59 net-nights at Green River Lake during mid-November 2018.

|  | Inch class |  |  |  |  |  |  |  | Total | Percent | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |  |  |  |  |
| Age |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 2 | 2 |  |  |  |  |  |  | 4 | 11.0 | 0.1 | <. 1 |
| 1 | 1 | 3 | 2 | 8 | , |  |  |  | 15 | 42.0 | 0.3 | 0.1 |
| 2 |  |  | 1 |  | 3 | 1 |  |  | 5 | 15.0 | 0.1 | <. 1 |
| 3 |  |  |  | 3 | 1 | 1 |  | 2 | 7 | 20.0 | 0.1 | 0.1 |
| 4 |  |  |  |  | 1 | 2 |  |  | 3 | 9.0 | 0.1 | <. 1 |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 |  |  |  |  | 1 |  |  |  | 1 | 3.0 | <. 1 | $<.1$ |
| Total | 3 | 5 | 3 | 11 | 7 | 4 |  | 2 | 35 | 100 |  |  |
| \% | 9 | 14 | 9 | 31 | 20 | 11 |  | 6 | 100 |  |  |  |

Table 30. Mean back calculated length (in) at each annulus for white crappie collected from Green River Lake in mid-late November 2018, including the range of white crappie at each age and the $95 \%$ confidence interval for each age.

|  |  | Age |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year class | No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2017 | 32 | 4.0 |  |  |  |  |  |  |
| 2016 | 26 | 4.8 | 7.0 |  |  |  |  |  |
| 2015 | 39 | 4.9 | 6.6 | 8.1 |  |  |  |  |
| 2014 | 29 | 4.3 | 6.3 | 7.9 | 9.3 |  |  |  |
| 2013 | 11 | 4.2 | 6.3 | 7.5 | 8.5 | 9.5 |  |  |
| 2012 | 5 | 4.6 | 6.5 | 7.6 | 8.5 | 9.3 | 9.9 |  |
| 2011 | 8 | 4.2 | 6.5 | 7.4 | 7.9 | 8.5 | 9.2 | 9.9 |
|  |  |  |  |  |  |  |  |  |
| Mean |  | 4.5 | 6.6 | 7.9 | 8.8 | 9.1 | 9.5 | 9.9 |
| No. | 150 | 118 | 92 | 53 | 24 | 13 | 8 |  |
| Smallest |  | 2.4 | 4.0 | 4.8 | 5.3 | 5.8 | 6.3 | 6.8 |
| Largest |  | 6.5 | 8.7 | 11.1 | 13.2 | 12.2 | 12.9 | 11.5 |
| Std error |  | 0.1 | 0.1 | 0.1 | 0.2 | 0.4 | 0.5 | 0.5 |
| $95 \%$ Cl (+/-) |  | 0.1 | 0.2 | 0.3 | 0.4 | 0.7 | 0.9 | 1.0 |
| O |  |  |  |  |  |  |  |  |

Otoliths were used for age-growth determinations; intercept $=0$ swdgrlag.d18

Table 31. Mean back calculated length (in) at each annulus for black crappie collected from Green River Lake in mid-late November 2018, including the range of black crappie at each age and the $95 \%$ confidence interval for each age.

|  |  | Age |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Year class | No. | 1 | 2 | 3 | 4 | 5 |
| 2017 | 16 | 4.0 |  |  |  |  |
| 2016 | 6 | 4.2 | 6.3 |  |  |  |
| 2015 | 8 | 4.7 | 6.8 | 8.3 |  |  |
| 2014 | 3 | 2.4 | 4.4 | 6.8 | 8.2 |  |
| 2013 | 1 | 2.8 | 4.5 | 6.2 | 7.3 | 8.0 |
|  |  |  |  |  |  |  |
| Mean |  | 4.0 | 6.1 | 7.7 | 8.0 | 8.0 |
| No. | 34 | 18 | 12 | 4 | 1 |  |
| Smallest |  | 2.1 | 4.1 | 6.2 | 7.3 | 8.0 |
| Largest |  | 5.7 | 9.4 | 10.1 | 9.1 | 8.0 |
| Std error |  | 0.2 | 0.3 | 0.4 | 0.4 |  |
| $95 \% \mathrm{Cl}(+/-)$ |  | 0.3 | 0.6 | 0.8 | 0.8 |  |

Otoliths were used for age-growth determinations; intercept $=0$
swdgrlag.d18

Table 32. White crappie assessment from trap net samples at Green River Lake from 1993-2018 (scoring based on statewide assessment).

| Year | White crappie |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CPUE excluding age 0 |  | CPUE age 1 |  | CPUE age 0 |  | CPUE $\geq 8.0$ in |  | Mean length age-2$\qquad$ |  | Mortality |  | Assessment | Rating |
|  | Value | Assessment | Instantaneous (z) | Annual (A) |  |  |
| 1993 | 24.8 | 4 | 7.0 | 3 | 1.2 | 2 | 15.5 | 4 | 9.0 | 2 | -0.949191 | 61.3 | 15 | G |
| 1994 | 8.7 | 4 | 2.5 | 2 | 11.8 | 4 | 6.1 | 4 | 9.3 | 2 | -0.767229 | 53.6 | 16 | G |
| 1995 | 16.2 | 4 | 11.1 | 4 | 13.2 | 4 | 10.7 | 4 | 10.0 | 3 | -1.055474 | 65.2 | 19 | E |
| 1996 | 13.4 | 3 | 6.5 | 3 | 3.2 | 3 | 6.0 | 4 | 9.2 | 2 | -0.895818 | 59.2 | 15 | G |
| 1997 | 14.1 | 3 | 3.9 | 3 | 1.9 | 3 | 8.1 | 4 | 8.7 | 2 | -1.121453 | 67.4 | 15 | G |
| 1998 | 9.2 | 4 | 2.5 | 2 | 3.8 | 3 | 8.0 | 4 | 9.3 | 2 | -0.850455 | 57.3 | 15 | G |
| 1999 | 3.0 | 3 | 5.2 | 3 | 1.0 | 2 | 2.9 | 2 | 9.9 | 3 | NA |  | 13 | G |
| 2000 | 6.3 | 2 | 1.5 | 2 | 0.0 | 1 | 5.2 | 3 | 9.7 | 3 | -0.824828 | 56.2 | 11 | F |
| 2001 | 4.3 | 2 | 0.2 | 1 | 10.8 | 4 | 4.2 | 3 | 9.5 | 2 | -1.09953 | 66.7 | 12 | F |
| 2002 | 10.9 | 4 | 9.7 | 4 | 0.5 | 2 | 4.1 | 3 | ND | 2 | -0.759078 | 53.2 | 15 | G |
| 2003 | 13.0 | 3 | 5.1 | 3 | 3.3 | 3 | 6.8 | 4 | 9.1 | 2 | -1.075599 | 65.9 | 15 | G |
| 2004 | 17.7 | 4 | 9.6 | 4 | 3.8 | 3 | 7.9 | 4 | 8.4 | 2 | -1.53876 | 78.5 | 17 | E |
| 2005* | 13.8 | 3 | 3.0 | 2 | 1.7 | 3 | 8.0 | 3 | ND | 2 | ND |  | 13 | G |
| 2006 | 16.4 | 4 | 10.2 | 4 | 1.4 | 2 | 6.5 | 4 | 9.9 | 3 | -1.090892 | 66.4 | 14 | G |
| 2007* | 15.9 | 4 | 10.5 | 4 | 4.4 | 4 | 6.7 | 4 | 8.9 | 2 | NA |  | 18 | E |
| 2008 | 9.0 | 3 | 0.7 | 1 | 0.9 | 2 | 4.7 | 3 | 7.8 | 1 | -0.728739 | 51.7 | 10 | F |
| 2009 | 20.1 | 4 | 4.1 | 3 | 0.9 | 2 | 9.7 | 4 | ND | 1 | ND |  | 14 | G |
| 2010 | 17.8 | 4 | 0.7 | 1 | 1.3 | 2 | 11.1 | 4 | 7.5 | 1 | -1.10117 | 66.8 | 12 | F |
| 2011 | 22.9 | 4 | 8.3 | 4 | 2.6 | 3 | 10.0 | 4 | 7.9 | 1 | NA |  | 16 | G |
| 2012 | 18.2 | 4 | 3.8 | 3 | 0.1 | 1 | 8.8 | 4 | 8.1 | 2 | NA |  | 14 | G |
| 2013 |  |  |  |  |  |  |  | no data |  |  |  |  |  |  |
| 2014 | 23.1 | 4 | 8.8 | 4 | 2.6 | 3 | 11.2 | 4 | 8.5 | 2 | -0.58989 | 44.6 | 17 | E |
| 2015 |  |  |  |  |  |  |  | no data |  |  |  |  |  |  |
| 2016 | 16.8 | 4 | 2.2 | 2 | 2.3 | 3 | 4.5 | 3 | 7.5 | 1 | NA |  | 13 | G |
| 2017 |  |  |  |  |  |  |  | no data |  |  |  |  |  |  |
| 2018 | 21.0 | 4 | 5.7 | 3 | 3.6 | 3 | 10.0 | 4 | 8.7 | 2 | NA |  | 16 | G |
| * Age assessment data extrapolated from previous years age data |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| NA - catch data not amenable to mortality estimates |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ND - no age data collected |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| sw dglt | sw dgltn.D86-D16 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table 33. Length frequency and CPUE (fish/nn) for white bass and walleye collected by experimental gillnets (14 net-nights) on November 28-30 at Green River Lake, KY 2018.

| Species | Inch class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |  |  |  |
| White bass | 1 | 2 | 6 | 2 |  | 4 | 16 | 24 | 27 | 22 | 17 | 1 | 1 |  |  |  |  | 123 | 8.8 | 2.7 |
| Walleye |  |  |  | 1 | 1 |  |  | 1 | 4 | 2 | 1 | 3 | 6 | 4 | 2 | 1 | 3 | 29 | 2.1 | 1.0 |

swdgrlgn.d18

Table 34. Age frequency and CPUE (fish/nn) of white bass collected from experimental gillnets ( 14 net-nights) during November 28-30 at Green River Lake in 2018.

| Age | Inch class |  |  |  |  |  |  |  |  |  |  |  |  | Total | Percent | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |  |  |  |  |
| 0 | 1 | 2 | 6 | 2 |  |  |  |  |  |  |  |  |  | 11 | 9 | 0.8 | 0.4 |
| 1 |  |  |  |  |  | 4 | 16 | 19 | 1 |  |  |  |  | 40 | 33 | 2.9 | 0.7 |
| 2 |  |  |  |  |  |  |  | 4 | 1 |  |  |  |  | 5 | 4 | 0.4 | 0.1 |
| 3 |  |  |  |  |  |  |  | 1 | 25 | 15 | 10 |  |  | 51 | 41 | 3.6 | 1.4 |
| 4 |  |  |  |  |  |  |  |  |  | 6 | 7 | 1 |  | 14 | 11 | 1.0 | 0.6 |
| 5 |  |  |  |  |  |  |  |  |  | 1 |  |  |  | 1 | 1 | 0.1 | 0.1 |
| 6 |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 0.1 | 0.1 |
| Total | 1 | 2 | 6 | 2 |  | 4 | 16 | 24 | 27 | 22 | 17 | 1 | 1 | 123 |  |  |  |
| \% | 1 | 2 | 5 | 2 |  | 3 | 13 | 20 | 22 | 18 | 14 | 1 | 1 | 100 |  |  |  |

Table 35. Age frequency and CPUE (fish/nn) of walleye collected from experimental gillnets ( 14 net nights) during November 28-30 at Green River Lake in 2018.

| Age | Inch class |  |  |  |  |  |  |  |  |  |  |  |  |  | Total | Percent | CPUE | Std. error |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |  |  |  |  |
| 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  | 2 | 7 | 0.1 | 0.1 |
| 1 |  |  |  |  | 1 | 4 | 2 | 1 | 3 |  | 3 |  |  |  | 14 | 48 | 1.0 | 0.4 |
| 2 |  |  |  |  |  |  |  |  |  | 6 | 1 | 2 |  | 2 | 11 | 38 | 0.8 | 0.3 |
| 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 3 | 0.1 | 0.1 |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 1 | 3 | 0.1 | 0.1 |
| Total | 1 | 1 |  |  | 1 | 4 | 2 | 1 | 3 | 6 | 4 | 2 | 1 | 3 | 29 | 100.0 | 2.07 | 0.98 |
| \% | 3 | 3 |  |  | 3 | 14 | 7 | 3 | 10 | 21 | 14 | 7 | 3 | 10 | 100 |  |  |  |

swdgrlgn.D18, swdgrlag.D18

Table 36. White bass population assessment from experimental gillnetting at Green River Lake 1996-2007, 2015, 2017-2018 (scoring based on statewide assessment).


[^22]Table 37. Relative weight ( Wr ) for each length group of white bass collected by gill nets (14 net-nights) at Green River Lake from November 28-30, 2018. Standard errors are in parentheses.

|  | Length group |  |  |
| :---: | :---: | :---: | :---: |
|  | $6.0-8.9$ in | $9.0-11.9$ in | $\geq 12.0$ in |
| Wr | $94(3)$ | $94(2)$ | $93(1)$ |
| N | 8 | 4 | 70 |

swdgrlgn.D18

Table 38. Walleye population assessment from experimental gillnetting at Green River Lake 1996-2018 (scoring based on statewide assessment).

|  | CPUE excluding age-0 |  | Mean length age-2+ $\qquad$ <br> at capture |  | CPUE $\geq 20.0$ in |  | CPUE age 1 |  | Mortality |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year |  | Assessment | Value | Assessment | Value | Assessment | Value | Assessment | Instantaneous mortality (z) | Annual mortality (A) | Assessment | Rating |
| 1996 | 1.81 | 1 | 18.5 | 3 | 0.12 | 1 | 1.44 | 2 | NA |  | 7 | F |
| 1997 | 0.75 | 1 | 17.3 | 1 | 0.19 | 2 | 0.44 | 1 | NA |  | 5 | P |
| 1998 | 0.50 | 1 | 17.6 | 2 | 0.06 | 1 | 0.29 | 1 | NA |  | 5 | P |
| 1999 | 3.20 | 2 | 17.3 | 1 | 0.13 | 1 | 1.67 | 3 | NA |  | 7 | F |
| 2000 | 5.04 | 3 | 18.1 | 2 | 0.17 | 2 | 4.07 | 4 | -0.684 | 49.6 | 11 | G |
| 2001 | 5.75 | 3 | 17.8 | 2 | 0.00 | 1 | 5.03 | 4 | NA |  | 10 | G |
| 2002 | 2.57 | 2 | 17.8 | 2 | 0.39 | 2 | 0.74 | 1 | -0.778 | 54.1 | 7 | F |
| 2003 | 2.12 | 1 | 18.3 | 3 | 0.50 | 2 | 1.62 | 2 | NA |  | 8 | F |
| 2004 | 1.13 | 1 | 16.4 | 1 | 0.00 | 1 | 0.75 | 1 | NA |  | 4 | P |
| 2005 | 0.63 | 1 | 17.8 | 2 | 0.13 | 1 | 0.50 | 1 | NA |  | 5 | P |
| 2006 | 2.29 | 1 | 17.9 | 2 | 0.14 | 1 | 1.64 | 2 | -0.489 | 38.7 | 6 | P |
| 2007 | 6.75 | 4 | 18.6 | 3 | 0.75 | 3 | 3.88 | 4 | -0.689 | 49.8 | 14 | E |
| 2008 | 3.67 | 2 | 19.6 | 4 | 0.93 | 3 | 1.07 | 2 | -0.357 | 30.0 | 11 | G |
| 2009 | 4.06 | 3 | 19.6 | 4 | 1.13 | 4 | 2.31 | 3 | -0.657 | 48.2 | 14 | E |
| 2010 | 3.56 | 2 | 18.8 | 3 | 1.00 | 3 | 1.69 | 3 | -0.566 | 43.2 | 11 | G |
| 2011 | 1.79 | 1 | 19.3 | 4 | 0.79 | 3 | 0.42 | 1 | -0.409 | 33.5 | 9 | F |
| 2012 | 3.10 | 2 | 19.2 | 4 | 0.90 | 3 | 1.32 | 2 | -0.479 | 38.1 | 11 | G |
| 2013 | 2.81 | 2 | 19.2 | 4 | 0.88 | 3 | 1.06 | 2 | NA |  | 11 | G |
| 2014 | 1.00 | 1 | 20.1 | 4 | 0.67 | 3 | 0.13 | 1 | NA |  | 9 | F |
| 2015 | 2.13 | 1 | 19.5 | 4 | 1.13 | 4 | 0.75 | 1 | NA |  | 10 | G |
| 2017 | 2.14 | 1 | 19.5 | 4 | 0.79 | 3 | 1.14 | 2 | NA |  | 10 | F |
| 2018 | 1.93 | 1 | 19.5 | 4 | 0.43 | 2 | 1.00 | 2 | NA |  | 9 | F |

[^23]Table 39. Relative weight (Wr) for each length group of walleye collected by gill nets (14 net-nights) at Green River Lake from November 28-30, 2018. Standard errors are in parentheses.

|  | Length group |  |  |
| :---: | :---: | :---: | :---: |
|  | $10.0-14.9 \mathrm{in}$ | $15.0-19.9 \mathrm{in}$ | $\geq 20.0$ in |
| Wr | $97(2)$ | $99(1)$ | $95(5)$ |
| N | 6 | 12 | 5 |

swdgrlgn.D18

Table 40. Fish harvest statistics derived from a creel survey at Green River Lake ( 8210 acres) from 15 March through 30 November 2018.

| Fishing trips |  |  |
| :---: | :---: | :---: |
| Number of fishing trips (per acre) | 26,847 | (3.27) |
| Average trip length | 4.06 |  |
| Fishing pressure |  |  |
| Total man-hours (S.E.) | 109,033 | (3615.4) |
| Man-hours/acre | 13 |  |
| Catch/harvest |  |  |
| Number of fish caught (S.E.) | 240,222 | (24624.0) |
| Number of fish harvested (S.E.) | 79,500 | (8926.4) |
| Pounds of fish harvested | 49,635 |  |
| Harvest rates |  |  |
| Fish/hour | 0.73 |  |
| Pounds/hour | 0.93 |  |
| Fish/acre | 9.68 |  |
| Pounds/acre | 6.05 |  |
| Catch rates |  |  |
| Fish/hour | 2.2 |  |
| Fish/acre | 29.26 |  |
| Miscellaneous characteristics (\%) |  |  |
| Male | 92.61 |  |
| Female | 7.39 |  |
| Resident | 98.85 |  |
| Non-resident | 1.15 |  |
| Method (\%) |  |  |
| Still fishing | 28.63 |  |
| Casting | 53.31 |  |
| Jugging | 1.25 |  |
| Trolling | 4.95 |  |
| Spider rigging | 11.87 |  |
| Mode (\%) |  |  |
| Boat | 95.89 |  |
| Bank | 3.38 |  |
| Dock | 0.73 |  |

Table 41. Fish harvest statistics derived from a creel survey at Green River Lake from 15 March to 30 November 2018.

|  | Muskellunge | Channel cattish | Flathead catfish | White bass | Bluegill | Smallmouth bass | $\begin{array}{c}\text { Spotted } \\ \text { bass }\end{array}$ | Largemouth bass | White crappie | Walleye | Drum |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. caught | 293 | 6,928 | 134 | 1,110 | 11,447 | 2202 | 6,760 | 20,156 | 183,354 | 117 | 260 |  |
| (per acre) | (0.04) | (0.84) | (0.02) | (0.14) | (1.39) | (0.27) | (0.82) | (2.46) | (22.33) | (0.01) | (0.03) |  |
| No. Harvested | 0 | 4,231 | 14 | 120 | 1,907 | 353 | 724 | 5,329 | 65,406 | 66 | 0 |  |
| (per acre) |  | (0.52) | (0.00) | (0.01) | (0.23) | (0.04) | (0.09) | (0.65) | (7.97) | (0.00) |  |  |
| \% total harvest | 0 | 5.32 | 0.02 | .. 15 | 2.4 | 0.44 | 0.91 | 6.7 | 82.27 | 0.08 | 0 |  |
| Lb harvested | 0 | 9860 | 44 | 137.1 | 351 | 537.6 | 823.7 | 10488.4 | 26575.6 | 181 | 0 |  |
| (per acre) |  | (1.20) | (0.01) | (0.02) | (0.04) | (0.07) | (0.10) | (1.28) | (3.24) | (0.02) |  |  |
| \% of total lb harvested | 0 | 19.87 | 0.09 | 0.28 | 0.71 | 1.08 | 1.66 | 21.13 | 53.54 | 0.36 | 0 |  |
| Mean length (in) |  | 19.6 | 20 | 14.5 | 6.33 | 13.72 | 13.92 | 15.61 | 9.71 | 18.88 |  |  |
| Mean w eight (lb) |  | 2.48 | 3.16 | 1.18 | 0.17 | 1.26 | 1.13 | 1.96 | 0.41 | 2.3 |  |  |
|  | Muskie | Catfis | group | W. bass | Panfish group |  | Black bass group |  | Crappie group |  | Walleye | Anything |
| No. of fishing trips for that species | 409 | 1,283 |  | 0 | 620 |  | 11,905 |  | 11,619 |  | 130 | 881 |
| \% of all trips | 1.52 | 4.78 |  |  | 2.31 |  | 44.34 |  | 43.28 |  | 0.49 | 3.28 |
| Hours fishing for that species | 1,660 | 5,210 |  |  | 2,520 |  | 48,349 |  | 47,188 |  | 529 | 3,576 |
| No. harvested fishing for that species | 0 | 3,678 |  |  | 1,196 |  | 6,257 |  | 66,321 |  | 40 | 0 |
| Lb harvested fishing for that species | 0.0 | 8,512.1 |  |  | 241.9 |  | 11,551.5 |  | 27,064.6 |  | 125.9 | 0.0 |
| No./hour harvested for that species | 0 | 0.52 |  |  | 0.53 |  | 0.13 |  | 1.43 |  | 0.1 | 0 |
| \% success fishing for that species | 0 | 51.4 |  |  | 12.73 |  | 17.23 |  | 61.37 |  | 7.14 | 12.68 |

Table 42. Length distribution and species composition (released fish lengths were estimates) for each species of fish harvested at Green River Lake from 15 March to 30 November 2018

| Species |  | nch class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Status | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 42 | 48 |
| Muskellunge | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  |  |  |  |  |  |  |  |  |  |  |  | 24 |  |  |  |  | 49 |  |  |  | 24 |  |  |  | 24 |  | 49 |  | 18 |  | 24 | 24 |  | 24 |  | 27 |
| Channel cattish | Harvest |  |  |  |  |  |  |  | 32 | 16 | 65 | 227 | 243 | 227 | 292 | 162 | 486 | 357 | 697 | 130 | 373 | 162 | 276 | 259 | 130 | 81 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  |  |  |  |  | 160 | 231 | 177 | 142 | 479 | 124 | 213 | 231 | 160 | 53 | 231 | 18 | 124 | 36 | 106 | 18 | 18 | 71 | 35 | 18 |  | 35 | 19 |  |  |  |  |  |  |  | 16 |  |
| Flathead cattish | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  |  |  |  |  |  |  |  |  | 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 20 |  |  |  |  |  |  |  |  |
| White bass | Harvest |  |  |  |  |  |  |  |  | 17 | 17 | 17 | 51 |  | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  |  |  | 57 | 95 | 19 | 114 | 19 | 171 | 152 | 190 | 95 | 19 | 19 |  |  |  | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Rock bass | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released | 16 | 146 | 471 | 163 | 195 |  | 163 |  | 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Warmouth | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  | 810 | 810 | 213 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Green sunfish | Harvest |  | 40 | 40 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released | 30 | 369 | 695 | 177 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Bluegill | Harvest | 286 | 515 | 324 | 4314 | 1317 | 1718 | 248 | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released | 99 | 3132 | 1236 | 1681 |  | 115 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Longear | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  | 233 | 127 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Redear | Harvest |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released | 20 | 20 | 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Smallmouth bass | Harvest |  |  |  |  |  |  |  |  |  | 92 | 15 | 77 | 46 | 61 | 31 | 15 |  | 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  |  | 19 | 149 | 56 | 131 | 75 | 523 | 75 | 187 | 224 | 187 | 93 | 56 | 19 | 37 |  |  |  | 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Spotted bass | Harvest |  |  |  | 17 |  |  |  |  | 17 | 151 | 185 | 151 | 67 | 50 | 17 | 17 | 34 | 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Released |  | 17 | 134 | 419 | 184 | 822 | 352 | 1995 | 905 | 587 | 285 | 134 | 67 | 34 |  | 101 |  |  | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

```
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Status} & \multicolumn{37}{|c|}{Inch class} \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 42 & 48 \\
\hline \multirow[t]{2}{*}{Largemouth bass} & Harvest & & & & & & & & & & 367 & 792 & 1004 & 714 & 850 & 521 & 386 & 348 & 174 & 19 & 77 & 19 & 39 & 19 & & & & & & & & & & & & & & \\
\hline & Released & & & & & & 777 & 738 & 2857 & 1205 & 2448 & 1613 & 1593 & 1069 & 933 & 583 & 486 & 214 & 78 & 117 & 39 & 39 & 19 & & & & 19 & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{White crappie} & Harvest & & & & & & & 30387 & 26155 & 6443 & 1830 & 458 & 133 & \\
\hline & Released & 348 & 1565 & 7843 & 15898 & 31969 & 50784 & 8306 & 947 & 116 & 77 & 58 & 19 & 18 & \\
\hline \multirow[t]{2}{*}{Walleye} & Harvest & & & & & & & & & & & & & & & 13 & 13 & & 13 & & 13 & 14 & & & & & & & & & & & & & & & & \\
\hline & Released & & & & 17 & & & & 17 & & & 17 & \\
\hline \multirow[t]{2}{*}{Drum} & Harvest & \\
\hline & Released & & & & & & & & 10 & & & & 40 & 60 & 40 & & 20 & & 40 & & & & & & & & 20 & & & & & & & & & & & \\
\hline
\end{tabular}
\(\qquad\)

Table 43. Monthly crappie angling success at Green River Lake during the 2018 daytime creel survey period (March 15 - November 30).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total number of crappie caught & Total number of crappie harvested & Number of crappie fishing trips & Hours fished by crappie anglers & Number caught by crappie anglers & Number caught/hour by crappie anglers & Number harvested by crappie anglers & Number harvested/hour by crappie anglers \\
\hline March & 20,463 & 10,412 & 1,571 & 6,381 & 20,183 & 2.76 & 10,412 & 1.43 \\
\hline April & 20,736 & 9,122 & 2,462 & 9,999 & 20,627 & 2.38 & 9,122 & 1.05 \\
\hline May & 69,638 & 21,514 & 3,823 & 15,526 & 69,355 & 4.46 & 21,349 & 1.37 \\
\hline June & 21,708 & 5,307 & 1,051 & 4,270 & 20,930 & 4.06 & 5,188 & 1.00 \\
\hline July & 15,879 & 4,481 & 632 & 2,567 & 15,851 & 5.09 & 4,467 & 1.43 \\
\hline August & 3,568 & 1,685 & 272 & 1,103 & 3,476 & 3.50 & 1,659 & 1.67 \\
\hline September & 13,320 & 3,669 & 534 & 2,170 & 12,970 & 5.88 & 3,638 & 1.65 \\
\hline October & 13,231 & 6,861 & 887 & 3,600 & 13,217 & 3.18 & 6,861 & 1.65 \\
\hline November & 7,318 & 3,625 & 387 & 1,572 & 7,309 & 4.90 & 3,625 & 2.43 \\
\hline Total & 185,861 & 66,676 & 11,619 & 47,188 & 183,918 & 3.93 & 66,321 & 1.43 \\
\hline
\end{tabular}

Table 44. Monthly black bass angling success at Green River Lake during the 2014 daytime creel survey period (March 15 - November 30).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & \begin{tabular}{l}
Total number \\
of black \\
bass caught
\end{tabular} & Total number of black bass harvested & Number of black bass fishing trips & Hours fished by black bass anglers & Number caught by bass anglers & Number caught/hour by bass anglers & Number harvested by bass anglers & Number harvested/hour by bass anglers \\
\hline March & 3,324 & 641 & 2,245 & 9,116 & 2,963 & 0.36 & 641 & 0.08 \\
\hline April & 4,336 & 1,996 & 2,117 & 8,597 & 4,057 & 0.40 & 1,996 & 0.20 \\
\hline May & 7,304 & 1,174 & 1,791 & 7,173 & 6,013 & 0.81 & 1,150 & 0.15 \\
\hline June & 3,911 & 698 & 1,337 & 5,430 & 3,253 & 0.70 & 619 & 0.13 \\
\hline July & 2,254 & 252 & 1,106 & 4,492 & 2,058 & 0.58 & 224 & 0.06 \\
\hline August & 1,132 & 79 & 649 & 2,635 & 1,039 & 0.48 & 78 & 0.04 \\
\hline September & 2,847 & 807 & 1,243 & 5,047 & 2,785 & 0.64 & 791 & 0.18 \\
\hline October & 3,055 & 423 & 772 & 3,137 & 2,291 & 0.81 & 423 & 0.15 \\
\hline November & 954 & 335 & 645 & 2,620 & 904 & 0.33 & 335 & 0.12 \\
\hline Total & 29,117 & 6,405 & 11,905 & 48,247 & 25,363 & 0.55 & 6,257 & 0.13 \\
\hline
\end{tabular}

Table 45. Monthly catfish angling success at Green River Lake during the 2018 daytime creel survey period (March 15 - November 30).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total number of catfish caught & Total number of catfish harvested & Number of catfish fishing trips & Hours fished by catfish anglers & Number caught by catfish anglers & Number caught/hour by catfish anglers & Number harvested by catfish anglers & Number harvested/hour by catfish anglers \\
\hline March & 40 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline April & 86 & 21 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline May & 1,926 & 869 & 327 & 1,329 & 846 & 0.72 & 752 & 0.65 \\
\hline June & 1,018 & 579 & 195 & 791 & 459 & 0.53 & 459 & 0.53 \\
\hline July & 1,218 & 882 & 232 & 944 & 1,022 & 0.8 & 770 & 0.60 \\
\hline August & 711 & 382 & 181 & 736 & 355 & 0.25 & 342 & 0.24 \\
\hline September & 1,644 & 1,279 & 240 & 974 & 1,522 & 0.76 & 1,218 & 0.62 \\
\hline October & 368 & 191 & 79 & 321 & 163 & 0.96 & 98 & 0.56 \\
\hline November & 50 & 42 & 29 & 116 & 42 & 0.83 & 42 & 0.83 \\
\hline Total & 7,061 & 4,245 & 1,283 & 5,211 & 4,409 & 0.62 & 3,681 & 0.52 \\
\hline
\end{tabular}

Table 46. Monthly muskie angling success at Green River Lake during the 2018 daytime creel survey period March 15 - November 30).
\(\left.\begin{array}{lccccccc}\hline \text { Total number } \\ \text { of muskie } \\ \text { caught }\end{array} \quad \begin{array}{c}\text { Total number of } \\ \text { muskie } \\ \text { harvested }\end{array} \quad \begin{array}{c}\text { Number of muskie } \\ \text { fishing trips }\end{array} \quad \begin{array}{c}\text { Hours fished by } \\ \text { muskie anglers }\end{array} \quad \begin{array}{c}\text { Number caught by } \\ \text { muskie anglers }\end{array} \quad \begin{array}{c}\text { Number caught/hour } \\ \text { by muskie anglers }\end{array} \quad \begin{array}{c}\text { Number harvested } \\ \text { by muskie anglers }\end{array} \quad \begin{array}{c}\text { harvested/hour by } \\ \text { muskie anglers }\end{array}\right]\)

Table 47. Monthly walleye angling success at Green River Lake during the 2018 daytime creel survey period (March 15 - November 30).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total number of walleye caught & Total number of w alleye harvested & Number of walleye fishing trips & Hours fished by w alleye anglers & Number caught by w alleye anglers & Number caught/hour by w alleye anglers & Number harvested by walleye anglers & Number harvested/hour by w alleye anglers \\
\hline March & 0 & & 0 & & & & & \\
\hline April & 0 & & 0 & & & & & \\
\hline May & 23 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline June & 0 & 0 & 26 & 105 & 0 & 0 & 0 & 0 \\
\hline July & 14 & 0 & 56 & 227 & 14 & 0.08 & 0 & 0 \\
\hline August & 66 & 53 & 38 & 153 & 53 & 0.28 & 40 & 0.21 \\
\hline September & 0 & 0 & 11 & 44 & 0 & 0 & 0 & 0 \\
\hline October & 14 & 14 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline November & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline Total & 117 & 67 & 131 & 529 & 67 & 0.13 & 40 & 0.08 \\
\hline
\end{tabular}

Table 48. Black bass catch and harvest statistics for all anglers derived from a 2018 (March 15 - November 30) daytime creel survey at Green River Lake (8,210 acres).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{5}{|c|}{Largemouth bass} & \multicolumn{5}{|c|}{Spotted bass} & \multicolumn{5}{|c|}{Smallmouth bass} \\
\hline & \multicolumn{2}{|l|}{Harvest} & \multicolumn{3}{|c|}{Catch and release} & \multicolumn{2}{|l|}{Harvest} & \multicolumn{3}{|c|}{Catch and release} & \multicolumn{2}{|l|}{Harvest} & \multicolumn{3}{|c|}{Catch and release} \\
\hline & 12.0-14.9 in \(\geq 15.0\) in & Total & 12.0-14.9 in & \(\geq 15.0\) in & Total & 12.0-14.9 in \(\geq 15.0\) in & Total & 12.0-14.9 in & \(\geq 15.0\) in & Total & 12.0-14.9 in \(\geq 15.0\) in & Total & 12.0-14.9 in & \(\geq 15.0\) in & Total \\
\hline Total number of bass & 2,877 2,451 & 5,328 & 5,654 & 3,596 & 9,250 & 487202 & 723 & 1,006 & 202 & 1,208 & 184168 & 352 & 598 & 224 & 822 \\
\hline \(\%\) of black bass harvested by number & & 83.2 & & & & & 11.3 & & & & & 5.5 & & & \\
\hline Total w eight of fish (lb) & & 10,488.4 & 5,863.0 & 3,727.0 & 9,590.0 & & 823.7 & 463.0 & 91.0 & 554.0 & & 537.6 & 429.0 & 162.0 & 591.0 \\
\hline \% of bass harvested by weight & & 88.5 & & & & & 7.0 & & & & & 4.5 & & & \\
\hline Mean length (in) & & 15.6 & & & & & 13.9 & & & & & 13.7 & & & \\
\hline Mean w eight (lb) & & 2.0 & & & & & 1.1 & & & & & 1.3 & & & \\
\hline Rate (fish/hour) & & 0.1 & & & & & 0.01 & & & & & 0.004 & & & \\
\hline
\end{tabular}

Table 49. Length frequency and CPUE (fish/hr) of bluegill collected by diurnal electrofishing (0.5 hours; 4-450-second runs) at Metcalfe County Lake on 1 May 2018
\begin{tabular}{cccccccccccc}
& \multicolumn{10}{c}{ Inch class } & \\
Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Total & CPUE & \begin{tabular}{c}
Std. \\
error
\end{tabular} \\
\hline & & & & & & & & & & & \\
Bluegill & 9 & 42 & 108 & 105 & 75 & 16 & & & 355 & 710.0 & 72.6 \\
White crappie & & & & & & 30 & 16 & 2 & 48 & 96.0 & 75.1 \\
\hline swdmetbg.D18 & & & & & & & & & & &
\end{tabular}

Table 50. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Metcalfe County Lake during early-mid May from 2005-2018 .
Standard error in parentheses.
Length group
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & \(<3.0\) in & 3.0-5.9 in & 6.0-7.9 in & \(>8.0\) in & Total \\
\hline 2005 & \[
\begin{aligned}
& 66.8 \\
& (9.4)
\end{aligned}
\] & \[
\begin{gathered}
807.7 \\
(113.5)
\end{gathered}
\] & \[
\begin{aligned}
& 366.2 \\
& (61.8)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 1240.7 \\
& (165.1)
\end{aligned}
\] \\
\hline 2007 & \[
\begin{aligned}
& 108.0 \\
& (33.1)
\end{aligned}
\] & \[
\begin{gathered}
886.0 \\
(171.7)
\end{gathered}
\] & \[
\begin{gathered}
568.0 \\
(132.8)
\end{gathered}
\] & 0.0 & \[
\begin{aligned}
& 1562.0 \\
& (270.1)
\end{aligned}
\] \\
\hline 2011 & \[
\begin{aligned}
& 102.0 \\
& (25.6)
\end{aligned}
\] & \[
\begin{aligned}
& 1032.0 \\
& (156.7)
\end{aligned}
\] & \[
\begin{aligned}
& 194.0 \\
& (39.1)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 1328.0 \\
& (196.9)
\end{aligned}
\] \\
\hline 2014 & \[
\begin{aligned}
& 22.4 \\
& (9.3)
\end{aligned}
\] & \[
\begin{aligned}
& 326.4 \\
& (53.2)
\end{aligned}
\] & \[
\begin{aligned}
& 288.0 \\
& (50.0)
\end{aligned}
\] & 0.0 & \[
\begin{gathered}
636.8 \\
(107.7)
\end{gathered}
\] \\
\hline 2016 & \[
\begin{aligned}
& 116.0 \\
& (44.1)
\end{aligned}
\] & \[
\begin{aligned}
& 274.0 \\
& (99.6)
\end{aligned}
\] & \[
\begin{aligned}
& 160.0 \\
& (53.4)
\end{aligned}
\] & 0.0 & \[
\begin{gathered}
550.0 \\
(193.2)
\end{gathered}
\] \\
\hline 2018 & \[
\begin{gathered}
18.0 \\
(10.5)
\end{gathered}
\] & \[
\begin{aligned}
& 510.0 \\
& (63.1)
\end{aligned}
\] & \[
\begin{aligned}
& 182.0 \\
& (29.1)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 710.0 \\
& (72.6)
\end{aligned}
\] \\
\hline
\end{tabular}
swdmetbg.D05, D07, D11, D14, D16, D18

Table 51. PSD and \(\mathrm{RSD}_{15}\) values obtained for bluegill collected during 0.5 hours (40.125 -hour runs) of spring diurnal electrofishing at Metcalfe Co. Lake on 1 May 2018. \(95 \%\) confidence intervals are in parentheses.
\begin{tabular}{cccc}
\hline Species & No. \(\geq 3.0\) in & PSD (\(\pm 95 \% \mathrm{Cl})\) & \(\mathrm{RSD}_{8}(\pm 95 \% \mathrm{Cl})\) \\
\hline Bluegill & \multirow{2}{*}{346} & \(26(5)\) & \(*\) \\
\hline
\end{tabular}

\footnotetext{
* No fish greater than 8.0 in collected
swdmetbg.D18
}

Table 52. Bluegill population assessments from 2005-2018 at Metcalfe County Lake (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Parameter} & \multicolumn{12}{|c|}{Year} \\
\hline & \multicolumn{2}{|c|}{\(\underline{2005}\)} & \multicolumn{2}{|c|}{\(\underline{2007}\)} & \multicolumn{2}{|c|}{\(\underline{2011}\)} & \multicolumn{2}{|c|}{2014} & \multicolumn{2}{|c|}{\(\underline{2016}\)} & \multicolumn{2}{|c|}{\(\underline{2018}\)} \\
\hline & Value & Score \\
\hline Mean length age-2 at capture & 4.4* & 3 & 4.4 & 3 & 4.4* & 3 & 4.4* & 3 & 4.4* & 3 & 4.4* & 3 \\
\hline Years to 6.0 in & 3.6* & 3 & 3.6 & 3 & 3.6* & 3 & 3.6* & 3 & 3.6* & 3 & 3.6* & 3 \\
\hline CPUE \(\geq 6.0\) in & 366.2 & 4 & 568.0 & 4 & 194.0 & 4 & 288.0 & 4 & 160.0 & 4 & 182.0 & 4 \\
\hline CPUE \(\geq 8.0\) in & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 & 0.0 & 0 \\
\hline Instantaneous mortality (z) & & & 1.07 & & & & & & & & & \\
\hline Annual mortality (A) & & & 66.0 & & & & & & & & & \\
\hline Total score: & & 10 & & 10 & & 10 & & 10 & & 10 & & 10 \\
\hline Assessment rating & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|c|}{Good} \\
\hline
\end{tabular}
* No age data; values carried over from years with age data
swdmetag.D07
swdmetbg.D05-D18

Table 53. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected during 0.875 hours (7-450-sec runs) of diurnal electrofishing at Mill Creek
Lake (Monrone Co.) on 1 May 2018.
\begin{tabular}{ccccccccccc}
& \multicolumn{9}{c}{ Inch class } & \\
Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Total & CPUE & \begin{tabular}{c}
Std. \\
error
\end{tabular} \\
\hline Bluegill & 6 & 108 & 163 & 97 & 23 & 8 & & 405 & 462.9 & 85.1 \\
Redear sunfish & & & 2 & 4 & 3 & 5 & 1 & 15 & 17.1 & 7.3 \\
\hline swdmilbg.D18 & & & & & & & & & &
\end{tabular}

Table 54. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Mill Creek Lake from 2005-2018. Standard errors are in parentheses. No data collected in missing years.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Length group} & \\
\hline & <3.0 in & 3.0-5.9 in & 6.0-7.9 in & \(>8.0\) in & Total \\
\hline 2005 & \[
\begin{gathered}
76.8 \\
(32.0)
\end{gathered}
\] & \[
\begin{aligned}
& 350.4 \\
& (53.4)
\end{aligned}
\] & \[
\begin{gathered}
88.8 \\
(20.7)
\end{gathered}
\] & 0.0 & \[
\begin{aligned}
& 516.0 \\
& (72.8)
\end{aligned}
\] \\
\hline 2010 & \[
\begin{gathered}
74.4 \\
(20.1)
\end{gathered}
\] & \[
\begin{aligned}
& 568.0 \\
& (75.6)
\end{aligned}
\] & \[
\begin{gathered}
56.0 \\
(11.1)
\end{gathered}
\] & 0.0 & \[
\begin{aligned}
& 698.4 \\
& (76.1)
\end{aligned}
\] \\
\hline 2013 & \[
\begin{aligned}
& 184.0 \\
& (76.5)
\end{aligned}
\] & \[
\begin{aligned}
& 412.0 \\
& (43.8)
\end{aligned}
\] & \[
\begin{aligned}
& 47.2 \\
& (6.4)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 644.0 \\
& (96.0)
\end{aligned}
\] \\
\hline 2016 & \[
\begin{gathered}
59.0 \\
(15.2)
\end{gathered}
\] & \[
\begin{aligned}
& 549.0 \\
& (50.1)
\end{aligned}
\] & \[
\begin{aligned}
& 31.0 \\
& (5.3)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 639.0 \\
& (52.5)
\end{aligned}
\] \\
\hline 2018 & \[
\begin{gathered}
6.9 \\
(4.4)
\end{gathered}
\] & \[
\begin{aligned}
& 420.6 \\
& (82.1)
\end{aligned}
\] & \[
\begin{aligned}
& 35.4 \\
& (6.7)
\end{aligned}
\] & 0.0 & \[
\begin{aligned}
& 462.9 \\
& (85.1)
\end{aligned}
\] \\
\hline
\end{tabular}

SWDMILBG.D05-D18

Table 55. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear sunfish collected by diurnal electrofishing at Mill Creek Lake on 1 May 2018. Numbers in parentheses represent 95\% confidence intervals.
\begin{tabular}{cccc}
\hline Species & N & PSD & RSD \(^{\text {a }}\) \\
\hline Bluegill & 399 & \(8(3)\) & 0 \\
Redear sunfish & 15 & \(40(26)\) & NA \\
& & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Bluegill \(=\) RSD \(_{8}\); redear= RSD \(_{9}\) swdmilbg.D18
}

Table 56. Bluegill population assessments from 2005, 2010, 2013, 2016 and 2018 at Mill Creek Lake (scoring based on statewide assessment).

* - age data carried over from year collected
swdmilag.d13
swdmilbg.D05-D18

Table 57. Species composition, relative abundance, and CPUE (fish/set-night) of channel catfish collected in baited, tandem set hoopnets (8 set-nights; 4 nets per set w/3-day soak time) at Mill Creek Lake September 4-10, 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{16}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CPUE Std err}} \\
\hline & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & & \\
\hline Channel catfish & & & & 1 & & 4 & 9 & 7 & 6 & 7 & 1 & 4 & & 1 & & 1 & 41 & 5.1 & 2.1 \\
\hline Redear sunfish & 11 & 11 & 4 & & & & & & & & & & & & & & 26 & 3.4 & 1.8 \\
\hline
\end{tabular}

\footnotetext{
swdmilgcc.d18
}

Table 58. Age frequency and CPUE (fish/set-night) of channel catfish collected from tandem hoopnetting at Mill Creek Lake on September 4-10, 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{10}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Percent} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & & & \\
\hline \multicolumn{15}{|l|}{0} \\
\hline 1 & & & & & & & & & & & & & & \\
\hline 2 & 4 & 4 & 3 & & & & & & & & 11 & 30 & 1.4 & 0.7 \\
\hline 3 & 3 & 3 & 3 & 5 & 1 & 2 & & & & & 17 & 45 & 2.0 & 0.9 \\
\hline 4 & 3 & & & 2 & & & & & & & 5 & 14 & 0.6 & 0.3 \\
\hline \multicolumn{15}{|l|}{5} \\
\hline \multicolumn{15}{|l|}{6} \\
\hline 7 & & & & & & 1 & & & & 1 & 2 & 6 & 0.3 & 0.1 \\
\hline 8 & & & & & & 1 & & & & & 1 & 3 & 0.1 & 0.1 \\
\hline 9 & & & & & & & & 1 & & & 1 & 3 & 0.1 & 0.1 \\
\hline Total & 10 & 7 & 6 & 7 & 1 & 4 & & 1 & & 1 & 37 & 100.0 & & \\
\hline \% & 25 & 19 & 17 & 19 & 3 & 11 & & 3 & & 3 & 100 & & & \\
\hline
\end{tabular}

Table 59. Relative weight (Wr) for each length group of channel catish collected by tandem set hoopnets (8 set-nights) at Mill Creek Lake from September 4-10 October 2018. Standard errors are in parentheses.
\begin{tabular}{cccc}
\hline & \multicolumn{3}{c}{ Length group } \\
\cline { 2 - 4 } & \(11.0-15.9\) in & \(16.0-23.9\) in & \(\geq 24.0\) in \\
\hline Wr & \(85(1)\) & \(89(2)\) & 0 \\
N & 26 & 14 & \\
\hline
\end{tabular}
swdmilcc.D18

Table 60. Length frequency and CPUE (fish/hr) of bluegill collected by diurnal electrofishing (40.125 -hour runs) at Spurlington Lake on 30 April 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{11}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & & & \\
\hline Bluegill & 20 & 91 & 137 & 135 & 30 & 15 & 11 & 12 & 1 & & & 452 & 904.0 & 201.0 \\
\hline Redear sunfish & & & 3 & 2 & 2 & 4 & 6 & 4 & & 2 & & 23 & 46.0 & 8.3 \\
\hline Warmouth & & & & 1 & & 1 & & & & & & 2 & 4.0 & 4.0 \\
\hline White crappie & & & & 5 & 16 & 13 & 3 & & & 1 & 1 & 39 & 78.0 & 42.0 \\
\hline
\end{tabular}
swdsplbg.d18

Table 61. Diurnal spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Spurlington Lake from 2005-2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <3.0 in & 3.0-5.9 in & 6.0-7.9 in & \(>8.0\) in & \\
\hline \multirow[t]{2}{*}{2005} & 66.0 & 216.0 & 50.0 & 16.0 & 348.0 \\
\hline & (14.4) & (45.7) & (15.8) & (8.6) & (68.9) \\
\hline \multirow[t]{2}{*}{2006} & 138.0 & 302.0 & 46.0 & 14.0 & 482.0 \\
\hline & (47.7) & (54.7) & (8.9) & (2.0) & (100.2) \\
\hline \multirow[t]{2}{*}{2007} & 496.0 & 606.0 & 50.0 & 4.0 & 1156.0 \\
\hline & (85.2) & (73.5) & (18.3) & (4.0) & (137.4) \\
\hline \multirow[t]{2}{*}{2008} & 198.0 & 550.0 & 120.0 & 14.0 & 882.0 \\
\hline & (38.4) & (145.6) & (43.2) & (14.0) & (236.3) \\
\hline \multirow[t]{2}{*}{2009} & 246.4 & 571.2 & 156.8 & 14.4 & 988.8 \\
\hline & (37.6) & (82.8) & (30.2) & (7.8) & (119.6) \\
\hline \multirow[t]{2}{*}{2010} & 310.0 & 468.0 & 100.0 & 2.0 & 880.0 \\
\hline & (134.0) & (75.7) & (42.1) & (2.0) & (195.7) \\
\hline \multirow[t]{2}{*}{2011} & 713.6 & 1057.6 & 156.8 & 8.0 & 1936.0 \\
\hline & (111.1) & (187.3) & (54.4) & (3.6) & (256.1) \\
\hline \multirow[t]{2}{*}{2012} & 150.0 & 788.0 & 60.0 & 14.0 & 1012.0 \\
\hline & (42.4) & (178.0) & (7.7) & (5.0) & (227.6) \\
\hline \multirow[t]{2}{*}{2014} & 104.0 & 465.0 & 204.8 & 22.4 & 796.8 \\
\hline & (37.4) & (76.5) & (40.5) & (6.9) & (131.8) \\
\hline \multirow[t]{2}{*}{2016} & 92.0 & 276.0 & 92.0 & 10.0 & 470.0 \\
\hline & (28.8) & (99.2) & (20.0) & (3.8) & (145.5) \\
\hline \multirow[t]{2}{*}{2018} & 222.0 & 604.0 & 52.0 & 26.0 & 904.0 \\
\hline & (116.8) & (90.4) & (7.7) & (6.0) & (201.0) \\
\hline
\end{tabular}

Table 62. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Spurlington Lake during early-mid May 2009-2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <3.0 in & 3.0-5.9 in & 6.0-7.9 in & \(\geq 8.0\) in & \(\geq 10.0\) in & \\
\hline 2009 & \[
\begin{gathered}
1.6 \\
(1.6)
\end{gathered}
\] & \[
\begin{gathered}
6.4 \\
(3.0)
\end{gathered}
\] & \[
\begin{gathered}
28.8 \\
(12.6)
\end{gathered}
\] & \[
\begin{gathered}
24.0 \\
(11.0)
\end{gathered}
\] & * & \[
\begin{gathered}
60.8 \\
(22.4)
\end{gathered}
\] \\
\hline 2010 & \[
\begin{aligned}
& 24.0 \\
& (12.7)
\end{aligned}
\] & \[
\begin{gathered}
18.0 \\
(10.5)
\end{gathered}
\] & \[
\begin{aligned}
& 10.0 \\
& (5.0)
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& (5.2)
\end{aligned}
\] & * & \[
\begin{gathered}
64.0 \\
(27.1)
\end{gathered}
\] \\
\hline 2011 & \[
\begin{gathered}
3.2 \\
(3.2)
\end{gathered}
\] & \[
\begin{aligned}
& 40.0 \\
& (10.1)
\end{aligned}
\] & \[
\begin{gathered}
59.2 \\
(22.6)
\end{gathered}
\] & \[
\begin{aligned}
& 11.2 \\
& (9.3)
\end{aligned}
\] & \[
\begin{gathered}
1.6 \\
(1.6)
\end{gathered}
\] & \[
\begin{aligned}
& 113.6 \\
& (34.3)
\end{aligned}
\] \\
\hline 2012 & * & \[
\begin{gathered}
8.0 \\
(5.7)
\end{gathered}
\] & \[
\begin{aligned}
& 18.0 \\
& (6.8)
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
(0.0)
\end{gathered}
\] & * & \[
\begin{aligned}
& 34.0 \\
& (3.8)
\end{aligned}
\] \\
\hline 2014 & * & \[
\begin{gathered}
8.0 \\
(2.6)
\end{gathered}
\] & \[
\begin{gathered}
30.4 \\
(17.8)
\end{gathered}
\] & \[
\begin{aligned}
& 11.2 \\
& (6.0)
\end{aligned}
\] & * & \[
\begin{gathered}
49.6 \\
(22.4)
\end{gathered}
\] \\
\hline 2016 & \[
\begin{gathered}
2.0 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
(3.8)
\end{gathered}
\] & \[
\begin{aligned}
& 10.0 \\
& (7.6)
\end{aligned}
\] & \[
\begin{gathered}
8.0 \\
(8.0)
\end{gathered}
\] & & \[
\begin{aligned}
& 26.0 \\
& (15.5)
\end{aligned}
\] \\
\hline 2018 & * & \[
\begin{aligned}
& 14.0 \\
& (6.8)
\end{aligned}
\] & \[
\begin{aligned}
& 20.0 \\
& (6.9)
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 \\
& (6.9)
\end{aligned}
\] & \[
\begin{gathered}
4.0 \\
(4.0)
\end{gathered}
\] & \[
\begin{array}{r}
46.0 \\
(8.3) \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
swdsplbg.D09-18

Table 63. Proportional stock density (PSD) and relative stock density (RSD) of bluegill and redear sunfish collected by diurnal electrofishing at Spurlington Lake on 30 April 2018. Numbers in parentheses represent 95\% confidence intervals.
\begin{tabular}{cccc}
\hline Species & N & PSD & RSD \(^{\text {A }}\) \\
\hline Bluegill & 341 & \(11(3)\) & \(4(2)\) \\
Redear & 20 & \(60(22)\) & NA \\
& & & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\mathrm{A}}\) Bluegill= \(\mathrm{RSD}_{8}\); redear sunfish \(=\mathrm{RSD}_{9}\)
* No fish of sufficient size were collected during sampling. swdsplbg.d18
}

Table 64. Bluegill population assessments from 2007-2018 at Spurlington Lake (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Parameter} & \multicolumn{18}{|c|}{Year} \\
\hline & \multicolumn{2}{|c|}{2007} & \multicolumn{2}{|l|}{2008} & \multicolumn{2}{|l|}{2009} & \multicolumn{2}{|l|}{2010} & \multicolumn{2}{|l|}{2011} & \multicolumn{2}{|l|}{2012} & \multicolumn{2}{|l|}{\(\underline{2014}\)} & \multicolumn{2}{|l|}{2016*} & \multicolumn{2}{|l|}{2018*} \\
\hline & Value & Score \\
\hline Mean length age-2 at capture & 5.6 & 4 & 5.6 & 4 & 5.6 & 4 & 5.6 & 4 & 5.6 & 4 & 5.6 & 4 & 5.6 & 4 & 5.1 & 4 & 5.1 & 4 \\
\hline Years to 6.0 in & 3.2* & 3 & 3.2 & 3 & \(3.2 *\) & 3 & 3.2* & 3 & 3.2* & 3 & 3.2* & 3 & 3.2* & 3 & 3.9 & 3 & 3.9 & 3 \\
\hline CPUE \(\geq 6.0\) in & 54.0 & 3 & 134.0 & 4 & 171.2 & 4 & 102.0 & 4 & 164.8 & 4 & 74.0 & 3 & 227.2 & 4 & 102.0 & 4 & 78.0 & 3 \\
\hline CPUE \(\geq 8.0\) in & 4.0 & 3 & 14.0 & 3 & 14.4 & 3 & 2.0 & 3 & 8.0 & 4 & 14.0 & 4 & 22.4 & 4 & 10.0 & 4 & 26.0 & 4 \\
\hline Instantaneous mortality (z) & \multirow[t]{2}{*}{ND} & & \multicolumn{2}{|l|}{-1.091} & \multicolumn{2}{|l|}{ND} \\
\hline Annual mortality (A) & & & \multicolumn{2}{|l|}{66.4} & & & & & & & & & & & & & & \\
\hline Total Score: & & 13 & & 14 & & 14 & & 14 & & 15 & & 14 & & 15 & & 15 & & 14 \\
\hline Assessment rating & \multicolumn{2}{|c|}{Good} & \multicolumn{2}{|l|}{Excellent} \\
\hline
\end{tabular}

ND - no age data collected
*Age data collected in fall; unmarked years age collected in the spring
sw dsplag.d08 \& d18
sw dsplbg.D03 - D18

Table 65. Largemouth bass length frequency and CPUE (fish/hr) collected during 1.5 hours (6-900-sec runs) of nocturnal electrofishing at Shanty Hollow Lake on 26 April 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{Std err} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & & \\
\hline Largemouth bass & 7 & 18 & 8 & 5 & 13 & 85 & 56 & 55 & 65 & 35 & 14 & 7 & & & 3 & 1 & 1 & & 1 & 374 & 249.3 & 20.4 \\
\hline
\end{tabular}
swdshlbb.D18

Table 66. Spring nocturnal electrofishing CPUE (fish/hr) of each length group of largemouth bass collected at Shanty Hollow Lake during mid-late April / May, 2001-2015. Missing years are non-sampling years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multirow[b]{3}{*}{Total CPUE} & \multirow[b]{3}{*}{\begin{tabular}{l}
Std. \\
error
\end{tabular}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. error & & \\
\hline 2001 & 17.1 & 3.4 & 49.1 & 7.3 & 45.1 & 8.6 & 21.7 & 3.6 & 1.7 & 0.8 & 133.1 & 6.5 \\
\hline 2002 & 20.0 & 4.1 & 52.0 & 8.0 & 69.7 & 6.2 & 16.0 & 2.6 & 1.1 & 0.7 & 157.7 & 11.1 \\
\hline 2003 & 17.7 & 4.0 & 125.1 & 12.5 & 76.6 & 6.7 & 32.0 & 5.0 & 8.0 & 2.0 & 251.4 & 18.0 \\
\hline 2004 & 19.4 & 3.6 & 133.7 & 9.7 & 36.6 & 5.0 & 24.0 & 2.8 & 3.4 & 0.6 & 213.7 & 17.0 \\
\hline 2005 & 76.7 & 10.8 & 174.0 & 18.2 & 44.7 & 3.8 & 16.0 & 3.6 & 1.3 & 1.3 & 311.3 & 28.0 \\
\hline 2006 & 86.0 & 15.8 & 214.7 & 11.4 & 30.0 & 3.1 & 11.3 & 3.8 & 5.3 & 2.0 & 342.0 & 26.7 \\
\hline 2007 & 8.0 & 2.4 & 124.5 & 16.8 & 13.0 & 3.1 & 8.5 & 1.4 & 4.0 & 1.1 & 154.0 & 21.0 \\
\hline 2008 & 30.0 & 6.9 & 204.5 & 13.5 & 57.5 & 4.7 & 5.5 & 1.5 & 1.0 & 0.7 & 297.5 & 12.3 \\
\hline 2009 & 21.1 & 4.0 & 140.6 & 8.7 & 88.0 & 5.7 & 12.0 & 3.9 & 2.9 & 1.7 & 261.7 & 11.4 \\
\hline 2010 & 26.0 & 5.2 & 165.0 & 12.4 & 74.5 & 4.7 & 11.5 & 2.7 & 1.5 & 0.7 & 277.0 & 15.3 \\
\hline 2011 & 77.0 & 8.5 & 128.5 & 9.1 & 66.5 & 5.1 & 11.0 & 2.4 & 1.0 & 0.7 & 283.0 & 5.2 \\
\hline 2012 & 81.0 & 11.4 & 210.0 & 11.4 & 56.5 & 4.8 & 14.5 & 2.4 & 1.0 & 0.7 & 362.0 & 13.8 \\
\hline 2015 & 68.0 & 7.3 & 140.5 & 9.8 & 47.5 & 7.1 & 8.0 & 1.7 & 4.5 & 1.2 & 264.0 & 11.3 \\
\hline 2018 & 25.3 & 5.2 & 139.3 & 14.6 & 76.0 & 7.9 & 8.7 & 2.4 & 1.3 & 0.8 & 249.3 & 20.4 \\
\hline
\end{tabular}
swdshlbb.D00 - D18

Table 67. Proportional stock density (PSD) and relative stock density \(\left(\mathrm{RSD}_{15}\right)\) values from spring nocturnal electrofishing at Shanty Hollow Lake on 26 April 2018. Numbers in parentheses represent 95\% confidence intervals.
\begin{tabular}{cccc}
\hline Species & N & PSD & \(\mathrm{RSD}_{15}\) \\
\hline Largemouth bass & 336 & \(38(5)\) & \(4(2)\) \\
\hline
\end{tabular}
swdshlbb.D18

Table 68. Population assessment of largemouth bass based on nocturrnal spring sampling at Shanty Hollow Lake from 2006 -2018 (scoring based on statewide criteria). Missing years are non-sampling years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Parameter} & \multicolumn{18}{|c|}{Year} \\
\hline & \multicolumn{2}{|c|}{2006} & \multicolumn{2}{|c|}{2007} & \multicolumn{2}{|c|}{2008} & \multicolumn{2}{|r|}{\(\underline{2009}\)} & \multicolumn{2}{|c|}{2010} & \multicolumn{2}{|r|}{2011} & \multicolumn{2}{|r|}{2012} & \multicolumn{2}{|r|}{2015*} & \multicolumn{2}{|c|}{2018} \\
\hline & Value & Score \\
\hline Mean length age-3 at capture & 13.7 & 3 & 13.7 & 3 & 13.7 & 3 & 12.8 & 4 & 12.8 & 4 & 12.8 & 4 & 12.8 & 4 & 12.6 & 4 & 12.6 & 4 \\
\hline Spring CPUE age-1 & 68.7 & 4 & 6.0 & 1 & 22.0 & 3 & 20.0 & 2 & 21.5 & 3 & 59.5 & 4 & 78.5 & 4 & 52.5 & 3 & 23.3 & 3 \\
\hline Spring CPUE 12.0-14.9 in & 30.0 & 3 & 13.0 & 1 & 57.5 & 4 & 88.0 & 4 & 74.5 & 4 & 66.5 & 4 & 56.5 & 4 & 47.5 & 4 & 76.0 & 4 \\
\hline Spring CPUE \(\geq 15.0\) in & 11.3 & 2 & 8.5 & 2 & 5.5 & 1 & 12.0 & 2 & 11.5 & 2 & 11.0 & 2 & 14.5 & 3 & 8.0 & 2 & 8.7 & 2 \\
\hline Spring CPUE \(\geq 20.0\) in & 5.3 & 4 & 4.0 & 4 & 1.0 & 2 & 2.9 & 3 & 1.5 & 2 & 1.0 & 2 & 1.0 & 2 & 4.5 & 4 & 1.3 & 2 \\
\hline Instantaneous mortality (z) & & & & & & & -0.68 & & & & & & & & & & & \\
\hline Annual mortality (A)\% & & & & & & & 49.4 & & & & & & & & & & & \\
\hline Total score & & 16 & & 11 & & 13 & & 15 & & 15 & & 16 & & 17 & & 17 & & 15 \\
\hline Assessment rating & & Good & & Fair & & Good & & Good & & Good & & Good & & Excellent & & Excellent & & Good \\
\hline
\end{tabular}
*Age data collected in the fall. Previous years age data derived from spring samples.
sw dshlag.d04 \& 09
sw dshlbb.D03-D18

Table 69. Length frequency and CPUE (fish/net set) of channel catfish collected from 4 set-nights of tandem hoop nets (4 sets with 3 nets each with 72 hour soak time) at Shanty Hollow Lake in 28-31, August 2018.
\begin{tabular}{|c|}
\hline Species & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 25 & Total & CPUE & Std err \\
\hline Channel catfish & & & & & 10 & 18 & 11 & 1 & & & & & & & & 1 & 1 & 42 & 10.5 & 3.3 \\
\hline Redear sunfish & 3 & 1 & 6 & 6 & 13 & & & & & & & & & & & & & 29 & 7.3 & 5.3 \\
\hline
\end{tabular}
swdshlcc.d18

Figure 1. 2018 Green River Lake angler attitude survey results

\title{
Green River Lake Angler Attitude Survey 2018 (\(\mathrm{n}=181\))
}
1. Have you been surveyed this year? Yes - stop survey

No - continue
2. Name \(\qquad\) (Optional) and Zip Code \(\qquad\)
3. On average, how many times do you fish Green River Lake in a year? \((\mathrm{n}=165)\) First time (1.8\%) 1 to 4 (21.7\%) 5 to 10 (10.2\%)

More than 10 (66.3\%)
4. Which species of fish do you fish for at Green River Lake (check all that apply)? Bass 59.7\% Crappie 56.4\% Catfish 15.5\% Walleye 5.5\% Bluegill 7.2\% Muskie 5\%
5. Which one species do you fish for most at Green River Lake (check only one)? (\(\mathrm{n}=171\)) Bass 46.8\% Crappie 43.3\% Catfish 3.5\% Walleye 0.6\% Bluegill 2.3\% Muskie 2.9\%

\section*{-Answer the following questions for each species you fish for - (see question 4)}

Bass Anglers (\(\mathrm{n}=105\))
6. In general, what level of satisfaction or dissatisfaction do you have with bass fishing at Green River Lake? Very satisfied \(38.1 \%\) Somewhat satisfied \(49.5 \% \quad\) Neutral \(11.5 \%\) Somewhat dissatisfied 1\% Very dissatisfied 0\% No opinion 0\%
6a. If you responded with very or somewhat satisfied in question (6) - What is the single most important reason for your satisfaction? (\(n=96\)) Number of fish 31.3\% Size of fish 66.7\% Size limit 1\% Creel limit \(\square\) Low angler pressure 1\%

6b. If you responded with somewhat or very dissatisfied in question (6) - what is the single most important reason for your dissatisfaction? (\(n=0\)) Number of fish \(\square \quad\) Size of fish \(\square \quad\) Size limit \(\square \quad\) Creel limit \(\square \quad\) Too many anglers \(\square\) Other \(\qquad\)
Crappie Anglers (\(\mathrm{n}=89\))
7. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Green River Lake? Very satisfied \(40.4 \%\) Somewhat satisfied 52.5\% Neutral 1.1\% Somewhat dissatisfied 5.6\% Very dissatisfied 0\% No opinion 0\%
7a. If you responded with very or somewhat satisfied in question (7) - What is the single most important reason for your satisfaction? (\(\mathrm{n}=81\)) Number of fish \(63 \%\) Size of fish \(27.2 \%\) Size limit 2.5\% Creel limit 2.5\% Low angler pressure 0\% Close by 3.7\%

7b. If you responded with somewhat or very dissatisfied in question (7) - what is the single most important reason for your dissatisfaction? (\(\mathrm{n}=9\)) Number of fish \(22.2 \%\) Size of fish \(44.4 \%\) Size limit \(11.1 \%\) Creel limit \(11.1 \%\) Too many anglers \(11.1 \%\)

\section*{Catfish Anglers (\(\mathrm{n}=19\))}
8. In general, what level of satisfaction or dissatisfaction do you have with catfish fishing at Green River Lake? Very satisfied \(47.2 \% \quad\) Somewhat satisfied \(42.1 \% \quad\) Neutral \(0 \% \quad\) Somewhat dissatisfied \(10.5 \%\) Very dissatisfied 0\% No opinion 0\%
8a. If you responded with very or somewhat satisfied in question (8) - What is the single most important reason for your satisfaction? (\(\mathrm{n}=17\)) Number of fish \(76.5 \% \quad\) Size of fish \(23.5 \% \quad\) Size limit \(0 \%\) Creel limit 0\% Other 0\%

8b. If you responded with somewhat or very dissatisfied in question (8) - what is the single most important reason for your dissatisfaction? (\(\mathrm{n}=2\)) Number of fish \(50 \% \quad\) Size of fish \(50 \% \square\) Sreel limit \(\square \quad\) Other__ \(\square\)
9. What methods do you use fishing for catfish at Green River Lake? (check all that apply) Jugging 35.7\% Trotline 7.1\% Hook \& Line 53.6\% Hand grabbing/noodling 0\%
9a. How many days per year do you fish using each of the following methods? (enter number of days)
Jugging \(<5=50 \% \quad 6-10=20 \%>10=30 \%\) Trotline \(3=50 \% 4=50 \%\) Hook \& Line \(<5=25.1 \% \quad 6-10=12.6 \% \quad 10-20=12.6 \% 25-50=\) \(6.3 \%>50=12.6 \% \quad\) Hand grabbing/noodling \(0 \%\)

9b. (IF A HAND GRABBER/NOODLER) What do you use to grab fish? (\(\mathrm{n}=0\)) \(\quad\) Hand \(\square \quad\) Hook \(\square \quad\) Poled hook \(\square\)

Walleye Anglers (\(\mathrm{n}=5\))
10. In general, what level of satisfaction or dissatisfaction do you have with walleye fishing at Green River Lake?

Very satisfied \(20 \%\) Somewhat satisfied \(20 \%\) Neutral \(20 \%\) Somewhat dissatisfied \(20 \%\) Very dissatisfied \(20 \%\) No opinion 0\%
10a. If you responded with very or somewhat satisfied in question (10) - What is the single most important reason for your satisfaction? Number of fish \(0 \%\) Size of fish \(50 \%\) Size limit \(0 \%\) Creel limit \(0 \%\) Convenient/close by 50\%

10b. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction? Number of fish \(100 \%\)
11. What \(\%\) of time do you fish for walleye during the day \(=100 \%\) and at night \(=0 \%\)
12. Do you ever fish below Green River Lake dam for walleye? (\(n=3\)) Yes \(33.3 \%\) No \(66.7 \%\)

12a. If NO, then why not? Wasn't aware of the fishery \(50 \%\) Not interested \(=50 \%\)
12b. If YES, what level of satisfaction do you have with the walleye fishing at the Green River Lake Tailwater? Very satisfied 0\% Somewhat satisfied 0\% Neutral 100\% (\(n=1\)) Somewhat dissatisfied 0\% Very dissatisfied 0\% No opinion 0\%

Muskie Anglers (\(\mathrm{n}=4\))
13. In general, what level of satisfaction or dissatisfaction do you have with muskie fishing at Green River Lake? Very satisfied \(25 \% \quad\) Somewhat satisfied \(50 \% \quad\) Neutral \(25 \%\) Somewhat dissatisfied \(0 \%\) Very dissatisfied 0\% No opinion 0\%

13a. If you responded with very or somewhat satisfied in question (13) - What is the single most important reason for your satisfaction? Number of fish 75\% Size of fish \(25 \%\)

13b. If you responded with somewhat or very dissatisfied in question (13) - what is the single most important reason for your dissatisfaction? (\(\mathrm{n}=0\)) Number of fish Size of fish Size limit Creel limit Too many anglers Other

All Anglers (\(\mathrm{n}=175\))
14. Are you satisfied with the current size and creel limits on all sport fish at Green River Lake? Yes 80.6\% No 19.4\%

14a. If you responded "No" to Question 14, which species are you dissatisfied with and what size and creel limits would you prefer? (\(\mathrm{n}=34\))

\section*{Crappie 10-inch size limit - 74.4\%}

Higher crappie creel limit - 10.9\%
Crappie creel limit 15 fish - 4.3\%
Bass size limit 15-inch - 6.4\%
Muskie size limit \(\geq 40\)-inch \(-2.2 \%\)
15. Are you aware that KDFWR places fish attractors/habitat in Green River Lake? (\(\mathrm{n}=181\)) Yes 88.4\% No 11.6\%
16. Are you aware KDFWR produces a fish attractor map for Green River Lake? Yes \(78.5 \%\) No \(21.5 \%\) (if YES, go to question 16a; otherwise 17)

16a. Do use printed map \(\quad\) Yes 38.5\% No 61.5\% \&/or website GPS coordinates? \(\quad\) Yes 44.3\% \(\quad\) 55.7\%
17. What type of fish habitat/attractors do you prefer to fish? (\(n=177\))

Any/all 42.4\% Natural brushpiles 47.4\% Stakebeds 1\% Hingecut/laydown trees 4.5\% Plastics 0\% None 0.04\%
Specifics (if any): Rock - 2.3\% No cedar - 1\% Natural cover - 0.04\%
18. Have you fished the plastic-pallet tree fish attractors at Green River Lake? (\(\mathrm{n}=170\)) Yes 12.4\%

No 87.6\% (if YES, go to question 18a)
18a.What did you like or dislike about these plastic structures? (\(n=21\)) (list comments below in appropriate column)
\begin{tabular}{ccc}
LIKES \((\mathrm{n}=9):\) Less hangups/snags \(77.7 \%\) & Lots of fish \(11.1 \%\) & Hold fish in spring \(11.1 \%\) \\
DISLIKES \((\mathrm{n}=12):\) Fewer fish \(58.3 \%\) & Hard to find on electronics \(16.7 \%\) & Too shallow for fall \& winter \(8.3 \%\) \\
Can't spider rig them \(8.3 \%\) & Too crowded/fished heavy \(8.3 \%\) &
\end{tabular}

Other notes: Too many bass tournaments - \(4 \quad\) Snake Creek needs repair - \(1 \quad\) Open Holmes Bend bathrooms yr round - 1
Bass mortality after tournaments - 2

\title{
CENTRAL FISHERY DISTRICT
}

\author{
Project 1: Lake and Tailwater Fishery Surveys
}

\section*{FINDINGS}

Lake sampling conditions for 2018 are summarized in Table 1.

\section*{Taylorsville Lake (3,050 acres)}

Spring diurnal electrofishing was completed in April 2018 to assess the black bass population. Three sections (Big Beech Creek, Ashes/Jacks Creek, and Van Buren area) of Taylorsville Lake were sampled for 7.5 hours (2.5 hours per section; 30-minute runs). Length distribution and CPUE for largemouth bass are presented in Tables 2 and 3. The catch rate of bass collected in 2019 (\(184.4 \mathrm{fish} / \mathrm{hr}\)) was higher than the lake's historical average of \(118.3 \mathrm{fish} / \mathrm{hr}\). Catch rate for keeper bass (\(\geq 15.0 \mathrm{in}\)) was \(35.3 \mathrm{fish} / \mathrm{hr}\); higher than the lake average (\(19.0 \mathrm{fish} / \mathrm{hr}\)) and was the highest catch rate recorded for harvestable-size fish. The Ashes Creek area recorded its highest catch rate for largemouth bass. The PSD for largemouth bass was 48, which was lower than the lake's average of 56 (Table 4). Additionally, the \(\mathrm{RSD}_{15}\) value was 22 ; which is the lake's average. The largemouth bass population assessment score, based on spring electrofishing data, was 17 "Excellent", which is above the average rating of "Good" at Taylorsville Lake (Table 5).

Length frequency, relative weights, age and growth, and index for year class strength at age- 0 and age- 1 of largemouth bass based on September electrofishing are presented in Tables 6-9. The growth rates of largemouth bass at Taylorsville Lake are very good. Largemouth bass growth rates indicated bass are reaching harvestable size (15.0 in) during the fourth growing season (Table 7). Average body condition for largemouth bass in \(2018\left(\mathrm{~W}_{\mathrm{r}}=92\right)\) was the same as last year, but lower than the lake's historical average (\(\mathrm{W}_{\mathrm{r}}=96\); Table 8). Catch rate of age-0 largemouth bass in the fall of 2018 (\(23.7 \mathrm{fish} / \mathrm{hr)}\)) was lower than the lake's historic average of \(41.1 \mathrm{fish} / \mathrm{hr}\) (Table 9). The year class strength model indicated below average recruitment for young-of-the-year largemouth bass in 2018. Therefore, 30,503 (10.0 fish/acre) largemouth bass (4.0-4.5 in) were stocked into Taylorsville Lake in October 2018. Largemouth bass fingerlings have been stocked almost annually since 2000 at rates ranging from 5.0 to 10.0 fish/acre and from 1985 to 1992. The need for stocking and the numbers stocked in reservoirs are based (since 2004) on results of the age-0 year class strength sampled in early September and the predicted age-1 year class strength the following spring.

Trap netting effort for crappie (Table 10) resulted in the collection of 558 white crappie and 116 black crappie. Crappie were sampled with trap nets during 48 net-nights. PSD and \(\mathrm{RSD}_{10}\) values are shown in Table 11. Age and growth determinations and age frequency for black and white crappie were completed using otoliths (Tables 12-15). Age studies indicated both white and black crappie reach 9.0 in between age-2 and age-3. The crappie population assessment scores (Tables 16 and 17) rated both white and black crappie as "Fair". Historically, the crappie population at Taylorsville Lake has been very cyclic with peaks occurring every 7 to 9 years. In an effort to help recruitment on the lake, white crappie were stocked from 2009 through 2013. Significant spawns have occurred in both 2013 and 2015, however the 2016, 2017 and 2018 spawn appeared to be poor based off trap net data. Body condition of white and black crappie in the fall of 2018 were good (Table 18).

Fall gill netting for hybrid striped bass, white bass, and saugeye was conducted in October 2018 (Tables 19-29). A total of 152 hybrid striped bass were collected in 2018 compared to 125 in 2017, 167 in 2016, 47 in 2015, and 90 in 2014. Hybrid striped bass were captured in 13 net-nights (nn) for a CPUE of 11.7 (\(\pm 5.3\)) fish \(/ \mathrm{nn}\). The hybrid striped bass population has exhibited notable fluctuations since 1990. The density of hybrid striped bass in Taylorsville Lake appeared to be negatively correlated with the amount of tailwater discharge (due to rainfall) and fishing pressure. It is theorized that above-normal discharge leads to escapement of hybrid striped bass but has little effect on the white bass density in the lake. Additionally, a late fall water quality issue with low oxygen in the lower portion of Taylorsville Lake may be causing additional stress on the hybrid striped bass. Age and growth studies were completed for hybrid striped bass using otoliths (Tables 20 and 21). Data indicate hybrid striped bass reached 15.0 in between one to two years. This is good growth for hybrid striped bass at Taylorsville Lake. The relative weight \(\left(\mathrm{W}_{\mathrm{r}}\right)\) index for hybrid striped bass (87) continues to show a lower than expected body condition at

Taylorsville Lake (Table 22). The average \(\mathrm{W}_{\mathrm{r}}\) for Taylorsville Lake is 86 . The population assessment for hybrid striped bass was rated at "Good", higher than the average rating for hybrid striped bass "Fair" at Taylorsville Lake (Table 23). Taylorsville Lake was stocked with 60,405 (19.8 fish/acre; 1.6 in) hybrid striped bass in June 2018. The 2018 hybrid striped bass stocking in Taylorsville Lake included both crosses of hybrid striped bass (30,099 reciprocal cross hybrids (no OTC mark) and 30,306 original cross hybrid striped bass (OTC marked)). Data for white bass collected during fall 2018 gillnetting studies are presented in Tables 19 and 24-27. White bass comprised about \(39 \%\) of the Morones sampled, compared to \(17 \%\) in 2017, \(35 \%\) in 2016, \(27 \%\) in 2015, and \(47 \%\) in 2014, Age and growth studies indicated white bass reach 12.0 in by age 3 (Tables 24 and 25). Relative weight values (\(\mathrm{W}_{\mathrm{r}}=94\)) revealed acceptable body condition for all sizes of white bass (Table 26). The white bass population assessment was rated "Poor", an average rating for white bass at Taylorsville Lake (Table 27).

Saugeye were collected during fall gill netting conducted in October. A total of 167 saugeye were collected ranging from the 7.0 - to \(23.0-\mathrm{in}\) size class (Table 19). Age and growth studies were completed using otoliths. Calculations indicated that on average, saugeye reach 15.0 in between age- 1 and age-2, and 20.0 in between age- 2 and age- 3 (Tables 28). All four stocked year classes were represented in this sample (Table 29). Taylorsville Lake was stocked with 61,000 (20.0 fish/acre; 1.1 in) saugeye in 2018.

Summer diurnal low-pulse electrofishing was completed in July 2018 to assess the blue catfish population. Two sections (Lower Lake: Big Beech Creek and Ashes/Jacks Creek, and Upper Lake: Chowning Lane and Van Buren areas) of Taylorsville Lake were sampled for 3.0 hours (15 -minute runs). Two hundred and twenty-eight blue catfish were collected in the lower section compared to 298 blue catfish collected in the upper section of the lake (Table 30). The number of blue catfish collected in 2018 (\(175.3 \mathrm{fish} / \mathrm{hr}\)) was higher than the lake's historic average of \(127.5 \mathrm{fish} / \mathrm{hr}\) (Table 31). Relative weight values revealed good body condition for all sizes of blue catfish (Table 32). A total of 23,500 (7.7 fish/acre) blue catfish (6.7-7.1 in) were stocked in Taylorsville Lake during October 2018.

\section*{Herrington Lake (2,410 acres)}

Spring diurnal electrofishing studies were completed in May 2018 to monitor the black bass population. Upper, middle, and lower sections were sampled for a total of 7.5 hours (2.5 hours per section). Species composition, relative abundance, and CPUE of black bass collected in the spring are presented in Table 33. Largemouth bass (\(89.6 \%\)) dominated the black bass fishery at Herrington Lake. Numbers of largemouth bass collected in 2018 (184.5 fish \(/ \mathrm{hr}\)) was higher than the lake's historic average of \(116.7 \mathrm{fish} / \mathrm{hr}\) (Table 34). Fluctuations in the overall catch rates over the past couple of years seem to be related to lake level during sampling. The higher the lake level the lower the catch rate of bass at Herrington Lake. The lake level during the 2018 spring electrofishing sample was low, which may have led to a slight increase in the catch rate for largemouth bass. Catch rate for keeper bass (\(\geq 12.0 \mathrm{in}\)) was 88.4 fish \(/ \mathrm{hr}\), higher than the lake's historical average (\(47.3 \mathrm{fish} / \mathrm{hr}\)). The PSD for largemouth bass was 64 , comparable to the lake's average of 57 (Table 35). Additionally, the \(\mathrm{RSD}_{15}\) value was 21, which is lower than the lake average of 24. The largemouth bass population assessment score, based on spring electrofishing data, was 19 "Excellent", which is an above average rating for Herrington Lake (Table 36).

Length frequency, relative weights and index of year class strength at age- 0 and age- 1 of largemouth bass based on September electrofishing at Herrington Lake are presented in Tables 37-39. Largemouth bass condition (\(\mathrm{W}_{\mathrm{r}}=91\)) was slightly lower than the lake's historical average (\(\mathrm{W}_{\mathrm{r}}=92\); Table 38). The year class strength model for Herrington Lake indicated a below average recruitment year for young-of-year largemouth bass based on age-1 CPUE (Table 39). Age-0 CPUE (11.6 fish/hr) was less than the lake average (\(35.0 \mathrm{fish} / \mathrm{hr}\)). Herrington Lake was stocked with 24,172 (10.0 fish/acre) largemouth bass (4.1-4.4 in) in October 2018.

In May 2018, small bass were removed from Beaver Lake to address overcrowding issues. A total of 2,059 largemouth bass (4.0-9.9 in) were removed from Beaver Lake and stocked into Cane Run Creek, which is located in to lower portion of Herrington Lake.

Gill netting for hybrid striped bass and white bass was completed in October 2018. During the 14 net-night sampling period, 162 hybrid striped bass and 46 white bass were collected (Table 40). Otoliths were taken from both species for age and growth determinations. Results of these studies indicated excellent growth rates for both hybrids (Tables 41-42) and white bass (Tables 45-46). Hybrid striped bass continue to reach 15.0 in between age-1
and age-2 (Table 41), as they have historically. Of the hybrid striped bass sampled, \(74 \%\) were age \(-1+\) or older (Table 42). Condition of hybrid striped bass in \(2018\left(\mathrm{~W}_{\mathrm{r}}=97\right)\) was higher than the lake's historical average \(\left(\mathrm{W}_{\mathrm{r}}\right.\) =93; Table 43). The population assessment for hybrid striped bass indicated a "Good" population (Table 44). White bass age and growth determinations showed they reached 12.0 in between age- 1 and age- 2 (Table 45). Of the white bass sampled, \(89 \%\) were age- \(1+\) and older (Table 46). The white bass population assessment indicated a "Fair" population, which is an average rating (Table 47). Body condition of white bass (\(\mathrm{W}_{\mathrm{r}}=98\)) was higher than the lake's historical average (\(\mathrm{W}_{\mathrm{r}}=96\); Table 48). Herrington Lake was stocked with 51,092 (21.2 fish/acre; 1.6 in) hybrid striped bass in June 2018. The hybrid striped bass stocking was divided into 25,880 reciprocal cross hybrids (no mark) and 25,212 original cross hybrids (OTC marked).

A roving daytime angler creel survey was conducted at Herrington Lake from mid-March through October. The last creel survey conducted at this lake was in 2010. Table 49 provides descriptive statistical parameters of the lake fishery during the present survey (2018) and the last 3 surveys (2010, 2004 and 1996). The number of fishing trips in \(2018(13,438)\) increased slightly from \(2010(11,692)\). Accordingly, fishing pressure (man-hours), number of fish caught, numbers and pounds of fish harvested, and catch rates (fish/hr and fish/acre) have increased since 2010. Other parameters such as gender, residency, method and mode were similar to surveys completed in past years.

In 2018, largemouth bass was the predominant black bass species caught; however, spotted bass and smallmouth bass were represented in lower numbers (Tables 50 and 51). Mean length of largemouth bass harvested increased from 13.5 inches in 2010 to 13.9 inches in 2018. Overall, \(12.6 \%\) of largemouth bass were harvested. This number is probably elevated due to the fact this creel considers a tournament angler's fish in the live well as harvested. In most cases, tournament anglers are required to release their fish after weigh-in. Therefore, all tournament anglers harvested bass were changed to released which reduced harvest estimates to \(2.3 \%\) for largemouth bass. The number of fishing trips for black bass in 2018 was 6,653, an increase from 4,207 in 2010. Black bass continued to be the most sought-after group fished for in Herrington Lake. Catch rate of bass by bass anglers were similar from 2018 (0.85 fish \(/ \mathrm{hr}\)) to those in 2010 (0.90 fish \(/ \mathrm{hr}\)). Bass angler success rate (\(8.0 \%\)) was less than that reported in \(2010(14.7 \%)\). Black bass catch, harvest and monthly angling success are shown in Tables 52 and 53.

The catfish group was the second most sought after at Herrington Lake. In 2018, there were 1,482 trips by catfish anglers compared to 771 trips by catfish anglers in 2010. Channel catfish contributed \(90 \%\) of the catfish caught, compared to \(78 \%\) in 2010. Pounds of catfish harvested continues to increase from 2,680 lbs in 2004, to \(5,407 \mathrm{lbs}\) in 2010 and \(6,796 \mathrm{lbs}\) in 2018. Pounds of flathead catfish harvested by catfish anglers has remained stable from \(1,542 \mathrm{lbs}\) in 2004, 1,941 lbs in 2010 and \(1,712 \mathrm{lbs}\) in 2018. Mean length of channel catfish harvested by catfish anglers was 15.5 in (13.2 in 2010) while that of flathead catfish was 21.0 in (15.5 inches in 2010). Harvest rate by catfish anglers decreased from 0.52 fish \(/ \mathrm{hr}\) (2010) to 0.09 fish \(/ \mathrm{hr}\) (2018). Success rate for catfish anglers in 2018 (\(75.0 \%\)) was similar to those observed in 2010 (\(77 \%\)). Catfish catch, harvest and monthly angling success are shown in Tables 54 and 55.

Numbers of crappie caught increased from 3,172 in 2010 to 15,773 in 2018. Additionally, the number of crappie harvested increased from 3,045 fish in 2010 to 13,755 fish in 2018. Mean length of crappie harvested was 11.7 in for white crappie and 11.8 in for black crappie. Crappie are the third most sought-after group fished for in Herrington Lake. The number of fishing trips for crappie in 2018 (6,487 trips) increased from 1,599 trips in 2004 and 1,506 in 2010. Harvest rate by crappie anglers increased from 0.48 fish/hr in 2010 to 2.01 fish/hr in 2018. Percent success of crappie anglers increased from \(48 \%\) in 2010 to \(79.2 \%\) in 2018. Black crappie represented \(83 \%\) of the crappie caught and \(81 \%\) of the crappie harvested. Crappie catch, harvest and monthly angling success are shown in Tables 56 and 57.

The Morone group (hybrid striped bass and white bass) was the fourth most sought-after group at Herrington Lake in 2018. The number of hybrid striped bass (HSB) caught decreased from 7,309 fish in 2010 to 4,020 fish in 2018. Additionally, the number of hybrid striped bass harvested decreased from 4,408 fish in 2010 to 592 fish in 2018. The number of white bass (WB) caught decreased dramatically from 5,321 fish caught in 2010 (3,082 harvested) to 106 fish caught in 2018 (none harvested). Pounds of HSB harvested in 2018 totaled 1,079 lbs (\(0.45 \mathrm{lbs} / \mathrm{acre}\)), whereas in 2010 it was \(6,415 \mathrm{lbs}\) (\(2.66 \mathrm{lbs} / \mathrm{acre}\)). Mean length of HSB harvested in 2018 was 15.4 in while in 2010 it was 14.2 in. The number of trips for Morones decreased from 2,102 trips in 2010 to 1,187 trips in 2018. Hours spent fishing for these fish also decreased from 10,368 hrs (\(4.30 \mathrm{hrs} / \mathrm{acre}\)) in 2010 to \(5,652 \mathrm{hrs}\) (2.40
hrs/acre). Harvest rate for Morone anglers decreased from 0.52 fish \(/ \mathrm{hr}\) in 2010 to \(0.07 \mathrm{fish} / \mathrm{hr}\) in 2018. Success rate for these anglers decreased from \(56 \%\) in 2010 to \(16 \%\) in 2018. Morone catch, harvest and monthly angling success are shown in Tables 58 and 59.

Panfish (bluegill) were the fifth most sought after fish group at Herrington Lake in 2018. The number of panfish caught in 2018 (24,794 fish) increased from 20,883 fish caught in 2010. Pounds harvested in 2018 were more than that seen in 2010, increasing from 1,679 lbs (\(0.70 \mathrm{lbs} / \mathrm{acre}\)) in 2010 to 2,662 lbs (\(1.1 \mathrm{lbs} / \mathrm{acre}\)). The average length of bluegill harvested was 6.1 in , compared to the average size caught in 2010 (5.5 in). Trips for panfish decreased from 1,498 trips in 2010 to 602 trips in 2018. The harvest rate for panfish was \(2.78 \mathrm{fish} / \mathrm{hr}(1.50\) fish/hr in 2010). The percentage of successful panfish anglers was \(53 \%\) while in 2010 it was \(77 \%\). Panfish catch, harvest and monthly angling success are shown in Tables 60 and 61.

An angler attitude survey was conducted at Herrington Lake during the creel survey. Surveys were completed in the field by the creel clerk. A total of 348 surveys were completed by anglers (130 surveys in 2010). The attitude survey reflected the largest majority of anglers fish for largemouth bass (\(61.6 \%\)) followed by crappie \((15.5 \%)\), channel catfish \((9.9 \%)\), hybrid striped bass (\(9.9 \%\)) and other species (\(7.7 \%\)). The majority of anglers expressed satisfaction for their species of preference in 2018. The majority of anglers (\(99.1 \%\)) are satisfied with the current regulations on Herrington Lake.

\section*{Guist Creek Lake (317 acres)}

Spring nocturnal electrofishing studies were completed for length frequency, CPUE and population assessment for largemouth bass in May 2018 (Table 62). Total largemouth bass catch rate (\(251.7 \mathrm{fish} / \mathrm{hr}\)) was higher than the lake average of 167.2 fish \(/ \mathrm{hr}\) (Table 63). The PSD for largemouth bass was 54 compared to the lake average of 66 (Table 64). The \(\mathrm{RSD}_{15}\) was 27 compared to the lake average of 40 . The population assessment gave a rating of "Excellent", the average rating for the past 5 years at Guist Creek Lake (Table 65). Fall largemouth bass sampling was conducted for relative weights and index of year class strength at age-0 and age-1 (Tables 66-68). Relative weights indicated good body condition for bass, especially for bass over 15.0 in (Table 67). Mean length of age-0 largemouth bass (4.8 in) was larger than the lake average of 4.2 in and catch rate of age- 0 largemouth bass (\(29.3 \mathrm{fish} / \mathrm{hr}\)) was less than average recruitment (avg. \(=46.3 \mathrm{fish} / \mathrm{hr}\); Table 68). Largemouth bass were stocked at 10.0 fish/acre (3,171 fish) that averaged 5.0 in at Guist Creek Lake in October 2018.

Saugeye were collected during the spring largemouth bass sample (Table 62). Sampling yielded 21 saugeye (\(7.0 \mathrm{fish} / \mathrm{hr}\)) ranging in size from the \(10.0-\) to \(20.0-\mathrm{in}\) size class. Additionally, saugeye were collected during the fall largemouth bass electrofishing (Table 66). Sampling yielded 19 saugeye (\(12.7 \mathrm{fish} / \mathrm{hr}\)) ranging in size from the 8.0 - to 23.0 -in size class. During October, electrofishing was completed targeting saugeye. Nineteen saugeye (\(12.7 \mathrm{fish} / \mathrm{hr}\)) were sampled from the 15.0 - to 24.0 -in size class (Table 69). Guist Creek Lake was stocked with 28,810 (90.9 fish/acre; 1.1 in) saugeye in 2018. Saugeye have been stocked annually into Guist Creek Lake since 2013.

Guist Creek Lake was stocked with 19,046 (60.1 fish/acre; 1.5 in) hybrid striped bass in June 2018.
Channel catfish were sampled in November using three sets of three tandem hoop nets at Guist Creek Lake in 2018. Although population parameters are presented, only three fish were collected. Length frequency results for channel catfish showed a size distribution between the 7.0-in and 26.0-in size classes (Table 70). The PSD and \(\mathrm{RSD}_{24}\) for channel catfish were 100 and 67 , respectively (Table 71). Relative weights indicated very good body condition \(\left(\mathrm{W}_{\mathrm{r}}=103\right)\) for channel catfish (Table 72). Overall catch rates (\(1.0 \mathrm{fish} / \mathrm{set}\)) were much lower than the lake average of 114.4 fish/set (Table 73). Guist Creek Lake was not stocked with channel catfish in 2018.

\section*{A.J. Jolly Lake (175 acres)}

Spring diurnal electrofishing was completed in April 2018 to assess the black bass population (Table 74). Results indicated largemouth bass catch rates (110.0 fish \(/ \mathrm{hr}\)) were greater than the lake's historical average (86.7 fish/hr; Table 75). The PSD for largemouth bass was 58 and the RSD \(_{15}\) was 24 (Table 76). The population assessment indicated a "Good" bass population, the average rating since 2010 (Table 77). Fall diurnal electrofishing was conducted for relative weights and to index year class strength of age-0 largemouth bass in October (Tables 78-
80). Relative weights indicated acceptable body condition (\(\mathrm{W}_{\mathrm{r}}=87\); Table 79). Fall sampling indicated an above average number of age- 0 bass, (\(42.5 \mathrm{fish} / \mathrm{hr}\); average \(=25.3 \mathrm{fish} / \mathrm{hr}\)) and above average size of age -0 bass (5.3 in ; average=4.6 in; Table 80). Largemouth bass were not stocked during 2018.
A.J. Jolly Lake was stocked with 14,830 (84.7 fish/acre; 1.1 in) saugeye in 2018. Saugeye have been stocked annually since 2013. Saugeye were collected during the spring largemouth bass sample (Table 74). Sampling yielded 19 saugeye (\(7.6 \mathrm{fish} / \mathrm{hr}\)) ranging in size from the 8.0 - to 23.0 -in size class. Additionally, saugeye were collected during the fall largemouth bass sample (Table 78). Sampling yielded 48 saugeye (\(24.0 \mathrm{fish} / \mathrm{hr}\)) ranging in size from the 9.0 - to 24.0 -in size class.

Channel catfish were not stocked into A.J. Jolly Lake in 2018.
On June 13, 2018 a total of 170 common carp were removed from AJ Jolly Lake. The average weight of a common carp removed from AJ Jolly Lake was 3.8 lbs . Therefore, it was estimated that 646 lbs of common carp were removed. The eight-year total for common carp removed from AJ Jolly Lake is 2,124 fish at an estimated weight of \(6,913 \mathrm{lbs}\) (3.3 lbs average weight per fish).

\section*{Beaver Lake (158 acres)}

During March, April, September and November, an effort was made to reduce the crowded largemouth bass population at Beaver Lake. Four thousand four hundred sixty-two (28.2 fish/acre) largemouth bass were removed from Beaver Lake during five separate events with fish transported to Herrington, Willisburg and 4 FINS lakes. Largemouth bass ranging in size from 4.0 to 11.0 in (\(<8.0 \mathrm{in}=2,574\) (\(57.9 \%\)); 8.0-10.9 in \(=1,728\) (\(38.7 \%\)); 11.0 in \(=160(3.4 \%))\) were removed from Beaver Lake.

A spring diurnal electrofishing sample was completed in May 2018 to assess the black bass population (Table 81). The CPUE for all sizes was \(386.5 \mathrm{fish} / \mathrm{hr}\), greater than the lake average of \(255.0 \mathrm{fish} / \mathrm{hr}\) (Table 82). The PSD and \(\mathrm{RSD}_{15}\) for largemouth bass were 13 and 1, respectively, compared to the current lake average of 28 and 4 (Table 83). The population assessment score indicated a "Fair" bass population (Table 84), compared to the average assessment rating of "Good" for Beaver Lake. Fall diurnal electrofishing was conducted for age and growth, relative weights, and index age-0 year class strength of largemouth bass (Tables \(85-88\)). Largemouth bass growth rates at Beaver Lake indicated bass are reaching harvestable size (12.0 in) between age 4 and age 5 (Table 86). Additionally, the age and growth study showed largemouth bass were reaching 15.0 in between age 7 and age 8 . The overall relative weight index continues to improve following efforts to reduce overcrowding of largemouth bass \(\left(\mathrm{W}_{\mathrm{r}}=86\right)\); which is higher than the lake average of 85 (Table 87). Fall sampling indicated above average numbers of age-0 bass, (\(196.0 \mathrm{fish} / \mathrm{hr}\); average \(=134.1 \mathrm{fish} / \mathrm{hr}\)) and the average size of largemouth bass (5.2 in) was higher than the lake's average of 4.3 in (Table 88).

Spring diurnal electrofishing was completed in May 2018 to assess the panfish populations (Tables 89-92). Length frequency results showed a good size distribution of bluegill up to the 8.0 -in size class (Table 89). The PSD for bluegill was 52 compared to the lake average of 32 (Table 90). The \(\mathrm{RSD}_{8}\) was 4 , compared to the lake average of 1. CPUE for all length groups of bluegill was 314.4 fish \(/ \mathrm{hr}\); higher than the lake average of \(252.8 \mathrm{fish} / \mathrm{hr}\) (Table 91). The population assessment for bluegill indicated an "Excellent" population rating, which is above average for Beaver Lake (Table 92). Redear sunfish catch rates were 16.8 fish/hr, which is lower than the lake's average catch rate (\(66.6 \mathrm{fish} / \mathrm{hr}\)) for all sizes. The catch rate of redear sunfish \(\geq 8.0\) in was \(4.0 \mathrm{fish} / \mathrm{hr}\) and was lower than the lake average of 22.5 fish \(/ \mathrm{hr}\) (Table 93). Redear sunfish PSD and \(\mathrm{RSD}_{9}\) were 45 and 10, respectively (Table 90). The population assessment indicated a "Good" redear sunfish fishery (Table 94). Relative weights for bluegill and redear sunfish were collected during the fall diurnal electrofishing sample. Overall, relative weight data for bluegill was fair while the body condition of redear sunfish was good (Table 95). Redear sunfish (47,400 fish; 300.0 fish/acre) were stocked in September 2018 at an average size of 1.7 in.

Beaver Lake was stocked with 3,700 (25.0 fish/acre; 7.0-9.0 in) channel catfish in March 2018.
No applications of aquatic herbicides were completed at Beaver Lake in 2018. No liquid fertilizer applications have been made since 2001. Finally, no gizzard shad were collected at Beaver Lake in 2018.

\section*{Benjy Kinman Lake (88 acres)}

A spring nocturnal electrofishing sample was completed in May 2018 at Benjy Kinman Lake to assess the black bass population (Table 96). The CPUE for all sizes was \(128.0 \mathrm{fish} / \mathrm{hr}\), compared to the lake average of 125.4 fish/hr (Table 97). The PSD and \(\mathrm{RSD}_{15}\) for largemouth bass were 24 and 10, respectively (Table 98). The population assessment score indicated a "Fair" bass population (Table 99). Fall largemouth bass sampling was conducted for relative weights and index of year class strength at age-0 in September 2018 (Tables 100-102). Relative weights indicated below average body condition for bass \(\left(\mathrm{W}_{\mathrm{r}}=83\right)\) with larger fish exhibiting better condition compared to smaller length groups (Table 101). The better condition of larger fish is due to the gizzard shad forage base. CPUE for both age- 0 and age- \(0 \geq 5.0\) in were collected for the fifth time at Benjy Kinman Lake (Table 102).

A spring diurnal electrofishing sample was completed at Benjy Kinman Lake in May 2018 to assess the panfish populations (Tables 103-106). Length frequency results showed a good distribution of bluegill through the 6.0 -in size range (Table 103 and 105). The PSD and \(\mathrm{RSD}_{8}\) for bluegill was 35 and 0 , respectively (Table 104). Length frequency results showed the majority of the redear sunfish were in the 4.0- to 7.0-in size range (Table 103 and 106). Redear sunfish PSD and \(\mathrm{RSD}_{9}\) was 7 and 0 , respectively (Table 104). Benjy Kinman Lake was stocked with 26,400 (300.0 fish/acre; 1.7 in) redear sunfish in September 2018.

Channel catfish were sampled in October 2018 using tandem hoop nets. This was the second channel catfish sample at Benjy Kinman Lake. Length frequency results for channel catfish showed a size distribution between the 13.0 -in and 24.0 -in size class (Table 107). PSD and \(\operatorname{RSD}_{24}\) were 77 and 7 , respectively (Table 108). Catch rates and size distribution have improved since the previous sample in 2015 (Table 109). Relative weights indicated an acceptable body condition for channel catfish \(\left(\mathrm{W}_{\mathrm{r}}=92\right)\) (Table 110).

In July, Big Bone State Park Lake was drained due to a dam issue. Fish were relocated from Big Bone State Park Lake to Benjy Kinman Lake. Benjy Kinman was stocked with 264 (3 fish/acre; 4.0-15.0 in) largemouth bass, 5 (0.1 fish/acre; 16.0-17.0 in) channel catfish, and 14 (0.2 fish/acre; 6.0-7.0 in) bluegill from Big Bone State Park Lake. In August, General Butler State Park Lake was lowered due to dam repairs. Fish were relocated from General Butler State Park Lake to Benjy Kinman Lake. Benjy Kinman was stocked with 246 (2.8 fish/acre; 3.0-19.0 in) largemouth bass, 24 (0.3 fish/acre; 12.0-16.0 in) channel catfish, 217 (2.5 fish/acre; 4.0-6.0 in) bluegill, 122 (1.4 fish/acre; 4.0-7.0 in) redear sunfish, and 6 (0.1 fish/acre; 6.0-8.0 in) crappie from General Butler State Park Lake.

Eleven rough fish removal events took place from August 2018- December 2018 resulting in a total of 563 bigmouth buffalo, smallmouth buffalo, common carp, freshwater drum and longnose gar being removed from Benjy Kinman Lake. The average weight of rough fish removed in 2018 was 9.7 lbs . Therefore, it was estimated that \(5,475 \mathrm{lbs}\) of rough fish were removed. The five-year total for rough fish removed from Benjy Kinman Lake is 3,953 fish at an estimated weight of \(29,701 \mathrm{lbs}\) (7.5 lbs average weight per fish).

A soil test completed during the fall of 2017 at Kinman Lake resulted in a soil pH level of 5.3. Based on the pH it was recommended to apply 5 tons/acre of agricultural lime. Therefore, 121 tons of agricultural lime was washed into the upper third of Kinman Lake during the fall of 2017. During November 2018, 97 tons of agricultural lime was washed into the middle third of Kinman Lake. A total of 218 tons of lime has been washed into Benjy Kinman Lake, which equals a rate of 2.5 tons per acre. The final liming is planned for the lower third of the lake next year.

Kinman Lake was lowered 3.4 feet from October 2018-March 2019 in an effort to crowd the fish, assist with rough fish removal and allow for winter wheat to be planted on the exposed shoreline. A total of 400 lbs . of winter wheat was planted, which should assist in suspending nutrients as it decomposes while providing additional shoreline fish habitat.

One hundred and twenty gallons of liquid fertilizer (9-18-9) was applied in May 2018. During the first treatment, 100 gallons were distributed throughout the entire lake. An additional treatment of 20 gallons was applied in the four upper creek arms of the lake.

\section*{Boltz Lake (92 acres)}

Spring nocturnal electrofishing was completed in May 2018 to assess the black bass population (Table 111). Results indicated largemouth bass catch rates (\(219.5 \mathrm{fish} / \mathrm{hr}\)) were higher than the lake's historical average (193.1 fish/hr; Table 112). The PSD for largemouth bass was 53 compared to the lake average of 43 (Table 113). The \(\mathrm{RSD}_{15}\) was 12 , lower than the lake average of 17 . The population assessment indicated a "Good" bass population (Table 114). Fall diurnal electrofishing was conducted for length frequency, relative weights and index of age-0 year class strength in September (Tables 115-117). Relative weights indicated acceptable body condition \(\left(\mathrm{W}_{\mathrm{r}}=92\right)\), higher than the lake's average relative weight of 90 (Table 116). Fall sampling indicated above average numbers of age-0 bass, (\(191.3 \mathrm{fish} / \mathrm{hr}\); average \(=64.2 \mathrm{fish} / \mathrm{hr}\)) and the average size (4.3 in) was comparable to the lake's average size of 4.2 in (Table 117).

Saugeye were collected during the spring largemouth bass sample (Table 111). Sampling yielded 61 saugeye (30.5 fish \(/ \mathrm{hr}\)) ranging in size from the 9.0 - to 18.0 -in size class. Saugeye were also collected during fall largemouth bass sampling at a rate of 9.3 fish/hr with fish ranging from the 14.0 - to 21 -in size class (Table 115).

Fall sampling for bluegill was completed for age and growth and relative weight index. On average, bluegill have "excellent" growth, reaching 6.0 in between age-2 and age-3 (Table 118). Relative weights reflected above average condition for bluegill \(\left(\mathrm{W}_{\mathrm{r}}=95\right.\); lake average \(\left.\mathrm{W}_{\mathrm{r}}=90\right)(\) Table 119 \()\).

Diurnal fall crappie electrofishing was completed in October 2018 for length frequency, CPUE, age/growth and relative weight. A total of 79 white crappie were collected in 1.25 hrs of electrofishing (Table 120). Age and growth studies indicate that white crappie on average reach 9.2 in at age 3 (Table 121). Relative weights indicated acceptable body condition \(\left(\mathrm{W}_{\mathrm{r}}=89\right)\) (Table 122)

Channel catfish were sampled in October 2018 using tandem hoop nets. Although only four fish were collected, population parameters are provided below. Length frequency from sampling resulted in a size distribution of 15.0 -in to 19.0 -in size classes (Table 123). The PSD and \(\operatorname{RSD}_{24}\) for channel catfish was 75 and 0 , respectively (Table 124). Relative weights indicated "good" body condition for channel catfish (\(\mathrm{W}_{\mathrm{r}}=94\)), and were higher than the lake average \(\left(\mathrm{W}_{\mathrm{r}}=92\right.\); Table 125). Overall, catch rates at Boltz Lake remain lower than the lake average of 53.3 fish/hr (Table 126). Channel catfish were not stocked during 2018. An attempt was made to sample blue catfish at Boltz Lake in 2018. A few fish were observed during electrofishing, but were not collected.

Redear sunfish (27,600 fish; 300.0 fish/acre) were stocked in September 2018 at an average size of 1.7 in .
A total of 14 common carp averaging \(11.2 \mathrm{lbs} /\) fish were removed from Boltz Lake in May 2018. In total, 587 common carp (estimated \(4,811 \mathrm{lbs}\)) have been removed from Boltz Lake since 2008.

Boltz Lake does not have a known population of gizzard shad present in the lake; however, during spring largemouth bass sampling an 18.7-inch gizzard shad was collected. This was the first gizzard shad collected in Boltz Lake; therefore, additional observation will be needed to determine the presence of a shad population.

\section*{Bullock Pen Lake (134 acres)}

Spring nocturnal electrofishing was completed in May 2018 to assess the black bass population (Table 127). The total catch rate of largemouth bass (225.0 fish \(/ \mathrm{hr}\)) was much higher than the lake's average catch rate of 143.9 fish \(/ \mathrm{hr}\) (Table 128). The PSD for largemouth bass was 71 , higher than the lake average of 70 (Table 129). The \(\mathrm{RSD}_{15}\) for largemouth bass was 38 , lower than the lake average of 40 . The population assessment for largemouth bass was rated "Excellent"; which is better than the lake's average rating of "Good" (Table 130). Fall diurnal electrofishing was conducted in September to determine length frequency, age and growth, relative weights and index of age-0 year class strength for largemouth bass (Tables 131-134). Age and growth studies show that largemouth bass reach 12.0 in between age 3 and age 4 and 15.0 in between age 5 and age 6 (Table 132). Relative weights indicated acceptable body condition for bass (\(\mathrm{W}_{\mathrm{r}}=90\)), but were lower than the lake's average (\(\mathrm{W}_{\mathrm{r}}=94\)). Larger fish exhibited better condition compared to smaller length groups, which is a function of the shad forage base (Table 133). Age-0 CPUE (\(34.0 \mathrm{fish} / \mathrm{hr}\)) was higher than the lake average (\(21.7 \mathrm{fish} / \mathrm{hr}\)); therefore, no largemouth bass were stocked in 2018 (Table 134).

Saugeye were collected during the spring largemouth bass sample. Only one saugeye (\(0.5 \mathrm{fish} / \mathrm{hr}\)) was collected (Table 121). Saugeye were not stocked from 2015-2017 due to potential dewatering of the lake for dam repairs. Bullock Pen Lake was stocked with 11,875 (88.6 fish/acre; 1.1 in) saugeye in May 2018.

In fall of 2018, KDFWR began construction of a new boat ramp and parking lot at the property that was purchased in 2017 adjacent to the old ramp.

\section*{Corinth Lake (96 acres)}

Spring nocturnal electrofishing was completed in May 2018 to assess the black bass population (Table 135). The total catch rate of largemouth bass (\(276.5 \mathrm{fish} / \mathrm{hr}\)) was higher than the lake's average catch rate of 243.4 fish/hr (Table 136). The PSD for largemouth bass was 37, higher than the lake average of 21 (Table 137). The \(\mathrm{RSD}_{15}\) for largemouth bass was 2 , lower than the lake average of 7 . The population assessment for largemouth bass was rated "Good"; the average rating since 2005 (Table 138). Fall diurnal electrofishing for largemouth bass was conducted to determine length frequency, year class strength and relative weight (Tables 139-141). Relative weights of largemouth bass continue to be below average, except for largemouth bass \(\geq 15.0 \mathrm{in}\). The overall relative weight in \(2018\left(\mathrm{~W}_{\mathrm{r}}=84\right)\) was equal to the historical average relative weight at Corinth Lake \(\left(\mathrm{W}_{\mathrm{r}}=84\right.\); Table 140). The year class strength model indicated that 2018 was a below average recruitment year for young-of-year largemouth bass (Table 141). Age-0 CPUE (\(62.7 \mathrm{fish} / \mathrm{hr}\)) remained below the lake average (\(86.7 \mathrm{fish} / \mathrm{hr}\)); however, largemouth bass were not stocked into Corinth Lake in 2018.

Spring diurnal electrofishing for bluegill and redear sunfish was completed in May 2018 to obtain length frequency, CPUE and population assessment data (Table 142). Bluegill PSD (49) was higher than the lake average of 33 (Table 143). The bluegill catch rate (320.8 fish \(/ \mathrm{hr}\)) continued to increase and was higher than the lake average (243.0 fish/hr; Table 144). The population assessment indicated a "Good" population, which is the average rating (Table 145). The redear sunfish catch rate (251.2 fish \(/ \mathrm{hr}\)) continued to increase and was higher than the lake's average (80.8 fish \(/ \mathrm{hr}\); Table 146). Redear sunfish PSD was 49 , lower than the lake average of 56 (Table 143). Catch rate for redear sunfish \(\geq 8.0\) in was \(36.8 \mathrm{fish} / \mathrm{hr}\); remaining higher than the lake average of \(28.7 \mathrm{fish} / \mathrm{hr}\) (Table 146). The population assessment for redear sunfish was rated as "Fair" (Table 147). Fall diurnal electofishing for bluegill and redear sunfish was conducted for age and growth and relative weights. Age and growth studies show that bluegill reach 6.0 in between age 3 and age 4 and redear sunfish reach 8.0 in at age 5 (Table 148-149) Relative weights indicated fair condition for bluegill (88) and good condition for redear sunfish (96; Table 150).

One hundred gallons of fertilizer was applied on May 15, 2018.
A time-lapse camera was installed at Corinth Lake from March 2018- February 2019 to estimate total usage (trips) and pressure (hours) at this public access area. This approach differs from previous daytime roving creel surveys in that these counts capture all usage types (boat anglers, bank anglers and recreational boaters). However, the primary usage of this site was by anglers. The time-lapse camera recorded a picture of the entire fishing area (parking lot, boat ramp and fishing pier) every 10-minutes during daylight hours throughout the study period. Images were analyzed by randomly selecting 16 days each month, which included an a.m. or p.m. period. During those selected dates and times, individual vehicles were selected for each fishing type (trailered boat, carry-down boat, bank), party size per vehicle and total trip lengths were recorded. A total individual vehicle count was also collected for the entire day. From these counts, monthly averages were calculated.

Overall, it was estimated that 5,059 trips were taken to Corinth Lake from March 2018-February 2019. Monthly trip totals ranged from 15 trips in February to 1,239 trips in May (Figure 1). Eighty-six percent of the trips to Corinth Lake occurred from April-September. The average trip length for the year was 3.4 hours. Trip lengths ranged from 2.5 hours in February to 4.8 hours in June. May (4,001 hours) and June (3,691 hours) recorded the highest usage rates (Figure 2). It was estimated that Corinth Lake received 17,486 hours of recreational pressure during this 12-month study period.

An angler attitude survey was conducted at Corinth Lake while personnel completed annual fish surveys, site maintenance and downloaded pictures from the time-lapse camera. Fifty-two surveys were completed by anglers. The attitude survey reflected the largest majority of anglers fish for largemouth bass (\(75.0 \%\)) followed by
bluegill (30.8\%), crappie (26.9\%), channel catfish (15.4\%), redear sunfish (11.5\%) and anything (5.8\%). The majority of anglers expressed satisfaction for their species of preference in 2018, except for crappie anglers. The majority of anglers \((95.9 \%)\) are satisfied with the current regulations on Corinth Lake. Overall, anglers were satisfied with the facilities (parking lot, boat ramp, fishing pier, courtesy dock and restroom) at Corinth Lake. However, while anglers were satisfied with the facilities, several anglers were dissatisfied with the amount of waterfowl and bird excrement on the boat ramp, courtesy dock and parking lot. Other anglers recommended expanding the parking lot and improving areas for bank fishing access.

\section*{Elmer Davis Lake (149 acres)}

Spring diurnal electrofishing studies were conducted in May 2018 for length frequency, PSD and CPUE for largemouth bass (Table 152). The total catch rate (331.5 fish \(/ \mathrm{hr}\)) was higher than the historical lake average of 307.6 fish/hr (Table 153). Largemouth bass PSD and RSD \(_{15}\) were 64 (average \(=30\)) and 12 (average \(=8\)), respectively (Table 154). The population assessment indicated an "Excellent" bass population, which has been the average rating since 2016 (Table 155). Fall electrofishing evaluated largemouth bass relative weight and index of year class strength at age-0 (Tables 156-158). Largemouth bass relative weight \(\left(\mathrm{W}_{\mathrm{r}}=87\right)\) was equal to the historical lake average \(\left(\mathrm{W}_{\mathrm{r}}=87\right.\); Table 157). The year class strength model indicated that 2018 was a below average year for young-of-year largemouth bass. Age-0 CPUE (\(100.7 \mathrm{fish} / \mathrm{hr}\)) was lower than the lake average (\(140.3 \mathrm{fish} / \mathrm{hr}\); Table 158). However, no largemouth bass were stocked during 2018.

Diurnal spring electrofishing for length frequency, CPUE, and population assessment data was conducted for bluegill and redear sunfish in May 2018 (Table 159). The total bluegill catch rate (\(242.4 \mathrm{fish} / \mathrm{hr}\)) remains lower than the lake average of \(255.3 \mathrm{fish} / \mathrm{hr}\) (Table 160). The PSD value for bluegill (28) was lower than the lake average of 35 (Table 161). The \(\mathrm{RSD}_{8}\) (3) was higher than the lake average of 2 . The population assessment for bluegill was "Good", the highest rating since 2012 (Table 162). The total catch rate of redear sunfish (31.2 fish \(/ \mathrm{hr}\)) was lower than the lake average of 69.5 fish/hr (Table 163). The PSD for redear sunfish was 67 compared to the lake average of 55. The \(\mathrm{RSD}_{9}\) was 57 compared to the lake average of 19 (Table 161). The redear sunfish population assessment indicated a "Good" population, which is equal to the lake's average rating (Table 164). Relative weight index reflects average condition bluegill \(\left(\mathrm{W}_{\mathrm{r}}=94\right)\) and above average condition for redear sunfish \(\left(\mathrm{W}_{\mathrm{r}}=112\right.\); Table 165). Elmer Davis Lake was stocked with 39,600 (266 fish/acre; 1.7 in) redear sunfish in September 2018.

Channel catfish were sampled in October 2018 using tandem hoop nets at Elmer Davis Lake. Channel catfish collected ranged from the 14.0 - to 26.0 -in size classes (Table 166). Channel catfish were collected at 16.3 fish/set in 2018 which is lower than the lake average of 78.5 fish/set (Table 167). The PSD and RSD 24 for channel catfish was 94 and 4, respectively (Table 168). Relative weights of channel catfish were excellent \(\left(W_{r}=101\right.\); Table 169).

\section*{Kincaid Lake (183 acres)}

Fall diurnal electrofishing for relative weights and index of year class strength at age 0 were conducted in October 2018 (Tables 170-172). Overall, relative weight values for largemouth bass (\(\mathrm{W}_{\mathrm{r}}=92\)) were equal to the lake average (\(\mathrm{W}_{\mathrm{r}}=92\); Table 171). Age-0 CPUE (48.0 fish/hr) was higher than the lake average (37.9 fish \(/ \mathrm{hr}\); Table 172). Largemouth bass were not stocked into Kincaid Lake in 2018.

\section*{McNeely Lake (51 acres)}

Spring diurnal electrofishing studies were conducted in April 2018 for PSD, length frequency and CPUE for largemouth bass (Table 173). Total catch rate in 2018 (334.0 fish/hr) was higher than the lake average of 229.2 fish/hr (Table 174). Largemouth bass PSD and RSD \(_{15}\) was 36 (average \(=37\)) and 9 (average \(=11\)), respectively (Table 175). The population assessment indicated an "Excellent" bass population, compared to the lake average assessment of "Good" (Table 176).

Channel catfish were not sampled at McNeely Lake in 2018. McNeely Lake was stocked with 1,275 (25.0 fish/acre; 7.0-9.0 in) channel catfish in March 2018.

McNeely Lake was stocked with 100 (2.0 fish/acre: 8.0-10.0 in) grass carp in October 2018 for vegetation control.

Currently, McNeely Lake does not contain a population of gizzard shad.

\section*{Big Bone State Park Lake}

During July 2018, electrofishing was completed at Big Bone State Park Lake in an effort to remove fish in response to dam failure and complete dewatering of the lake. Fish removed were relocated to Benjy Kinman Lake in Henry County (Table 177).

\section*{General Butler State Park Lake}

During August 2018, electrofishing was completed at General Butler State Park Lake in an effort to reduce the biomass of sportfish in response to a drawdown to complete dam repairs. Fish removed were relocated to Benjy Kinman Lake in Henry County (Table 178).

\section*{Kentucky River WMA (Boone Tract) Ponds}

Length frequency, relative abundance, and CPUE of fishes collected in August 2018 by electrofishing at the 15 -acre lake on the Boone Tract of the Kentucky River WMA are shown in Table 179. Largemouth bass were collected from the 4.0 - to 15.0 -in size classes. Bluegill were collected up to the 9.0 -in size class. Black crappie were also collected during this sample. No other species of fish were observed.

Length frequency, relative abundance, and CPUE of fishes collected in August 2018 by electrofishing at the 6 -acre lake on the Boone Tract of the Kentucky River WMA are shown in Table 180. Largemouth bass were collected from the 4.0 - to 21.0 -in size classes. Bluegill were collected up to the 8.0 -in size class. Black crappie and redear sunfish were also collected. Gizzard shad, bullhead catfish and smallmouth buffalo were observed while completing this sport fish sample.

Length frequency, relative abundance, and CPUE of fishes collected in August 2018 by electrofishing at the 4 -acre pond (Prather Pond) on the Boone Tract of the Kentucky River WMA are shown in Table 181. Largemouth bass were collected from the 4.0- to 18.0 -in size classes. Bluegill and redear sunfish were collected up to the \(6.0-\mathrm{in}\) and 8.0 -in size classes, respectively. White crappie were also collected. Gizzard shad were observed while completing this sport fish sample.

\section*{Sympson Lake}

Relative abundance and CPUE of largemouth bass collected in April 2018 are shown in Table 182. Largemouth bass were collected from the 5.0 - to 21.0 -in size classes. Good numbers of bass were present above the \(15.0-\) in size limit. Good numbers and size distribution of white crappie was observed during this sample. An abundant population of common carp are also present in the lake.

\section*{Willisburg Lake (126 acres)}

Relative abundance and CPUE of largemouth bass collected in May 2018 are shown in Table 183. Largemouth bass were collected from the 3.0- to 20.0 -in size classes. Good numbers of bass were present above the 12.0 -in size limit. Willisburg Lake was stocked with 1,463 largemouth bass (11.6 fish/acre; 4.0-11.0 in) that were removed from Beaver Lake.

Willisburg Lake was stocked with 3,150 (25.0 fish/acre; 7.0-9.0 in) channel catfish in March 2018.

Table 1. Yearly summary of sampling conditions by waterbody, species sampled and date.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Water body & Species & Date & Time (24hr) & Gear & Weather & Water temp. F & Water level & Secchi (in) & Conditions & Pertinent sampling comments \\
\hline Sympson Lake & LMB & 4/27 & 1000 & Shock & Sunny/clear & 61 & Full & 45 & Good & All sized of crappie observed, large common carp \\
\hline McNeely Lake & LMB & 4/30 & 1100 & Shock & Sunny/clear & 62 & Full & 72 & Good & Excellent numbers of quality size BLG/RES observed \\
\hline Corinth Lake & LMB & 4/30 & 2030 & Shock & Clear/calm & 63 & Full & 56 & Good & Good sample \\
\hline A.J. Jolly Lake & LMB/Saugeye & 4/30 & 1000 & Shock & Sunny & 58.5 & Full & 8 & Muddy & Lots of small crappie observed \\
\hline Bullock Pen Lake & LMB & 5/1 & 1100 & Shock & Sunny/breezy & 61 & Full & --- & Good & Good sample \\
\hline Guist Creek Lake & LMB/Saugeye & 5/1 & 2045 & Shock & Clear/calm & 65 & Above Pool & 28 & Good & Good sample \\
\hline Elmer Davis Lake & LMB & 5/2 & 1100 & Shock & Mostly cloudy/breezy & --- & Full & 36 & Good & Good sample \\
\hline Benjy Kinman Lake & LMB & 5/2 & 2045 & Shock & Calm & 69 & Full & 41 & Good & Good sample \\
\hline Boltz Lake & LMB & 5/3 & 2030 & Shock & Mostly cloudy & 67 & Full & 42 & Good & Good sample \\
\hline Beaver lake & LMB & 5/3 & 1100 & Shock & Mostly cloudy/breezy & 67 & Full & 52 & Good & Good sample \\
\hline Herrington Lake (Gwinn Island) & LMB & 5/7 & 1100 & Shock & Mostly cloudy & 70 & 725.0 ft & 37 & Good & Good sample \\
\hline Taylorsville Lake (Big Beech) & LMB & 5/7 & 2300 & Shock & Clear/cool & 66 & 549.1 ft & 27 & Good & Good sample \\
\hline Taylorsville Lake (Van Buren) & LMB & 5/8 & 2100 & Shock & Clear & 72 & 548.9 & --- & Good & Good sample \\
\hline Herrington Lake (Cane Run) & LMB & 5/9 & 1300 & Shock & Mostly cloudy & 74 & 723.6 ft & 46 & Good & Good sample \\
\hline Taylorsville Lake (Ashes/Jacks) & LMB & 5/9 & 2030 & Shock & --- & 72 & 548.2 ft & --- & Good & Good sample \\
\hline Herrington Lake (Kings Mill) & LMB & 5/10 & 1100 & Shock & Mostly sunny & 67 & 722.2 ft & 20 & Good & Good sample \\
\hline Willisburg Lake & LMB & 5/14 & 1000 & Shock & Sunny/clear & 77 & Full & 37 & Good & Good sample \\
\hline Beaver Lake & BLG/RES & 5/16 & 1000 & Shock & --- & 80 & Full & --- & Good & Good sample \\
\hline Elmer Davis Lake & BLG/RES & 5/21 & 1000 & Shock & Sunny/light wind & 80 & Full & 49 & Good & Good sample \\
\hline Corinth Lake & BLG/RES & 5/22 & 1000 & Shock & Cloudy w/rain & 79 & Full & 39 & Good & Good sample \\
\hline Boltz Lake & BLG/RES & 5/23 & 1030 & Shock & --- & 76 & Full & 17 & Good & Good sample \\
\hline Benjy Kinman Lake & BLG/RES & 5/24 & 1030 & Shock & --- & 82 & Above Pool & 27 & Good & About 15" above pool \\
\hline Taylorsville Lake (Chowning Lane) & Blue cattish & 7/17 & 830 & Shock & Sunny/calm & 84 & 547.0 ft & 20 & Good & Thermocline at 12 ft \\
\hline Taylorsville Lake (Settlers Trace) & Blue cattish & 7/18 & 830 & Shock & Sunny/clear & 83 & 547.0 ft & 32 & Good & Thermocline at 15 ft \\
\hline Bullock Pen Lake & LMB & 9/4 & 1100 & Shock & Sunny/calm/hot & 86 & Below Pool & 42 & Good & Lake about 12" below pool \\
\hline Taylorsville Lake (Upper Lake) & Blue cattish & 7/17 & 840 & Shock & Mostly sunny/calm & 84 & 547.0 ft & 20 & Good & Good sample \\
\hline Taylorsville Lake (Lower Lake) & Blue cattish & 7/18 & 830 & Shock & Clear/calm/hot & 83 & 547.0 ft & 32 & Good & Good sample \\
\hline Boone Tract
(4 acre pond) & Sport fish & 8/28 & 1030 & Shock & --- & 85 & Full & 28 & Good & Good sample \\
\hline Boone Tract (6 acre pond) & Sport fish & 8/28 & 1030 & Shock & --- & 85 & Full & 28 & Good & Good sample \\
\hline Boone Tract
(15 acre pond) & Sport fish & 8/28 & 1030 & Shock & --- & 82 & Full & 120 & Good & Good sample \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Water body & Species & Date & \[
\begin{aligned}
& \hline \text { Time } \\
& (24 \mathrm{hr})
\end{aligned}
\] & Gear & Weather & Water
temp. F & Water level & \begin{tabular}{l}
Secchi \\
(in)
\end{tabular} & Conditions & Pertinent sampling comments \\
\hline Bullock Pen Lake & LMB & 9/4 & 1100 & Shock & Sunny/clear/hot & 86 & \(\sim 12\) in low & 42 & Good & Good sample \\
\hline Benjy Kinman Lake & LMB & 9/10 & 1045 & Shock & Cloudy/cool & 76 & Full & 28 & Good & Good sample \\
\hline Corinth Lake & LMB/BLG/RES & 9/11 & 1030 & Shock & Cloudy/cool & 72 & Full & 63 & Good & Good sample \\
\hline Boltz Lake & LMB/BLG/Saugeye & 9/12 & 1115 & Shock & --- & 70 & Full & --- & Good & Good sample \\
\hline Elmer Davis Lake & LMB/BLG/RES & 9/14 & 1030 & Shock & Sunny/clear & 74 & Full & 26 & Good & Good sample \\
\hline Herrington Lake (Kings Mill) & Black bass & 9/18 & 945 & Shock & Sunny/clear & 77 & 733.4 & --- & Good & Good sample \\
\hline Herrington Lake (Gwinn Island) & Black bass & 9/19 & 1000 & Shock & Clear/hot & 79 & 733.5 & 64 & Good & Good sample \\
\hline Herrington Lake (Cane Run) & Black bass & 9/20 & 1030 & Shock & Sunny/clear & 79 & 733.6 & --- & Good & Good sample \\
\hline Taylorsville Lake (Van Buren) & LMB/Saugeye & 9/21 & 930 & Shock & Mostly sunny & -- & 547.1 & 33 & Good & Good sample \\
\hline Beaver Lake & LMB/BLG/RES & 9/25 & 1030 & Shock & --- & --- & Full & --- & Good & Good sample \\
\hline Guist Creek Lake & LMB/Saugeye & 10/1 & 1030 & Shock & --- & 73 & Full & 22 & Good & Good sample \\
\hline Kincaid Lake & LMB & 10/2 & 1030 & Shock & Mostly cloudy & 72 & High & 19 & Good & Good sample \\
\hline Boltz Lake & Crappie & 10/3 & 1100 & Shock & --- & 75 & Full & 25 & Good & Good sample \\
\hline Taylorsville Lake (Big Beech) & LMB/Saugeye & 10/8 & 1000 & Shock & --- & 77 & 549.1 & 27 & Good & Good sample \\
\hline Taylorsville Lake (Ashes/Jacks) & LMB/Saugeye & 10/9 & 1000 & Shock & Sunny & 77 & 547.9 & 28 & Good & Good sample \\
\hline AJ Jolly Lake & LMB/Saugeye & 10/9 & 1100 & Shock & Cloudy & 78 & Full & 24 & Good & Urban Crew Sampled \\
\hline Guist Creek Lake & Saugeye & 10/17 & 1100 & Shock & Mostly sunny & 62 & Full & -- & Good & Good sample \\
\hline Benjy Kinman Lake & Channel catfish & 10/18 & 1300 & \[
\begin{aligned}
& \text { Hoop } \\
& \text { net } \\
& \hline
\end{aligned}
\] & Sunny/cool & 62 & \(\sim 20\) in low & --- & Good & Good sample \\
\hline Elmer Davis Lake & Channel catfish & 10/18 & 1000 & \[
\begin{gathered}
\text { Hoop } \\
\text { net }
\end{gathered}
\] & Sunny/cool & 59 & Low & --- & Good & Good sample \\
\hline Taylorsville Lake & Morones/ crappie & \[
\begin{aligned}
& 10 / 23 \\
& 10 / 24 \\
& 10 / 25 \\
& 10 / 26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1000 \\
& 1000 \\
& 1000 \\
& 1000 \\
& \hline
\end{aligned}
\] & Gillnet trap net & & \[
\begin{aligned}
& 62 \\
& 62 \\
& 63 \\
& 63 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 547.1 \\
& 54.1 \\
& 547.1 \\
& 547.1
\end{aligned}
\] & -- & Good & Good sample \\
\hline Herrington Lake & Morones & \[
\begin{aligned}
& \hline 10 / 30 \\
& 10 / 31
\end{aligned}
\] & \[
\begin{aligned}
& 1000 \\
& 1000
\end{aligned}
\] & Gillnet & Sunny/cool Sunny/cool & \[
\begin{aligned}
& \hline 67 \\
& 66
\end{aligned}
\] & \[
\begin{aligned}
& 729.7 \\
& 729.2
\end{aligned}
\] & --- & Good & Good sample \\
\hline
\end{tabular}

Table 2. Length distribution and CPUE (fish/hr) of black bass and saugeye collected in 7.5 hours of 30 -minute electrofishing runs in Taylorsville Lake in May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline \multicolumn{21}{|l|}{Van Buren} \\
\hline Largemouth bass & 3 & 21 & 33 & 30 & 14 & 23 & 87 & 87 & 41 & 24 & 32 & 28 & 17 & 14 & 5 & 2 & 1 & & 462 & 184.8 (11.4) \\
\hline Saugeye & & & & 1 & 1 & 1 & 1 & 2 & & & & & & & & & & & 6 & 2.4 (1.9) \\
\hline \multicolumn{21}{|l|}{Ashes Creek} \\
\hline Largemouth bass & 5 & 18 & 24 & 24 & 17 & 41 & 122 & 87 & 39 & 49 & 53 & 55 & 26 & 21 & 11 & 4 & & & 596 & 238.4 (19.9) \\
\hline Saugeye & & & & & 1 & 2 & 5 & 8 & 3 & & & & & 1 & & & & & 20 & 8.0 (1.9) \\
\hline \multicolumn{21}{|l|}{Big Beech Creek} \\
\hline Largemouth bass & 3 & 8 & 6 & 7 & 9 & 25 & 57 & 57 & 36 & 23 & 13 & 27 & 24 & 19 & 6 & 3 & 1 & 1 & 325 & 130.0 (14.7) \\
\hline Saugeye & & & & 1 & 8 & 12 & 9 & 6 & 1 & & & & & 1 & & & & 1 & 39 & 15.6 (7.8) \\
\hline \multicolumn{21}{|l|}{Total} \\
\hline Largemouth bass & 11 & 47 & 63 & 61 & 40 & 89 & 266 & 231 & 116 & 96 & 98 & 110 & 67 & 54 & 22 & 9 & 2 & 1 & 1,383 & 184.4 (14.5) \\
\hline Saugeye & & & & 2 & 10 & 15 & 15 & 16 & 4 & & & & & 2 & & & & 1 & 65 & 8.7 (2.9) \\
\hline
\end{tabular}

Table 3. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Taylorsville Lake from 1984-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1984 & 50.4 (1.8) & 88.0 (6.0) & 6.0 (2.2) & 0.0 (0.0) & 0.0 (0.0) & 144.4 (5.6) \\
\hline 1985 & 0.8 (0.6) & 43.8 (5.4) & 74.8 (9.2) & 3.4 (1.0) & 0.0 (0.0) & 122.2 (14.4) \\
\hline 1986 & 1.8 (0.2) & 11.2 (1.4) & 21.0 (1.8) & 24.4 (3.0) & 0.0 (0.0) & 59.0 (5.4) \\
\hline 1987 & 3.6 (0.6) & 5.4 (0.6) & 9.2 (1.0) & 29.2 (2.6) & 0.3 (0.1) & 48.0 (3.8) \\
\hline 1988 & 3.2 (0.8) & 8.4 (1.2) & 6.0 (1.0) & 19.6 (3.0) & 0.2 (0.1) & 37.2 (4.8) \\
\hline 1989 & 58.6 (15.6) & 33.4 (5.8) & 22.2 (3.4) & 13.8 (3.0) & 0.0 (0.0) & 128.2 (24.0) \\
\hline 1990 & 57.0 (8.4) & 54.2 (6.8) & 22.8 (2.6) & 21.8 (3.4) & 0.5 (0.2) & 154.4 (15.0) \\
\hline 1991 & 26.0 (2.8) & 37.2 (2.8) & 22.8 (2.1) & 11.8 (1.4) & 0.1 (0.1) & 98.6 (5.2) \\
\hline 1992 & 58.5 (5.5) & 42.6 (2.5) & 36.9 (2.9) & 17.6 (1.6) & 0.1 (0.1) & 155.6 (7.3) \\
\hline 1993 & 21.0 (3.6) & 53.2 (4.8) & 36.4 (13.8) & 14.8 (1.9) & 0.1 (0.1) & 128.3 (8.6) \\
\hline 1994 & 25.1 (3.0) & 39.9 (3.6) & 40.7 (5.1) & 15.0 (1.5) & 0.1 (0.1) & 122.3 (9.8) \\
\hline 1995 & 28.2 (3.5) & 69.6 (3.9) & 20.3 (1.3) & 11.6 (1.4) & 0.0 (0.0) & 129.6 (6.8) \\
\hline 1996 & 16.2 (2.4) & 41.0 (3.9) & 49.8 (3.2) & 16.0 (3.2) & 0.1 (0.1) & 122.6 (9.8) \\
\hline 1997 & 33.2 (6.3) & 43.4 (4.0) & 46.4 (1.8) & 15.2 (1.8) & 0.1 (0.1) & 138.3 (7.7) \\
\hline 1998 & 20.0 (3.0) & 26.4 (2.7) & 30.5 (2.6) & 21.7 (2.6) & 0.4 (0.2) & 98.7 (7.2) \\
\hline 1999 & 19.1 (2.8) & 38.7 (3.2) & 20.9 (3.0) & 22.7 (2.6) & 0.4 (0.39) & 101.3 (7.1) \\
\hline 2000 & 17.7 (3.3) & 33.1 (3.9) & 16.1 (2.6) & 10.5 (1.5) & 0.5 (0.2) & 77.5 (6.1) \\
\hline 2001 & 32.4 (4.1) & 44.1 (3.7) & 27.6 (3.6) & 15.5 (2.7) & 0.3 (0.2) & 119.6 (8.3) \\
\hline 2002 & 33.7 (4.4) & 22.3 (2.2) & 12.8 (2.2) & 9.6 (1.8) & 0.5 (0.2) & 78.4 (7.0) \\
\hline 2003 & 19.5 (2.9) & 58.5 (4.8) & 24.9 (2.2) & 15.2 (2.1) & 0.8 (0.4) & 118.1 (9.2) \\
\hline 2004 & 14.1 (2.5) & 26.7 (2.7) & 42.9 (3.4) & 13.2 (1.6) & 0.3 (0.3) & 96.9 (5.2) \\
\hline 2005 & 35.5 (5.9) & 35.7 (4.9) & 40.3 (4.3) & 34.3 (3.4) & 0.5 (0.4) & 145.7 (12.7) \\
\hline 2006 & 20.3 (4.0) & 39.6 (3.7) & 20.3 (3.7) & 16.5 (2.7) & 0.3 (0.2) & 96.7 (11.0) \\
\hline 2007 & 13.5 (2.5) & 35.5 (4.1) & 33.7 (3.6) & 14.4 (2.4) & 0.3 (0.2) & 97.1 (9.1) \\
\hline 2008 & 13.9 (2.9) & 30.1 (2.8) & 33.6 (3.1) & 22.5 (3.2) & 0.0 (0.0) & 100.1 (8.9) \\
\hline 2009 & 15.9 (3.5) & 32.9 (3.6) & 22.3 (2.5) & 13.6 (2.1) & 0.1 (0.1) & 84.7 (6.9) \\
\hline 2010 & 45.7 (8.3) & 36.3 (2.7) & 49.7 (5.1) & 16.4 (1.8) & 0.3 (0.2) & 148.1 (12.4) \\
\hline 2011 & \multicolumn{6}{|c|}{Sampling was not conducted due to extreme weather and lake conditions.} \\
\hline 2012 & 27.9 (4.0) & 59.1 (6.0) & 36.9 (3.0) & 14.5 (1.2) & 0.3 (0.2) & 138.4 (8.6) \\
\hline 2013 & 19.6 (2.1) & 49.9 (4.6) & 42.0 (4.5) & 22.1 (2.9) & 0.4 (0.2) & 133.6 (10.5) \\
\hline 2014 & 17.1 (2.8) & 40.5 (7.6) & 35.1 (4.1) & 21.3 (2.3) & 0.5 (0.3) & 114.0 (13.4) \\
\hline 2015 & 18.5 (3.9) & 39.3 (5.3) & 32.7 (3.2) & 19.3 (2.7) & 0.3 (0.2) & 109.9 (11.7) \\
\hline 2016 & 15.9 (2.5) & 59.2 (4.8) & 98.8 (6.6) & 44.8 (3.4) & 0.9 (0.4) & 218.7 (13.2) \\
\hline 2017 & 22.5 (2.7) & 27.2 (2.5) & 74.4 (4.7) & 46.9 (3.6) & 0.5 (0.3) & 171.1 (7.5) \\
\hline 2018 & 24.7 (3.6) & 83.5 (7.6) & 41.3 (4.1) & 35.3 (3.6) & 0.4 (0.2) & 184.4 (14.5) \\
\hline
\end{tabular}

Dataset \(=\) cfdpstvl.d18- .d84
Table 4. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in each area of Taylorsville Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lcccc}
\hline Area & Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Big Beech & Largemouth bass & 301 & \(51(\pm 6)\) & \(27(\pm 5)\) \\
Ashes Creek & Largemouth bass & 525 & \(49(\pm 4)\) & \(22(\pm 4)\) \\
Van Buren & Largemouth bass & 375 & \(44(\pm 5)\) & \(18(\pm 4)\) \\
\hline Total & Largemouth bass & 1,201 & \(48(\pm 3)\) & \(22(\pm 2)\) \\
\hline
\end{tabular}

Dataset = cfdpstvl.d18

Table 5. Population assessment for largemouth bass collected during spring electrofishing at Taylorsville Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment
rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
13.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
26.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
41.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
35.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2017 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
74.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
46.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
3
\end{gathered}
\] & & & 16 & Good \\
\hline 2016 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
24.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
98.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
44.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
3
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2015 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
32.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
19.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
12.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
23.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
35.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
21.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
3
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2013 & Value Score & \[
\begin{gathered}
13.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
17.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
42.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
22.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & & & 15 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
13.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
28.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
39.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
14.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & & & 15 & Good \\
\hline 2011 & Value Score & \multicolumn{9}{|c|}{Sampling was not conducted due to extreme weather and lake conditions.} \\
\hline 2010 & Value Score & \[
\begin{gathered}
13.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
49.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
49.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
16.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & 0.574 & 43.7 & 16 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
22.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & & & 11 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
33.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
22.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 14 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
12.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
10.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
33.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
14.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & & & 13 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
12.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
17.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
16.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & 0.824 & 56.1 & 12 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
12.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
38.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
40.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
34.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
3
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2004 & Value Score & \[
\begin{gathered}
12.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
42.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
13.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
12.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
24.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
12.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
34.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
3
\end{gathered}
\] & 0.495 & 39.0 & 12 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
10.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
27.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
2
\end{gathered}
\] & 0.539 & 41.7 & 11 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
10.1 \\
1 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
16.1 \\
1 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
10.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
3
\end{gathered}
\] & 0.455 & 36.6 & 9 & Fair \\
\hline
\end{tabular}
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 6. Length distribution and CPUE (fish/hr) of largemouth bass and saugeye collected in 4.5 hours of 15 -minute electrofishing runs for black bass in Taylorsville Lake in September 2018; numbers in parentheses are standard errors.

Dataset \(=\) cfdwrtvl. 118

Table 7. Mean back calculated lengths (in) at each annulus for largemouth bass otoliths collected from Taylorsville Lake in the fall 2018.
\begin{tabular}{lrrrrrrrrr}
\hline & & \multicolumn{10}{c}{ Age } \\
\cline { 2 - 10 } & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Year & 33 & 5.8 & & & & & & & \\
2017 & 27 & 6.2 & 10.5 & & & & & & \\
2015 & 7 & 7.4 & 11.1 & 13.4 & & & & & \\
2014 & 9 & 6.4 & 10.5 & 12.8 & 14.7 & & & & \\
2013 & 6 & 6.0 & 9.8 & 12.2 & 13.9 & 15.0 & & & \\
2012 & 1 & 7.9 & 11.9 & 15.0 & 16.8 & 18.2 & 19.2 & & \\
2011 & 1 & 6.9 & 9.7 & 11.8 & 12.9 & 14.1 & 15.0 & 16.0 & \\
2010 & 1 & 4.9 & 9.9 & 13.5 & 15.2 & 16.0 & 16.8 & 17.6 & 18.4 \\
& & & & & & & & \\
Mean & 85 & 6.2 & 10.5 & 12.9 & 14.5 & 15.4 & 17.0 & 16.8 & 18.4 \\
Smallest & & 3.8 & 7.2 & 11.8 & 12.9 & 13.8 & 15.0 & 16.0 & 18.4 \\
Largest & & 9.9 & 13.2 & 15.0 & 16.8 & 18.2 & 19.2 & 17.6 & 18.4 \\
Std Error & & 0.1 & 0.1 & 0.2 & 0.3 & 0.5 & 1.2 & 0.8 & \\
95\% ConLo & & 5.9 & 10.2 & 12.6 & 13.9 & 14.4 & 14.6 & 15.2 & \\
95\% ConHi & & 6.4 & 10.8 & 13.3 & 15.0 & 16.3 & 19.4 & 18.4 & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagtvl.d18

Table 8. Numbers of fish and the relative weight \(\left(W_{r}\right)\) for each length group of largemouth bass collected at Taylorsville Lake in September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Van Buren & 29 & 93 (2) & 26 & 92 (2) & 4 & 99 (2) & 59 & 93 (1) \\
\hline & Ashes & 43 & 86 (1) & 19 & 89 (2) & 10 & 102 (2) & 72 & 89 (1) \\
\hline & Big Beech & 53 & 94 (1) & 24 & 95 (2) & 15 & 90 (2) & 92 & 93 (1) \\
\hline & Total & 125 & 91 (1) & 69 & 92 (1) & 29 & 95 (2) & 223 & 92 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrtvl.d18

Table 9. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Taylorsville Lake. Age-1 CPUE and standard error could not be calculated in 2010 due to prolonged flood conditions in spring. \(\qquad\)
Age-1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age- \(0 \geq 5.0\) in} & \multicolumn{2}{|l|}{Age-1 (natural)} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2001 & Total & 4.6 & 1.3 & 63.6 & 11.7 & 13.3 & 1.0 & 34.8 & 4.3 \\
\hline 2002 & Total & 5.3 & 0.1 & 29.1 & 4.8 & 18.7 & 3.5 & 21.2 & 2.8 \\
\hline 2003 & Total & 5.4 & 0.1 & 32.2 & 5.4 & 19.1 & 3.4 & 14.9 & 2.5 \\
\hline 2004 & Total & 4.4 & 0.1 & 50.0 & 6.2 & 15.1 & 3.6 & 38.3 & 6.2 \\
\hline 2005 & Total & 4.9 & 0.1 & 31.8 & 4.2 & 15.3 & 2.5 & 17.5 & 3.8 \\
\hline 2006 & Total & 4.9 & 0.1 & 54.7 & 4.9 & 25.8 & 2.9 & 10.3 & 2.0 \\
\hline 2007 & Total & 4.4 & 0.1 & 22.4 & 3.2 & 6.7 & 1.8 & 12.2 & 2.6 \\
\hline 2008 & Total & 5.5 & 0.1 & 20.9 & 3.9 & 16.7 & 3.5 & 14.6 & 3.1 \\
\hline 2009 & Total & 4.9 & 0.1 & 90.2 & 14.5 & 39.8 & 6.5 & 49.5 & 8.7 \\
\hline 2010 & Total & 5.2 & 0.1 & 45.2 & 4.9 & 27.7 & 3.3 & * & * \\
\hline 2011 & Total & 4.8 & 0.1 & 40.4 & 2.8 & 17.8 & 1.6 & 27.5 & 3.8 \\
\hline 2012 & Total & 5.1 & 0.1 & 54.4 & 5.3 & 27.8 & 3.3 & 17.2 & 2.2 \\
\hline 2013 & Total & 4.9 & 0.1 & 50.0 & 6.0 & 23.8 & 4.3 & 23.6 & 3.7 \\
\hline 2014 & Total & 5.5 & 0.1 & 21.1 & 4.3 & 15.4 & 3.0 & 16.8 & 3.7 \\
\hline 2015 & Total & 6.0 & 0.1 & 14.4 & 2.1 & 12.7 & 2.1 & 24.6 & 3.0 \\
\hline 2016 & Total & 5.0 & 0.1 & 49.3 & 7.1 & 21.3 & 2.7 & 25.1 & 2.6 \\
\hline 2017 & Total & 5.2 & 0.1 & 46.2 & 3.9 & 26.2 & 3.7 & 27.7 & 3.7 \\
\hline 2018* & Total & 6.3 & 0.1 & 23.7 & 3.2 & 22.0 & 2.9 & & \\
\hline
\end{tabular}

Dataset = cfdwrtvl.d18
*Data only collected at Van Buren and Ashes Creek due to YOY stocking

Table 10. Length distribution and CPUE (fish/nn) of each species of crappie collected at Taylorsville Lake in 48 net-nights in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{11}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & & & \\
\hline White crappie & 1 & 23 & 6 & & & 62 & 184 & 207 & 66 & 8 & 1 & 558 & 11.6 & 1.7 \\
\hline Black crappie & 2 & & & & 1 & 19 & 56 & 29 & 7 & 2 & & 116 & 2.4 & 1.0 \\
\hline
\end{tabular}

Dataset \(=\) cfdtntvl.d18

Table 11. PSD and \(R S D_{10}\) values calculated for crappie collected at Taylorsville Lake in 48 net-nights during October 2018.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 5.0\) in & PSD & RSD \(_{10}\) \\
\hline White crappie & 534 & \(99(\pm 1)\) & \(53(\pm 4)\) \\
Black crappie & 114 & \(99(\pm 2)\) & \(33(\pm 9)\) \\
\hline Dataset \(=\) cfdtntvl.d18 & & &
\end{tabular}

Table 12. Mean back calculated lengths (in) at each annulus for otoliths from white crappie trap netted and gill netted at Taylorsville Lake in 2018.
\begin{tabular}{lcccccc}
\hline Year & & \multicolumn{5}{c}{ Age } \\
\cline { 3 - 7 } class & No. & 1 & 2 & 3 & 4 & 5 \\
\hline 2017 & 8 & 4.7 & & & & \\
2016 & 8 & 5.4 & 8.0 & & & \\
2015 & 43 & 5.3 & 8.1 & 9.4 & & \\
2014 & 4 & 5.3 & 9.0 & 10.6 & 11.3 & \\
2013 & 1 & 4.9 & 8.3 & 9.7 & 10.3 & 10.7 \\
& & & & & & \\
Mean & 64 & 5.2 & 8.1 & 9.5 & 11.1 & 10.7 \\
Smallest & & 3.9 & 6.6 & 7.2 & 9.5 & 10.7 \\
Largest & & 6.9 & 10.7 & 11.6 & 12.3 & 10.7 \\
Std error & & 0.1 & 0.1 & 0.2 & 0.5 & \\
95\% ConLo & & 5.1 & 7.9 & 9.2 & 10.1 & \\
95\% ConHi & & 5.4 & 8.4 & 9.9 & 12.1 & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagtvl.d18

Table 13. Age frequency and CPUE (fish/nn) per inch class of white crappie trap netted for 48 net-nights at Taylorsville Lake in 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{10}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std err} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & & & \\
\hline 0+ & 1 & 23 & 6 & & & & & & & & 30 & 5 & 0.6 & 0.2 \\
\hline 1+ & & & & & & 16 & 26 & & & & 42 & 8 & 0.9 & 0.2 \\
\hline 2+ & & & & & & 7 & 66 & 15 & 5 & & 93 & 17 & 1.9 & 0.3 \\
\hline 3+ & & & & & & 39 & 92 & 177 & 56 & 5 & 369 & 66 & 7.7 & 1.1 \\
\hline 4+ & & & & & & & & 15 & & 3 & 18 & 3 & 0.4 & 0.1 \\
\hline 5+ & & & & & & & & & 5 & & 5 & 1 & 0.1 & 0.1 \\
\hline Total & 1 & 23 & 6 & & & 62 & 184 & 207 & 66 & 8 & 557 & 100 & 11.6 & 1.7 \\
\hline (\%) & 0 & 4 & 1 & 0 & 0 & 11 & 33 & 37 & 12 & 1 & 100 & & & \\
\hline
\end{tabular}

Dataset \(=\) cfdtntvl.d18 and cfdagtvl.d18
CPUE of \(\geq 8.0\) in white crappie \(=11.0 \pm 1.7 \mathrm{fish} / \mathrm{nn} ; \geq 10.0 \mathrm{in}=5.9 \pm 0.9 \mathrm{fish} / \mathrm{nn}\)

Table 14. Mean back calculated lengths (in) at each annulus for otoliths from black crappie trap netted at Taylorsville Lake in 2018.
\begin{tabular}{lccccc}
\hline & & \multicolumn{5}{c}{ Age } \\
\cline { 2 - 6 } Year class & No. & 1 & 2 & 3 & 4 \\
\hline 2017 & 13 & 4.5 & & & \\
2016 & 5 & 5.1 & 8.2 & & \\
2015 & 15 & 5.0 & 7.8 & 9.4 & \\
2014 & 14 & 4.4 & 7.7 & 8.9 & 9.6 \\
& & & & & \\
Mean & 47 & 4.7 & 7.8 & 9.2 & 9.6 \\
Smallest & & 3.4 & 6.4 & 7.9 & 8.3 \\
Largest & & 6.8 & 9.3 & 11.4 & 11.1 \\
Std error & & 0.1 & 0.1 & 0.1 & 0.2 \\
\(95 \%\) ConLo & & 4.5 & 7.6 & 8.9 & 9.3 \\
\(95 \%\) ConHi & & 4.9 & 8.1 & 9.4 & 10.0 \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset = cfdagtvl.d18

Table 15. Age frequency and CPUE (fish/nn) per inch class of black crappie trap netted for 48 net-nights at Taylorsville Lake in 2018.
\begin{tabular}{lrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ Inch class } & \\
Age & 3 & 7 & 8 & 9 & 10 & 11 & 12 & Total & \(\%\) & CPUE & \begin{tabular}{l}
Std \\
err
\end{tabular} \\
\hline \(0+\) & 2 & & & & & & & 2 & 2 & 0.1 & 0.1 \\
\(1+\) & & 1 & 15 & 20 & & & & 36 & 32 & 0.8 & 0.3 \\
\(2+\) & & & 2 & 5 & 6 & & & 13 & 11 & 0.3 & 0.1 \\
\(3+\) & & & & 5 & 17 & 3 & 2 & 27 & 23 & 0.6 & 0.2 \\
\(4+\) & & & 2 & 25 & 6 & 4 & & 37 & 32 & 0.8 & 0.3 \\
\hline Total & 2 & 1 & 19 & 55 & 29 & 7 & 2 & 116 & 100 & 2.4 & 1.0 \\
\(\%\) & 2 & 1 & 16 & 48 & 25 & 6 & 2 & 100 & & & \\
\hline
\end{tabular}

Dataset \(=\) cfdtntvl.d18 and cfdagtvl.d18
CPUE of \(\geq 8.0\) in black crappie \(=2.4 \pm 1.0 \mathrm{fish} / \mathrm{nn} ; \geq 10.0\) in \(=0.8 \pm 0.3 \mathrm{fish} / \mathrm{nn}\)

Table 16. Population assessment for white crappie collected during fall trap netting at Taylorsville Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{gathered}
\text { CPUE } \\
\text { age-1 } \\
\text { and older }
\end{gathered}
\] & Mean length age-2+ at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & CPUE age-1+ & CPUE age- \(0+\) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
11.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
2
\end{gathered}
\] & 12 & Fair \\
\hline 2017 & Value Score & \[
\begin{gathered}
12.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & 12 & Fair \\
\hline 2016 & Value Score & \[
\begin{gathered}
16.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
11.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
16.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & 17 & Excellent \\
\hline 2015 & Value Score & \[
\begin{gathered}
5.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.9 \\
4
\end{gathered}
\] & 16 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
2.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & 11 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
1.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
6.7 \\
4
\end{gathered}
\] & 11 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
2
\end{gathered}
\] & 8 & Poor \\
\hline 2011 & Value Score & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
11.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & 7 & Poor \\
\hline 2009 & Value Score & \[
\begin{gathered}
0.02 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.02 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.02 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & 7 & Poor \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 7 & Poor \\
\hline 2007 & Value Score & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.04 \\
1
\end{gathered}
\] & 7 & Poor \\
\hline 2006 & Value Score & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.04 \\
1
\end{gathered}
\] & 7 & Poor \\
\hline 2005 & Value Score & \[
\begin{gathered}
3.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
1.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.4 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2003 & Value Score & \[
\begin{gathered}
1.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 10 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
1.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
4.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 10 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
6.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
8.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
6.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 11 & Fair \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
}

Table 17. Population assessment for black crappie collected during fall trap netting at Taylorsville Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & CPUE age-1 and older & Mean length age-2 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & CPUE age-1+ & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-0+ }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
2.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 12 & Fair \\
\hline 2017 & Value Score & \[
\begin{gathered}
3.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
2
\end{gathered}
\] & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & 12 & Fair \\
\hline 2016 & Value Score & \[
\begin{gathered}
4.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 12 & Fair \\
\hline 2015 & Value Score & \[
\begin{gathered}
8.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
3
\end{gathered}
\] & 16 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
6.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
2
\end{gathered}
\] & 15 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
4
\end{gathered}
\] & 16 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
9.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0 . .9 \\
2
\end{gathered}
\] & 16 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
4
\end{gathered}
\] & 11 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
3.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
8.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 11 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.8^{\star} \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2008 & Value Score & \[
0.6
\] & \[
\begin{gathered}
9.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2007 & Value Score & \[
\begin{gathered}
1.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.02 \\
1
\end{gathered}
\] & 9 & Fair \\
\hline 2006 & Value Score & \[
\begin{gathered}
3.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 11 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
5.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.04 \\
1
\end{gathered}
\] & 12 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
12.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
3
\end{gathered}
\] & 16 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
3
\end{gathered}
\] & 12 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 13 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & 12 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & 8 & Poor \\
\hline
\end{tabular}
* Age data not collected

Table 18. Number of fish and the relative weight (Wr) for each length group of crappie at Taylorsville Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|r|}{5.0-7.9 in} & \multicolumn{2}{|l|}{8.0-9.9 in} & \multicolumn{2}{|r|}{\(\geq 10.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline White crappie & Total & 3 & 101 (11) & 105 & 98 (1) & 127 & 98 (1) & 235 & 98 (1) \\
\hline Black crappie & Total & 1 & 90 & 44 & 97 (3) & 23 & 95 (2) & 68 & 96 (2) \\
\hline
\end{tabular}

\footnotetext{
Dataset \(=\) cfdtntvl.d18
}

Table 19. Length distribution and CPUE (fish/nn) of white bass, hybrid striped bass, and saugeye collected during 13 net-nights of gill netting in Taylorsville Lake in October 2018: numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & & \\
\hline White bass & 2 & 31 & 32 & 3 & 2 & 19 & 6 & 3 & 1 & & & & & & & & & & & 99 & 7.6 (1.8) \\
\hline Hybrid striped bass & & 6 & 11 & 36 & 9 & 5 & 4 & 21 & 22 & 17 & & 4 & 2 & 1 & & 4 & 7 & 2 & 1 & 152 & 11.7 (5.3) \\
\hline Reciprocal & & 4 & 6 & 16 & 8 & 5 & & 5 & 8 & 8 & & 3 & 1 & 1 & & 3 & 6 & 2 & 1 & 77 & 5.9 (2.5) \\
\hline Original & & 2 & 5 & 20 & 1 & & 4 & 16 & 13 & 9 & & 1 & 1 & & & 1 & 1 & & & 74 & 5.7 (2.9) \\
\hline Saugeye & & & & 12 & 11 & 1 & 4 & 13 & 31 & 50 & 34 & 5 & 2 & 1 & 1 & & 1 & 1 & & 167 & 12.9 (5.7) \\
\hline
\end{tabular}

Dataset = cfdgntvl.d18

Table 20. Mean back calculated lengths (in) at each annulus for otoliths from hybrid striped bass gill netted at Taylorsville Lake in 2018.
\begin{tabular}{lrrrrrrr}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 8 } Year class & No. & \multicolumn{1}{c}{1} & \multicolumn{7}{c}{2} & 3 & 4 & 5 & 6 \\
\hline 2017 & 65 & 8.9 & & & & & \\
2016 & 5 & 9.7 & 15.1 & & & & \\
2015 & 8 & 12.0 & 16.7 & 19.5 & & & \\
2014 & 3 & 8.6 & 16.1 & 19.1 & 21.0 & & \\
2013 & 4 & 11.0 & 15.7 & 19.1 & 21.0 & 22.4 & \\
2012 & 1 & 9.6 & 16.0 & 18.3 & 19.7 & 21.3 & 22.4 \\
& & & & & & & \\
Mean & 86 & 9.3 & 16.0 & 19.3 & 20.9 & 22.2 & 22.4 \\
Smallest & & 5.3 & 12.9 & 15.9 & 19.7 & 21.3 & 22.4 \\
Largest & & 15.8 & 19.7 & 21.5 & 22.0 & 23.4 & 22.4 \\
Std error & & 0.2 & 0.3 & 0.4 & 0.3 & 0.3 & \\
\(95 \%\) ConLo & & 8.9 & 15.3 & 18.5 & 20.3 & 21.5 & \\
\(95 \%\) ConHi & & 9.7 & 16.7 & 20.0 & 21.4 & 22.9 & \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagtvl. d 18

Table 21. Age frequency and CPUE (fish/nn) per inch class of hybrid striped bass gill netted for 13 net-nights at Taylorsville Lake in 2018.
\begin{tabular}{|c|}
\hline \multicolumn{20}{|c|}{Inch class} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Std } \\
\text { err }
\end{gathered}
\]} \\
\hline Age & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 9 & & 21 & 22 & 23 & 24 & & & & & \\
\hline 0+ & 6 & 11 & 36 & 9 & 3 & & & & & & & & & & & & & & & & 65 & 43 & 5.0 & 2.5 \\
\hline 1+ & & & & & 2 & 4 & 21 & 22 & & & & & & & & & & & & & 66 & 43 & 5.1 & 2.4 \\
\hline \(2+\) & & & & & & & & & & & 3 & 2 & & & & & & & & & 5 & 3 & 0.4 & 0.3 \\
\hline \(3+\) & & & & & & & & & & & 1 & & & 1 & & 2 & 4 & & & & 8 & 5 & 0.6 & 0.3 \\
\hline 4+ & & & & & & & & & & & & & & & & 2 & & 1 & & & 3 & 2 & 0.2 & 0.1 \\
\hline \(5+\) & & & & & & & & & & & & & & & & & 2 & 1 & 1 & & 4 & 3 & 0.3 & 0.1 \\
\hline 6+ & & & & & & & & & & & & & & & & & 1 & & & & 1 & 1 & 0.1 & 0.1 \\
\hline Total & 6 & 11 & 36 & 9 & 5 & 4 & 21 & 22 & & & 4 & 2 & & 1 & & 4 & 7 & 2 & 1 & & 152 & 100 & 11.7 & 5.3 \\
\hline \% & 4 & 7 & 24 & 6 & 3 & 3 & 14 & 14 & 11 & & 3 & 1 & & 1 & & 3 & 5 & 1 & 1 & & 100 & & & \\
\hline
\end{tabular}

Dataset \(=\) cfdagtvl.d18 and cfdgntvl.d18

Table 22. Number of fish and the relative weight \(\left(\mathrm{W}_{\mathrm{r}}\right)\) for each length group of hybrid striped bass collected at Taylorsville Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Hybrid striped bass & Total & 61 & 88 (1) & 47 & 86 (1) & 38 & 87 (1) & 146 & 87 (1) \\
\hline
\end{tabular}

Dataset = cfdgntvl.d18

Table 23. Population assessment for hybrid striped bass collected during fall gill netting at Taylorsville Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & CPUE
(excluding age-0) & \[
\begin{aligned}
& \text { Mean length } \\
& \text { age- } 2+\text { at } \\
& \text { capture }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & CPUE age-1+ & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
6.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
17.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
5.1 \\
3
\end{gathered}
\] & - & - & 10 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
10.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
7.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
2
\end{gathered}
\] & - & - & 11 & Good \\
\hline 2016 & Value Score & \[
\begin{gathered}
12.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.2 \\
2
\end{gathered}
\] & - & - & 10 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
5.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & - & - & 9 & Fair \\
\hline 2014 & Value Score & \[
\begin{gathered}
10.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
17.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
8.4 \\
4
\end{gathered}
\] & - & - & 12 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
3.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2
\end{gathered}
\] & - & - & 8 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
2.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
17.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & - & - & 6 & Poor \\
\hline 2011 & Value Score & \[
\begin{gathered}
11.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
7.9 \\
3
\end{gathered}
\] & - & - & 10 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
3.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
16.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
2
\end{gathered}
\] & - & - & 7 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
11.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.4 \\
4
\end{gathered}
\] & 1.104 & 66.9\% & 9 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
17.1 \\
?
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & 0.370 & 30.9\% & 5 & Poor \\
\hline 2007 & Value Score & \[
\begin{gathered}
16.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
3
\end{gathered}
\] & 0.798 & 55.0\% & 10 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
8.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
3
\end{gathered}
\] & 1.262 & 71.7\% & 9 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
1.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
15.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
0.6
\] & 0.437 & 35.4\% & 4 & Poor \\
\hline 2004 & Value Score & \[
\begin{gathered}
4.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3.6 \\
2
\end{gathered}
\] & 0.964 & 61.9\% & 6 & Poor \\
\hline 2003 & Value Score & \[
\begin{gathered}
9.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
6.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.6 \\
2
\end{gathered}
\] & 1.522 & 78.2\% & 10 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
22.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
15.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.4 \\
4
\end{gathered}
\] & 0.658 & 48.2\% & 12 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
13.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
11.1 \\
4
\end{gathered}
\] & 1.437 & 76.2\% & 9 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
9.9 \\
3 \\
\hline
\end{gathered}
\] & \[
15.9
\] & \[
\begin{gathered}
5.9 \\
3 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3.1 \\
2 \\
\hline
\end{gathered}
\] & 1.263 & 71.1\% & 9 & Fair \\
\hline
\end{tabular}

Table 24. Mean back calculated lengths (in) at each annulus for otoliths from white bass gill netted at Taylorsville Lake in 2018.
\begin{tabular}{lcrrrr}
\hline & & \multicolumn{4}{c}{ Age } \\
\cline { 3 - 6 } Year class & No. & 1 & 2 & 3 & 4 \\
\hline 2017 & 20 & 8.3 & & & \\
2016 & 6 & 8.7 & 11.5 & 11.4 & 12.9 \\
2014 & 2 & 7.4 & 9.7 & & \\
& & & & 11.4 & 12.9 \\
Mean & 28 & 6.3 & 11.1 & 11.2 & 12.7 \\
Smallest & & 9.8 & 9.3 & 11.6 & 13.2 \\
Largest & & 0.1 & 11.9 & 0.2 & 0.2 \\
Std error & 8.1 & 0.3 & 10.9 & 12.4 \\
\(95 \%\) ConLo & & 8.5 & 10.5 & 11.8 & 13.4 \\
\hline \(95 \%\) ConHi & & & & & \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagtvl.d18

Table 25. Age frequency and CPUE (fish/nn) per inch class of white bass gill netted for 13 netnights at Taylorsville Lake in 2018.
\begin{tabular}{lrrrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ Inch class } & & & \\
\cline { 2 - 15 } & Age & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & Total & \(\%\) & CPUE \\
err \\
\hline \(0+\) & 2 & 31 & 32 & 3 & & & & & & 68 & 69 & 5.2 & 1.4 \\
\(1+\) & & & & & 2 & 19 & 3 & & & 24 & 24 & 1.8 & 0.6 \\
\(2+\) & & & & & & & 3 & 2 & & 5 & 5 & 0.4 & 0.3 \\
\(3+\) & & & & & & & & & & 0 & 0 & 0.0 & 0.0 \\
\(4+\) & & & & & & & & 1 & 1 & 2 & 2 & 0.2 & 0.1 \\
\hline Total & 2 & 31 & 32 & 3 & 2 & 19 & 6 & 3 & 1 & 99 & 100 & 7.6 & 1.8 \\
\(\%\) & 2 & 31 & 32 & 3 & 2 & 19 & 6 & 3 & 1 & 100 & & & \\
\hline
\end{tabular}

Dataset \(=\) cfdagtvl.d18 and cfdgntvl.d18

Table 26. Number of fish and the relative weight \(\left(W_{r}\right)\) for each length group of white bass collected at Taylorsville Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{6.0-8.9 in} & \multicolumn{2}{|l|}{9.0-11.9 in} & \multicolumn{2}{|r|}{\(\geq 12.0\) in} & & \\
\hline & & No. & \(\mathrm{W}_{\mathrm{r}}\) & No. & \(\mathrm{W}_{\mathrm{r}}\) & No. & \(\mathrm{W}_{\mathrm{r}}\) & No. & \(\mathrm{W}_{\mathrm{r}}\) \\
\hline White bass & Total & 65 & 95 (1) & 24 & 92 (1) & 10 & 93 (2) & 99 & 94 (1) \\
\hline
\end{tabular}

Dataset = cfdgntvl.d18

Table 27. Population assessment for white bass collected during fall gill netting at Taylorsville Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & CPUE (excluding age-0) & Mean length age-2+ at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 12.0 \text { in }
\end{aligned}
\] & CPUE age-1+ & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
2.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
13.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & & & 6 & Poor \\
\hline 2017 & Value Score & \[
\begin{gathered}
1.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
10.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
1
\end{gathered}
\] & & & 4 & Poor \\
\hline 2016 & Value Score & \[
\begin{gathered}
3.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
12.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & & & 6 & Poor \\
\hline 2015 & Value Score & \[
\begin{gathered}
3.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & & & 5 & Poor \\
\hline 2014 & Value Score & \[
\begin{gathered}
4.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.3^{*} \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & & & 7 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
1.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
11.3^{\star} \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.4 \\
1
\end{gathered}
\] & - & - & 4 & Poor \\
\hline 2012 & Value Score & \[
\begin{gathered}
3.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & 1.037 & 64.5 & 6 & Poor \\
\hline 2011 & Value Score & \[
\begin{gathered}
18.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
11.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.9 \\
4
\end{gathered}
\] & 1.506 & 77.8 & 12 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
11.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
7.8 \\
4
\end{gathered}
\] & 1.920 & 85.3 & 10 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
\text { NS } \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
1
\end{gathered}
\] & 1.030 & 64.3 & 4 & Poor \\
\hline 2008 & Value Score & \[
\begin{gathered}
2.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
12.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
2
\end{gathered}
\] & 1.157 & 68.6 & 5 & Poor \\
\hline 2007 & Value Score & \[
\begin{gathered}
6.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.6 \\
3
\end{gathered}
\] & 1.102 & 66.8 & 7 & Fair \\
\hline 2006 & Value Score & \[
\begin{gathered}
4.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
2
\end{gathered}
\] & 1.040 & 64.6 & 6 & Poor \\
\hline 2005 & Value Score & \[
\begin{gathered}
5.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & 1.054 & 65.2 & 6 & Poor \\
\hline 2004 & Value Score & \[
\begin{gathered}
8.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
11.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
7.3 \\
4
\end{gathered}
\] & 2.030 & 86.9 & 9 & Fair \\
\hline 2003 & Value Score & \[
\begin{gathered}
6.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
3
\end{gathered}
\] & 0.944 & 61.1 & 8 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
5.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.6 \\
2
\end{gathered}
\] & 1.113 & 67.1 & 7 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
23.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
6.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.9 \\
4
\end{gathered}
\] & 0.971 & 62.1 & 12 & Good \\
\hline 2000 & Value Score & \[
\begin{gathered}
20.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
8.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.4 \\
4
\end{gathered}
\] & 0.766 & 53.5 & 13 & Good \\
\hline
\end{tabular}
* Age data not collected because no fish were captured at this age

Table 28. Mean back calculated lengths (in) at each annulus for otoliths from saugeye gill netted at Taylorsville Lake in 2018.
\begin{tabular}{lcrcc}
\hline & & \multicolumn{3}{c}{ Age } \\
\cline { 3 - 5 } Year class & No. & 1 & 2 & 3 \\
\hline 2017 & 47 & 10.6 & & \\
2016 & 4 & 12.5 & 16.6 & 21.4 \\
2015 & 2 & 14.2 & 18.4 & \\
& & & & 21.4 \\
Mean & 53 & 10.9 & 17.2 & 21.1 \\
Smallest & & 7.5 & 15.4 & 21.7 \\
Largest & & 15.2 & 18.7 & 0.3 \\
Std error & & 10.4 & 0.5 & 20.7 \\
\(95 \%\) ConLo & & 11.4 & 16.1 & 22.0 \\
\hline \(95 \%\) ConHi & & & 18.3 & \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagtvl.d18

Table 29. Age frequency and CPUE (fish/nn) per inch class of saugeye gill netted for 13 net-nights at Taylorsville Lake in 2018.
\begin{tabular}{|c|}
\hline \multicolumn{16}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std err} \\
\hline Age & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & & & \\
\hline 0+ & 12 & 11 & 1 & & & & & & & & & & & & & 24 & 14 & 1.9 & 1.1 \\
\hline 1+ & & & & 4 & 13 & 31 & 50 & 34 & 4 & 1 & & & & & & 137 & 82 & 10.5 & 4.8 \\
\hline 2+ & & & & & & & & & 1 & 1 & 1 & 1 & & & & 4 & 2 & 0.3 & 0.2 \\
\hline 3+ & & & & & & & & & & & & & & 1 & 1 & 2 & 1 & 0.2 & 0.1 \\
\hline Total & 12 & 11 & 1 & 4 & 13 & 31 & 50 & 34 & 5 & 2 & 1 & 1 & & 1 & 1 & 167 & 100 & 12.9 & 5.7 \\
\hline \% & 7 & 7 & 1 & 2 & 8 & 19 & 30 & 20 & 3 & 1 & 1 & 1 & & 1 & 1 & 100 & & & \\
\hline
\end{tabular}

Table 30. Length distribution and CPUE (fish/hr) of blue catfish collected in 3.0 hours of 15 -minute electrofishing runs for blue catfish in Taylorsville Lake in July 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{31}{|c|}{Inch class} \\
\hline Area & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 33 & 35 & 38 & Total & CPUE \\
\hline Upper & & & 2 & 14 & 40 & 39 & 38 & 37 & 24 & 34 & 21 & 9 & 5 & 9 & 5 & 7 & 2 & & 1 & & 2 & 2 & 2 & & 2 & 1 & 1 & 1 & 298 & 198.7 (31.2) \\
\hline Lower & 5 & 8 & 8 & 36 & 24 & 17 & 25 & 22 & 16 & 17 & 9 & 14 & 8 & 4 & 6 & & 1 & 1 & & 2 & 1 & 2 & & 1 & 1 & & & & 228 & 152.0 (30.2) \\
\hline Total & 5 & 8 & 10 & 50 & 64 & 56 & 63 & 59 & 40 & 51 & 30 & 23 & 13 & 13 & 11 & 7 & 3 & 1 & 1 & 2 & 3 & 4 & 2 & 1 & 3 & 1 & 1 & 1 & 526 & 175.3 (21.8) \\
\hline
\end{tabular}

Dataset \(=\) cfdpstvl.d18

Table 31. Electrofishing CPUE (fish/hr) for each length group of blue catfish collected from Taylorsville Lake from 2007-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <12.0 in & 12.0-19.9 in & 20.0-29.9 in & \(\geq 30.0\) in & \\
\hline 2007 & 32.8 (10.9) & 188.8 (25.8) & 14.4 (4.2) & 0.0 & 236.0 (36.5) \\
\hline 2008 & \multicolumn{4}{|c|}{No Sample} & \\
\hline 2009 & 6.8 (3.1) & 96.1 (19.9) & 16.3 (4.7) & 0.0 & 119.1 (24.3) \\
\hline 2010 & 25.9 (12.2) & 73.4 (13.5) & 16.2 (4.2) & 0.7 (0.4) & 116.1 (21.2) \\
\hline 2011 & 3.9 (3.1) & 14.0 (2.9) & 8.1 (5.0) & 1.1 (0.6) & 27.1 (5.9) \\
\hline 2012 & 28.3 (9.1) & 58.3 (15.7) & 15.0 (4.7) & 2.3 (1.2) & 104.0 (22.8) \\
\hline 2013 & 4.0 (1.6) & 42.0 (6.5) & 11.0 (2.6) & 3.0 (0.9) & 60.0 (8.2) \\
\hline 2014 & 31.1 (11.3) & 119.4 (21.1) & 11.4 (2.5) & 5.2 (1.7) & 167.1 (27.5) \\
\hline 2015 & 31.4 (16.0) & 47.1 (16.6) & 4.6 (2.1) & 1.9 (1.0) & 84.9 (24.6) \\
\hline 2016 & 35.3 (15.4) & 53.0 (21.5) & 6.7 (2.7) & 1.7 (1.2) & 96.7 (31.5) \\
\hline 2017 & 87.3 (23.7) & 118.0 (21.2) & 9.0 (5.5) & 2.3 (1.3) & 216.7 (30.8) \\
\hline 2018 & 45.7 (8.5) & 111.7 (16.1) & 15.7 (3.4) & 2.3 (0.9) & 175.3 (21.8) \\
\hline
\end{tabular}

\footnotetext{
Dataset = cfdpstvl.d18-.d07
}

Table 32. Numbers of fish and the relative weight \(\left(\mathrm{W}_{r}\right)\) for each length group of blue catfish collected at Taylorsville Lake on 17 and 18 July 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{12.0-19.9 in} & \multicolumn{2}{|l|}{20.0-29.9 in} & \multicolumn{2}{|c|}{\(\geq 30.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Blue catfish & Upper & 104 & 95 (1) & 30 & 96 (2) & 5 & 119 (5) & 139 & 96 (1) \\
\hline & Lower & 81 & 93 (1) & 17 & 92 (2) & 2 & 107 (2) & 100 & 93 (1) \\
\hline & Total & 185 & 94 (1) & 47 & 94 (1) & 7 & 116 (4) & 239 & 95 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdpstvl.d18

Table 33. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected in 7.5 hours of 15-minute electrofishing runs in Herrington Lake, May 2018; numbers in parentheses are standard errors.

Table 34. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Herrington Lake from 1994-2018; numbers in parentheses are standard errors.
\begin{tabular}{lcccccrr}
\hline & \multicolumn{7}{c}{ Length group } \\
\cline { 2 - 7 } Year & \(<8.0\) in & \(8.0-11.9\) in & \(12.0-14.9\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & Total \\
\hline 1994 & \(4.9(0.9)\) & \(30.1(4.4)\) & \(21.5(2.6)\) & \(17.9(1.8)\) & \(2.1(0.5)\) & 74.4 & \((5.4)\) \\
1995 & \(8.8(2.3)\) & \(20.0(4.4)\) & \(25.6(4.0)\) & \(20.4(1.4)\) & \(3.2(0.7)\) & 74.8 & \((9.6)\) \\
1996 & \(9.5(2.4)\) & \(24.4(3.9)\) & \(20.3(2.8)\) & \(26.5(2.6)\) & \(3.1(0.7)\) & 80.9 & \((6.7)\) \\
1997 & \(15.6(2.3)\) & \(19.9(3.4)\) & \(27.3(2.6)\) & \(22.0(1.7)\) & \(2.9(0.6)\) & 84.8 & \((6.1)\) \\
1998 & \(37.2(3.8)\) & \(45.3(4.1)\) & \(30.9(2.5)\) & \(21.3(2.2)\) & \(1.9(0.6)\) & 134.8 & \((7.2)\) \\
1999 & \(43.2(5.2)\) & \(69.1(6.6)\) & \(40.4(3.9)\) & \(21.6(2.4)\) & \(1.1(0.3)\) & 174.3 & \((14.3)\) \\
2000 & \(15.6(3.9)\) & \(53.5(6.6)\) & \(26.9(2.2)\) & \(12.3(1.4)\) & \(0.3(0.2)\) & 108.3 & \((10.8)\) \\
2001 & \(37.1(6.7)\) & \(40.1(6.3)\) & \(34.1(4.5)\) & \(12.5(1.5)\) & \(0.5(0.3)\) & 123.9 & \((15.3)\) \\
2002 & \(19.5(2.6)\) & \(32.1(4.7)\) & \(25.5(3.5)\) & \(24.0(2.2)\) & \(1.6(0.5)\) & 101.1 & \((9.7)\) \\
2003 & \(20.8(4.4)\) & \(23.9(2.4)\) & \(30.1(2.8)\) & \(17.9(1.7)\) & \(1.2(0.4)\) & 92.7 & \((4.2)\) \\
2004 & \(29.6(5.5)\) & \(64.8(12.2)\) & \(38.7(5.7)\) & \(29.7(3.4)\) & \(1.5(0.4)\) & 162.8 & \((23.9)\) \\
2005 & \(70.9(9.7)\) & \(59.6(7.1)\) & \(23.5(3.0)\) & \(22.3(3.4)\) & \(0.8(0.4)\) & 176.3 & \((15.4)\) \\
2006 & \(24.7(4.8)\) & \(36.7(4.8)\) & \(38.4(3.8)\) & \(19.3(1.8)\) & \(0.4(0.2)\) & 119.1 & \((9.2)\) \\
2007 & \(78.1(10.4)\) & \(68.8(7.3)\) & \(20.0(2.5)\) & \(17.3(2.3)\) & \(0.5(0.3)\) & 184.3 & \((17.1)\) \\
2008 & \(31.3(2.9)\) & \(39.7(4.6)\) & \(29.5(3.0)\) & \(22.1(3.1)\) & \(1.5(0.5)\) & 122.7 & \((8.6)\) \\
2009 & \(5.3(1.2)\) & \(9.4(1.1)\) & \(15.3(2.2)\) & \(10.8(1.4)\) & \(0.4(0.2)\) & 40.6 & \((4.4)\) \\
2010 & \(41.5(4.4)\) & \(34.0(4.4)\) & \(28.7(3.2)\) & \(25.1(2.3)\) & \(0.9(0.3)\) & 129.2 & \((10.2)\) \\
2011 & \(24.5(3.7)\) & \(22.7(2.0)\) & \(10.9(1.3)\) & \(10.8(1.5)\) & \(0.3(0.2)\) & 68.9 & \((1.4)\) \\
2012 & \(69.6(10.1)\) & \(70.7(10.9)\) & \(40.9(4.6)\) & \(14.8(2.1)\) & \(1.1(0.5)\) & 196.0 & \((23.7)\) \\
2013 & \(11.7(2.2)\) & \(29.6(4.0)\) & \(18.5(2.7)\) & \(12.9(1.9)\) & \(1.5(0.6)\) & 72.8 & \((7.0)\) \\
2014 & \(30.1(4.1)\) & \(20.5(2.0)\) & \(28.5(2.7)\) & \(18.0(2.4)\) & \(1.3(0.4)\) & 97.2 & \((6.4)\) \\
2015 & \(32.9(3.4)\) & \(16.8(2.2)\) & \(20.9(1.9)\) & \(17.6(2.5)\) & \(0.8(03)\) & 88.3 & \((6.1)\) \\
2016 & \(32.8(4.7)\) & \(43.1(5.5)\) & \(16.4(1.9)\) & \(17.7(2.1)\) & \(1.1(0.4)\) & 110.0 & \((9.0)\) \\
2017 & \(26.4(3.0)\) & \(40.5(4.4)\) & \(30.8(3.6)\) & \(16.3(1.6)\) & \(1.2(0.4)\) & 114.0 & \((6.5)\) \\
2018 & \(45.3(7.9)\) & \(50.8(5.9)\) & \(58.5(5.1)\) & \(29.9(3.1)\) & \(1.5(0.5)\) & 184.5 & \((13.8)\) \\
\hline
\end{tabular}

Dataset = cfdpsher.d18- .d94

Table 35. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in each area of Herrington Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{llcll}
\hline Area & Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Lower & Largemouth bass & 411 & \(58(\pm 5)\) & \(18(\pm 4)\) \\
Middle & Largemouth bass & 412 & \(68(\pm 5)\) & \(25(\pm 4)\) \\
Upper & Largemouth bass & 221 & \(66(\pm 6)\) & \(21(\pm 5)\) \\
\hline Total & Largemouth bass & 1,044 & \(64(\pm 3)\) & \(21(\pm 3)\) \\
\hline
\end{tabular}

Dataset = cfdpsher.d18

Table 36. Population assessment for largemouth bass collected during spring electrofishing at Herrington Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { ame-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & 13.4* & 39.6 & 58.5 & 29.9 & 1.5 & & & \multirow[b]{2}{*}{19} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 3 & 4 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2017} & Value & \(13.4 *\) & 31.1 & 30.8 & 16.3 & 1.2 & & & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 3 & 3 & 3 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2016} & Value & 13.4* & 59.2 & 16.4 & 17.7 & 1.1 & & & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 4 & 2 & 3 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2015} & Value & 13.4 & 36.8 & 20.9 & 17.6 & 0.8 & & & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 3 & 2 & 3 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2014} & Value & 13.8* & 33.9 & 28.5 & 18.0 & 1.3 & & & \multirow[b]{2}{*}{17} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 3 & 3 & 3 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2013} & Value & 13.8* & 15.1 & 18.5 & 12.9 & 1.5 & & & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 2 & 2 & 2 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2012} & Value & 13.8* & 111.7 & 40.9 & 14.8 & 1.1 & & & \multirow[b]{2}{*}{18} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 4 & 3 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 13.8 & 18.7 & 10.9 & 10.8 & 0.3 & \multirow[t]{2}{*}{0.539} & \multirow[t]{2}{*}{41.7\%} & & \multirow[b]{2}{*}{Fair} \\
\hline & Score & 4 & 2 & 1 & 2 & 2 & & & 11 & \\
\hline \multirow[t]{2}{*}{2010} & Value & 13.7* & \(49.6{ }^{\wedge}\) & 28.7 & 25.1 & 0.9 & & & \multirow[b]{2}{*}{18} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 4 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2009} & Value & 13.7* & \(6.2^{\wedge}\) & 15.3 & 10.8 & 0.4 & & & \multirow[b]{2}{*}{10} & \multirow[b]{2}{*}{Fair} \\
\hline & Score & 4 & 1 & 1 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2008} & Value & 13.7* & \(34.6{ }^{\wedge}\) & 29.5 & 22.1 & 1.5 & & & \multirow[b]{2}{*}{18} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 3 & 3 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2007} & Value & 13.7 & 96.5 & 20.0 & 17.3 & 0.5 & \multirow[t]{2}{*}{0.485} & \multirow[t]{2}{*}{38.4\%} & & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 4 & 2 & 3 & 3 & & & 16 & \\
\hline \multirow[t]{2}{*}{2006} & Value & 13.7* & \(25.1^{\wedge}\) & 38.4 & 19.3 & 0.4 & & & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 3 & 4 & 3 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2005} & Value & 13.7* & \(72.1^{\wedge}\) & 23.5 & 22.3 & 0.8 & & & \multirow[b]{2}{*}{18} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 4 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2004} & Value & 13.7* & \(33.5^{\wedge}\) & 38.7 & 29.7 & 1.5 & & & \multirow[b]{2}{*}{19} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 3 & 4 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2003} & Value & 13.7 & 20.9 & 30.1 & 17.9 & 1.2 & \multirow[t]{2}{*}{0.498} & \multirow[t]{2}{*}{39.2\%} & & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 2 & 3 & 3 & 3 & & & 15 & \\
\hline \multirow[t]{2}{*}{2002} & Value & 11.7* & \(16.7^{\wedge}\) & 25.5 & 24.0 & 1.6 & & & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 2 & 3 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2001} & Value & 11.7 & 28.2 & 34.1 & 12.5 & 0.5 & 0.455 & 36.6\% & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 4 & 2 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2000} & Value & 11.0 & 13.1 & 26.9 & 12.3 & 0.3 & 0.620 & 46.2\% & & \\
\hline & Score & 1 & 2 & 3 & 2 & 2 & & & 10 & Fair \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 37. Length distribution and CPUE (fish/hr) of black bass collected in 4.5 hours of 15 -minute electrofishing runs in Herrington Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & \\
\hline \multicolumn{20}{|l|}{Lower} \\
\hline Largemouth bass & & 3 & 9 & 1 & 2 & 3 & 9 & 8 & 8 & 5 & 5 & 3 & 3 & & & 1 & 1 & 61 & 40.7 (5.2) \\
\hline Spotted bass & 1 & & & 3 & 1 & & & 1 & 2 & & & & & & & & & 8 & 5.3 (1.7) \\
\hline \multicolumn{20}{|l|}{Middle} \\
\hline Largemouth bass & & 1 & 3 & 12 & 2 & 2 & 3 & 2 & 3 & 4 & 1 & 1 & 2 & 1 & 1 & 1 & & 39 & 26.0 (5.7) \\
\hline Spotted bass & & & & 5 & 1 & & 4 & 3 & 2 & 2 & 3 & 1 & & & & & & 21 & 14.0 (4.1) \\
\hline \multicolumn{20}{|l|}{Upper} \\
\hline Largemouth bass & 2 & 4 & 6 & 3 & 4 & & 3 & & 3 & 5 & 6 & 5 & 4 & 1 & 1 & 2 & & 49 & 32.7 (5.2) \\
\hline Spotted bass & & & & 1 & & & & & 2 & & 1 & & & & & & & 4 & 2.7 (1.3) \\
\hline \multicolumn{20}{|l|}{Total} \\
\hline Largemouth bass & 2 & 8 & 18 & 16 & 8 & 5 & 15 & 10 & 14 & 14 & 12 & 9 & 9 & 2 & 2 & 4 & 1 & 149 & 33.1 (3.3) \\
\hline Spotted bass & 1 & & & 9 & 2 & & 4 & 4 & 6 & 2 & 4 & 1 & & & & & & 33 & 7.3 (1.9) \\
\hline
\end{tabular}

Dataset = cfdwrher.d18

Table 38. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Herrington Lake on 18-20 September 2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & & \\
\hline \multirow{5}{*}{Largemouth bass} & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline & Lower & 28 & 89 (2) & 13 & 84 (2) & 5 & 92 (3) & 46 & 88 (1) \\
\hline & Middle & 10 & 93 (2) & 6 & 93 (1) & 5 & 99 (4) & 21 & 95 (1) \\
\hline & Upper & 6 & 95 (3) & 16 & 90 (3) & 8 & 94 (4) & 30 & 92 (2) \\
\hline & Total & 44 & 91 (1) & 35 & 88 (2) & 18 & 95 (2) & 97 & 91 (1) \\
\hline
\end{tabular}

Dataset = cfdwrher.d18

Table 39. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Herrington Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|l|}{Age-1 (natural)} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2001 & Total & 4.5 & 0.1 & 18.3 & 2.9 & 5.9 & 0.9 & 16.7 & 2.2 \\
\hline 2002 & Total & 4.6 & 0.2 & 9.8 & 2.0 & 4.9 & 1.2 & 20.9 & 4.3 \\
\hline 2003 & Total & 4.6 & 0.1 & 51.1 & 6.0 & 27.3 & 5.3 & 33.5 & 6.0 \\
\hline 2004 & Total & 4.9 & 0.1 & 15.6 & 3.0 & 9.0 & 2.1 & 72.1 & 9.5 \\
\hline 2005 & Total & 5.3 & 0.1 & 24.2 & 5.1 & 16.9 & 4.5 & 25.1 & 4.9 \\
\hline 2006 & Total & 4.8 & 0.1 & 40.9 & 5.8 & 20.4 & 4.3 & 96.5 & 11.6 \\
\hline 2007 & Total & 5.1 & 0.1 & 8.0 & 2.5 & 5.3 & 1.9 & 34.6 & 3.0 \\
\hline 2008 & Total & 5.1 & 0.1 & 25.8 & 4.9 & 13.8 & 3.7 & 6.2 & 1.2 \\
\hline 2009 & Total & 4.7 & 0.1 & 109.8 & 16.2 & 55.1 & 15.5 & 49.6 & 5.4 \\
\hline 2010 & Total & 5.8 & 0.1 & 22.0 & 3.4 & 17.6 & 3.3 & 26.6 & 3.6 \\
\hline 2011 & Total & 5.8 & 0.1 & 54.5 & 7.8 & 43.8 & 6.7 & 111.7 & 17.7 \\
\hline 2012 & Total & 5.4 & 0.1 & 33.6 & 6.2 & 21.8 & 4.9 & 11.3 & 2.1 \\
\hline 2013 & Total & 4.5 & 0.1 & 49.1 & 4.9 & 19.3 & 3.1 & 33.9 & 4.3 \\
\hline 2014 & Total & 4.7 & 0.1 & 36.9 & 6.0 & 20.0 & 3.5 & 38.4 & 3.9 \\
\hline 2015 & Total & 5.2 & 0.1 & 67.8 & 10.3 & 44.8 & 7.9 & 59.7 & 7.8 \\
\hline 2016 & Total & 5.4 & 0.1 & 24.9 & 3.6 & 16.7 & 2.8 & 39.1 & 4.2 \\
\hline 2017 & Total & 5.0 & 0.1 & 26.0 & 4.2 & 13.3 & 3.5 & 42.5 & 7.7 \\
\hline 2018 & Total & 5.8 & 0.1 & 11.6 & 1.6 & 9.3 & 1.5 & & \\
\hline
\end{tabular}

Dataset = cfdwrher.d18

Table 40. Length distribution and CPUE (fish/nn) of white bass and hybrid striped bass collected during 14 net-nights of gill netting in Herrington Lake in October 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & \\
\hline White bass & & 1 & 2 & 4 & 4 & 10 & 11 & 11 & 3 & & & & & & & & 46 & 3.3 (1.2) \\
\hline Hybrid striped bass & 1 & 3 & 22 & 16 & & & 1 & 1 & 27 & 62 & 12 & & 3 & 3 & 8 & 3 & 162 & 11.6 (3.5) \\
\hline Reciprocal & 1 & 2 & 11 & 13 & & & 1 & & 15 & 34 & 7 & & 1 & 2 & 5 & 3 & 95 & 6.8 (2.1) \\
\hline Original & & 1 & 11 & 3 & & & & 1 & 12 & 28 & 5 & & 2 & 1 & 3 & & 67 & 4.8 (1.5) \\
\hline
\end{tabular}

Table 41. Mean back calculated lengths (in) at each annulus for otoliths from hybrid striped bass gill netted at Herrington Lake in 2018.
\begin{tabular}{lcccc}
& & \multicolumn{3}{c}{ Age } \\
\cline { 3 - 5 } Year class & No. & 1 & 2 & 3 \\
\hline 2017 & 99 & 13.4 & & \\
2016 & 3 & 14.9 & 19.4 & \\
2015 & 14 & 14.7 & 19.2 & 21.2 \\
& & & & \\
Mean & 116 & 13.6 & 19.2 & 21.2 \\
Smallest & & 7.7 & 18.2 & 19.6 \\
Largest & & 16.2 & 20.4 & 22.5 \\
Std error & 0.1 & 0.1 & 0.2 \\
\(95 \%\) ConLo & 13.5 & 19.0 & 20.8 \\
\(95 \%\) ConHi & & 13.8 & 19.5 & 21.7 \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagher.d18

Table 42. Age frequency and CPUE (fish/nn) per inch class of hybrid striped bass gill netted for 14 net-nights at Herrington Lake in 2018.
\begin{tabular}{|c|}
\hline \multicolumn{16}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\% CPUE}} & \multirow[t]{2}{*}{Std err} \\
\hline Age & 8 & 9 & 10 & 11 & 1213 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & & & \\
\hline 0+ & 1 & 3 & 22 & 16 & & & & & & & & & & & & 42 & 26 & 3.0 & 1.3 \\
\hline 1+ & & & & & & 1 & 1 & 27 & 62 & 12 & & & & & & 103 & 64 & 7.4 & 2.3 \\
\hline 2+ & & & & & & & & & & & & 1 & 1 & 1 & & 3 & 2 & 0.2 & 0.1 \\
\hline 3+ & & & & & & & & & & & & 2 & 2 & 7 & 3 & 14 & 9 & 1.0 & 0.3 \\
\hline Total & 1 & 3 & 22 & 16 & & 1 & 1 & 27 & 62 & 12 & & 3 & 3 & 8 & 3 & 162 & 100 & 11.6 & 3.5 \\
\hline \% & 1 & 2 & 14 & 10 & & 1 & 1 & 17 & 38 & 7 & & 2 & 2 & 5 & 2 & 100 & & & \\
\hline
\end{tabular}

Table 43. Number of fish and the relative weight \(\left(W_{r}\right)\) for each length group of hybrid striped bass collected at Herrington Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Hybrid striped bass & Total & 42 & 97 (1) & 1 & 98 & 119 & 97 (1) & 162 & 97 (1) \\
\hline
\end{tabular}

Dataset = cfdgnher.d18

Table 44. Population assessment for hybrid striped bass collected during fall gill netting at Herrington Lake from 2000-2018 (scoring based on statewide assessments).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & CPUE (excluding age-0) & Mean length age-2+ at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age- } 1+
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
8.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
7.4 \\
3
\end{gathered}
\] & & & 13 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
3.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
21.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2016 & Value Score & \[
\begin{gathered}
4.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & & & 11 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
2.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
21.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
2
\end{gathered}
\] & & & 8 & Fair \\
\hline 2014 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
2.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
2
\end{gathered}
\] & & & 9 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
1.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & - & - & 7 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
1.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
19.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & - & - & 7 & Fair \\
\hline 2011 & Value Score & \[
\begin{gathered}
5.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
19.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.7 \\
3
\end{gathered}
\] & - & - & 12 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
5.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.9 \\
3
\end{gathered}
\] & 1.211 & 70.2 & 11 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
2.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
19.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.1 \\
2
\end{gathered}
\] & 1.109 & 66.3 & 9 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
6.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.6 \\
2
\end{gathered}
\] & 0.912 & 59.8 & 11 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
6.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.6 \\
3
\end{gathered}
\] & 1.122 & 67.4 & 12 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
21.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & 0.633 & 46.9 & 9 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
19.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & NA & NA & 7 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
2.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.1 \\
1
\end{gathered}
\] & NA & NA & 8 & Fair \\
\hline 2003 & Value Score & \[
\begin{gathered}
3.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
19.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
2
\end{gathered}
\] & 0.601 & 45.2 & 9 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
8.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
20.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.6 \\
2
\end{gathered}
\] & 0.770 & 53.7 & 12 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
4.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
20.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & NA & NA & 9 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
8.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
18.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
3 \\
\hline
\end{gathered}
\] & 1.282 & 72.3 & 13 & Good \\
\hline
\end{tabular}

Table 45. Mean back calculated lengths (in) at each annulus for otoliths from white bass gill netted at Herrington Lake in 2018.
\begin{tabular}{lrrrrr}
\hline & & \multicolumn{4}{c}{ Age } \\
\cline { 3 - 6 } Year class & No. & \multicolumn{1}{c}{1} & 2 & 3 & 4 \\
\hline 2017 & 10 & 9.0 & & & \\
2016 & 12 & 9.4 & 12.8 & & \\
2015 & 6 & 9.5 & 12.4 & 13.8 & \\
2014 & 13 & 8.6 & 12.6 & 13.9 & 14.7 \\
& & & & & \\
Mean & 41 & 9.1 & 12.6 & 13.9 & 14.7 \\
Smallest & & 5.8 & 11.0 & 12.8 & 13.5 \\
Largest & & 11.2 & 14.0 & 15.4 & 16.1 \\
Std error & 0.2 & 0.1 & 0.2 & 0.2 \\
95\% ConLo & & 8.7 & 12.4 & 13.5 & 14.3 \\
\(95 \%\) ConHi & & 9.4 & 12.9 & 14.2 & 15.2 \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagher.d18

Table 46. Age frequency and CPUE (fish/nn) per inch class of white bass gill netted for 14 net-nights at Herrington Lake in 2018.
\begin{tabular}{lrrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ Inch class } & & \\
\cline { 2 - 13 } & Age & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & Total & \(\%\) & CPUE
\end{tabular} \begin{tabular}{l}
Std \\
err
\end{tabular}

Dataset = cfdagher.d18 and cfdgnher.d18

Table 47. Population assessment for white bass collected during fall gill netting at Herrington Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{gathered}
\text { CPUE } \\
\text { (excluding } \\
\text { age-0) }
\end{gathered}
\] & Mean length age-2+ at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 12.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
CPUE \\
age-1+
\end{tabular} & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
2.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2017 & Value Score & \[
\begin{gathered}
2.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2016 & Value Score & \[
\begin{gathered}
5.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2015 & Value Score & \[
\begin{gathered}
5.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.3 \\
3
\end{gathered}
\] & & & 12 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & & & 7 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
2.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & - & - & 8 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
9.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.4 \\
3
\end{gathered}
\] & 0.975 & 62.3 & 13 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
10.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & 0.877 & 58.4 & 14 & Excellent \\
\hline 2010 & Value Score & \[
\begin{gathered}
7.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.2 \\
3
\end{gathered}
\] & 1.351 & 74.1 & 12 & Good \\
\hline 2009 & Value Score & \[
3.4
\] & \[
\begin{gathered}
13.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
2
\end{gathered}
\] & 0.900 & 59.3 & 8 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
6.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
5.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.1 \\
2
\end{gathered}
\] & 0.717 & 51.2 & 9 & Fair \\
\hline 2007 & Value Score & \[
\begin{gathered}
5.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
2
\end{gathered}
\] & 0.722 & 51.4 & 10 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
1.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
13.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
1
\end{gathered}
\] & * & * & 8 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
2.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
13.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & 0.371 & 31.0 & 7 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
10.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.2 \\
4
\end{gathered}
\] & 0.726 & 51.6 & 14 & Excellent \\
\hline 2003 & Value Score & \[
\begin{gathered}
2.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.6 \\
1
\end{gathered}
\] & 0.381 & 31.7 & 8 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
2.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2
\end{gathered}
\] & 0.841 & 56.9 & 9 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
1.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
14.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
1
\end{gathered}
\] & 0.418 & 34.2 & 8 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
3.5 \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
13.9 \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2 \\
\hline
\end{gathered}
\] & 0.741 & 52.4 & 10 & Good \\
\hline
\end{tabular}

Table 48. Number of fish and the relative weight (Wr) for each length group of white bass collected at Herrington Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{6.0-8.9 in} & \multicolumn{2}{|l|}{9.0-11.9 in} & \multicolumn{2}{|r|}{\(\geq 12.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline White bass & Total & 0 & & 7 & 105 (3) & 39 & 96 (1) & 46 & 98 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdgnher.d18

Table 49. Fishery statistics derived from a daytime creel survey at Herrington Lake (2,410 acres) during 16 March through 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Fishing Trips \\
No. of fishing trips (per acre)
\end{tabular}} & \multicolumn{2}{|l|}{\[
\frac{\underline{2018}}{(3 / 16 \text { to } 10 / 31)}
\]} & \multicolumn{2}{|l|}{\[
\frac{\underline{2010}}{(3 / 16 \text { to } 10 / 31)}
\]} & \multicolumn{2}{|l|}{\[
\frac{2004}{(3 / 7 \text { to } 10 / 31)}
\]} & \multicolumn{2}{|l|}{\[
\frac{1996}{(3 / 3 \text { to } 11 / 02)}
\]} \\
\hline & 13,438 & (5.6) & 11,692 & (4.9) & 12,878 & (5.3) & 60,557 & (25.1) \\
\hline \multicolumn{9}{|l|}{Fishing Pressure} \\
\hline Total man-hours (S.E.) \({ }^{\text {a }}\) & 63,989 & \((4,447)\) & 57,680 & \((1,455)\) & 72,958 & \((1,861)\) & 202,422 & \((12,228)\) \\
\hline Man-hours/acre & 26.6 & & 23.9 & & 30.3 & & 84.0 & \\
\hline \multicolumn{9}{|l|}{Catch / Harvest} \\
\hline No. of fish caught (S.E.) & 77,427 & \((11,510)\) & 57,910 & \((5,352)\) & 79,836 & \((8,260)\) & 259,639 & \((25,876)\) \\
\hline No. of fish harvested (S.E.) & 40,563 & \((7,304)\) & 33,396 & \((3,445)\) & 27,343 & \((3,532)\) & 120,406 & \((11,916)\) \\
\hline Lb of fish harvested & 28,114 & & 18,903 & & 13,606 & & 57,629 & \\
\hline \multicolumn{9}{|l|}{Harvest Rates} \\
\hline Fish/hour & 0.58 & & 0.58 & & 0.37 & & 0.59 & \\
\hline Lb/hour & 0.86 & & 0.53 & & 0.45 & & 0.28 & \\
\hline Fish/acre & 16.83 & & 13.86 & & 11.35 & & 49.96 & \\
\hline Lb/acre & 11.67 & & 7.84 & & 5.65 & & 23.91 & \\
\hline \multicolumn{9}{|l|}{Catch Rates} \\
\hline Fish/hour & 1.24 & & 0.99 & & 1.10 & & 1.28 & \\
\hline Fish/acre & 32.13 & & 24.03 & & 33.13 & & 107.73 & \\
\hline \multicolumn{9}{|l|}{Miscellaneous Characteristics} \\
\hline Male & 90.21 & & 89.66 & & 88.23 & & 87.09 & \\
\hline Female & 9.79 & & 10.34 & & 11.77 & & 12.91 & \\
\hline Resident & 98.02 & & 98.37 & & 98.06 & & 94.13 & \\
\hline Non-resident & 1.98 & & 1.63 & & 1.94 & & 5.87 & \\
\hline \multicolumn{9}{|l|}{Method (\%)} \\
\hline Still fishing & 36.01 & & 58.07 & & 41.40 & & 54.29 & \\
\hline Casting & 54.08 & & 33.45 & & 50.81 & & 40.74 & \\
\hline Fly & 0.23 & & 0.35 & & 0.16 & & 0.98 & \\
\hline Trolling & 9.44 & & 8.01 & & 7.63 & & 3.69 & \\
\hline Jugging & 0.23 & & 0.12 & & & & & \\
\hline \multicolumn{9}{|l|}{Mode (\%)} \\
\hline Boat & 79.25 & & 77.00 & & 90.16 & & 84.04 & \\
\hline Bank & 9.44 & & 15.21 & & 5.48 & & 10.54 & \\
\hline Dock & 8.97 & & 7.78 & & 4.35 & & 5.42 & \\
\hline Other & 2.33 & & & & & & & \\
\hline
\end{tabular}

\footnotetext{
a S.E. = Standard Error
}

Table 50. Fish harvest derived from a creel survey on Herrington Lake (2,410 acres) from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Black bass group & Largemouth
bass & \[
\begin{gathered}
\text { Spotted } \\
\text { bass } \\
\hline
\end{gathered}
\] & Smallmouth bass & Crappie group & White crappie & Black crappie & Catfish group & Channel cattish & Flathead catfish & Blue catfish \\
\hline No. caught (per acre) & \[
\begin{gathered}
\hline 27,244 \\
(11.3)
\end{gathered}
\] & \[
\begin{gathered}
25,744 \\
(10.7)
\end{gathered}
\] & \[
\begin{aligned}
& 1,463 \\
& (0.6)
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& (\mathrm{t})
\end{aligned}
\] & \[
\begin{gathered}
15,773 \\
(6.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 2,747 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
13,026 \\
(5.4)
\end{gathered}
\] & \[
\begin{gathered}
5,282 \\
(2.2)
\end{gathered}
\] & \[
\begin{gathered}
4,753 \\
(2.0)
\end{gathered}
\] & \[
\begin{aligned}
& 521 \\
& (0.2)
\end{aligned}
\] & \[
\begin{gathered}
8 \\
(\mathrm{t})
\end{gathered}
\] \\
\hline No. harvested (per acre) & \[
\begin{gathered}
3,256 \\
(1.4)
\end{gathered}
\] & \[
\begin{aligned}
& 3243 \\
& (1.3)
\end{aligned}
\] & \[
\begin{aligned}
& 13 \\
& (\mathrm{t})
\end{aligned}
\] & & \[
\begin{gathered}
13,755 \\
(5.7)
\end{gathered}
\] & \[
\begin{gathered}
2,576 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
11,179 \\
(4.6)
\end{gathered}
\] & \[
\begin{gathered}
4,926 \\
(2.0)
\end{gathered}
\] & \[
\begin{aligned}
& 4,411 \\
& (1.8)
\end{aligned}
\] & \[
\begin{gathered}
507 \\
(0.2)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
(\mathrm{t})
\end{gathered}
\] \\
\hline \% of total no. harvested & 8.0 & 8.0 & t & & 33.9 & 6.4 & 27.6 & 12.1 & 10.9 & 1.3 & T \\
\hline Lb harvested (per acre) & \[
\begin{gathered}
4,583 \\
(1.9)
\end{gathered}
\] & \[
\begin{aligned}
& 4571 \\
& (1.9)
\end{aligned}
\] & \[
12
\]
\[
(\mathrm{t})
\] & & \[
\begin{gathered}
12,931 \\
(5.4)
\end{gathered}
\] & \[
\begin{gathered}
2,037 \\
(0.8)
\end{gathered}
\] & \[
\begin{gathered}
10,895 \\
(4.5)
\end{gathered}
\] & \[
\begin{aligned}
& 6,796 \\
& (2.8)
\end{aligned}
\] & \[
\begin{aligned}
& 5,068 \\
& (2.1)
\end{aligned}
\] & \[
\begin{aligned}
& 1,712 \\
& (0.7)
\end{aligned}
\] & \begin{tabular}{l}
\[
17
\] \\
(t)
\end{tabular} \\
\hline \% of total lb harvested & 16.3 & 16.3 & t & & 46.0 & 7.2 & 38.8 & 24.2 & 18.0 & 6.1 & 0.1 \\
\hline Mean length (in) & & 13.9 & 13.0 & & & 11.7 & 11.8 & & 15.5 & 21.0 & 18.0 \\
\hline Mean weight (lb) & & 1.41 & 0.92 & & & 0.85 & 0.93 & & 1.21 & 4.99 & 2.03 \\
\hline No. of fishing trips for that species & 6,653 & & & & 1,362 & & & 1,482 & & & \\
\hline \% of all trips & 49.5 & & & & 10.1 & & & 11.0 & & & \\
\hline Hours fished for that species (per acre) & \[
\begin{gathered}
31,682 \\
(13.1)
\end{gathered}
\] & & & & \[
\begin{gathered}
6,487 \\
(2.3)
\end{gathered}
\] & & & \[
\begin{gathered}
7,059 \\
(2.9)
\end{gathered}
\] & & & \\
\hline No. harvested fishing for that species & 3,088 & & & & 12,977 & & & 3,946 & & & \\
\hline Lb harvested fishing for that species & 4,374 & & & & 12,002 & & & 5,817 & & & \\
\hline No./hour harvested fishing for that species & 0.091 & & & & 2.009 & & & 0.634 & & & \\
\hline \% success fishing for that species & 8.0 & & & & 79.2 & & & 75.0 & & & \\
\hline
\end{tabular}
\(t=<0.05\)

Table 50 (cont).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Morone group & Hybrid striped bass & White bass & Panfish group & Bluegill & Drum & Gar & Anything \\
\hline No. caught (per acre) & \[
\begin{gathered}
4,126 \\
(1.7)
\end{gathered}
\] & \[
\begin{gathered}
4,020 \\
(1.7)
\end{gathered}
\] & \[
\begin{gathered}
106 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
24,794 \\
(10.3)
\end{gathered}
\] & \[
\begin{gathered}
24,794 \\
(10.3)
\end{gathered}
\] & \[
\begin{gathered}
84 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
125 \\
(0.1)
\end{gathered}
\] & \\
\hline No. harvested (per acre) & \[
\begin{gathered}
592 \\
(0.25)
\end{gathered}
\] & \[
\begin{gathered}
592 \\
(0.25)
\end{gathered}
\] & & \[
\begin{gathered}
17,959 \\
(7.5)
\end{gathered}
\] & \[
\begin{gathered}
17,959 \\
(7.5)
\end{gathered}
\] & & \[
\begin{aligned}
& 73 \\
& (\mathrm{t})
\end{aligned}
\] & \\
\hline \% of total no. harvested & 1.5 & 1.5 & & 44.3 & 44.3 & & 0.2 & \\
\hline Lb harvested (per acre) & \[
\begin{aligned}
& 1,079 \\
& (0.45)
\end{aligned}
\] & \[
\begin{aligned}
& 1,079 \\
& (0.45)
\end{aligned}
\] & & \[
\begin{gathered}
2,662 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
2,662 \\
(1.1)
\end{gathered}
\] & & \[
\begin{aligned}
& 62 \\
& (\mathrm{t})
\end{aligned}
\] & \\
\hline \% of total lb harvested & 3.8 & 3.8 & & 9.5 & 9.5 & & 0.2 & \\
\hline Mean length (in) & & 15.4 & & & 6.1 & & 21.3 & \\
\hline Mean weight (lb) & & 1.88 & & & 0.15 & & 0.85 & \\
\hline No. of fishing trips for that species & 1,187 & & & 602 & & & & 2,151 \\
\hline \% of all trips & 8.8 & & & 4.5 & & & & 16.0 \\
\hline Hours fished for that species (per acre) & \[
\begin{aligned}
& 5,652 \\
& (2.4)
\end{aligned}
\] & & & \[
\begin{gathered}
2,865 \\
(1.2)
\end{gathered}
\] & & & & \[
\begin{gathered}
10,244 \\
(4.3)
\end{gathered}
\] \\
\hline No. harvested fishing for that species & 548 & & & 9,775 & & & & \\
\hline Lb harvested fishing for that species & 988 & & & 1,319 & & & & \\
\hline No./hour harvested fishing for that species & 0.068 & & & 2.783 & & & & \\
\hline \% success fishing for that species & 16.3 & & & 53.2 & & & & 47.1 \\
\hline
\end{tabular}

Table 51. Length distribution (Length of released fish are estimated) for each species of fish harvested at Herrington Lake from 16 March - 31 October 2018.
\begin{tabular}{|c|}
\hline & \multicolumn{30}{|c|}{Inch class} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 30 & 36 & 38 \\
\hline Largemouth b & \\
\hline Harvested & & & & & & & & & & & 1236 & 283 & 695 & 463 & 77 & 257 & 154 & 78 & & & & & & & & & & & & \\
\hline Released & & & & & & & 364 & 1458 & 2964 & 1993 & 6561 & 2964 & 2478 & 2236 & 559 & 292 & 194 & 97 & 194 & 73 & 74 & & & & & & & & & \\
\hline Spotted bass & \\
\hline Harvested & & & & & & & & & & & & 13 & & & & & & & & & & & & & & & & & & \\
\hline Released & & & & & & & & & 283 & 167 & 667 & 250 & 50 & 33 & & & & & & & & & & & & & & & & \\
\hline Smallmouth b & \\
\hline Released & & & & & & & & & & 18 & & & 19 & & & & & & & & & & & & & & & & & \\
\hline White crappie & \\
\hline Harvested & & & & & & & & 201 & 443 & 282 & 765 & 523 & 332 & 40 & & & & & & & & & & & & & & & & \\
\hline Released & & & & & & 43 & 128 & \\
\hline Black crappie & \\
\hline Harvested & & & & & & & & 325 & 1382 & 2480 & 2561 & 2561 & 1789 & 81 & & & & & & & & & & & & & & & & \\
\hline Released & & & & & & 161 & 522 & 843 & 161 & 80 & 80 & & & & & & & & & & & & & & & & & & & \\
\hline Bluegill & \\
\hline Harvested & 25 & 49 & 1013 & 4200 & 4397 & 5731 & 2273 & 247 & & 24 & \\
\hline Released & & 144 & 1848 & 2224 & 1586 & 932 & 130 & \\
\hline Hybrid striped & \\
\hline Harvested & & & & & & & & & & & 59 & 59 & 59 & 148 & 178 & 30 & & 30 & 29 & & & & & & & & & & & \\
\hline Released & & & & & & & & & 137 & 183 & 366 & 640 & 388 & 594 & 343 & 228 & 251 & 46 & 23 & 91 & & 23 & 91 & & & 23 & & & & \\
\hline White bass & \\
\hline Released & & & & & & & & & 53 & & 53 & & & & & & & & & & & & & & & & & & & \\
\hline Channel catis & \\
\hline Harvested & & & & & & & 22 & 44 & 328 & 131 & 284 & 742 & 284 & 699 & 437 & 284 & 480 & 87 & 218 & 131 & 44 & & 175 & & & & 21 & & & \\
\hline Released & & & & & & & 19 & 76 & & 38 & & 95 & 19 & 38 & & 38 & & & & & & & & & & & & & & \\
\hline Flathead catif & \\
\hline Harvested & & & & & & & & & & 22 & 22 & & 44 & 22 & 66 & & 66 & 22 & 44 & 22 & & & 88 & 22 & & & & 22 & 22 & 23 \\
\hline Released & 13 & & & & & & & & & & \\
\hline Blue cattish & \\
\hline Harvested & & & & & & & & & & & & & & & & & 8 & & & & & & & & & & & & & \\
\hline Drum & \\
\hline Released & & & & & & & & & & & & & 14 & 28 & 28 & & 14 & & & & & & & & & & & & & \\
\hline Gar & \\
\hline Harvested & & & & & & & & & & & & & & & & 18 & & & 18 & & & 18 & & 19 & & & & & & \\
\hline Released & & & & & & & & & & & & & & 17 & & & & & & & & & 17 & & & 18 & & & & \\
\hline
\end{tabular}

Table 52. Black bass catch and harvest statistics derived from a creel survey at Herrington Lake (2,410 acres) for black bass caught and released by all anglers from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Largemouth bass Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Spotted bass Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Smallmouth bass Catch and Release} & \multirow[b]{2}{*}{Total} \\
\hline & & \[
\begin{aligned}
& 12.0- \\
& 14.9 \text { in }
\end{aligned}
\] & \(\geq 15.0\) in & & & \[
\begin{aligned}
& 12.0- \\
& 14.9 \text { in } \\
& \hline
\end{aligned}
\] & \(\geq 15.0\) in & & & \[
\begin{aligned}
& 12.0- \\
& 14.9 \text { in }
\end{aligned}
\] & \(\geq 15.0\) in & \\
\hline Total no of bass & 3,243 & 12,003 & 3,719 & 25,744 & 13 & 967 & 33 & 1,463 & & 19 & & 37 \\
\hline \% of black bass harvested by no. & 99.6 & & & & 0.4 & & & & & & & \\
\hline Total weight of fish (lbs) & 4,571 & 12,068 & 7,936 & 27,191 & 12 & 704 & 42 & 1,070 & & 23 & & 34 \\
\hline \% of black bass harvest by weight & 99.7 & & & & 0.3 & & & & & & & \\
\hline Mean length & 13.9 & & & & 13.0 & & & & & & & \\
\hline Mean weight & 1.41 & & & & 0.93 & & & & & & & \\
\hline Rate (fish/h) & 0.050 & & & & 0.0004 & & & & & & & \\
\hline
\end{tabular}

Table 53. Monthly black bass angling success at Herrington Lake during the 2018 creel survey.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of black bass caught by all anglers & Total no. of black bass harvested by anglers & No. of fishing trips for black bass & Hours fished by black bass anglers & Black bass caught by black bass anglers & Black bass caught/hr by black bass anglers & Black bass harvested by black bass anglers & Black bass harvested/hr by black bass anglers \\
\hline March & 1,514 & 505 & 1,066 & 5,074 & 1,388 & 0.25 & 505 & 0.09 \\
\hline April & 6,895 & 36 & 2,184 & 10,402 & 6,680 & 0.59 & 36 & t \\
\hline May & 6,005 & 801 & 877 & 4,174 & 5,116 & 1.27 & 801 & 0.20 \\
\hline June & 3,923 & 1,746 & 637 & 3,035 & 3,903 & 1.16 & 1,746 & 0.52 \\
\hline July & 4,436 & 37 & 876 & 4,172 & 4,309 & 1.04 & - & - \\
\hline August & 1,899 & 66 & 368 & 1,752 & 1,607 & 0.96 & - & - \\
\hline September & 1,089 & 66 & 184 & 875 & 815 & 0.96 & - & - \\
\hline October & 1,723 & - & 461 & 2,197 & 1,429 & 0.65 & - & - \\
\hline Total & 27,244 & 3,256 & 6,653 & 31,681 & 25,247 & & 3,088 & \\
\hline Mean & & & & & & 0.85 & & 0.08 \\
\hline
\end{tabular}

Table 54. Catfish catch and harvest statistics derived from a creel survey at Herrington Lake (2,410 acres) for catfish caught and released by all anglers from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Channel catfish Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Flathead catfish Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Blue catfish Catch and Release} & \multirow[b]{2}{*}{Total} \\
\hline & & \[
\begin{gathered}
8.0- \\
11.9 \text { in }
\end{gathered}
\] & \(\geq 12.0\) in & & & \[
\begin{gathered}
8.0- \\
11.9 \text { in }
\end{gathered}
\] & \(\geq 12.0\) in & & & \[
\begin{gathered}
8.0- \\
11.9 \text { in }
\end{gathered}
\] & \(\geq 12.0\) in & \\
\hline Total no of catfish & 4,411 & 133 & 190 & 4,733 & 507 & & 13 & 520 & 8 & & & 8 \\
\hline \% of catfish harvested by no. & 89.5 & & & & 10.3 & & & & 0.2 & & & \\
\hline Total weight of fish (lbs) & 5,068 & 74 & 104 & 5,246 & 1,712 & & 49 & 1,061 & 17 & & & 17 \\
\hline \% of catfish harvest by weight & 74.6 & & & & 25.2 & & & & 0.2 & & & \\
\hline Mean length & 15.5 & & & & 21.0 & & & & 18 & & & \\
\hline Mean weight & 1.21 & & & & 4.99 & & & & 2.03 & & & \\
\hline Rate (fish/h) & 0.081 & & & & 0.009 & & & & 0.0004 & & & \\
\hline
\end{tabular}

Table 55. Monthly catfish angling success at Herrington Lake during the 2018 creel survey.
Table 55. Monthly catfish angling success at Herrington Lake during the 2018 creel survey.

Table 56. Crappie catch and harvest statistics derived from a creel survey at Herrington Lake (2,410 acres) for crappie caught and released by all anglers from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{White crappie Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Black crappie Catch and Release} & \multirow[b]{2}{*}{Total} \\
\hline & & \(<10.0\) in & \(\geq 10.0\) in & & & \(<10.0\) in & \(\geq 10.0\) in & \\
\hline Total no of crappie & 2,576 & 171 & & 2,747 & 11,179 & 1,526 & 321 & 13,026 \\
\hline \% of crappie harvested by no. & 18.7 & & & & 81.3 & & & \\
\hline Total weight of fish (lbs) & 2,037 & 31 & & 2,068 & 10,895 & 407 & 209 & 11,511 \\
\hline \% of crappie harvest by weight & 15.7 & & & & 84.3 & & & \\
\hline Mean length & 11.7 & & & & 11.8 & & & \\
\hline Mean weight & 0.85 & & & & 0.93 & & & \\
\hline Rate (fish/hr) & 0.026 & & & & 0.110 & & & \\
\hline
\end{tabular}

Table 57. Monthly crappie angling success at Herrington Lake during the 2018 creel survey.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of crappie caught by all anglers & Total no. of crappie harvested by all anglers & No. of fishing trips for crappie & Hours fished by crappie anglers & Crappie caught by crappie anglers & Crappie
caught/hr by
crappie
anglers & \(\qquad\) & Crappie harvested/hr by crappie anglers \\
\hline March & 315 & 252 & 341 & 1,624 & 315 & 0.19 & 252 & 0.16 \\
\hline April & 4,525 & 4,417 & 513 & 2,441 & 4,310 & 1.92 & 4,202 & 1.88 \\
\hline May & 10,498 & 8,807 & 484 & 2,303 & 9,519 & 3.33 & 8,318 & 2.92 \\
\hline June & 349 & 205 & 25 & 119 & 349 & 2.83 & 205 & 1.67 \\
\hline July & 73 & 73 & - & - & - & - & - & - \\
\hline August & 13 & - & - & - & - & - & - & - \\
\hline September & - & - & - & - & - & - & - & - \\
\hline October & - & - & - & - & - & - & - & - \\
\hline Total & 15,773 & 13,755 & 6,487 & 1,362 & 14,493 & & 12,977 & \\
\hline
\end{tabular}

Table 58. Temperate bass (Morones) catch and harvest statistics derived from a creel survey at Herrington Lake (2,410 acres) from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{Hybrid striped bass Catch and Release} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{White bass Catch and Release} & \multirow[b]{2}{*}{Total} \\
\hline & & 12.0-14.9 in & \(\geq 15.0\) in & & & 12.0-14.9 in & \(\geq 15.0\) in & \\
\hline Total no of Morones & 592 & 1,394 & 1,713 & 4,020 & - & 53 & - & 106 \\
\hline \% of Morones harvested by no. & 100.0\% & & & & - & & & \\
\hline Total weight of fish (lbs) & 1,079 & 1,480 & 4,521 & 7,608 & - & 37 & - & 66 \\
\hline \(\%\) of Morones harvest by weight & 100.0\% & & & & - & & & \\
\hline Mean length & 15.4 & & & & - & & & \\
\hline Mean weight & 1.88 & & & & - & & & \\
\hline Rate (fish/h) & 0.008 & & & & - & & & \\
\hline
\end{tabular}

Table 59. Monthly Morone angling success at Herrington Lake during the 2018 creel survey.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of Morones caught by all anglers & Total no. of Morones harvested by all anglers & No. of fishing trips for Morones & Hours fished by Morones anglers & Morones caught by Morone anglers & Morones caught/hr by Morone anglers & Morones harvested by Morone anglers & Morones harvested/hr by Morone anglers \\
\hline March & 575 & 63 & 85 & 406 & 694 & 1.05 & 63 & 0.10 \\
\hline April & - & - & - & - & - & - & - & - \\
\hline May & 1,112 & 267 & 363 & 1,727 & 978 & 0.73 & 222 & 0.17 \\
\hline June & 349 & 226 & 162 & 774 & 350 & 0.40 & 226 & 0.26 \\
\hline July & 1,132 & 36 & 300 & 1,427 & 1,132 & 0.68 & 37 & 0.02 \\
\hline August & 478 & - & 134 & 640 & 478 & 0.78 & - & - \\
\hline September & 83 & - & 56 & 265 & 66 & 0.22 & - & - \\
\hline October & 214 & - & 87 & 412 & 214 & 0.52 & - & - \\
\hline Total & 4,126 & 592 & 1,187 & 5,652 & 3,912 & & 548 & \\
\hline Mean & & & & & & 0.60 & & 0.07 \\
\hline
\end{tabular}

Table 60. Panfish catch and harvest statistics derived from a creel survey at Herrington Lake (2,410 acres) for panfish caught and released by all anglers from 16 March to 31 October 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|c|}{Bluegill Catch and Release} & \multirow[b]{2}{*}{Total} \\
\hline & & 6.0-7.9 in & \(\geq 8.0\) in & \\
\hline Total no & 17,959 & 2,518 & 130 & 24,794 \\
\hline \% of panfish harvested by no. & 100.0 & & & \\
\hline Total weight of fish (lbs) & 2,662 & 245 & 39 & 3,328 \\
\hline \% of panfish harvest by weight & 100.0 & & & \\
\hline Mean length & 6.1 & & & \\
\hline Mean weight & 0.15 & & & \\
\hline Rate (fish/h) & 0.291 & & & \\
\hline
\end{tabular}

Table 61. Monthly panfish angling success at Herrington Lake during the 2018 creel survey.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of panfish caught by all anglers & Total no. of panfish harvested by all anglers & No. of fishing trips for panfish & Hours fished by panfish anglers & Panfish caught by panfish anglers & Panfish
caught/hr by
panfish
anglers & \(\qquad\) & Panfish harvested/hr by panfish anglers \\
\hline March & 946 & 757 & & & & & & \\
\hline April & 2,442 & 1,831 & 22 & 106 & 754 & 6.000 & 359 & 2.856 \\
\hline May & 6,405 & 6,316 & 181 & 864 & 6,316 & 8.606 & 6,316 & 8.606 \\
\hline June & 4,950 & 2,917 & 125 & 595 & 1,438 & 3.182 & 144 & 0.318 \\
\hline July & 4,400 & 3,670 & 115 & 549 & 1,717 & 3.950 & 1,461 & 3.361 \\
\hline August & 3,732 & 1,753 & 127 & 607 & 1,753 & 3.007 & 1,036 & 1.777 \\
\hline September & 740 & 108 & 11 & 53 & 207 & 3.571 & 66 & 1.143 \\
\hline October & 1179 & 607 & 19 & 92 & 393 & 2.750 & 393 & 2.750 \\
\hline Total & 24,794 & 17,959 & 602 & 2,865 & 12,578 & & 9,775 & \\
\hline Mean & & & & & & 4.058 & & 2.783 \\
\hline
\end{tabular}

\section*{HERRINGTON LAKE ANGLER ATTITUDE SURVEY 2018}

\section*{(based on 348 surveys)}

17. Name \(\qquad\)
18. On average, how many time do you fish Herrington Lake in a year? (\(n=341\)) First time 12.9\% 1 to 4 13.2\% 5 to 10 15.0\% More than 10 58.9\%
19. Which species of fish do you fish for at Herrington Lake (check all that apply)? Bass 59.2\% Crappie 15.5\% Channel catfish 15.8\% Hybrid striped bass 12.9\% Flathead catfish 10.3\% Anything 7.8\% Bluegill 5.5\% White bass 1.2\% Drum 0.3\% Gar 0.3\%
20. Which one species do you fish for most at Herrington Lake (check only one)? (\(\mathrm{n}=313\)) Bass 61.6\% Crappie 10.9\% Channel catfish 9.9\% Hybrid Striped Bass 9.9\% Bluegill 3.5\% Anything 2.9\% Flathead catfish 1.0\% Drum 0.3\%

\section*{-Answer the following questions for each species you fish for - (see question 4)}

\section*{Bass Anglers}
21. In general, what level of satisfaction or dissatisfaction do you have with bass fishing at Herrington Lake? (\(\mathrm{n}=198\)) Very satisfied 92.9\% Somewhat satisfied 5.1\% Neutral 0.5\% Somewhat dissatisfied 1.5\% Very dissatisfied 0.0\%

6a. If you responded with somewhat or very satisfied in question (6) - what is the single most important reason for your satisfaction? \((n=181)\)
Number of fish 86.7\% Size of fish 12.7\% Low angler pressure 0.6\%
6b. If you responded with somewhat or very dissatisfied in question (6)- what is the single most important reason for your dissatisfaction? \((n=3)\)
Size of fish 66.7\% Size limit 33.3\%
7. Do you fish any bass tournaments on Herrington Lake? (\(\mathrm{n}=201\))

Yes 39.8\% No 60.2\%

\section*{Crappie Anglers}
8. In general, what level of satisfaction or dissatisfaction do you have with the crappie fishing at Herrington Lake? (\(\mathrm{n}=56\)) Very satisfied \(\mathbf{8 5 . 7 \%}\) Somewhat satisfied \(\mathbf{1 2 . 5} \%\) Neutral 0.0\% Somewhat dissatisfied \(\mathbf{1 . 8 \%}\) Very dissatisfied 0.0\%

8a. If you responded with somewhat or very satisfied in question (8) - what is the single most important reason for your satisfaction? (\(\mathrm{n}=52\))
Number of fish 23.1\% Size of fish 76.9\%
8b. If you responded with somewhat or very dissatisfied in question (8) - what is the single most important reason for your dissatisfaction? (\(\mathrm{n}=1\))
Number of fish 100.0\%

\section*{White Bass Anglers}
9. In general, what level of satisfaction do you have with the white bass fishing at Herrington Lake? (\(\mathrm{n}=4\)) Very satisfied \(\mathbf{7 5 . 0} \%\) Somewhat satisfied \(\mathbf{2 5 . 0 \%}\) Neutral 0.0\% Somewhat dissatisfied 0.0\% Very dissatisfied 0.0\%

9a. If you responded with somewhat or very satisfied in question (9) - what is the single most important reason for your satisfaction? (\(\mathrm{n}=4\))
Number of fish 100.0\%
9a. If you responded with somewhat or very dissatisfied in question (9) - what is the single most important reason for your dissatisfaction? \((\mathrm{n}=0)\)

\section*{Hybrid Striped Bass Anglers}
10. In general, what level of satisfaction or dissatisfaction do you have with hybrid striped bass fishing at Herrington Lake? (\(\mathrm{n}=46\)) Very satisfied \(95.6 \%\) Somewhat satisfied \(2.2 \%\) Neutral \(0.0 \%\) Somewhat dissatisfied 0.0\% Very dissatisfied 2.2\%

10a. If you responded with somewhat or very satisfied in question (10) - what is the single most important reason for your satisfaction? (\(\mathrm{n}=45\))
Number of fish 55.6\% Size of fish 44.4\%

10b. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction? \((n=1)\)
Number of fish 100.0\%

\section*{Channel Catfish Anglers}
11. In general, what level of satisfaction or dissatisfaction do you have with channel catfish fishing at Herrington Lake? (\(\mathrm{n}=57\)) Very satisfied \(100.0 \%\) Somewhat satisfied \(0.0 \%\) Neutral \(0.0 \%\) Somewhat dissatisfied \(0.0 \%\) Very dissatisfied \(0.0 \%\)

11a. If you responded with somewhat or very satisfied in question (11) - what is the single most important reason for your satisfaction? (\(\mathrm{n}=57\))
Number of fish \(\mathbf{4 5 . 6 \%}\) Size of fish 54.4\%
11b. If you responded with somewhat or very dissatisfied in question (11) - what is the single most important reason for your dissatisfaction? (\(\mathrm{n}=0\))

Flathead Catfish Anglers
12. In general, what level of satisfaction or dissatisfaction do you have with channel catfish fishing at Herrington Lake? (\(\mathrm{n}=36\)) Very satisfied \(\mathbf{9 7 . 2}\) \% Somewhat satisfied 2.8\% Neutral 0.0\% Somewhat dissatisfied \(0.0 \%\) Very dissatisfied 0.0\%

12a. If you responded with somewhat or very satisfied in question (12) - what is the single most important reason for your satisfaction? (\(\mathrm{n}=35\))
Number of fish 31.4\% Size of fish 68.6\%
12b. If you responded with somewhat or very dissatisfied in question (12) - what is the single most important reason for your dissatisfaction? (\(n=0\))

\section*{All Anglers}
13. Are you satisfied with the current size and creel limits on all sport fish at Herrington Lake? (\(\mathrm{n}=338\)) Yes 99.1\% No 0.9\%

13a. If not, which species are you dissatisfied with and what size and creel limits would you prefer? Largemouth bass 12-18 inch slot limit (\(n=1\))
Crappie 9 inch size limit (\(n=1\))
Crappie 10 inch size limit (\(n=1\))
Crappie 30 fish daily creel limit (\(\mathrm{n}=1\))

Table 62. Species composition, relative abundance, and CPUE (fish/hr) of black bass and saugeye collected in 3.0 hours of 15-minute nocturnal electrofishing runs in Guist Creek Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & \\
\hline Largemouth bass & 3 & 4 & 5 & 9 & 12 & 36 & 104 & 130 & 65 & 77 & 75 & 42 & 48 & 45 & 40 & 30 & 14 & 9 & 6 & 1 & 755 & 251.7 (18.3) \\
\hline Saugeye & & & & & & & & 3 & 4 & & & 1 & 3 & 3 & 2 & 1 & 2 & 2 & & & 21 & 7.0 (1.8) \\
\hline
\end{tabular}

\footnotetext{
Dataset = cfdpsgcl.d18
}

Table 63. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Guist Creek Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1992 & 12.0 (2.1) & 16.8 (2.7) & 38.4 (5.2) & 41.2 (4.7) & 3.2 (1.0) & 108.4 (7.2) \\
\hline 1993 & 22.7 (2.6) & 25.5 (2.7) & 23.8 (2.7) & 51.6 (5.0) & 5.5 (1.1) & 123.6 (9.1) \\
\hline 1994 & 19.2 (2.7) & 29.8 (3.7) & 19.6 (2.6) & 40.2 (3.9) & 2.0 (0.5) & 108.8 (8.6) \\
\hline 1995 & 18.2 (3.0) & 40.6 (3.8) & 23.2 (2.4) & 47.2 (5.5) & 5.0 (1.3) & 129.2 (9.2) \\
\hline 1996 & 32.6 (5.5) & 28.8 (3.6) & 44.8 (2.8) & 58.2 (5.2) & 5.8 (1.1) & 164.4 (10.6) \\
\hline 1997 & \multicolumn{6}{|l|}{No Sample} \\
\hline 1998 & 20.3 (3.1) & 45.3 (4.9) & 18.7 (3.5) & 72.7 (12.3) & 5.0 (1.3) & 157.0 (14.5) \\
\hline 1999 & 53.5 (6.9) & 56.8 (10.2) & 41.7 (6.3) & 51.3 (3.4) & 8.0 (1.3) & 203.3 (19.4) \\
\hline 2000 & 26.7 (6.1) & 19.3 (2.4) & 23.0 (2.9) & 41.3 (5.4) & 3.0 (1.0) & 110.3 (7.6) \\
\hline 2001 & 39.0 (5.3) & 42.0 (3.6) & 17.3 (2.7) & 46.3 (5.2) & 1.7 (0.6) & 144.7 (10.1) \\
\hline 2002 & 43.3 (9.9) & 32.3 (7.7) & 23.3 (3.1) & 41.3 (7.8) & 2.0 (1.4) & 134.3 (18.6) \\
\hline 2003 & 27.7 (6.7) & 96.7 (9.9) & 31.0 (4.6) & 49.7 (4.0) & 2.7 (0.9) & 205.0 (19.7) \\
\hline 2004 & 30.7 (6.0) & 62.7 (6.5) & 58.0 (7.0) & 54.3 (5.9) & 3.7 (1.0) & 205.7 (17.0) \\
\hline 2005 & 84.3 (12.2) & 67.0 (6.3) & 63.0 (5.6) & 70.3 (7.5) & 4.7 (1.4) & 284.7 (25.6) \\
\hline 2006 & 30.0 (6.6) & 69.3 (8.2) & 30.3 (3.3) & 68.7 (6.4) & 3.3 (1.5) & 198.3 (19.0) \\
\hline 2007 & 23.3 (3.0) & 59.3 (6.3) & 42.0 (4.3) & 58.0 (5.5) & 3.7 (1.2) & 182.7 (11.6) \\
\hline 2008 & 24.0 (3.6) & 19.7 (2.3) & 41.3 (5.6) & 73.0 (10.3) & 4.7 (1.5) & 158.0 (12.9) \\
\hline 2009 & 12.0 (2.7) & 23.3 (4.7) & 19.3 (3.7) & 35.7 (6.0) & 4.3 (1.0) & 90.3 (11.3) \\
\hline 2010 & 46.8 (4.1) & 25.3 (2.6) & 26.3 (2.9) & 47.3 (4.6) & 3.0 (0.8) & 145.8 (8.4) \\
\hline 2011 & 34.3 (2.6) & 67.7 (7.0) & 35.0 (3.9) & 50.3 (4.7) & 5.3 (1.6) & 187.3 (9.7) \\
\hline 2012 & 19.7 (5.2) & 81.7 (7.5) & 30.0 (4.1) & 36.7 (3.8) & 4.7 (1.2) & 168.0 (7.2) \\
\hline 2013 & 21.3 (7.0) & 44.0 (5.1) & 51.0 (5.4) & 63.0 (7.4) & 5.7 (2.0) & 179.3 (11.6) \\
\hline 2014 & 13.3 (2.4) & 43.3 (5.4) & 32.7 (4.6) & 49.3 (6.8) & 4.3 (1.3) & 138.7 (15.8) \\
\hline 2015 & 28.7 (8.4) & 86.0 (6.5) & 47.0 (4.9) & 63.7 (10.2) & 3.3 (1.2) & 225.3 (22.2) \\
\hline 2016 & \multicolumn{6}{|c|}{No Sample} \\
\hline 2017 & 13.0 (3.3) & 57.3 (7.3) & 36.0 (5.0) & 70.0 (11.2) & 5.7 (1.7) & 176.3 (21.2) \\
\hline 2018 & 11.0 (1.9) & 111.7 (10.3) & 64.7 (5.6) & 64.3 (8.1) & 5.3 (1.4) & 251.7 (18.3) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsgcl.d18- d92

Table 64. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring nocturnal electrofishing samples in Guist Creek Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 722 & \(54(\pm 4)\) & \(27(\pm 3)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsgcl.d18

Table 65. Population assessment for largemouth bass collected during spring electrofishing at Guist Creek Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & CPUE age-1 & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in }
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in }
\end{gathered}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & 12.5* & 7.0 & 64.7 & 64.3 & 5.3 & & & & \\
\hline & Score & 4 & 1 & 4 & 4 & 4 & & & 17 & Excellent \\
\hline \multirow[t]{2}{*}{2017} & Value & 12.5 & 12.7 & 36.0 & 70.0 & 5.7 & & & & \\
\hline & Score & 4 & 2 & 3 & 4 & 4 & & & 17 & Excellent \\
\hline \multirow[t]{2}{*}{2015} & Value & 12.2* & 13.0 & 47.0 & 63.7 & 3.3 & & & & \\
\hline & Score & 4 & 2 & 4 & 4 & 3 & & & 17 & Excellent \\
\hline \multirow[t]{2}{*}{2014} & Value & 12.2* & 3.7 & 32.7 & 49.3 & 4.3 & & & & \\
\hline & Score & 4 & 1 & 3 & 4 & 4 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2013} & Value & 12.2 & 17.0 & 51.0 & 63.0 & 5.7 & & & & \\
\hline & Score & 4 & 2 & 4 & 4 & 4 & & & 18 & Excellent \\
\hline \multirow[t]{2}{*}{2012} & Value & 11.0* & 13.3 & 30.0 & 36.7 & 4.7 & & & & \\
\hline & Score & 3 & 2 & 3 & 4 & 4 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2011} & Value & 11.0* & 16.4 & 34.7 & 50.7 & 5.7 & & & & \\
\hline & Score & 3 & 2 & 3 & 4 & 4 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2010} & Value & 11.0* & \(31.5^{\wedge}\) & 26.3 & 47.3 & 3.0 & & & & \\
\hline & Score & 3 & 3 & 3 & 4 & 3 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2009} & Value & 11.0 & 6.7 & 19.3 & 35.7 & 4.3 & 0.341 & 28.9 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 4 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2008} & Value & 11.5* & \(8.1{ }^{\wedge}\) & 41.3 & 73.0 & 4.7 & & & & \\
\hline & Score & 3 & 2 & 3 & 4 & 4 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2007} & Value & 11.5* & \(15.5^{\wedge}\) & 42.0 & 58.0 & 3.7 & & & & \\
\hline & Score & 3 & 2 & 3 & 4 & 3 & & & 15 & Good \\
\hline \multirow[t]{2}{*}{2006} & Value & 11.5* & \(15.2^{\wedge}\) & 30.3 & 68.7 & 3.3 & & & & \\
\hline & Score & 3 & 2 & 3 & 4 & 3 & & & 15 & Good \\
\hline \multirow[t]{2}{*}{2005} & Value & 11.5 & 21.4 & 63.0 & 70.3 & 4.7 & 0.510 & 40.0 & & \\
\hline & Score & 3 & 2 & 4 & 4 & 4 & & & 17 & Excellent \\
\hline \multirow[t]{2}{*}{2004} & Value & 10.2* & \(22.1{ }^{\wedge}\) & 58.0 & 54.3 & 3.7 & & & & \\
\hline & Score & 2 & 3 & 4 & 4 & 3 & & & 16 & Good \\
\hline \multirow[t]{2}{*}{2003} & Value & 10.2* & \(16.3^{\wedge}\) & 31.0 & 49.7 & 2.7 & & & & \\
\hline & Score & 2 & 2 & 3 & 4 & 3 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2002} & Value & 10.2* & \(23.8{ }^{\wedge}\) & 23.3 & 41.3 & 2.0 & & & & \\
\hline & Score & 2 & 3 & 2 & 4 & 3 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2001} & Value & 10.2 & 25.7 & 17.3 & 46.3 & 1.7 & 0.289 & 25.1 & & \\
\hline & Score & 2 & 3 & 2 & 4 & 3 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2000} & Value & 10.0 & 16.8 & 23.0 & 41.3 & 3.0 & 0.161 & 14.9 & & \\
\hline & Score & 1 & 2 & 2 & 4 & 3 & & & 12 & Fair \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 66. Length distribution and CPUE (fish/hr) of largemouth bass and saugeye collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Guist Creek Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{21}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & \\
\hline Largemouth bass & 4 & 24 & 14 & 3 & 9 & 22 & 15 & 14 & 28 & 14 & 25 & 7 & 7 & 11 & 14 & 6 & 5 & 3 & 4 & & & 229 & 152.7 (11.1) \\
\hline Saugeye & & & & & & 1 & & & & & 1 & 2 & 3 & 2 & 1 & 1 & 1 & 6 & & & 1 & 19 & 12.7 (2.8) \\
\hline
\end{tabular}

Dataset = cfdwrgcl.d18

Table 67. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Guist Creek Lake on 1 October 2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 79 & 87 (1) & 46 & 89 (1) & 50 & 96 (1) & 175 & 90 (1) \\
\hline
\end{tabular}

Table 68. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Guist Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2000 & Total & 3.6 & 0.1 & 19.5 & 4.0 & 0.0 & & 25.7 & 5.3 \\
\hline 2001 & Total & 3.9 & 0.1 & 65.3 & 14.0 & 1.0 & 0.5 & 23.8 & 6.7 \\
\hline 2002 & Total & 4.7 & 0.1 & 47.3 & 7.6 & 19.3 & 2.8 & 16.3 & 3.3 \\
\hline 2003 & Total & 4.0 & 0.1 & 30.7 & 8.2 & 6.0 & 2.0 & 22.1 & 4.8 \\
\hline 2004 & Total & 4.0 & 0.1 & 40.7 & 6.0 & 0.7 & 0.7 & 21.4 & 4.2 \\
\hline 2005 & Total & 4.5 & 0.1 & 24.5 & 4.4 & 5.0 & 2.0 & 15.2 & 4.5 \\
\hline 2006 & Total & 3.9 & 0.1 & 50.7 & 8.5 & 10.0 & 4.2 & 15.5 & 2.2 \\
\hline 2007 & Total & 3.8 & 0.2 & 12.7 & 4.2 & 2.7 & 1.7 & 8.1 & 2.0 \\
\hline 2008 & Total & 3.2 & 0.1 & 139.3 & 23.6 & 0.7 & 0.7 & 6.7 & 2.4 \\
\hline 2009 & Total & 3.7 & 0.1 & 51.3 & 9.8 & 0.7 & 0.7 & 31.5 & 3.1 \\
\hline 2010 & Total & 4.9 & 0.1 & 41.3 & 4.2 & 18.7 & 2.0 & 16.4 & 1.6 \\
\hline 2011 & Total & 4.4 & 0.1 & 34.7 & 13.2 & 7.3 & 3.9 & 13.3 & 4.2 \\
\hline 2012 & Total & 4.1 & 0.1 & 46.0 & 7.9 & 7.3 & 3.2 & 21.3 & 7.0 \\
\hline 2013 & Total & 4.0 & 0.1 & 38.7 & 7.0 & 6.7 & 2.7 & 3.7 & 1.0 \\
\hline 2014 & Total & 4.0 & 0.1 & 27.3 & 5.2 & 3.3 & 0.7 & 13.0 & 6.4 \\
\hline 2015 & Total & 5.0 & 0.1 & 49.3 & 5.1 & 28.0 & 2.3 & --- & \\
\hline 2016 & Total & 5.0 & 0.1 & 56.0 & 8.6 & 29.3 & 7.4 & 11.0 & 3.0 \\
\hline 2017 & Total & 4.1 & 0.1 & 75.3 & 20.3 & 18.7 & 4.3 & 7.0 & 1.8 \\
\hline 2018 & Total & 4.8 & 0.1 & 29.3 & 6.6 & 10.7 & 3.4 & & \\
\hline
\end{tabular}

Table 69. Length distribution and CPUE (fish/hr) of saugeye collected in 1.5 hours of 15 -minute electrofishing runs in Guist Creek Lake in October 2018; numbers in parentheses are standard errors.
\begin{tabular}{lrrrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ Inch class } & \\
\cline { 2 - 13 } & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & Total & CPUE \\
\hline Species & 2 & 2 & 1 & 3 & 3 & 3 & 4 & & & 1 & 19 & \(12.7(2.4)\) \\
\hline
\end{tabular}

Dataset = cfdwrgcl.d18

Table 70. Length composition, relative abundance, and CPUE (fish/set) of channel catfish at Guist Creek Lake. Channel catfish were collected using baited, tandem hoop nets (72 hours soak time) that were set on 4 October 2018. Nets were pulled three days after setting them and three sets of tandem nets were used for the sampling event.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{10}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[t]{2}{*}{Average per set} \\
\hline & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & & \\
\hline Channel catfish & 1 & & & & & & & 1 & & 1 & 3 & 1.0 (0.0) \\
\hline
\end{tabular}

Dataset \(=\) cfdhngcl.d18

Table 71. PSD and RSD 24 values obtained for channel catfish from tandem hoop net samples in Guist Creek Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(_{24}\) \\
\hline Channel catfish & 3 & \(100(\pm 0)\) & \(67(\pm 67)\) \\
\hline (\(\pm\)) &
\end{tabular}

Dataset = cfdhngcl.d18

Table 72. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Guist Creek Lake in October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{5}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & & 11.0-15.9 in & \multicolumn{2}{|l|}{16.0-23.9 in} & \multicolumn{2}{|c|}{\(\geq 24.0\) in} & & \\
\hline & & & No. & Wr & No. & Wr & No. & Wr \\
\hline Channel catfish & Total & & 1 & 96 (1) & 2 & 112 (6) & 3 & 103 (10) \\
\hline
\end{tabular}

Dataset \(=\) cfdhngcl.d18

Table 73. CPUE (fish/set) for each length group of channel catfish collected by hoop net from Guist Creek Lake from 2006-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & \(\geq 12.0\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 2006 & 43.8 (12.5) & 6.0 (2.1) & 1.8 (0.8) & 274.2 (95.6) \\
\hline 2007 & 208.2 (106.1) & 60.0 (32.6) & 13.0 (7.6) & 382.0 (184.4) \\
\hline 2008 & 87.4 (24.4) & 26.6 (10.4) & 7.4 (2.9) & 107.2 (29.2) \\
\hline 2009 & 45.4 (11.9) & 22.2 (5.8) & 4.4 (1.6) & 73.0 (16.0) \\
\hline 2010 & 42.0 (10.3) & 18.8 (4.4) & 4.6 (1.6) & 78.6 (19.9) \\
\hline 2011 & 13.2 (3.2) & 4.6 (1.7) & 0.2 (0.2) & 31.6 (7.3) \\
\hline 2012 & 21.8 (12.0) & 8.2 (5.5) & 2.4 (1.6) & 50.2 (26.4) \\
\hline 2013 & \multicolumn{4}{|l|}{No Sample} \\
\hline 2014 & 47.8 (14.0) & 25.0 (9.5) & 11.2 (3.3) & 79.8 (20.6) \\
\hline 2015 & \multicolumn{4}{|c|}{No Sample} \\
\hline 2016 & 63.0 (25.7) & 44.7 (18.6) & 16.3 (7.8) & 66.0 (26.6) \\
\hline 2017 & \multicolumn{4}{|c|}{No Sample} \\
\hline 2018 & 1.0 (0.0) & 1.0 (0.0) & 0.7 (0.3) & 1.0 (0.0) \\
\hline
\end{tabular}

Dataset = cfdhngcl.d18- .d06

Table 74. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass and saugeye collected in 2.5 hours of \(15-\mathrm{minute}\) electrofishing runs in A.J. Jolly Lake, April 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 23 & & \\
\hline Largemouth bass & 4 & 20 & 16 & 9 & 32 & 37 & 10 & 16 & 29 & 23 & 25 & 19 & 12 & 10 & 6 & 5 & 2 & & & 275 & 110.0 (12.0) \\
\hline Saugeye & & & & & 1 & & 3 & 2 & 1 & 3 & 1 & 1 & 1 & 3 & & & 1 & 1 & 1 & 19 & 7.6 (3.0) \\
\hline
\end{tabular}

Dataset = cfdpsajj.d18
Table 75. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from A.J. Jolly Lake from 1996-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1996 & 18.5 (2.8) & 13.5 (1.7) & 24.0 (5.7) & 9.5 (2.5) & 0.0 & 65.5 (7.4) \\
\hline 1997 & 11.6 (1.9) & 37.2 (3.8) & 19.6 (2.1) & 20.4 (2.6) & 0.8 (0.5) & 88.8 (4.7) \\
\hline 1998 & 11.5 (1.9) & 42.5 (8.0) & 24.5 (2.4) & 25.5 (3.5) & 2.0 (1.1) & 104.0 (11.6) \\
\hline 1999 & 5.0 (2.4) & 21.0 (6.1) & 32.0 (6.5) & 26.0 (4.5) & 4.0 (1.3) & 84.0 (13.7) \\
\hline 2000 & 27.0 (5.4) & 25.0 (4.3) & 9.5 (1.5) & 20.0 (3.3) & 1.5 (0.7) & 81.5 (7.9) \\
\hline 2001 & 35.5 (5.9) & 48.5 (5.7) & 12.0 (2.4) & 26.0 (5.2) & 2.0 (1.1) & 122.0 (13.5) \\
\hline 2002 & 10.0 (2.1) & 44.5 (8.2) & 9.5 (1.5) & 18.0 (3.1) & 0.5 (0.5) & 82.0 (10.5) \\
\hline 2003 & 14.5 (4.3) & 40.5 (4.2) & 19.0 (4.3) & 7.5 (2.2) & 0.0 & 81.5 (7.7) \\
\hline 2004* & \multicolumn{6}{|c|}{No Sampling} \\
\hline 2005 & 55.5 (10.4) & 19.5 (4.0) & 12.5 (1.8) & 7.0 (2.0) & 0.0 & 94.5 (14.9) \\
\hline 2006 & 28.0 (6.9) & 23.5 (3.5) & 5.5 (2.0) & 2.5 (1.1) & 0.0 & 59.5 (7.6) \\
\hline 2007 & 31.6 (4.4) & 36.8 (5.9) & 15.2 (2.3) & 14.0 (2.8) & 0.0 & 97.6 (11.2) \\
\hline 2008 & 7.2 (1.4) & 14.8 (4.1) & 14.8 (2.7) & 8.0 (3.1) & 0.0 & 44.8 (6.2) \\
\hline 2009 & 15.6 (2.4) & 19.6 (2.6) & 12.8 (2.9) & 12.8 (2.7) & 2.0 (0.9) & 60.8 (7.7) \\
\hline 2010 & 12.4 (2.6) & 22.8 (4.0) & 20.8 (3.8) & 21.2 (3.7) & 1.6 (0.9) & 77.2 (8.9) \\
\hline 2011 & 26.8 (5.0) & 12.8 (3.3) & 12.4 (2.9) & 20.4 (3.4) & 0.8 (0.8) & 72.4 (10.1) \\
\hline 2012 & 35.6 (6.0) & 32.4 (6.9) & 19.6 (2.4) & 20.0 (4.8) & 0.4 (0.4) & 107.6 (14.5) \\
\hline 2013 & 11.6 (2.6) & 23.2 (3.7) & 24.0 (5.1) & 17.2 (2.9) & 1.6 (0.9) & 76.0 (9.9) \\
\hline 2014 & 13.6 (2.8) & 21.2 (2.9) & 16.0 (3.2) & 24.0 (5.1) & 2.0 (0.9) & 74.8 (9.1) \\
\hline 2015 & 43.2 (6.8) & 24.8 (5.1) & 12.4 (2.2) & 15.2 (4.2) & 0.8 (0.5) & 95.6 (7.4) \\
\hline 2016 & 18.0 (3.4) & 30.0 (4.2) & 19.6 (4.2) & 27.2 (9.8) & 1.2 (0.9) & 94.8 (16.3) \\
\hline 2017 & 34.4 (3.9) & 50.4 (6.7) & 22.0 (3.6) & 24.8 (2.4) & 0.4 (0.4) & 131.6 (10.5) \\
\hline 2018 & 19.6 (2.9) & 38.0 (5.5) & 30.8 (4.0) & 21.6 (4.9) & 0.8 (0.8) & 110.0 (12.0) \\
\hline
\end{tabular}

Dataset = cfdpsajj.d96-d18
*No spring sample collected in 2004

Table 76. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in A.J. Jolly Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 226 & \(58(\pm 6)\) & \(24(\pm 6)\) \\
\hline
\end{tabular}

Dataset = cfdpsajj.d18

Table 77. Population assessment for largemouth bass collected during spring electrofishing at A.J. Jolly Lake from 2010-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & CPUE age-1 & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & 12.3* & 16.0 & 30.8 & 21.6 & 0.8 & & & & \\
\hline & Score & 4 & 2 & 3 & 3 & 2 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2017} & Value & 12.3* & 30.0 & 22.0 & 24.8 & 0.4 & & & & \\
\hline & Score & 4 & 3 & 2 & 3 & 2 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2016} & Value & 12.3* & 5.2 & 19.6 & 27.2 & 1.2 & & & & \\
\hline & Score & 4 & 1 & 2 & 4 & 2 & & & 13 & Good \\
\hline \multirow[t]{2}{*}{2015} & Value & 12.3 & 38.8 & 12.4 & 15.2 & 0.8 & & & & \\
\hline & Score & 4 & 3 & 1 & 3 & 2 & & & 13 & Good \\
\hline \multirow[t]{2}{*}{2014} & Value & 11.9* & 8.0 & 16.0 & 24.0 & 2.0 & & & & \\
\hline & Score & 4 & 2 & 2 & 3 & 3 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2013} & Value & 11.9* & 10.4 & 24.0 & 17.2 & 1.6 & & & & \\
\hline & Score & 4 & 2 & 2 & 3 & 3 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2012} & Value & 11.9* & 27.2 & 19.6 & 20.0 & 0.4 & & & & \\
\hline & Score & 4 & 3 & 2 & 3 & 2 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2011} & Value & 11.9 & 26.0 & 12.4 & 20.4 & 0.8 & & & & \\
\hline & Score & 4 & 3 & 1 & 3 & 2 & & & 13 & Good \\
\hline \multirow[t]{2}{*}{2010} & Value & 11.8* & 4.0 & 20.8 & 21.2 & 1.6 & & & & \\
\hline & Score & 4 & 1 & 2 & 3 & 3 & & & 13 & Good \\
\hline
\end{tabular}
* Age data not collected

Table 78. Length distribution and CPUE (fish/hr) of largemouth bass and saugeye collected in 2.0 hours of 15 -minute electrofishing runs for black bass in A.J. Jolly Lake in October 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{22}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & & \\
\hline Largemouth bass & 3 & 27 & 31 & 22 & 5 & 12 & 11 & 11 & 9 & 2 & 5 & 8 & 6 & 2 & 3 & & 1 & & & & & & 158 & 79.0 (8.4) \\
\hline Saugeye & & & & & & & 1 & 6 & 3 & 3 & 7 & 4 & 5 & 2 & 4 & 5 & 3 & 1 & 1 & & 2 & 1 & 48 & 24.0 (5.5) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrajj.d18

Table 79. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at A.J. Jolly Lake on 9 October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 43 & 85 (1) & 15 & 87 (2) & 12 & 91 (3) & 70 & 87 (1) \\
\hline
\end{tabular}

Dataset = cfdwrajj.d18

Table 80. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at A.J. Jolly Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2004 & Total & 3.5 & 0.1 & 36.7 & 5.2 & 2.0 & 0.9 & 49.8 & 9.2 \\
\hline 2005 & Total & 4.3 & 0.1 & 16.0 & 3.7 & 2.7 & 1.3 & 23.7 & 5.7 \\
\hline 2006 & Total & 4.1 & 0.2 & 8.7 & 2.8 & 0.7 & 0.7 & 28.5 & 4.5 \\
\hline 2007 & Total & 4.4 & 0.3 & 5.6 & 1.8 & 2.0 & 0.9 & 3.6 & 1.1 \\
\hline 2008 & Total & 4.6 & 0.1 & 29.7 & 4.4 & 7.4 & 2.2 & 12.0 & 2.0 \\
\hline 2009 & Total & 4.2 & 0.2 & 8.4 & 2.5 & 1.3 & 0.7 & 4.0 & 1.9 \\
\hline 2010 & Total & 5.2 & 0.1 & 42.4 & 5.2 & 26.8 & 4.1 & 26.0 & 4.6 \\
\hline 2011 & Total & 4.9 & 0.1 & 22.0 & 3.6 & 13.5 & 4.2 & 27.2 & 4.8 \\
\hline 2012 & Total & 4.9 & 0.1 & 22.0 & 3.6 & 12.0 & 2.9 & 10.4 & 2.2 \\
\hline 2013 & Total & 4.5 & 0.1 & 23.0 & 3.4 & 6.0 & 2.3 & 8.0 & 2.0 \\
\hline 2014 & Total & 4.5 & 0.2 & 19.5 & 5.9 & 8.0 & 2.8 & 38.8 & 6.4 \\
\hline 2015 & Total & 4.3 & 0.1 & 21.5 & 5.7 & 5.5 & 2.8 & 5.2 & 2.1 \\
\hline 2016 & Total & 5.1 & 0.1 & 44.0 & 4.5 & 25.5 & 4.8 & 28.0 & 2.5 \\
\hline 2017 & Total & 5.4 & 0.1 & 37.5 & 5.4 & 27.0 & 3.7 & 16.4 & 2.8 \\
\hline 2018 & Total & 5.3 & 0.1 & 42.5 & 6.2 & 27.5 & 4.5 & & \\
\hline
\end{tabular}

Table 81. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15 -minute electrofishing runs in Beaver Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{15}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & & \\
\hline Largemouth bass & 27 & 172 & 54 & 7 & 69 & 203 & 114 & 60 & 39 & 16 & 5 & 2 & 2 & 1 & 2 & 773 & 386.5 (23.7) \\
\hline
\end{tabular}

Dataset = cfdpsbvr.d18

Table 82. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Beaver Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1994 & 22.5 (2.8) & 5.5 (2.5) & 41.5 (3.3) & 28.5 (4.5) & 6.5 (2.8) & 96.5 (6.9) \\
\hline 1995 & 73.0 (8.4) & 37.5 (5.9) & 10.0 (3.8) & 34.0 (7.0) & 6.0 (2.3) & 154.5 (9.9) \\
\hline 1996 & 81.0 (11.6) & 47.0 (6.3) & 8.0 (2.0) & 37.5 (2.9) & 3.0 (0.7) & 173.5 (17.8) \\
\hline 1997 & 84.5 (12.2) & 99.5 (16.7) & 8.5 (2.1) & 42.5 (9.6) & 6.0 (3.2) & 235.0 (34.1) \\
\hline 1998 & 36.0 (4.2) & 206.5 (17.6) & 14.5 (4.8) & 30.5 (6.6) & 5.5 (1.7) & 287.5 (22.8) \\
\hline 1999 & 42.0 (11.0) & 71.5 (7.3) & 17.0 (2.6) & 22.0 (3.5) & 7.5 (1.6) & 152.5 (18.1) \\
\hline 2000 & 56.0 (7.7) & 26.5 (5.6) & 28.5 (2.2) & 24.5 (2.9) & 3.0 (1.3) & 137.0 (9.8) \\
\hline 2001 & 142.5 (8.6) & 66.5 (8.6) & 25.5 (1.5) & 39.0 (6.1) & 4.0 (1.5) & 273.5 (17.1) \\
\hline 2002 & 55.5 (10.8) & 97.0 (13.6) & 16.0 (2.1) & 32.0 (4.9) & 2.5 (1.1) & 200.5 (26.8) \\
\hline 2003 & 142.5 (9.1) & 131.5 (12.9) & 20.0 (3.0) & 18.0 (2.4) & 2.0 (0.8) & 312.0 (20.4) \\
\hline 2004 & 154.5 (5.5) & 198.0 (15.1) & 48.0 (7.5) & 17.0 (3.7) & 2.0 (0.8) & 417.5 (20.3) \\
\hline 2005 & 68.5 (11.4) & 298.0 (22.7) & 42.0 (7.7) & 15.0 (3.5) & 4.5 (1.4) & 423.5 (21.6) \\
\hline 2006 & 115.0 (11.3) & 217.5 (36.5) & 40.0 (3.7) & 10.0 (2.3) & 2.5 (1.1) & 382.5 (34.9) \\
\hline 2007 & 30.5 (4.8) & 176.5 (31.1) & 42.5 (9.6) & 10.0 (2.7) & 3.0 (1.0) & 259.5 (40.4) \\
\hline 2008 & 44.5 (6.6) & 203.5 (22.4) & 61.0 (6.0) & 8.5 (1.8) & 2.0 (0.8) & 317.5 (29.4) \\
\hline 2009 & 14.5 (2.8) & 146.5 (28.5) & 84.5 (15.6) & 3.5 (2.1) & 0.5 (0.5) & 249.0 (45.3) \\
\hline 2010 & 76.7 (6.8) & 99.8 (8.5) & 58.9 (4.5) & 2.9 (0.7) & 0.2 (0.2) & 238.2 (14.3) \\
\hline 2011 & 23.5 (5.8) & 56.0 (8.2) & 70.5 (5.9) & 6.5 (1.5) & 0.0 (0.0) & 156.5 (13.7) \\
\hline 2012 & 97.0 (11.6) & 81.5 (6.4) & 73.5 (6.8) & 14.0 (2.9) & 2.5 (1.1) & 266.0 (12.5) \\
\hline 2013 & 60.0 (8.8) & 137.3 (12.3) & 48.7 (9.3) & 16.7 (2.4) & 1.3 (0.8) & 262.7 (16.4) \\
\hline 2014 & 73.5 (10.7) & 116.0 (12.5) & 21.0 (3.3) & 14.5 (2.7) & 2.0 (1.1) & 225.0 (21.2) \\
\hline 2015 & 64.8 (9.5) & 126.5 (19.9) & 22.8 (4.1) & 12.5 (1.8) & 2.8 (0.8) & 226.5 (31.3) \\
\hline 2016 & 106.5 (21.4) & 104.0 (13.2) & 38.0 (2.4) & 15.0 (2.9) & 4.5 (1.8) & 263.5 (31.0) \\
\hline 2017 & 279.0 (37.2) & 160.5 (16.5) & 35.5 (5.1) & 5.0 (1.8) & 0.5 (0.5) & 480.0 (45.1) \\
\hline 2018 & 130.0 (12.1) & 223.0 (18.4) & 30.0 (5.4) & 3.5 (1.6) & 0.0 (0.0) & 386.5 (23.7) \\
\hline
\end{tabular}

\footnotetext{
Dataset \(=\) cfdpsbvr.d18-.d92
}

Table 83. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in Beaver Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 513 & \(13(\pm 3)\) & \(1(\pm 1)\) \\
\hline
\end{tabular}

Dataset = cfdpsbvr.d18

Table 84. Population assessment for largemouth bass collected during spring electrofishing at Beaver Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean
length age-
3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment
rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
11.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
126.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
30.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 12 & Fair \\
\hline 2017 & Value Score & \[
\begin{gathered}
10.8^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
279.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
35.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & & & 13 & Good \\
\hline 2016 & Value Score & \[
\begin{gathered}
10.8^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
103.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
38.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2015 & Value Score & \[
\begin{gathered}
10.8^{\star} \\
3
\end{gathered}
\] & \[
\begin{gathered}
46.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
22.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
3
\end{gathered}
\] & & & 13 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
10.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
47.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
14.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
50.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
48.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
16.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
10.7^{\star} \\
2
\end{gathered}
\] & \[
\begin{gathered}
94.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
73.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
14.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & & & 16 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
23.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
70.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 12 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
10.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
76.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
58.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.9 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & 0.293 & 25.4 & 12 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
10.3^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.0^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
84.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & & & 10 & Fair \\
\hline 2008 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
10.3^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
23.0^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
61.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
10.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
42.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
10.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & 0.622 & 46.3 & 11 & Fair \\
\hline 2006 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
108.3^{\wedge} \\
4
\end{gathered}
\] & \[
\begin{gathered}
40.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
10.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2005 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
38.7^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
42.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & & & 15 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
{ }_{4}^{97.6^{\wedge}}
\] & \[
\begin{gathered}
48.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
17.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & & & 16 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
10.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
133.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & 0.540 & 41.7 & 14 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
11.7^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
35.4^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
32.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & & & 16 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
11.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
47.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
25.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
39.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
4
\end{gathered}
\] & & & 18 & Excellent \\
\hline 2000 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
31.5^{\wedge} \\
3 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
30.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
24.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 85. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Beaver Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline Largemouth bass & 12 & 104 & 130 & 43 & 10 & 50 & 48 & 50 & 37 & 7 & 4 & 5 & & 1 & & & & 1 & 502 & 334.7 (37.5) \\
\hline
\end{tabular}

Dataset = cfdwrbvr.d18
Table 86. Mean back calculated lengths (in.) at each annulus for otoliths from largemouth bass collected in the fall from Beaver Lake in 2018.
\begin{tabular}{lrrrrrrrrrrr}
& & \multicolumn{11}{c}{ Age } \\
\cline { 3 - 14 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 2017 & 19 & 5.7 & & & & & & & & & \\
2016 & 20 & 6.5 & 9.4 & & & & & & & & \\
2015 & 8 & 5.5 & 9.6 & 11.3 & & & & & & & \\
2014 & 4 & 5.3 & 8.8 & 10.7 & 11.7 & & & & & & \\
2013 & 4 & 5.0 & 8.5 & 10.7 & 11.8 & 12.7 & & & & & \\
2012 & 2 & 5.9 & 8.9 & 10.6 & 11.8 & 12.7 & 13.5 & & & & \\
2011 & 1 & 5.9 & 8.5 & 10.0 & 11.5 & 13.0 & 13.7 & 14.2 & & & \\
2010 & 1 & 4.5 & 8.1 & 9.6 & 11.7 & 12.5 & 13.4 & 13.8 & 14.1 & & \\
2008 & 1 & 6.2 & 9.2 & 11.4 & 13.2 & 14.4 & 15.4 & 16.8 & 17.4 & 18.4 & 19.4 \\
& & & & & & & & & & & \\
Mean & 60 & 5.9 & 9.2 & 10.9 & 11.8 & 12.9 & 13.9 & 14.9 & 15.8 & 18.4 & 19.4 \\
Smallest & & 4.4 & 7.8 & 9.6 & 10.6 & 11.4 & 12.0 & 13.8 & 14.1 & & \\
Largest & & 8.2 & 10.6 & 12.5 & 13.2 & 14.4 & 15.4 & 16.8 & 17.4 & & \\
Std Error & & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 & 0.6 & 0.9 & 1.6 & & \\
95\% ConLo & & 5.7 & 9.0 & 10.5 & 11.4 & 12.3 & 12.7 & 13.1 & 12.5 & & \\
95\% ConHi & & 6.1 & 9.4 & 11.2 & 12.3 & 13.5 & 15.1 & 16.8 & 19.0 & & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagbvr.d18
Table 87. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Beaver Lake on 25 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 159 & 86 (1) & 16 & 83 (1) & 2 & 96 (1) & 177 & 86 (1) \\
\hline
\end{tabular}

Table 88. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Beaver Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2000 & Total & 3.7 & 0.1 & 127.3 & 32.9 & 6.7 & 2.2 & 47.8 & 5.7 \\
\hline 2001 & Total & 4.6 & 0.1 & 139.3 & 28.1 & 40.7 & 13.9 & 35.4 & 8.9 \\
\hline 2002 & Total & 4.4 & 0.1 & 104.0 & 7.5 & 19.3 & 4.6 & 133.2 & 9.3 \\
\hline 2003 & Total & 3.7 & 0.1 & 117.3 & 22.0 & 0.0 & & 97.6 & 5.0 \\
\hline 2004 & Total & 3.7 & 0.1 & 86.7 & 17.1 & 3.3 & 1.6 & 38.7 & 10.7 \\
\hline 2005 & Total & 4.0 & 0.1 & 199.3 & 26.3 & 18.7 & 4.1 & 108.3 & 10.2 \\
\hline 2006 & Total & 4.3 & 0.1 & 8.0 & 2.7 & 0.0 & & 2.0 & 1.1 \\
\hline 2007 & Total & 4.6 & 0.1 & 175.3 & 31.2 & 46.7 & 4.6 & 23.5 & 4.4 \\
\hline 2008 & Total & 3.4 & 0.1 & 21.3 & 11.9 & 0.0 & & 4.5 & 1.4 \\
\hline 2009 & Total & 5.0 & 0.1 & 112.7 & 21.9 & 56.7 & 10.7 & 76.7 & 6.8 \\
\hline 2010 & Total & 4.0 & 0.1 & 38.7 & 14.1 & 4.7 & 2.2 & 23.4 & 5.4 \\
\hline 2011 & Total & 4.2 & 0.1 & 142.0 & 23.9 & 18.0 & 4.1 & 94.5 & 11.1 \\
\hline 2012 & Total & 4.3 & 0.1 & 124.6 & 24.6 & 17.7 & 4.0 & 50.0 & 7.1 \\
\hline 2013 & Total & 3.8 & 0.1 & 78.7 & 6.2 & 3.3 & 2.2 & 47.3 & 7.4 \\
\hline 2014 & Total & 4.1 & 0.1 & 94.7 & 15.0 & 14.0 & 3.5 & 46.3 & 7.6 \\
\hline 2015 & Total & 4.2 & 0.1 & 184.5 & 23.6 & 28.5 & 4.4 & 103.0 & 20.9 \\
\hline 2016 & Total & 5.6 & 0.1 & 370.0 & 34.9 & 320.0 & 25.8 & 279.0 & 37.2 \\
\hline 2017 & Total & 4.8 & 0.1 & 227.3 & 23.1 & 84.0 & 13.0 & 126.5 & 11.8 \\
\hline 2018 & Total & 5.2 & 0.1 & 196.0 & 31.6 & 118.7 & 26.8 & & \\
\hline
\end{tabular}

Table 89. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5 -minute electrofishing runs in Beaver Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{lrrrrrrrrrr}
& \multicolumn{9}{c}{ Inch class } & \\
\cline { 2 - 10 } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Total & CPUE \\
\hline Species & 1 & 21 & 104 & 63 & 77 & 111 & 16 & & 393 & \(314.4(43.0)\) \\
Bluegill & 1 & 5 & 3 & 3 & 4 & 3 & 2 & 21 & \(16.8(4.5)\) \\
Redear sunfish & & 1 & & &
\end{tabular}

Dataset \(=\) cfdpsbvr.d18

Table 90. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Beaver Lake during May 2018. Fish were collected in 7.5-minute runs.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(^{\text {a }}\) \\
\hline Bluegill & 392 & \(52(\pm 5)\) & \(4(\pm 2)\) \\
Redear sunfish & 20 & \(45(\pm 22)\) & \(10(\pm 13)\) \\
\hline
\end{tabular}
abluegill \(=\) RSD \(_{8}\); Redear \(=\) RSD \(_{9}\)
Dataset \(=\) cfdpsbvr.d18

Table 91. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Beaver Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <3.0 in & 3.0-5.9 in & 6.0-7.9 in & \(\geq 8.0\) in & \\
\hline 1992 & 1.3 (0.9) & 54.2 (10.2) & 80.9 (15.1) & 0.0 & 136.4 (24.0) \\
\hline 1993 & 2.5 (1.1) & 47.0 (6.2) & 79.5 (10.0) & 0.0 & 129.0 (12.6) \\
\hline 1994 & 2.5 (1.1) & 130.0 (21.0) & 20.0 (4.0) & 0.0 & 152.5 (24.2) \\
\hline 1995 & 2.0 (1.1) & 174.0 (18.4) & 16.5 (4.7) & 0.0 & 192.5 (17.3) \\
\hline 1996 & 0.5 (0.5) & 184.5 (27.3) & 65.5 (11.5) & 0.0 & 250.5 (34.5) \\
\hline 1997 & 2.5 (1.1) & 58.0 (12.6) & 86.5 (14.4) & 0.5 (0.5) & 147.5 (27.4) \\
\hline 1998 & 0.5 (0.5) & 28.0 (4.3) & 88.0 (15.0) & 0.5 (0.5) & 117.0 (19.0) \\
\hline 1999 & 14.0 (4.5) & 13.0 (5.5) & 10.5 (3.0) & 0.0 & 37.5 (8.3) \\
\hline 2000 & 50.0 (12.7) & 322.0 (23.1) & 32.0 (13.6) & 7.5 (3.8) & 411.5 (41.2) \\
\hline 2001 & 19.0 (5.1) & 211.5 (16.0) & 122.0 (15.2) & 0.0 & 352.5 (20.2) \\
\hline 2002 & 5.6 (1.7) & 175.2 (22.9) & 152.8 (27.7) & 0.0 & 333.6 (44.7) \\
\hline 2003 & 33.6 (6.4) & 141.6 (17.5) & 128.8 (21.9) & 0.0 & 304.0 (30.1) \\
\hline 2004 & 36.0 (16.0) & 118.4 (32.4) & 143.2 (29.3) & 0.0 & 297.6 (56.4) \\
\hline 2005 & 21.6 (4.5) & 109.6 (14.6) & 97.6 (19.3) & 4.0 (2.2) & 232.8 (19.7) \\
\hline 2006 & 20.1 (4.9) & 60.9 (8.6) & 55.7 (13.5) & 8.3 (2.9) & 145.1 (24.7) \\
\hline 2007 & 12.0 (2.6) & 34.4 (4.6) & 53.6 (9.5) & 2.4 (1.7) & 102.4 (10.4) \\
\hline 2008 & 69.6 (11.1) & 112.4 (13.3) & 38.0 (6.3) & 4.0 (1.4) & 224.0 (24.6) \\
\hline 2009 & 17.2 (5.1) & 60.4 (10.0) & 40.4 (5.9) & 1.6 (0.9) & 119.6 (15.3) \\
\hline 2010 & 35.6 (8.2) & 134.8 (10.6) & 24.4 (5.9) & 4.4 (1.5) & 199.2 (17.5) \\
\hline 2011 & 68.4 (20.3) & 299.2 (47.8) & 51.6 (8.1) & 5.2 (1.9) & 424.4 (70.4) \\
\hline 2012 & 5.6 (2.1) & 131.2 (26.1) & 59.2 (15.1) & 0.0 & 196.0 (32.1) \\
\hline 2013 & 1.6 (1.1) & 192.8 (16.5) & 77.6 (9.8) & 1.6 (1.6) & 273.6 (23.4) \\
\hline 2014 & 1.6 (1.6) & 252.8 (33.4) & 252.8 (56.6) & 0.0 & 507.2 (37.4) \\
\hline 2015 & 0.0 (0.0) & 160.8 (16.6) & 212.0 (37.0) & 0.0 & 372.8 (44.9) \\
\hline 2016 & 33.6 (12.0) & 213.6 (30.6) & 201.6 (45.1) & 1.6 (1.1) & 450.4 (81.4) \\
\hline 2017 & 4.0 (1.8) & 136.8 (23.5) & 247.2 (66.1) & 14.4 (3.5) & 402.4 (87.8) \\
\hline 2018 & 0.8 (0.8) & 150.4 (18.5) & 150.4 (28.9) & 12.8 (3.0) & 314.4 (43.0) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbvr.d18-.d92

Table 92. Population assessment for bluegill collected during spring electrofishing at Beaver Lake from 2001-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-2 at capture & Years to 6.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 6.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
4.4^{\star} \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
163.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.8 \\
4
\end{gathered}
\] & - & & 15 & Excellent \\
\hline 2017 & Value Score & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
261.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
14.4 \\
4
\end{gathered}
\] & - & - & 15 & Excellent \\
\hline 2016 & Value Score & \[
\begin{gathered}
4.7^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
203.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & - & - & 13 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
212.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & - & - & 11 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
4.7^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
252.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & - & - & 12 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
79.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & - & - & 13 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
4.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
59.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & - & - & 12 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
56.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.2 \\
4
\end{gathered}
\] & 0.834 & 55.6 & 14 & Excellent \\
\hline 2010 & Value Score & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
28.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & 0.594 & 44.8 & 10 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
4.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
42.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & 0.723 & 51.5 & 12 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
42.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & 0.497 & 39.2 & 10 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
3.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
56.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
3
\end{gathered}
\] & 0.666 & 48.6 & 10 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
3.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
64.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.3 \\
4
\end{gathered}
\] & * & * & 11 & Good \\
\hline 2005 & Value Score & \[
\begin{gathered}
4.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
101.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & 0.340 & 28.8 & 12 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
3.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
143.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & * & * & 10 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
3.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
128.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & * & * & 10 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
3.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
152.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & * & * & 11 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
122.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & * & * & 12 & Good \\
\hline
\end{tabular}
* Age data not collected

Table 93. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Beaver Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <3.0 in & 3.0-5.9 in & 6.0-7.9 in & \(\geq 8.0\) in & \(\geq 10.0\) in & \\
\hline 1992 & 0.4 (0.4) & 10.2 (2.8) & 90.2 (12.9) & 1.8 (1.0) & 0.4 (0.4) & 102.7 (13.2) \\
\hline 1993 & 0.0 & 2.0 (1.5) & 57.0 (10.7) & 5.0 (2.0) & 0.0 & 64.0 (12.2) \\
\hline 1994 & 0.0 & 6.5 (1.8) & 8.0 (2.6) & 2.5 (1.3) & 0.0 & 17.0 (4.1) \\
\hline 1995 & 0.0 & 2.0 (1.1) & 12.5 (3.6) & 7.0 (2.7) & 0.0 & 21.5 (5.2) \\
\hline 1996 & 0.0 & 6.0 (2.0) & 5.5 (2.5) & 8.0 (2.6) & 0.0 & 19.5 (5.1) \\
\hline 1997 & 0.0 & 13.0 (1.8) & 9.0 (2.1) & 8.0 (1.7) & 0.0 & 30.0 (1.5) \\
\hline 1998 & 0.0 & 3.5 (1.2) & 9.0 (2.0) & 9.5 (4.6) & 0.0 & 22.0 (5.7) \\
\hline 1999 & 0.0 & 0.0 & 0.5 (0.5) & 7.5 (1.8) & 2.0 (1.1) & 8.0 (2.0) \\
\hline 2000 & 1.0 (0.7) & 5.5 (2.0) & 3.5 (1.8) & 6.0 (2.0) & 1.5 (1.1) & 16.0 (3.7) \\
\hline 2001 & 0.5 (0.5) & 34.5 (6.9) & 30.0 (6.8) & 8.5 (2.9) & 0.5 (0.5) & 73.5 (10.5) \\
\hline 2002 & 0.0 & 49.6 (11.1) & 77.6 (18.1) & 7.2 (3.9) & 0.8 (0.8) & 134.4 (27.8) \\
\hline 2003 & 0.8 (0.8) & 21.6 (6.1) & 87.2 (15.0) & 7.2 (3.3) & 0.0 & 116.8 (20.0) \\
\hline 2004 & 0.0 & 38.4 (9.0) & 44.0 (8.7) & 26.4 (7.4) & 0.0 & 108.8 (17.1) \\
\hline 2005 & 1.6 (1.1) & 46.4 (7.0) & 80.8 (12.4) & 62.4 (10.8) & 0.0 & 191.2 (22.6) \\
\hline 2006 & 0.4 (0.4) & 46.1 (6.2) & 82.2 (6.2) & 35.7 (5.7) & 0.0 & 164.4 (13.8) \\
\hline 2007 & 0.0 & 25.2 (6.1) & 74.0 (13.5) & 32.4 (6.6) & 0.0 & 125.3 (23.2) \\
\hline 2008 & 10.0 (2.7) & 15.2 (2.5) & 58.4 (12.2) & 90.4 (16.5) & 0.0 & 174.0 (26.8) \\
\hline 2009 & 0.8 (0.6) & 23.6 (4.8) & 26.8 (4.8) & 29.6 (5.8) & 0.0 & 80.8 (11.5) \\
\hline 2010 & 0.4 (0.4) & 21.6 (3.9) & 27.6 (4.4) & 33.6 (7.0) & 1.2 (0.9) & 83.2 (10.5) \\
\hline 2011 & 0.0 & 13.6 (3.4) & 11.2 (2.0) & 23.2 (4.9) & 0.0 & 48.0 (6.3) \\
\hline 2012 & 0.0 & 5.6 (1.7) & 28.8 (4.3) & 68.0 (12.9) & 9.6 (2.6) & 102.4 (14.1) \\
\hline 2013 & 0.0 & 6.4 (2.6) & 3.2 (1.3) & 12.0 (4.7) & 2.4 (1.7) & 21.6 (5.2) \\
\hline 2014 & 0.0 & 3.2 (2.0) & 6.4 (1.6) & 12.8 (5.4) & 4.8 (3.2) & 22.4 (3.0) \\
\hline 2015 & 0.0 & 1.6 (1.1) & 3.2 (1.3) & 1.6 (1.1) & 0.0 & 6.4 (1.6) \\
\hline 2016 & 0.8 (0.8) & 4.8 (1.8) & 3.2 (1.8) & 2.4 (1.7) & 0.0 & 11.2 (2.1) \\
\hline 2017 & 0.0 & 4.0 (2.2) & 4.8 (2.1) & 7.2 (2.8) & 4.0 (2.2) & 16.0 (2.9) \\
\hline 2018 & 0.0 & 7.2 (3.3) & 5.6 (1.7) & 4.0 (2.2) & 0.0 & 16.8 (4.5) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbvr.d18-.d92

Table 94. Population assessment for redear sunfish collected during spring electrofishing at Beaver Lake from 2001-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & Years to 8.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 10.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
10.1^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 11 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
10.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
4
\end{gathered}
\] & & & 14 & Excellent \\
\hline 2016 & Value Score & \[
\begin{gathered}
7.0^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }_{4}^{*} \\
4
\end{gathered}
\] & \[
2.4
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2015 & Value Score & \[
\begin{gathered}
7.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2014 & Value Score & \[
\begin{gathered}
8.8^{\star} \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.8 \\
4
\end{gathered}
\] & & & 15 & Excellent \\
\hline 2013 & Value Score & \[
\begin{gathered}
8.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
4
\end{gathered}
\] & & & 15 & Excellent \\
\hline 2012 & Value Score & \[
\begin{gathered}
7.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
68.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
4
\end{gathered}
\] & 0.342 & 29.0 & 14 & Excellent \\
\hline 2011 & Value Score & \[
\begin{gathered}
7.6 \\
3
\end{gathered}
\] & \[
3-3+
\] & \[
\begin{gathered}
23.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & 0.398 & 32.8 & 14 & Excellent \\
\hline 2010 & Value Score & \[
\begin{gathered}
7.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
33.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
3
\end{gathered}
\] & 0.435 & 35.3 & 12 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
6.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
29.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 0.413 & 33.9 & 10 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
6.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
90.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 0.243 & 21.6 & 9 & Fair \\
\hline 2007 & Value Score & \[
\begin{gathered}
6.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
32.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 0.898 & 59.3 & 9 & Fair \\
\hline 2006 & Value Score & \[
\begin{gathered}
5.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
35.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 0.410 & 33.6 & 9 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
6.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
62.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 0.373 & 31.1 & 9 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
6.6^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+{ }^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
26.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 10 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
6.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
7.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 8 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
6.4^{*} \\
1
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & & & 9 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
6.4 \\
1 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2 \\
\hline
\end{gathered}
\] & & & 9 & Fair \\
\hline
\end{tabular}
* Age data not collected

Table 95. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Beaver Lake on 25 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{8}{|c|}{Length group} & \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Wr} \\
\hline & No. & Wr & No. & Wr & No. & Wr & No. & Wr & & \\
\hline & \multicolumn{2}{|r|}{3.0-5.9 in} & \multicolumn{2}{|r|}{6.0-7.9 in} & \multicolumn{2}{|r|}{\(\geq 8.0\) in} & & & \multicolumn{2}{|c|}{Total} \\
\hline Bluegill & 49 & 90 (3) & 62 & 84 (1) & 1 & 78 & & & 112 & 86 (1) \\
\hline & \multicolumn{2}{|r|}{\(1.0-3.9\) in} & \multicolumn{2}{|r|}{4.0-6.9 in} & \multicolumn{2}{|r|}{7.0-9.0 in} & \multicolumn{2}{|r|}{\(\geq 9.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline Redear sunfish & 1 & 114 & 12 & 98 (3) & 8 & 101 (3) & 4 & 93 (3) & 25 & 99 (2) \\
\hline
\end{tabular}

Table 96. Length distribution and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute electrofishing runs for black bass in Benjy Kinman Lake during May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline Largemouth bass & 4 & 32 & 23 & 4 & 48 & 63 & 19 & 17 & 16 & 7 & 4 & 9 & 4 & 4 & & & 2 & 256 & 128.0 (14.1) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbkl.d18

Table 97. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Benjy Kinman Lake during 2015-2018; numbers in parentheses are standard errors.
\begin{tabular}{lcccccc}
\hline & \multicolumn{6}{c}{ Length group } \\
\cline { 2 - 6 } Year & \(<8.0\) in & \(8.0-11.9\) in & \(12.0-14.9\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & Total \\
\hline 2018 & \(31.5(6.3)\) & \(73.5(11.0)\) & \(13.5(1.1)\) & \(9.5(2.7)\) & \(1.0(0.7)\) & \(128.0(14.1)\) \\
2017 & \(27.0(7.0)\) & \(66.0(10.7)\) & \(22.5(3.5)\) & \(4.5(1.8)\) & \(1.0(0.7)\) & \(120.0(18.6)\) \\
2016 & \(23.0(7.0)\) & \(82.0(11.5)\) & \(15.0(2.9)\) & \(7.0(2.4)\) & \(1.0(0.7)\) & \(127.0(18.6)\) \\
2015 & \(12.0(2.4)\) & \(84.2(5.1)\) & \(17.4(1.7)\) & \(12.9(1.8)\) & \(4.7(1.0)\) & \(126.6(7.8)\) \\
\hline Dataset \(=\) cfdpsbkl.d18- d 15 & & & & &
\end{tabular}

Dataset \(=\) cfdpsbkl.d18-.d15

Table 98. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing sample in Benjy Kinman Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 193 & \(24(\pm 6)\) & \(10(\pm 4)\) \\
\hline Dataset \(=\) cfdpsbkl.d18 & &
\end{tabular}

Dataset = cfdpsbkl.d18

Table 99. Population assessment for largemouth bass collected during spring electrofishing at Benjy Kinman Lake for 2018 (scoring based on statewide assessment).
\(\left.\begin{array}{llcccccccc}\hline & & \begin{array}{c}\text { Mean length } \\ \text { age-3 at } \\ \text { capture }\end{array} & \begin{array}{c}\text { CPUE } \\ \text { age-1 }\end{array} & \text { CPUE } & \text { CPUE } & \text { CPUE } & \begin{array}{c}\text { Instantaneous } \\ \text { mortality } \\ (z)\end{array} & \begin{array}{c}\text { Annual } \\ \text { mortality } \\ (A M)\end{array} & \begin{array}{c}\text { Total } \\ \text { score }\end{array} \\ \text { Year Assessment } \\ \text { rating }\end{array}\right]\)
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
* Age data not collected (data collected in 2014)

Table 100. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Benjy Kinman Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & & \\
\hline Largemouth bass & 14 & 37 & 54 & 5 & 8 & 39 & 34 & 31 & 11 & 2 & & 2 & & 3 & 1 & 1 & 242 & 161.3 (12.3) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrbkl.d18

Table 101. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Benjy Kinman Lake on 10 September 2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 115 & 83 (1) & 4 & 90 (5) & 5 & 91 (3) & 124 & 83 (1) \\
\hline
\end{tabular}

Table 102. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Benjy Kinman Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2014 & Total & 4.2 & 0.1 & 16.0 & 5.4 & 2.5 & 1.3 & 11.1 & 2.2 \\
\hline 2015 & Total & 4.0 & 0.1 & 78.0 & 16.2 & 8.7 & 2.4 & 51.1 & 9.1 \\
\hline 2016 & Total & 4.7 & 0.1 & 43.3 & 6.0 & 15.3 & 3.2 & 24.0 & 5.9 \\
\hline 2017 & Total & 4.7 & 0.1 & 92.7 & 13.8 & 38.7 & 7.4 & 29.5 & 6.4 \\
\hline 2018 & Total & 4.9 & 0.1 & 73.3 & 3.8 & 39.3 & 4.7 & & \\
\hline
\end{tabular}

Table 103. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5 -minute electrofishing runs in Benjy Kinman Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{lrrrrrrrrrcc}
\hline & \multicolumn{9}{c}{ Inch class } & & \\
\cline { 2 - 10 } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & Total & CPUE \\
\hline Species & 14 & 83 & 73 & 66 & 104 & 17 & & 387 & \(309.6(22.1)\) \\
Bluegill & & 44 & 5 & 6 & 15 & 2 & & 28 & \(22.4(3.3)\) \\
Redear sunfish & & & & 5 & 6 & 15 &
\end{tabular}

Dataset = cfdpsbkl.d18

Table 104. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Benjy Kinman Lake during May 2018. Fish were collected in 7.5-minute runs.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(^{\text {a }}\) \\
\hline Bluegill & 343 & \(35(\pm 5)\) & \(0(\pm 0)\) \\
Redear sunfish & 28 & \(7(\pm 7)\) & \(0(\pm 0)\) \\
\hline
\end{tabular}
\({ }^{\text {abluegill }}=\) RSD \(_{8}\); Redear \(=\) RSD \(_{9}\)
Dataset \(=\) cfdpsbkl.d18

Table 105. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Benjy Kinman Lake; numbers in parentheses are standard errors.
\begin{tabular}{llllll}
& \multicolumn{5}{c}{ Length group } \\
\cline { 2 - 5 } Year & \(<3.0\) in & \(3.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & Total \\
\hline 2016 & \(56.8(13.4)\) & \(225.6(30.9)\) & \(81.6(15.6)\) & \(1.6(1.1)\) & \(365.5(30.9)\) \\
2018 & \(35.2(8.4)\) & \(177.6(17.2)\) & \(96.8(11.9)\) & \(0.0(0.0)\) & \(309.6(22.1)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbkl.d18-.d16

Table 106. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Benjy Kinman Lake; numbers in parentheses are standard errors.
\begin{tabular}{llrcccc}
\hline & \multicolumn{5}{c}{ Length group } & \\
\cline { 2 - 6 } Year & \(<3.0\) in & \(3.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & \(\geq 10.0\) in & Total \\
\hline 2016 & 0.0 & \(27.2(6.4)\) & \(22.4(6.2)\) & \(12.0(3.4)\) & 0.0 & \(61.6(10.4)\) \\
2018 & 0.0 & \(8.8(2.8)\) & \(13.6(3.8)\) & 0.0 & 0.0 & \(22.4(3.3)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbkl.d16-.d18

Table 107. Length composition, relative abundance, and CPUE (fish/set) of channel catfish at Benjy Kinman Lake. Channel catfish were collected using baited, tandem hoop nets (72 hours soak time) that were set on 18 October 2018. Nets were pulled three days after setting them, and 3 sets of tandem nets were used for the sampling event.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{12}{|c|}{Inch class} & \multirow[t]{2}{*}{Total} & \multirow[t]{2}{*}{Average per set} \\
\hline & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & & \\
\hline Channel catfish & 1 & 3 & 6 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 1 & 3 & 43 & \[
\begin{aligned}
& 14.3 \\
& (8.4) \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

Dataset \(=\) cfdhnbkl.d18

Table 108. PSD and \(\mathrm{RSD}_{24}\) values obtained for channel catfish from tandem hoop net samples in Benjy Kinman Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(_{24}\) \\
\hline Channel catfish & 43 & \(77(\pm 13)\) & \(7(\pm 8)\) \\
\hline
\end{tabular}

Dataset = cfdhnbkl.d18

Table 109. CPUE (fish/set) for each length group of channel catfish collected by hoop net from Benjy Kinman Lake from 2015-2018; numbers in parentheses are standard errors.
\begin{tabular}{lrclc}
\hline & \multicolumn{4}{c}{ Length group } \\
\cline { 2 - 4 } Year & \(\geq 12.0\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & Total \\
\hline 2015 & \(3.3(2.0)\) & 0.0 & 0.0 & \(7.3(3.7)\) \\
2018 & \(14.3(8.4)\) & \(13.0(7.0)\) & \(3.7(2.3)\) & \(14.3(8.4)\) \\
\hline
\end{tabular}

Dataset = cfdhnbkl.d15-.d18

Table 110. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Benjy Kinman Lake in October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Species} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|l|}{11.0-15.9 in} & \multicolumn{2}{|r|}{\(16.0-23.9\) in} & \multicolumn{2}{|c|}{\(\geq 24.0\) in} & & \\
\hline & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Channel catfish & 10 & 89 (3) & 30 & 91 (2) & 3 & 104 (3) & 43 & 92 (2) \\
\hline
\end{tabular}

Dataset \(=\) cfdhnbkl.d18

Table 111. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute nocturnal electrofishing runs in Boltz Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & \\
\hline Largemouth bass & 2 & 4 & 11 & 11 & 6 & 44 & 79 & 66 & 72 & 60 & 33 & 16 & 7 & 11 & 10 & 4 & 2 & & 1 & 439 & 219.5 (12.7) \\
\hline Saugeye & & & & & & 1 & 15 & 22 & 4 & & 2 & 4 & 6 & 2 & 5 & & & & & 61 & 30.5 (6.6) \\
\hline
\end{tabular}

Dataset = cfdpsbol.d18

Table 112. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Boltz Lake from 1991-2018; numbers in parentheses are standard errors.
\begin{tabular}{lcrcrcr}
\hline & \multicolumn{6}{c}{ Length group } \\
\cline { 2 - 5 } Year & \(<8.0\) in & \(8.0-11.9\) in & \(12.0-14.9\) in & \multicolumn{1}{c}{\(\geq 15.0\) in } & \(\geq 20.0\) in & Total \\
\hline 1991 & & \(43.6(4.9)\) & \(10.8(2.0)\) & \(6.5(1.2)\) & \(0.0(0.0)\) & \(60.8(6.6)\) \\
1993 & \(25.2(6.4)\) & \(70.0(4.8)\) & \(12.0(2.3)\) & \(7.3(2.2)\) & \(0.7(0.7)\) & \(114.8(8.9)\) \\
1994 & \(48.4(9.5)\) & \(45.0(5.7)\) & \(32.4(6.5)\) & \(3.6(1.4)\) & \(1.0(0.7)\) & \(129.6(9.6)\) \\
1995 & \(155.2(10.8)\) & \(50.0(3.3)\) & \(31.5(3.9)\) & \(6.0(1.7)\) & \(1.5(1.1)\) & \(242.4(10.4)\) \\
1997 & \(34.8(8.6)\) & \(183.6(29.4)\) & \(36.8(4.6)\) & \(14.4(2.2)\) & \(1.8(1.0)\) & \(268.8(38.6)\) \\
1998 & \(43.2(6.0)\) & \(172.0(18.8)\) & \(22.4(3.3)\) & \(9.6(2.2)\) & \(2.5(0.7)\) & \(247.2(24.8)\) \\
1999 & \(87.2(16.6)\) & \(369.6(42.4)\) & \(90.4(16.0)\) & \(12.8(6.8)\) & \(4.8(2.3)\) & \(560.0(31.2)\) \\
2000 & \(92.0(30.4)\) & \(148.0(7.7)\) & \(226.4(18.4)\) & \(8.8(2.9)\) & \(0.8(0.8)\) & \(475.2(16.8)\) \\
2001 & \(24.0(5.2)\) & \(212.8(15.8)\) & \(133.6(13.0)\) & \(9.6(3.5)\) & \(0.0(0.0)\) & \(380.0(26.3)\) \\
2002 & \(5.6(2.7)\) & \(101.6(20.1)\) & \(67.2(11.4)\) & \(45.6(9.2)\) & \(0.8(0.8)\) & \(220.0(27.3)\) \\
2003 & \(10.7(2.9)\) & \(39.3(10.4)\) & \(61.3(12.9)\) & \(40.0(5.0)\) & \(0.0(0.0)\) & \(151.3(25.1)\) \\
2004 & \(64.0(12.9)\) & \(38.5(4.9)\) & \(19.5(4.4)\) & \(25.5(5.9)\) & \(2.0(0.8)\) & \(147.5(22.9)\) \\
2005 & \(69.0(10.1)\) & \(39.5(4.0)\) & \(21.0(2.4)\) & \(20.0(6.2)\) & \(0.0(0.0)\) & \(149.5(8.4)\) \\
2006 & \(11.5(1.4)\) & \(48.0(4.7)\) & \(17.0(3.7)\) & \(18.0(2.9)\) & \(1.0(0.7)\) & \(94.5(9.9)\) \\
2007 & \(28.5(3.8)\) & \(37.0(2.4)\) & \(17.0(3.9)\) & \(20.0(3.9)\) & \(1.0(0.7)\) & \(102.5(11.8)\) \\
2008 & \(19.0(2.2)\) & \(43.5(7.3)\) & \(18.5(2.1)\) & \(17.5(3.0)\) & \(4.0(1.5)\) & \(98.5(7.1)\) \\
2009 & \(10.0(2.5)\) & \(39.5(3.2)\) & \(22.0(3.9)\) & \(29.5(5.1)\) & \(4.0(1.5)\) & \(101.0(8.1)\) \\
2010 & \(50.5(5.6)\) & \(51.0(4.9)\) & \(32.5(4.4)\) & \(24.5(2.4)\) & \(4.0(1.3)\) & \(148.5(10.7)\) \\
2011 & \(13.0(3.8)\) & \(55.5(4.6)\) & \(33.0(5.7)\) & \(19.0(4.2)\) & \(3.5(1.2)\) & \(120.5(7.4)\) \\
2012 & \(4.5(1.2)\) & \(35.0(4.0)\) & \(15.5(2.8)\) & \(11.0(2.5)\) & \(2.5(1.5)\) & \(66.0(4.9)\) \\
2013 & \(66.5(14.6)\) & \(67.5(6.7)\) & \(17.5(2.0)\) & \(13.5(2.6)\) & \(2.5(1.1)\) & \(165.0(13.6)\) \\
2014 & \(68.5(10.5)\) & \(73.0(6.5)\) & \(18.5(3.5)\) & \(16.0(3.6)\) & \(2.5(0.7)\) & \(176.0(17.2)\) \\
2015 & \(47.5(6.9)\) & \(79.5(8.4)\) & \(22.0(4.3)\) & \(21.5(3.5)\) & \(2.0(1.1)\) & \(170.5(14.1)\) \\
2016 & & & No & Sample & & \\
2017 & \(29.0(5.5)\) & \(131.5(9.1)\) & \(40.0(4.3)\) & \(18.0(1.5)\) & \(0.5(0.5)\) & \(218.5(13.0)\) \\
2018 & \(14.0(3.2)\) & \(97.5(7.6)\) & \(82.5(9.7)\) & \(25.5(2.9)\) & \(1.5(1.1)\) & \(219.5(12.7)\) \\
\hline
\end{tabular}

Dataset = cfdpsbol.d18 - .d91

Table 113. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in Boltz Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 411 & \(53(\pm 5)\) & \(12(\pm 3)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsbol.d18

Table 114. Population assessment for largemouth bass collected during spring electrofishing at Boltz Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in }
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in }
\end{gathered}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & \(11.4 *\) & 14.0 & 85.2 & 25.5 & 1.5 & & & & \\
\hline & Score & 3 & 2 & 4 & 3 & 2 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2017} & Value & 11.4* & 26.0 & 40.0 & 18.0 & 0.5 & & & & \\
\hline & Score & 3 & 3 & 3 & 3 & 2 & & & 14 & Good \\
\hline \multirow[t]{2}{*}{2015} & Value & 11.4 & 29.5 & 22.0 & 21.5 & 2.0 & & & & \\
\hline & Score & 3 & 2 & 2 & 3 & 3 & & & 13 & Good \\
\hline \multirow[t]{2}{*}{2014} & Value & \(10.7 *\) & 57.0 & 18.5 & 16.0 & 2.5 & & & & \\
\hline & Score & 2 & 3 & 1 & 2 & 3 & & & 11 & Fair \\
\hline \multirow[t]{2}{*}{2013} & Value & \(10.7 *\) & 21.5 & 17.5 & 13.5 & 2.5 & & & & \\
\hline & Score & 2 & 2 & 1 & 2 & 3 & & & 10 & Fair \\
\hline \multirow[t]{2}{*}{2012} & Value & 10.7* & 3.5 & 15.5 & 11.0 & 2.5 & & & & \\
\hline & Score & 2 & 1 & 1 & 2 & 3 & & & 9 & Fair \\
\hline \multirow[t]{2}{*}{2011} & Value & 10.7 & 8.6 & 33.0 & 19.0 & 3.5 & 0.378 & 31.5 & & \\
\hline & Score & 2 & 1 & 2 & 3 & 3 & & & 11 & Fair \\
\hline \multirow[t]{2}{*}{2010} & Value & 10.3 & 16.7 & 32.5 & 24.5 & 4.0 & 0.290 & 25.2 & & \\
\hline & Score & 2 & 2 & 2 & 3 & 4 & & & 13 & Good \\
\hline \multirow[t]{2}{*}{2009} & Value & 10.3 * & \(3.5^{\wedge}\) & 22.0 & 29.5 & 4.0 & & & & \\
\hline & Score & 2 & 1 & 2 & 3 & 4 & & & 12 & Good \\
\hline \multirow[t]{2}{*}{2008} & Value & 10.3 * & \(4.0^{\wedge}\) & 18.5 & 17.5 & 4.0 & & & & \\
\hline & Score & 2 & 1 & 1 & 3 & 4 & & & 11 & Fair \\
\hline \multirow[t]{2}{*}{2007} & Value & 10.3 * & \(20.5^{\wedge}\) & 17.0 & 20.0 & 1.0 & & & & \\
\hline & Score & 2 & 2 & 1 & 3 & 2 & & & 10 & Fair \\
\hline \multirow[t]{2}{*}{2006} & Value & 10.3 & 7.0 & 17.0 & 18.0 & 1.0 & 0.358 & 30.1 & & \\
\hline & Score & 2 & 1 & 1 & 3 & 2 & & & 9 & Fair \\
\hline \multirow[t]{2}{*}{2005} & Value & 10.6* & \(15.5^{\wedge}\) & 21.0 & 20.0 & 0.0 & & & & \\
\hline & Score & 2 & 1 & 2 & 3 & 0 & & & 8 & Fair \\
\hline \multirow[t]{2}{*}{2004} & Value & \(10.6 *\) & \(51.0^{\wedge}\) & 19.5 & 25.5 & 2.0 & & & & \\
\hline & Score & 2 & 3 & 1 & 3 & 3 & & & 12 & Good \\
\hline \multirow[t]{2}{*}{2003} & Value & 10.6 & 0.0 & 61.3 & 40.0 & 0.0 & 0.377 & 31.4 & & \\
\hline & Score & 2 & 0 & 4 & 4 & 0 & & & 10 & Fair \\
\hline \multirow[t]{2}{*}{2002} & Value & 10.7 & 0.8 & 67.2 & 45.6 & 0.8 & 0.334 & 28.4 & & \\
\hline & Score & 2 & 1 & 4 & 4 & 1 & & & 12 & Good \\
\hline \multirow[t]{2}{*}{2001} & Value & 9.0 & 0.8 & 133.6 & 9.6 & 0.0 & 0.349 & 29.5 & & \\
\hline & Score & 1 & 1 & 4 & 2 & 0 & & & 8 & Fair \\
\hline \multirow[t]{2}{*}{2000} & Value & 10.4 & 55.0 & 226.4 & 8.8 & 0.8 & 0.550 & 42.3 & & \\
\hline & Score & 2 & 3 & 4 & 2 & 1 & & & 12 & Good \\
\hline
\end{tabular}
* Age data not collected

Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 115. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Boltz Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & , & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Largemouth bass & 7 & 112 & & 31 & 22 & 3 & & 17 & 23 & 32 & 35 & 22 & 12 & 9 & 2 & 1 & 3 & 1 & & 1 & 445 & 296.7 (31.8) \\
\hline Saugeye & & & & & & & & & & & & & 5 & 2 & & 4 & 1 & 1 & & 1 & 14 & 9.3 (2.2) \\
\hline
\end{tabular}

Dataset = cfdwrbol.d18

Table 116. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Boltz Lake on 12 September 2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 65 & 92 (1) & 59 & 93 (1) & 17 & 93 (2) & 141 & 92 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrbol.d18

Table 117. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall in electrofishing samples at Boltz Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{No. of fish} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 1997 & 145 & 4.2 & 0.04 & 96.7 & 11.3 & 6.7 & 1.7 & 25.9 & 4.4 \\
\hline 1998 & 147 & 5.0 & 0.05 & 98.0 & 12.0 & 48.0 & 5.8 & 77.7 & 31.0 \\
\hline 1999 & 170 & 5.2 & 0.07 & 113.3 & 16.2 & 68.7 & 13.0 & 55.0 & 24.7 \\
\hline 2000 & 19 & 3.0 & 0.27 & 12.7 & 6.7 & 1.3 & 1. & 0.8 & 0.8 \\
\hline 2001 & 46 & 3.2 & 0.09 & 30.7 & 6.9 & 0.7 & 0.7 & 0.8 & 0.8 \\
\hline 2002 & 50 & 3.7 & 0.10 & 28.6 & 7.4 & 1.7 & 1.2 & 0.0 & 0.0 \\
\hline 2003* & 27 & 3.7 & 0.15 & 18.0 & 4.5 & 1.3 & 0.8 & 7.0 & 2.2 \\
\hline 2004* & 80 & 4.1 & 0.07 & 53.3 & 7.1 & 6.7 & 2.7 & 15.0 & 3.4 \\
\hline 2005* & 34 & 3.9 & 0.11 & 22.7 & 5.0 & 1.3 & 0.8 & 4.0 & 1.1 \\
\hline 2006 & 90 & 4.6 & 0.06 & 60.0 & 7.5 & 18.7 & 3.7 & 20.5 & 3.6 \\
\hline 2007 & 17 & 4.2 & 0.21 & 11.3 & 2.6 & 2.0 & 0.9 & 4.0 & 3.6 \\
\hline 2008 & 108 & 3.6 & 0.07 & 72.0 & 11.9 & 5.3 & 1.7 & 3.5 & 1.6 \\
\hline 2009 & 51 & 4.6 & 0.13 & 34.0 & 8.9 & 13.3 & 2.0 & 16.7 & 3.6 \\
\hline 2010 & 54 & 4.9 & 0.11 & 36.0 & 5.8 & 18.0 & 5.2 & 8.6 & 2.7 \\
\hline 2011 & 91 & 4.7 & 0.08 & 60.7 & 6.7 & 23.3 & 4.2 & 3.5 & 1.2 \\
\hline 2012 & 127 & 4.4 & 0.07 & 84.7 & 12.2 & 18.7 & 5.6 & 21.5 & 4.3 \\
\hline 2013* & 102 & 4.4 & 0.09 & 68.0 & 16.2 & 20.0 & 6.7 & 4.0 & 0.8 \\
\hline 2014 & 58 & 4.0 & 0.10 & 38.7 & 10.9 & 4.0 & 3.3 & 29.5 & 5.2 \\
\hline 2015 & 71 & 4.1 & 0.07 & 47.3 & 3.6 & 6.0 & 1.4 & --- & \\
\hline 2016 & 104 & 4.1 & 0.1 & 69.3 & 7.8 & 15.3 & 2.8 & 20.5 & 5.3 \\
\hline 2017 & 246 & 4.3 & 0.1 & 164.0 & 18.9 & 40.7 & 8.9 & 14.0 & 3.2 \\
\hline 2018 & 287 & 4.3 & 0.1 & 191.3 & 24.7 & 37.3 & 4.5 & --- & \\
\hline
\end{tabular}
*Only includes wild largemouth bass CPUE for age-1 year class; stocked largemouth bass were marked by fin clip and removed from dataset.

Table 118. Mean back calculated lengths (in.) at each annulus for otoliths from bluegill collected from Boltz Lake in 2018.
\begin{tabular}{lccccccc}
\hline & & \multicolumn{6}{c}{ Age } \\
\cline { 3 - 7 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2017 & 21 & 2.4 & & & & & \\
2016 & 14 & 2.3 & 4.5 & & & & \\
2015 & 7 & 2.5 & 4.7 & 6.4 & & & \\
2014 & 7 & 2.4 & 5.0 & 6.3 & 7.2 & & \\
2013 & 3 & 2.7 & 4.0 & 5.8 & 6.3 & 6.8 & \\
2012 & 1 & 2.1 & 4.8 & 6.0 & 6.7 & 7.1 & 7.4 \\
& & & & & & & \\
Mean & 53 & 2.4 & 4.6 & 6.2 & 6.9 & 6.9 & 7.4 \\
Smallest & & 1.5 & 3.4 & 4.9 & 5.6 & 6.1 & 7.4 \\
Largest & 3.5 & 6.1 & 6.8 & 7.6 & 7.3 & 7.4 \\
Std error & & 0.1 & 0.1 & 0.1 & 0.2 & 0.3 & \\
95\% ConLo & & 2.3 & 4.4 & 6.0 & 6.6 & 6.4 & \\
95\% ConHi & & 2.5 & 4.9 & 6.4 & 7.3 & 7.4 & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagbol.d18

Table 119. Number of fish and the relative weight Wr) for each length group of bluegill collected at Boltz Lake on 12 September 2018. Standard errors are in parentheses.
\begin{tabular}{lcccccccc}
\hline & \multicolumn{7}{c}{ Length group } \\
\cline { 2 - 8 } Species & No. Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline & \multicolumn{2}{c}{\(3.0-5.9 \mathrm{in}\)} & \(6.0-7.9 \mathrm{in}\) & \(\geq 8.0 \mathrm{in}\) & \multicolumn{2}{c}{ Total } \\
\cline { 2 - 8 } Bluegill & 52 & \(101(2)\) & 43 & \(89(1)\) & 3 & \(86(3.9)\) & 98 & \(95(1)\) \\
\hline Dataset \(=\) cfdwrbol.d18 & & & & & & &
\end{tabular}

Table 120. Length distribution and CPUE (fish/hr) of white crappie collected in 1.25 hours of 15 -minute electrofishing runs for crappie in Boltz Lake in October 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & \\
\hline White crappie & 13 & 16 & & & 1 & 13 & 28 & 7 & 1 & 79 & 63.2 (14.9) \\
\hline
\end{tabular}

Dataset = cfdwrbol.d18

Table 121. Mean back calculated lengths (in) at each annulus for otoliths from white crappie sampled at Boltz Lake in the fall of 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{No.} & \multicolumn{9}{|c|}{Age} \\
\hline & & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 2017 & 3 & 5.3 & & & & & & & & \\
\hline 2016 & 7 & 4.9 & 8.3 & & & & & & & \\
\hline 2015 & 2 & 5.4 & 8.6 & 10.4 & & & & & & \\
\hline 2014 & 7 & 4.4 & 8.0 & 9.4 & 10.4 & & & & & \\
\hline 2010 & 1 & 4.8 & 6.8 & 7.9 & 8.5 & 9.0 & 9.4 & 9.8 & 10.2 & \\
\hline 2009 & 1 & 3.5 & 6.0 & 7.0 & 7.7 & 8.4 & 8.8 & 9.1 & 9.5 & 9.8 \\
\hline Mean & 21 & 4.8 & 8.0 & 9.2 & 9.9 & 8.7 & 9.1 & 9.5 & 9.8 & 9.8 \\
\hline Smallest & & 3.5 & 6.0 & 7.0 & 7.7 & 8.4 & 8.8 & 9.1 & 9.5 & 9.8 \\
\hline Largest & & 5.8 & 8.8 & 10.7 & 12.2 & 9.0 & 9.4 & 9.8 & 10.2 & 9.8 \\
\hline Std Error & & 0.1 & 0.2 & 0.3 & 0.4 & 0.3 & 0.3 & 0.3 & 0.3 & \\
\hline 95\% ConLo & & 4.5 & 7.7 & 8.5 & 9.1 & 8.2 & 8.5 & 8.8 & 9.2 & \\
\hline 95\% ConHi & & 5.1 & 8.4 & 9.9 & 10.8 & 9.2 & 9.7 & 10.2 & 10.5 & \\
\hline
\end{tabular}

Intercept Value \(=0.00\)
Dataset \(=\) cfdagbol.d18

Table 122. Number of fish and the relative weight (Wr) for each length group of white crappie at Boltz Lake in October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|r|}{5.0-7.9 in} & \multicolumn{2}{|l|}{8.0-9.9 in} & \multicolumn{2}{|r|}{\(\geq 10.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline White crappie & Total & 16 & 80 (4) & 14 & 93 (1) & 36 & 92 (1) & 66 & 89 (1) \\
\hline
\end{tabular}

Dataset = cfdwrbol.d18

Table 123. Length composition, relative abundance, and CPUE (fish/set) of channel catfish at Boltz Lake. Channel catfish were collected using baited, tandem hoop nets (72 hours soak time) that were set on 5 October 2018. Nets were pulled three days after setting them, and 3 sets of tandem nets were used for the sampling event.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[t]{2}{*}{Average per set} \\
\hline & 15 & 16 & 17 & 18 & 19 & & \\
\hline Channel catfish & 1 & 1 & 1 & 0 & 1 & 4 & 1.3 (0.7) \\
\hline
\end{tabular}

Dataset \(=\) cfdhnbol.d18

Table 124. PSD and RSD \({ }_{24}\) values obtained for channel catfish from tandem hoop net samples in Boltz Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(_{24}\) \\
\hline Channel catfish & 4 & \(75(\pm 49)\) & \(0(\pm 0)\) \\
\hline Dataset \(=\) cfdhnbol.d18 & & &
\end{tabular}

Dataset = cfdhnbol.d18

Table 125. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Boltz Lake in October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Species} & \multirow{3}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{11.0-15.9 in} & \multicolumn{2}{|r|}{16.0-23.9 in} & \multicolumn{2}{|l|}{\(\geq 24.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Channel catfish & Total & 1 & 101 & 3 & 92 (2) & & & 4 & 94 (3) \\
\hline
\end{tabular}

Dataset = cfdhnbol.d18

Table 126. CPUE (fish/set) for each length group of channel catfish collected by hoop net from Boltz Lake from 2009-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & \(\geq 12.0\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 2006 & 43.8 (12.5) & 6.0 (2.1) & 1.8 (0.8) & 274.2 (95.6) \\
\hline 2007 & 31.2 (3.3) & 6.4 (1.0) & 0.8 (0.4) & 76.8 (12.7) \\
\hline 2008 & 9.6 (3.1) & 1.6 (0.8) & 0.2 (0.2) & 27.4 (7.2) \\
\hline 2009 & 29.8 (14.0) & 4.0 (1.6) & 0.2 (0.2) & 57.8 (27.7) \\
\hline 2010 & 15.6 (3.8) & 3.6 (1.3) & 0.4 (0.4) & 32.6 (9.0) \\
\hline 2011 & \multicolumn{4}{|c|}{No Sample} \\
\hline 2012 & 1.7 (4.7) & 1.0 (1.0) & 0.3 (0.3) & 2.3 (1.2) \\
\hline 2013 & \multicolumn{4}{|c|}{No Sample} \\
\hline 2014 & 1.3 (1.3) & 0.3 (0.3) & 0.0 & 2.3 (2.3) \\
\hline 2015 & \multicolumn{4}{|l|}{No Sample} \\
\hline 2016 & 5.7 (3.0) & 0.7 (0.7) & 0.3 (0.3) & 5.7 (3.0) \\
\hline 2017 & \multicolumn{4}{|c|}{No Sample} \\
\hline 2018 & 1.3 (0.7) & 1.3 (0.7) & 0.0 & 1.3 (0.7) \\
\hline
\end{tabular}

Dataset = cfdhnbol.d18-.d06

Table 127. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass and saugeye collected in 2.0 hours of 15-minute diurnal electrofishing runs in Bullock Pen Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{21}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Location/Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & \\
\hline Largemouth bass & 1 & 7 & 14 & 9 & 9 & 30 & 28 & 21 & 40 & 36 & 46 & 53 & 30 & 33 & 37 & 16 & 18 & 12 & 7 & 3 & 450 & 225.0 (11.7) \\
\hline Saugeye & 1 & 1 & 0.5 (0.5) \\
\hline
\end{tabular}

Dataset = cfdpsbpl.d18

Table 128. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Bullock Lake from 1991-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1991 & & 36.6 & 22.8 & 16.4 & 1.7 (0.7) & 75.2 \\
\hline 1994 & 10.0 (2.3) & 17.5 (2.8) & 37.6 (3.6) & 40.0 (9.9) & 2.5 (1.1) & 104.0 (12.4) \\
\hline 1995 & 7.0 (1.6) & 36.4 (4.7) & 33.2 (4.4) & 40.8 (5.6) & & 117.6 (9.9) \\
\hline 1996 & 10.5 (2.5) & 26.5 (4.6) & 26.0 (6.0) & 30.5 (6.1) & & 93.6 (11.6) \\
\hline 1997 & 18.0 (3.5) & 71.6 (8.7) & 34.4 (3.3) & 34.4 (6.1) & 2.0 (0.9) & 158.4 (17.3) \\
\hline 1998 & 18.0 (4.4) & 43.6 (4.8) & 39.6 (9.2) & 33.2 (7.2) & 3.5 (1.6) & 139.2 (19.2) \\
\hline 1999 & 14.0 (3.6) & 40.4 (4.0) & 35.2 (4.0) & 38.4 (12.0) & 0.5 (0.5) & 128.0 (14.0) \\
\hline 2000 & 14.5 (4.8) & 35.5 (5.0) & 21.0 (3.1) & 42.4 (9.8) & 0.5 (0.5) & 113.5 (6.5) \\
\hline 2001 & 9.0 (3.2) & 33.5 (4.3) & 38.5 (7.2) & 66.0 (15.2) & 2.5 (1.1) & 147.2 (16.4) \\
\hline 2002 & 6.5 (1.7) & 29.5 (3.0) & 41.5 (7.2) & 54.5 (10.4) & 1.5 (0.7) & 132.0 (16.5) \\
\hline 2003 & 9.0 (2.5) & 19.5 (2.3) & 32.5 (4.1) & 56.5 (8.8) & 0.5 (0.5) & 117.5 (9.8) \\
\hline 2004 & 6.5 (1.3) & 31.5 (3.7) & 45.0 (8.5) & 57.5 (11.4) & 2.5 (1.5) & 140.5 (13.4) \\
\hline 2005 & 9.5 (1.3) & 17.0 (2.6) & 38.0 (5.8) & 63.0 (13.7) & 3.5 (1.4) & 127.5 (15.5) \\
\hline 2006 & 13.5 (4.3) & 35.5 (6.0) & 25.5 (3.9) & 62.5 (8.4) & 1.0 (0.7) & 137.0 (8.7) \\
\hline 2007 & 17.5 (3.5) & 44.5 (6.7) & 32.0 (2.8) & 44.0 (8.1) & 0.5 (0.5) & 138.0 (6.1) \\
\hline 2008 & 9.5 (2.9) & 47.5 (5.8) & 75.0 (5.7) & 62.5 (9.3) & 1.5 (1.1) & 194.5 (11.7) \\
\hline 2009 & 5.5 (2.0) & 45.5 (7.4) & 42.5 (5.0) & 54.0 (5.4) & 7.5 (1.2) & 147.5 (13.8) \\
\hline 2010 & 33.0 (7.1) & 26.8 (3.7) & 28.3 (3.4) & 44.3 (6.2) & 1.8 (0.6) & 132.3 (13.9) \\
\hline 2011 & 22.0 (4.3) & 39.0 (5.4) & 31.0 (3.3) & 43.0 (6.4) & 0.5 (0.5) & 135.0 (11.2) \\
\hline 2012 & 25.5 (2.4) & 80.5 (7.9) & 43.0 (4.1) & 63.5 (10.0) & 3.0 (1.3) & 212.5 (9.4) \\
\hline 2013 & \multicolumn{6}{|c|}{No sample} \\
\hline 2014 & 13.0 (2.7) & 61.5 (8.5) & 57.0 (6.9) & 58.0 (3.2) & 4.5 (1.4) & 189.5 (14.0) \\
\hline 2015 & & & No & & & \\
\hline 2016 & & & No & & & \\
\hline 2017 & 23.0 (4.7) & 40.0 (4.9) & 66.0 (5.9) & 75.5 (7.7) & 12.5 (3.9) & 204.5 (13.9) \\
\hline 2018 & 20.0 (3.9) & 59.5 (7.6) & 67.5 (4.4) & 78.0 (10.3) & 11.0 (3.0) & 225.0 (11.7) \\
\hline
\end{tabular}

Dataset = cfdpsbpl.d18-.d91

Table 129. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in Bullock Pen Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 410 & \(71(\pm 4)\) & \(38(\pm 5)\) \\
\hline
\end{tabular}

Dataset = cfdpsbpl.d18

Table 130. Population assessment for largemouth bass collected during spring electrofishing at Bullock Pen Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean
length
age-3
at capture & Spring CPUE age-1 & \[
\begin{gathered}
\text { Spring } \\
\text { CPUE } \\
\text { 12.0-14.9 in } \\
\hline
\end{gathered}
\] & Spring CPUE \(\geq 15.0\) in & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & Instantaneous mortality
(z)
\(\qquad\) & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
11.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
15.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
67.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
78.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
11.0 \\
4
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2017 & Value Score & \[
\begin{gathered}
10.5^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
66.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
75.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
4
\end{gathered}
\] & & & 16 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
10.5^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
57.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
58.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & & & 15 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
10.5^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
43.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
63.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
10.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
5.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
31.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
43.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 0.422 & 34.4 & 12 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
10.2^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
6.4^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
28.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
44.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
3
\end{gathered}
\] & & & 13 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
10.2^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
42.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
54.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.5 \\
4
\end{gathered}
\] & & & 14 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
10.2^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.1^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
75.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
62.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & & & 13 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
10.2^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.4^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
32.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
44.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & & & 12 & Fair \\
\hline 2006 & Value Score & \[
\begin{gathered}
10.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
25.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
62.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & 0.238 & 21.2 & 12 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.3^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
38.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
63.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
3
\end{gathered}
\] & & & 13 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
10.7^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0^{\wedge} \\
1
\end{gathered}
\] & \[
\begin{gathered}
45.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
57.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
10.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
32.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
56.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 0.323 & 27.6 & 12 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
10.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
41.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
54.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & 0.375 & 31.2 & 13 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
10.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
38.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
66.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & 0.174 & 16.0 & 12 & Fair \\
\hline 2000 & Value Score & \[
\begin{gathered}
9.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
6.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
42.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & 0.186 & 17.0 & 10 & Fair \\
\hline
\end{tabular}
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 131. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Bullock Pen Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Largemouth bass & 2 & 11 & 35 & 3 & 5 & 18 & 7 & 6 & 8 & 16 & 13 & 13 & 6 & 3 & 10 & 6 & 3 & 1 & 6 & 2 & 174 & 116.0 (17.3) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrblp.d18
Table 132. Mean back calculated lengths (in.) at each annulus for otoliths from largemouth bass collected in the fall from Bullock Pen Lake in 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{10}{|c|}{Age} \\
\hline Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 2017 & 21 & 4.4 & & & & & & & & & \\
\hline 2016 & 22 & 5.7 & 9.1 & & & & & & & & \\
\hline 2015 & 12 & 5.0 & 8.9 & 11.3 & & & & & & & \\
\hline 2014 & 9 & 5.0 & 9.2 & 11.8 & 13.6 & & & & & & \\
\hline 2013 & 5 & 4.7 & 8.4 & 11.1 & 12.8 & 14.1 & & & & & \\
\hline 2012 & 3 & 5.1 & 9.1 & 11.7 & 13.7 & 15.1 & 16.1 & & & & \\
\hline 2011 & 1 & 5.0 & 9.0 & 12.0 & 13.9 & 14.8 & 15.7 & 16.5 & & & \\
\hline 2009 & 2 & 6.4 & 10.1 & 12.6 & 15.5 & 16.8 & 17.8 & 18.7 & 19.6 & 20.2 & \\
\hline 2008 & 1 & 5.5 & 8.8 & 10.6 & 12.3 & 13.2 & 14.1 & 15.0 & 15.5 & 16.4 & 17.2 \\
\hline Mean & 76 & 5.1 & 9.0 & 11.5 & 13.5 & 14.8 & 16.2 & 17.2 & 18.2 & 18.9 & 17.2 \\
\hline Smallest & & 3.0 & 7.4 & 9.3 & 11.1 & 12.0 & 13.8 & 15.0 & 15.5 & 16.4 & 17.2 \\
\hline Largest & & 8.1 & 11.1 & 13.9 & 16.2 & 17.7 & 18.7 & 19.2 & 20.0 & 20.7 & 17.2 \\
\hline Std Error & & 0.1 & 0.1 & 0.2 & 0.4 & 0.6 & 0.7 & 0.9 & 1.4 & 1.3 & \\
\hline 95\% ConLo & & 4.8 & 8.8 & 11.1 & 12.9 & 13.7 & 14.8 & 15.4 & 15.5 & 16.4 & \\
\hline 95\% ConHi & & 5.3 & 9.3 & 12.0 & 14.2 & 15.9 & 17.7 & 19.1 & 20.9 & 21.5 & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset = cfdagbpl.d18
Table 133. Number of fish and the relative weight (Wr r) for each length group of largemouth bass collected at Bullock Pen Lake on 4 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 37 & 86 (1) & 31 & 88 (2) & 31 & 96 (2) & 99 & 90 (1) \\
\hline
\end{tabular}

Table 134. Indices of year class strength at age 0 and age 1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Bullock Pen Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|l|}{Age \(0 \geq 5.0\) in} & \multicolumn{2}{|c|}{Age 1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 1997 & Total & 3.6 & (0.1) & 34.0 & (11.9) & 0.7 & (0.7) & 3.0 & (1.7) \\
\hline 1998 & Total & 3.5 & (0.1) & 28.0 & (8.4) & 1.3 & (1.3) & 4.0 & (0.9) \\
\hline 1999 & Total & 3.7 & (0.1) & 30.0 & (6.1) & 2.0 & (1.4) & 6.8 & (2.6) \\
\hline 2000 & Total & 3.8 & (0.3) & 6.3 & (1.5) & 0.0 & & 0.0 & \\
\hline 2001 & Total & 3.6 & (0.2) & 12.0 & (2.7) & 1.3 & (0.8) & 0.5 & (0.5) \\
\hline 2002 & Total & 3.1 & (0.1) & 17.3 & (4.6) & 0.0 & & 1.8 & (0.7) \\
\hline 2003 & Total & 3.3 & (0.1) & 22.0 & (8.1) & 0.0 & & 0.0 & \\
\hline 2004 & Total & 4.1 & (0.2) & 16.0 & (3.7) & 4.0 & (1.5) & * & \\
\hline 2005 & Total & 3.5 & (0.1) & 28.0 & (8.1) & 2.0 & (0.9) & 2.5 & (1.3) \\
\hline 2006 & Total & 4.2 & (0.2) & 4.0 & (1.5) & 0.0 & & 3.4 & (1.1) \\
\hline 2007 & Total & 4.1 & (0.2) & 6.7 & (2.0) & 0.7 & (0.7) & 2.1 & (1.1) \\
\hline 2008 & Total & 4.1 & (0.2) & 20.7 & (5.6) & 5.3 & (1.7) & 0.8 & (0.5) \\
\hline 2009 & Total & 4.5 & (0.4) & 8.7 & (2.4) & 4.7 & (1.9) & 3.7 & (1.4) \\
\hline 2010 & Total & 4.8 & (0.1) & 42.7 & (8.0) & 20.0 & (3.7) & 5.1 & (1.6) \\
\hline 2011 & Total & 3.8 & (0.1) & 38.0 & (4.2) & 5.3 & (2.0) & 9.5 & (1.1) \\
\hline 2012 & Total & 4.0 & (0.1) & 22.7 & (5.2) & 1.3 & (0.8) & NS & NS \\
\hline 2013 & Total & 4.0 & (0.2) & 14.7 & (2.0) & 1.3 & (0.8) & 2.5 & (0.7) \\
\hline 2014 & Total & 4.0 & (0.2) & 16.0 & (3.1) & 4.0 & (1.5) & --- & \\
\hline 2017 & Total & 4.0 & (0.1) & 32.7 & (6.4) & 6.0 & (2.5) & 15.5 & (3.9) \\
\hline 2018 & Total & 4.2 & (0.1) & 34.0 & (6.0) & 2.0 & (1.4) & & \\
\hline
\end{tabular}
*Largemouth bass were stocked, and were not able to be distinguished from the wild age-1 largemouth bass

Table 135. Length frequency, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 2.0 hours of 15-minute nocturnal electrofishing runs in Corinth Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Largemouth bass & 1 & 4 & 3 & 1 & 81 & 73 & 62 & 79 & 76 & 72 & 38 & 23 & 11 & 11 & 3 & 5 & 4 & 4 & 2 & 553 & 276.5 (15.6) \\
\hline
\end{tabular}

Dataset = cfdpscor.d18

Table 136. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Corinth Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1992 & 31.0 (9.3) & 22.5 (5.3) & 5.0 (2.6) & 0.0 (0.0) & 0.0 (0.0) & 58.5 (9.8) \\
\hline 1993 & 34.0 (8.2) & 111.3 (11.5) & 7.3 (2.4) & 2.0 (1.4) & 0.0 (0.0) & 154.7 (13.5) \\
\hline 1996 & 53.5 (10.1) & 174.5 (16.7) & 14.5 (2.0) & 4.5 (1.6) & 0.0 (0.0) & 247.0 (18.1) \\
\hline 1998 & 15.5 (3.2) & 111.5 (9.8) & 19.0 (3.0) & 4.0 (1.7) & 0.5 (0.5) & 150.0 (14.4) \\
\hline 1999 & 137.0 (14.2) & 56.5 (5.2) & 24.5 (4.3) & 3.5 (1.2) & 1.0 (0.7) & 221.5 (16.4) \\
\hline 2000 & 312.8 (47.0) & 136.0 (18.2) & 22.4 (6.5) & 4.8 (2.3) & 1.6 (1.0) & 476.0 (63.7) \\
\hline 2001 & 127.2 (16.6) & 231.2 (8.0) & 20.8 (5.1) & 9.6 (3.2) & 0.0 (0.0) & 388.8 (13.5) \\
\hline 2002 & 40.7 (8.1) & 153.3 (21.7) & 13.3 (2.9) & 16.7 (2.8) & 1.3 (1.3) & 224.0 (28.7) \\
\hline 2003 & 58.0 (13.6) & 146.0 (16.4) & 23.3 (3.8) & 6.0 (2.0) & 0.7 (0.7) & 233.3 (28.2) \\
\hline 2004 & 23.0 (4.8) & 77.5 (5.0) & 40.0 (4.3) & 5.0 (1.5) & 1.0 (1.0) & 145.5 (8.0) \\
\hline 2005 & 45.5 (3.9) & 115.0 (9.3) & 72.0 (10.0) & 20.5 (3.0) & 2.5 (1.3) & 253.0 (16.0) \\
\hline 2006 & 15.0 (2.7) & 74.5 (6.8) & 29.0 (1.3) & 34.5 (4.7) & 1.5 (0.7) & 153.0 (8.8) \\
\hline 2007 & 88.5 (14.8) & 106.0 (7.0) & 21.5 (3.4) & 22.5 (3.5) & 5.5 (2.4) & 238.5 (17.6) \\
\hline 2008 & 52.0 (9.7) & 199.0 (17.0) & 69.5 (4.8) & 37.5 (3.9) & 7.5 (1.9) & 358.0 (25.2) \\
\hline 2009 & 30.0 (8.0) & 82.5 (11.2) & 17.5 (4.5) & 27.5 (4.4) & 6.0 (2.1) & 157.5 (23.4) \\
\hline 2010 & 77.5 (7.0) & 60.0 (8.3) & 8.5 (1.6) & 21.0 (4.9) & 4.0 (1.3) & 167.0 (13.6) \\
\hline 2011 & 90.0 (9.8) & 177.0 (11.2) & 37.0 (5.2) & 33.0 (3.9) & 8.5 (2.1) & 337.0 (19.3) \\
\hline 2012 & 32.5 (6.1) & 175.0 (15.3) & 37.0 (4.9) & 23.5 (4.0) & 8.5 (2.3) & 268.0 (21.2) \\
\hline 2013 & 24.5 (4.5) & 161.0 (15.3) & 22.5 (5.4) & 24.5 (6.6) & 4.5 (1.9) & 232.5 (17.3) \\
\hline 2014 & 33.0 (5.5) & 152.5 (9.7) & 17.0 (3.8) & 15.0 (2.6) & 3.0 (1.5) & 189.5 (14.0) \\
\hline 2015 & 93.0 (4.5) & 141.0 (3.8) & 38.0 (4.1) & 16.0 (3.1) & 3.5 (1.2) & 288.0 (9.0) \\
\hline 2016 & \multicolumn{6}{|c|}{No Sample} \\
\hline 2017 & 107.0 (11.9) & 226.5 (24.0) & 26.0 (4.4) & 21.0 (4.6) & 5.0 (2.0) & 380.5 (39.7) \\
\hline 2018 & 45.0 (6.1) & 145.0 (8.5) & 66.5 (7.8) & 20.0 (3.7) & 3.0 (1.3) & 276.5 (15.6) \\
\hline
\end{tabular}

\footnotetext{
Dataset \(=\) cfdpscor.d18 - .d92
}

Table 137. PSD and RSD \(_{15}\) values obtained for largemouth bass from spring electrofishing samples in Corinth Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 463 & \(37(\pm 4)\) & \(2(\pm 1)\) \\
\hline
\end{tabular}

Dataset = cfdpscor.d18

Table 138. Population assessment for largemouth bass collected during spring electrofishing at Corinth Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & \[
\begin{array}{r}
\text { CPUE } \\
\text { age-1 } \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
10.8^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
66.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
10.8^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
19.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
26.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
4
\end{gathered}
\] & & & 15 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
10.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
29.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
38.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
3
\end{gathered}
\] & & & 13 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
29.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
17.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
15.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & & & 11 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
22.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
24.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & & & 13 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
24.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
37.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
23.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
4
\end{gathered}
\] & & & 15 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
11.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
90.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
37.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
33.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
4
\end{gathered}
\] & 0.515 & 40.2 & 18 & Excellent \\
\hline 2010 & Value Score & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
46.2^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
4
\end{gathered}
\] & & & 14 & Good \\
\hline 2009 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.8^{\wedge} \\
2
\end{gathered}
\] & \[
17.5
\] & \[
\begin{gathered}
27.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
4
\end{gathered}
\] & & & 13 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
11.1^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
47.7^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
69.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
37.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.5 \\
4
\end{gathered}
\] & & & 18 & Excellent \\
\hline 2007 & Value Score & \[
\begin{gathered}
11.1 \\
3
\end{gathered}
\] & \[
\begin{gathered}
86.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
21.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
22.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
4
\end{gathered}
\] & 0.498 & 39.3 & 16 & Good \\
\hline 2006 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
10.1^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
11.1^{\wedge}
\end{gathered}
\] & \[
\begin{gathered}
29.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
34.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & & & 11 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
10.1^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
32.4^{\wedge}
\end{gathered}
\] & \[
\begin{gathered}
72.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
10.1^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
21.1^{\wedge} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & & & 11 & Fair \\
\hline 2003 & Value Score & \[
\begin{gathered}
10.1^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
54.3^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
23.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & & & 10 & Fair \\
\hline 2002 & Value Score & \[
\begin{gathered}
10.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
35.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
13.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
16.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & 0.688 & 49.7 & 9 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
8.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
63.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
20.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 0.805 & 55.3 & 8 & Fair \\
\hline 2000 & \begin{tabular}{l}
Value \\
Score
\end{tabular} & \[
\begin{gathered}
9.1 \\
1
\end{gathered}
\] & \[
\begin{gathered}
293.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
22.4 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
2
\end{gathered}
\] & 0.566 & 43.2 & 11 & Fair \\
\hline
\end{tabular}
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected

Table 139. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs for black bass in Corinth Lake on 11 September 2018 numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & \\
\hline Largemouth bass & 1 & 41 & 45 & 7 & 3 & 17 & 27 & 76 & 52 & 30 & 37 & 31 & 7 & 3 & 1 & 3 & 0 & 1 & 382 & 254.7 (18.6) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrcor.d18

Table 140. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Corinth Lake on 11 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{8}{|c|}{Length group} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 101 & 82 (1) & 57 & 85 (1) & 8 & 91 (4) & 166 & 84 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrcor.d18

Table 141. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Corinth Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 1999 & Total & 4.3 & 0.1 & 74.0 & 12.3 & 8.0 & 2.9 & 293.2 & 46.0 \\
\hline 2000 & Total & 4.3 & 0.1 & 35.3 & 7.4 & 3.3 & 1.9 & 63.4 & 10.9 \\
\hline 2001 & Total & 4.6 & 0.1 & 112.7 & 15.6 & 32.0 & 6.8 & 35.3 & 7.4 \\
\hline 2002 & Total & 4.6 & 0.1 & 163.3 & 13.7 & 42.0 & 4.5 & 54.3 & 13.4 \\
\hline 2003 & Total & 4.1 & 0.1 & 73.7 & 9.2 & 4.6 & 1.8 & 21.1 & 5.1 \\
\hline 2004 & Total & 4.0 & 0.1 & 74.0 & 6.2 & 2.7 & 1.3 & 32.4 & 4.2 \\
\hline 2005 & Total & 4.4 & 0.1 & 41.3 & 2.7 & 4.7 & 1.2 & 11.1 & 2.7 \\
\hline 2006 & Total & 4.9 & 0.1 & 176.5 & 15.2 & 78.0 & 9.9 & 86.7 & 14.3 \\
\hline 2007 & Total & 5.1 & 0.04 & 152.7 & 31.2 & 89.3 & 28.8 & 47.7 & 9.1 \\
\hline 2008 & Total & 5.1 & 0.1 & 112.7 & 15.0 & 66.0 & 12.9 & 21.8 & 5.4 \\
\hline 2009 & Total & 4.5 & 0.1 & 17.3 & 2.5 & 2.0 & 1.4 & 39.7 & 3.3 \\
\hline 2010 & Total & 5.9 & 0.04 & 140.0 & 9.9 & 134.0 & 8.2 & 90.2 & 9.8 \\
\hline 2011 & Total & 4.3 & 0.1 & 116.7 & 22.0 & 22.0 & 3.7 & 24.5 & 4.9 \\
\hline 2012 & Total & 5.0 & 0.1 & 52.9 & 5.0 & 26.2 & 3.0 & 13.0 & 4.6 \\
\hline 2013 & Total & 4.2 & 0.1 & 170.7 & 18.6 & 34.7 & 7.4 & 29.0 & 4.3 \\
\hline 2014 & Total & 3.4 & 0.04 & 56.7 & 8.9 & 0.0 & & 29.9 & 2.5 \\
\hline 2015 & Total & 4.4 & 0.1 & 35.3 & 5.7 & 2.0 & 1.4 & NS & \\
\hline 2016 & Total & 4.1 & 0.1 & 30.0 & 3.5 & 1.3 & 0.8 & 19.5 & 4.0 \\
\hline 2017 & Total & 4.1 & 0.1 & 35.3 & 3.9 & 1.3 & 0.8 & 4.0 & 0.8 \\
\hline 2018 & Total & 4.1 & 0.1 & 62.7 & 8.1 & 4.7 & 1.9 & & \\
\hline
\end{tabular}

Dataset = cfdwrcor.d18-.d99

Table 142. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5 -minute electrofishing runs in Corinth Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{lrrrrrrrrrr}
& \multicolumn{10}{c}{ Inch class } \\
\cline { 2 - 11 } & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & Total & CPUE \\
\hline Species & 7 & 84 & 70 & 48 & 82 & 104 & 6 & & 401 & \(320.8(22.9)\) \\
Bluegill & & 10 & 27 & 34 & 95 & 102 & 40 & 6 & 314 & \(251.2(26.4)\) \\
\hline Redear sunfish & & &
\end{tabular}

Dataset = cfdpscor.d18

Table 143. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Corinth Lake during May 2018. Fish were collected in 7.5-minute runs.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(^{\text {a }}\) \\
\hline Bluegill & 394 & \(49(\pm 5)\) & \(2(\pm 1)\) \\
Redear sunfish & 304 & \(49(\pm 6)\) & \(2(\pm 2)\) \\
\hline Ble & &
\end{tabular}
\({ }^{\text {abluegill }}=\) RSD 8 ; Redear \(=\) RSD \(_{9}\)
Dataset \(=\) cfdpscor.d18

Table 144. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Corinth Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{lcccrr}
\hline & \multicolumn{4}{c}{ Length group } & Total \\
\cline { 2 - 5 } Year & \(<3.0\) in & \(3.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & \(98.0(30.4)\) \\
\hline 1992 & \(3.0(1.7)\) & \(36.0(24.9)\) & \(49.0(8.5)\) & \(10.0(5.5)\) & \(119.3(26.2)\) \\
1993 & \(2.7(1.3)\) & \(42.0(13.1)\) & \(54.0(10.9)\) & \(20.7(5.2)\) & \(137.0(25.9)\) \\
1996 & \(6.0(3.9)\) & \(75.0(12.0)\) & \(54.5(14.5)\) & \(1.5(0.8)\) & \(135.5(23.7)\) \\
1998 & \(2.0(1.1)\) & \(80.0(19.4)\) & \(50.5(10.3)\) & \(3.0(1.0)\) & \(204.5(26.6)\) \\
1999 & \(42.0(17.1)\) & \(113.0(16.5)\) & \(32.5(7.2)\) & \(17.0(5.8)\) & \(400.8(25.9)\) \\
2000 & \(8.8(2.5)\) & \(270.4(20.1)\) & \(100.8(12.0)\) & \(20.8(3.6)\) & \(338.4(23.5)\) \\
2001 & \(7.2(4.0)\) & \(185.6(18.0)\) & \(140.0(14.8)\) & \(5.6(2.1)\) & \(199.2(26.6)\) \\
2002 & \(2.4(1.2)\) & \(140.0(16.7)\) & \(56.8(12.1)\) & 0.0 & \(271.1(23.3)\) \\
2003 & \(14.2(6.2)\) & \(164.4(14.1)\) & \(91.6(10.7)\) & \(0.9(0.9)\) & \(253.6(22.7)\) \\
2004 & \(17.6(4.9)\) & \(174.4(15.9)\) & \(61.6(10.9)\) & 0.0 & \(356.8(47.8)\) \\
2005 & \(12.0(4.2)\) & \(262.4(32.7)\) & \(82.4(22.2)\) & 0.0 & \(284.4(14.7)\) \\
2006 & \(40.4(6.0)\) & \(211.2(17.9)\) & \(32.8(6.4)\) & 0.0 & \(260.0(17.9)\) \\
2007 & \(13.2(2.6)\) & \(148.8(12.1)\) & \(98.0(10.2)\) & 0.0 & \(290.8(18.8)\) \\
2008 & \(4.8(1.2)\) & \(180.4(13.7)\) & \(105.2(12.4)\) & \(0.4(0.4)\) & \(327.6(30.6)\) \\
2009 & \(9.2(4.0)\) & \(151.6(15.3)\) & \(166.8(19.4)\) & 0.0 & \(191.1(15.5)\) \\
2010 & \(9.4(2.6)\) & \(126.6(11.1)\) & \(55.1(6.9)\) & 0.0 & \(314.8(27.0)\) \\
2011 & \(32.0(6.9)\) & \(222.8(16.4)\) & \(60.0(10.5)\) & 0.0 & \(299.2(27.7)\) \\
2012 & \(2.4(1.2)\) & \(240.0(24.6)\) & \(56.8(6.1)\) & 0.0 & \(167.2(15.7)\) \\
2013 & \(0.8(0.8)\) & \(60.0(4.7)\) & \(106.4(13.3)\) & 0.0 & \(163.2(23.1)\) \\
2014 & \(4.8(2.1)\) & \(89.6(14.4)\) & \(64.8(10.4)\) & \(4.0(1.3)\) & \(230.4(16.5)\) \\
2015 & \(4.0(1.3)\) & \(106.4(16.4)\) & \(115.2(24.1)\) & \(4.8(3.2)\) & \(204.8(11.2)\) \\
2016 & \(5.6(1.7)\) & \(60.0(9.2)\) & \(135.2(13.4)\) & \(4.0(2.2)\) & \(264.0(32.6)\) \\
2017 & \(29.6(14.9)\) & \(82.4(17.3)\) & \(142.4(22.8)\) & \(9.6(2.9)\) & \(320.8(22.9)\) \\
2018 & \(5.6(2.1)\) & \(161.6(11.5)\) & \(148.8(21.3)\) & \(4.8(2.1)\) &
\end{tabular}

Dataset \(=\) cfdpscor.d18-.d92

Table 145. Population assessment for bluegill collected during spring electrofishing at Corinth Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-2 at capture & Years to 6.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 6.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
3.6
\] & \[
\begin{gathered}
2-2+^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
153.6 \\
4
\end{gathered}
\] & \[
4.8
\] & 13 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
3.8^{\star} \\
1
\end{gathered}
\] & \[
\begin{gathered}
2-2+^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
152.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.6 \\
4
\end{gathered}
\] & 13 & Good \\
\hline 2016 & Value Score & \[
\begin{gathered}
3.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
139.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & 12 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
5.5^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
120.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.8 \\
4
\end{gathered}
\] & 15 & Excellent \\
\hline 2014 & Value Score & \[
\begin{gathered}
5.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
68.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
3
\end{gathered}
\] & 13 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
4.7^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
106.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 11 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
56.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
60.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
4.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
55.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 8 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
4.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
166.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 12 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
105.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & 12 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
4.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
98.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
4.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
32.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 8 & Fair \\
\hline 2005 & Value Score & \[
\begin{gathered}
4.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
82.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 9 & Fair \\
\hline 2004 & Value Score & \[
\begin{gathered}
4.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
61.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
92.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.9 \\
2
\end{gathered}
\] & 12 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
56.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
145.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.6 \\
4
\end{gathered}
\] & 15 & Excellent \\
\hline 2000 & Value Score & \[
\begin{gathered}
5.3 \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
121.6 \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
20.8 \\
4 \\
\hline
\end{gathered}
\] & 16 & Excellent \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 146. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Corinth Lake from 1992-2018; numbers in parentheses are standard errors.
\begin{tabular}{llrcrrr}
\hline & \multicolumn{6}{c}{ Length group } \\
\cline { 2 - 6 } Year & \(<3.0\) in & \(3.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & \(\geq 10.0\) in & Total \\
\hline 1992 & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) \\
1993 & \(0.0(0.0)\) & \(0.0(0.0)\) & \(0.0(0.0)\) & \(2.0(2.0)\) & \(1.3(1.3)\) & \(2.0(2.0)\) \\
1996 & \(0.5(0.5)\) & \(7.0(2.8)\) & \(5.5(2.7)\) & \(10.5(3.5)\) & \(4.0(1.7)\) & \(23.5(3.9)\) \\
1998 & \(0.0(0.0)\) & \(4.0(0.8)\) & \(0.5(0.5)\) & \(19.0(4.3)\) & \(15.5(3.3)\) & \(23.5(4.0)\) \\
1999 & \(0.0(0.0)\) & \(3.7(1.6)\) & \(2.7(1.1)\) & \(5.3(1.5)\) & \(3.2(1.1)\) & \(21.5(3.5)\) \\
2000 & \(0.0(0.0)\) & \(14.4(4.1)\) & \(33.6(15.8)\) & \(52.8(6.6)\) & \(16.8(4.2)\) & \(100.8(21.9)\) \\
2001 & \(1.6(1.1)\) & \(20.8(5.0)\) & \(54.4(9.2)\) & \(72.8(10.0)\) & \(44.0(8.7)\) & \(149.6(15.6)\) \\
2002 & \(0.0(0.0)\) & \(4.0(1.8)\) & \(6.4(2.0)\) & \(82.4(15.4)\) & \(52.0(8.7)\) & \(92.8(15.9)\) \\
2003 & \(0.9(0.9)\) & \(11.6(3.6)\) & \(11.6(2.4)\) & \(28.4(5.2)\) & \(24.9(5.6)\) & \(52.4(6.1)\) \\
2004 & \(0.8(0.8)\) & \(13.6(1.7)\) & \(17.6(5.2)\) & \(19.2(5.2)\) & \(14.4(3.3)\) & \(51.2(6.8)\) \\
2005 & \(0.0(0.0)\) & \(38.4(4.4)\) & \(28.8(6.4)\) & \(31.2(11.1)\) & \(3.2(1.8)\) & \(98.4(17.3)\) \\
2006 & \(0.0(0.0)\) & \(19.6(3.9)\) & \(54.0(6.6)\) & \(7.6(1.5)\) & \(0.4(0.4)\) & \(81.2(7.2)\) \\
2007 & \(0.0(0.0)\) & \(5.2(1.3)\) & \(37.6(7.1)\) & \(21.2(5.5)\) & \(0.0(0.0)\) & \(64.0(11.7)\) \\
2008 & \(0.0(0.0)\) & \(10.4(2.2)\) & \(33.6(4.5)\) & \(27.6(5.0)\) & \(0.0(0.0)\) & \(71.6(7.9)\) \\
2009 & \(0.0(0.0)\) & \(2.4(1.0)\) & \(65.2(7.6)\) & \(38.0(7.5)\) & \(0.4(0.4)\) & \(105.6(14.1)\) \\
2010 & \(0.9(0.5)\) & \(7.1(1.5)\) & \(18.9(3.0)\) & \(12.0(2.5)\) & \(0.0(0.0)\) & \(38.9(5.0)\) \\
2011 & \(1.6(0.7)\) & \(26.0(4.5)\) & \(36.8(3.0)\) & \(20.0(3.0)\) & \(0.0(0.0)\) & \(84.4(8.0)\) \\
2012 & \(0.0(0.0)\) & \(4.8(2.1)\) & \(38.4(8.4)\) & \(24.0(5.1)\) & \(0.0(0.0)\) & \(67.2(14.2)\) \\
2013 & \(0.0(0.0)\) & \(1.6(1.1)\) & \(25.6(3.7)\) & \(29.6(7.0)\) & \(0.8(0.8)\) & \(56.8(8.6)\) \\
2014 & \(0.0(0.0)\) & \(0.8(0.8)\) & \(10.4(3.8)\) & \(33.6(15.2)\) & \(0.8(0.8)\) & \(44.8(16.0)\) \\
2015 & \(0.0(0.0)\) & \(22.4(3.5)\) & \(53.6(14.6)\) & \(42.4(7.4)\) & \(1.6(1.1)\) & \(118.4(20.0)\) \\
2016 & \(0.0(0.0)\) & \(16.8(4.7)\) & \(84.8(15.5)\) & \(33.6(7.1)\) & \(0.0(0.0)\) & \(135.2(21.4)\) \\
2017 & \(0.0(0.0)\) & \(44.8(12.7)\) & \(115.2(16.3)\) & \(43.2(5.7)\) & \(0.0(0.0)\) & \(203.2(26.9)\) \\
2018 & \(0.0(0.0)\) & \(56.8(7.5)\) & \(157.6(20.2)\) & \(36.8(8.9)\) & \(0.0(0.0)\) & \(251.2(26.4)\) \\
\hline\(D 2\) & & & & & &
\end{tabular}

Dataset = cfdpscor.d18-.d92

Table 147. Population assessment for redear sunfish collected during spring electrofishing at Corinth Lake from 2002-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & Years to 8.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 10.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
6.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
5-5+ \\
2
\end{gathered}
\] & \[
\begin{gathered}
36.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 8 & Fair \\
\hline 2017 & Value Score & \[
\begin{gathered}
7.2^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
43.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2016 & Value Score & \[
\begin{gathered}
7.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
33.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2015 & Value Score & \[
\begin{gathered}
8.1^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+* \\
4
\end{gathered}
\] & \[
\begin{gathered}
42.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & 15 & Excellent \\
\hline 2014 & Value Score & \[
\begin{gathered}
8.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
33.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & 14 & Excellent \\
\hline 2013 & Value Score & \[
\begin{gathered}
7.8^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
29.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & 13 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
7.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
24.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 12 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
7.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 11 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
7.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 10 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
7.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
38.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & 13 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
8.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
27.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 12 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
7.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
21.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 12 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
7.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.4 \\
2
\end{gathered}
\] & 10 & Good \\
\hline 2005 & Value Score & \[
\begin{gathered}
7.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
31.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.2 \\
4
\end{gathered}
\] & 15 & Excellent \\
\hline 2004 & Value Score & \[
\begin{gathered}
9.1^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+{ }^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
19.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.4 \\
4
\end{gathered}
\] & 15 & Excellent \\
\hline 2003 & Value Score & \[
\begin{gathered}
9.1^{*} \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+* \\
4
\end{gathered}
\] & \[
\begin{gathered}
28.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
24.9 \\
4
\end{gathered}
\] & 16 & Excellent \\
\hline 2002 & Value Score & \[
\begin{gathered}
9.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
82.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
52.0 \\
4
\end{gathered}
\] & 16 & Excellent \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
}

Table 148. Mean back calculated lengths (in) at each annulus for otoliths from bluegill collected from Corinth Lake in fall 2018.
\begin{tabular}{lccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 8 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2017 & 11 & 2.1 & & & & & \\
2016 & 19 & 2.0 & 3.6 & & & & \\
2015 & 11 & 2.0 & 3.6 & 4.8 & & & \\
2014 & 5 & 2.0 & 3.6 & 5.3 & 6.3 & & \\
2013 & 1 & 1.9 & 3.9 & 5.6 & 6.1 & 6.4 & \\
2012 & 1 & 2.9 & 5.1 & 6.3 & 6.7 & 7.0 & 7.2 \\
& & & & & & & \\
Mean & & & 1.1 & 3.6 & 5.1 & 6.3 & 6.7 \\
Smallest & & 4.3 & 2.3 & 3.9 & 5.7 & 6.4 & \\
Largest & & 0.1 & 6.0 & 6.7 & 6.7 & 7.0 & \\
Std error & & 1.9 & 3.3 & 0.2 & 0.1 & 0.3 & \\
95\% ConLo & & 2.2 & 3.9 & 4.7 & 6.1 & 6.1 & \\
95\% ConHi & & & 5.4 & 6.6 & 7.3 & \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagcor.d18

Table 149. Mean back calculated lengths (in) at each annulus for otoliths from redear sunfish collected from Corinth Lake in fall 2018.
\begin{tabular}{lcccccc}
\hline & & \multicolumn{5}{c}{ Age } \\
\cline { 2 - 7 } Year & No. & 1 & 2 & 3 & 4 & 5 \\
\hline 2017 & 6 & 2.2 & & & & \\
2016 & 17 & 2.2 & 4.0 & & & \\
2015 & 12 & 2.6 & 4.7 & 6.1 & & \\
2014 & 6 & 3.1 & 5.2 & 6.6 & 7.3 & \\
2013 & 2 & 2.8 & 5.4 & 6.9 & 7.4 & 8.0 \\
& & & & & & \\
Mean & 43 & 2.5 & 4.5 & 6.3 & 7.3 & 8.0 \\
Smallest & & 1.4 & 3.1 & 5.5 & 7.0 & 7.8 \\
Largest & 3.8 & 6.1 & 7.2 & 7.6 & 8.1 \\
Std error & & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 \\
95\% ConLo & & 2.3 & 4.3 & 7.2 & 7.2 & 7.6 \\
\(95 \%\) ConHi & & 2.6 & 4.7 & 7.5 & 7.5 & 8.3 \\
\hline
\end{tabular}

Intercept value \(=0.00\)
Dataset \(=\) cfdagcor.d18

Table 150. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Corinth Lake on 11 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{7}{|c|}{Length group} & \multirow[b]{2}{*}{No.} & \multirow[b]{2}{*}{Wr} \\
\hline & No. Wr & No. & Wr & No. & Wr & No. & Wr & & \\
\hline \multirow{3}{*}{Bluegill} & \(3.0-5.9\) in & \multicolumn{2}{|r|}{\(6.0-7.9\) in} & \multicolumn{2}{|r|}{\(\geq 8.0\) in} & & & \multicolumn{2}{|c|}{Total} \\
\hline & 58 89 (2) & 16 & 83 (3) & 0 & & & & 74 & 88 (1) \\
\hline & \(1.0-3.9\) in & & 6.9 in & & . 0 in & & & & \\
\hline Redear sunfish & 105 & 50 & 96 (1) & 29 & 95 (1) & 0 & & 80 & 96 (1) \\
\hline
\end{tabular}

Dataset = cfdwrcor.d18

Table 151. Fishery statistics derived from a daytime roving creel survey during 2002 and 2010. Trail camera counts used to derive usage statistics in 2018-2019 at Corinth Lake (96 acres) from 1 March 2018 through 28 February 2019.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Fishing Trips \\
No. of fishing trips (per acre)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{2018-2019}{(3 / 1 \text { to } 2 / 28)}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{2010}{(3 / 17 \text { to } 10 / 31)}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\frac{2002}{(4 / 1 \text { to } 6 / 30)}
\]}} \\
\hline & & & & & & \\
\hline & 5,059 & (52.7) & 2,620 & (27.3) & 2,481 & (25.8) \\
\hline \multicolumn{7}{|l|}{Fishing Pressure*} \\
\hline Total man-hours (S.E.) \({ }^{\text {a }}\) & 17,486 & & 10,054 & (461.7) & 10,063 & (413.8) \\
\hline Man-hours/acre & 182.1 & & 104.7 & & 104.8 & \\
\hline \multicolumn{7}{|l|}{Mode (\%)} \\
\hline Boat & 86.9 & & 77.6 & & 82.1 & \\
\hline Bank & 13.1 & & 22.4 & & 10.7 & \\
\hline
\end{tabular}
*Usage hours (angler and non-angler usage combined)

Figure 1. Number of trips per month at Corinth Lake from March 2018 through February 2019.

Figure 2. Number of usage hours by month at Corinth Lake from March 2018 through February 2019.

\section*{CORINTH LAKE ANGLER ATTITUDE SURVEY 2018}
(based on 52 surveys)
1. On average how many times do you fish Corinth Lake in a year? \((\mathrm{n}=49)\)

First time \(\mathbf{3 2 . 7 \%} \quad 1\) to \(4 \mathbf{2 4 . 5 \%} \quad 5\) to \(10 \mathbf{1 2 . 2 \%} \quad\) More than \(10 \mathbf{3 0 . 6}\)
2. Which species of fish do you fish for at Corinth Lake (check all that apply)?

Bass 75.0\% Crappie 26.9\% Bluegill 30.8\% Redear sunfish 11.5\% Channel Catfish 15.4\% Anything 5.8\%
3. Which ONE species do you fish for most at Corinth Lake (check only one)?

Bass 64.7\% Crappie 13.7\% Bluegill 9.8\% Redear sunfish 0.0\% Channel Catfish 7.8\% Anything 3.9\%

\section*{-Answer the following questions for each species you fish for - (see question 3)}

\section*{Bass Anglers}
4. In general, what level of satisfaction or dissatisfaction do you have with bass fishing at Corinth Lake? (\(\mathrm{n}=34\)) Very satisfied 20.6\% Somewhat satisfied 47.1\% Neutral 20.6\% Somewhat dissatisfied 11.8\% Very dissatisfied 0.0\%

4a. If you responded with very or somewhat satisfied in question (5) - What is the single most important reason for your Satisfaction? (\(n=24\))
Number of fish 58.3\% Size of fish 16.7\% Low Angler Pressure 12.5\% Abundant Vegetation 8.4\% Location 4.2\%
4b. If you responded with somewhat or very dissatisfied in question (5) - What is the single most important reason for your
Dissatisfaction? (\(n=4\))
Number of fish 50.0\% Size of fish 25.0\% Don't have boat 25.0\%

\section*{Crappie Anglers}
5. In general, what level of satisfaction or dissatisfaction do you have with crappie fishing at Corinth Lake? (\(\mathrm{n}=10\)) Very satisfied 10.0\% Somewhat satisfied 20.0\% Neutral 30.0\% Somewhat dissatisfied 40.0\% Very dissatisfied 0.0\%

5a. If you responded with very or somewhat satisfied in question (6) - What is the single most important reason for your Satisfaction? (\(n=4\))
Number of fish 25.0\% Size of fish 75.0\%
5b. If you responded with somewhat or very dissatisfied in question (6) - What is the single most important reason for your Dissatisfaction? (\(n=3\))
Number of fish \(\mathbf{1 0 0 . 0 \%}\)

\section*{Bluegill Anglers}
6. In general, what level of satisfaction or dissatisfaction do you have with bluegill fishing at Corinth Lake? (\(\mathrm{n}=14\)) Very satisfied \(\mathbf{2 1 . 4} \% \quad\) Somewhat satisfied 50.0\% Neutral 21.4\% Somewhat dissatisfied 7.1\% Very dissatisfied 0.0\%

6a. If you responded with very or somewhat satisfied in question (7) - What is the single most important reason for your Satisfaction? (\(n=10\))
Number of fish 50.0\% Size of fish 50.0\%
6b. If you responded with somewhat or very dissatisfied in question (7) - What is the single most important reason for your Dissatisfaction? (\(n=1\))
Number of fish 100.0\%

\section*{Redear Sunfish Anglers}
7. In general, what level of satisfaction or dissatisfaction do you have with redear sunfish fishing at Corinth Lake? (\(\mathrm{n}=6\)) Very satisfied 16.7\% Somewhat satisfied 66.7\% Neutral 16.7\% Somewhat dissatisfied 0.0\% Very dissatisfied 0.0\%

7a. If you responded with very or somewhat satisfied in question (8) - What is the single most important reason for your Satisfaction? \((\mathrm{n}=5)\)
Number of fish 60.0\% Size of fish 40.0\%
7b. If you responded with somewhat or very dissatisfied in question (8) - What is the single most important reason for your Dissatisfaction? \((\mathrm{n}=0)\)

\section*{Channel Catfish Anglers}
8. In general, what level of satisfaction or dissatisfaction do you have with channel catfish fishing at Corinth Lake? (\(\mathrm{n}=4\)) Very satisfied 25.0\% Somewhat satisfied 25.0\% Neutral 50.0\% Somewhat dissatisfied 0.0\% Very dissatisfied 0.0\%

8a. If you responded with very or somewhat satisfied in question (9) - What is the single most important reason for your Satisfaction? (\(\mathrm{n}=2\))
Number of fish 50.0\% Size of fish 50.0\%
8b. If you responded with somewhat or very dissatisfied in question (9) - What is the single most important reason for your Dissatisfaction? (\(n=0\))

\section*{All Anglers}
9. Are you satisfied with the current size and creel limits on all sport fish at Corinth Lake? (\(n=49\)) Yes 95.9\% No 4.1\%

9a. If not, which species are you dissatisfied with and what size and creel limits would you prefer? (\(\mathrm{n}=2\)) Largemouth bass 12-15 inch slot limit (\(n=1\)) Crappie 9 or 10 inch size limit (\(n=1\))
10. In general, what level of satisfaction or dissatisfaction do you have with the current facilities (parking lot, boat ramp, fishing pier, courtesy dock) at Corinth Lake? (\(\mathrm{n}=50\))
Very satisfied 38.0\% Somewhat satisfied 54.0\% Neutral 0.0\% Somewhat dissatisfied 8.0\% Very dissatisfied 0.0\%
10a. If you responded with somewhat or very dissatisfied in question (11) - What is the single most important reason for your Dissatisfaction? (\(n=13\))
Animal waste on ramp/docks 61.5\% Additional shoreline bank fishing access 23.1\% Need additional parking 15.4\%

Table 152. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected in 2.0 hours of 15 -minute electrofishing runs in Elmer Davis Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{22}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & \\
\hline Largemouth bass & 3 & 14 & 27 & 61 & 59 & 18 & 4 & 35 & 59 & 76 & 107 & 95 & 48 & 22 & 11 & 7 & 2 & 8 & 2 & & 4 & 1 & 663 & 331.5 (23.6) \\
\hline
\end{tabular}

Dataset = cfdpselm.d18

Table 153. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Elmer Davis Lake from 1996-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <8.0 in & 8.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1996 & 102.0 (15.3) & 163.5 (19.5) & 37.0 (6.2) & 9.5 (3.4) & 4.5 (1.4) & 312.0 (32.7) \\
\hline 1997 & 113.5 (20.1) & 252.0 (27.2) & 39.0 (5.6) & 19.0 (3.7) & 5.5 (1.8) & 423.5 (43.9) \\
\hline 1998 & 52.5 (9.5) & 93.3 (6.8) & 16.8 (2.3) & 7.5 (1.7) & 3.2 (1.1) & 170.1 (15.1) \\
\hline 1999 & 253.5 (32.9) & 47.0 (8.3) & 36.0 (6.9) & 17.5 (5.5) & 2.5 (1.1) & 354.0 (45.4) \\
\hline 2000 & 134.5 (14.7) & 136.5 (11.0) & 31.5 (6.0) & 29.0 (4.4) & 2.0 (1.3) & 331.5 (21.3) \\
\hline 2001 & 121.0 (17.0) & 220.0 (21.2) & 18.5 (2.4) & 21.0 (4.1) & 0.5 (0.5) & 380.5 (24.9) \\
\hline 2002 & 99.0 (16.3) & 124.0 (12.3) & 4.0 (1.3) & 10.0 (2.7) & 0.5 (0.5) & 237.0 (26.2) \\
\hline 2003 & 96.0 (10.2) & 189.5 (16.5) & 14.5 (3.9) & 15.0 (2.7) & 3.5 (1.6) & 315.0 (25.1) \\
\hline 2004 & 107.5 (10.0) & 123.5 (10.0) & 22.0 (3.5) & 15.0 (1.7) & 3.5 (1.6) & 268.0 (17.4) \\
\hline 2005 & 93.0 (10.6) & 197.0 (11.2) & 60.0 (10.4) & 15.0 (2.4) & 3.5 (1.2) & 365.0 (27.2) \\
\hline 2006 & 74.5 (11.5) & 123.5 (12.2) & 40.5 (7.9) & 6.5 (1.8) & 1.0 (0.7) & 245.0 (15.4) \\
\hline 2007 & 32.5 (5.8) & 137.0 (16.4) & 41.5 (10.3) & 8.0 (2.8) & 1.0 (0.7) & 219.0 (28.9) \\
\hline 2008 & 149.0 (17.9) & 188.0 (20.7) & 45.0 (5.6) & 14.5 (4.0) & 2.0 (1.3) & 396.5 (35.2) \\
\hline 2009 & 36.0 (6.0) & 192.5 (19.0) & 76.0 (9.0) & 28.0 (3.8) & 6.5 (2.3) & 332.5 (30.2) \\
\hline 2010 & 41.0 (5.0) & 147.5 (17.9) & 71.5 (12.3) & 24.0 (5.0) & 3.0 (1.3) & 284.0 (33.5) \\
\hline 2011 & 51.0 (6.2) & 152.5 (20.4) & 69.5 (8.1) & 23.0 (4.5) & 3.5 (1.2) & 296.0 (30.9) \\
\hline 2012 & 83.5 (8.8) & 197.5 (10.9) & 85.5 (7.3) & 27.5 (3.7) & 4.5 (1.2) & 394.0 (12.4) \\
\hline 2013 & \multicolumn{6}{|c|}{No Sample} \\
\hline 2014 & 27.5 (4.1) & 113.5 (13.8) & 75.0 (14.2) & 23.5 (4.0) & 4.5 (1.4) & 239.5 (31.7) \\
\hline 2015 & 34.5 (5.5) & 119.0 (7.0) & 78.5 (8.9) & 19.5 (4.9) & 4.0 (1.7) & 251.5 (18.3) \\
\hline 2016 & 57.5 (6.3) & 113.0 (10.6) & 126.0 (7.9) & 44.5 (2.8) & 8.0 (1.3) & 341.0 (18.1) \\
\hline 2017 & 65.5 (10.6) & 87.5 (5.5) & 95.5 (5.9) & 31.0 (2.8) & 8.0 (1.9) & 279.5 (14.4) \\
\hline 2018 & 91.0 (10.4) & 87.0 (12.6) & 125.0 (8.8) & 28.5 (3.3) & 3.5 (1.9) & 331.5 (23.6) \\
\hline
\end{tabular}

Dataset = cfdpselm.d18 - .d96

Table 154. PSD and \(\mathrm{RSD}_{15}\) values obtained for largemouth bass from spring electrofishing samples in Elmer Davis Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 481 & \(64(\pm 4)\) & \(12(\pm 3)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpselm.d18

Table 155. Population assessment for largemouth bass collected during spring electrofishing at Elmer Davis Lake from 2000-2018 (scoring based on statewide assessment).

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 156. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.50 hours of 15 -minute electrofishing runs for black bass in Elmer Davis Lake in September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{23}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & \\
\hline Largemouth bass & 7 & 76 & 55 & 13 & 9 & 24 & 49 & 36 & 14 & 35 & 45 & 46 & 24 & 19 & 6 & 3 & 7 & 2 & 2 & 1 & 2 & 1 & 476 & 318.0 (38.0) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrelm.d18

Table 157. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Elmer Davis Lake on 14 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 89 & 87 (1) & 75 & 85 (1) & 44 & 89 (2) & 208 & 87 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrelm.d18

Table 158. Indices of year class strength at age-0 and age-1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Elmer Davis Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & & Mean length & Std. error & CPUE & \begin{tabular}{l}
Std. \\
Error
\end{tabular} & CPUE & Std. error & CPUE & Std. error \\
\hline 2000 & Total & 3.8 & (0.1) & 269.6 & (33.2) & 14.4 & (2.0) & 52.8 & (9.7) \\
\hline 2001 & Total & 4.5 & (0.1) & 210.7 & (25.0) & 47.3 & (3.0) & 80.6 & (13.3) \\
\hline 2002 & Total & 4.3 & (0.1) & 67.3 & (10.0) & 13.3 & (3.2) & 57.5 & (7.9) \\
\hline 2003 & Total & 4.2 & (0.1) & 179.0 & (32.0) & 27.0 & (10.0) & 94.4 & (9.9) \\
\hline 2004 & Total & 4.3 & (0.03) & 180.0 & (38.5) & 24.7 & (4.3) & 78.1 & (9.9) \\
\hline 2005 & Total & 4.4 & (0.04) & 190.0 & (29.6) & 33.3 & (5.3) & 68.1 & (10.2) \\
\hline 2006 & Total & 3.7 & (0.04) & 166.0 & (17.4) & 8.0 & (2.5) & 26.9 & (6.1) \\
\hline 2007 & Total & 4.3 & (0.05) & 114.0 & (24.6) & 17.3 & (5.4) & 127.5 & (16.4) \\
\hline 2008 & Total & 3.9 & (0.1) & 73.3 & (9.6) & 0.7 & (0.7) & 18.5 & (3.7) \\
\hline 2009 & Total & 4.2 & (0.1) & 108.0 & (14.2) & 20.0 & (5.0) & 29.0 & (5.3) \\
\hline 2010 & Total & 4.7 & (0.1) & 108.0 & (14.1) & 34.7 & (3.2) & 32.4 & (3.9) \\
\hline 2011 & Total & 4.0 & (0.1) & 74.0 & (13.8) & 14.7 & (3.2) & 78.0 & (8.9) \\
\hline 2012 & Total & 3.4 & (0.1) & 56.0 & (7.5) & 6.0 & (1.7) & NS & NS \\
\hline 2013 & Total & 3.5 & (0.1) & 20.0 & (6.9) & 0.0 & (0.0) & 8.0 & (2.3) \\
\hline 2014 & Total & & & & & & & 28.0 & (5.3) \\
\hline 2015 & Total & 4.0 & (0.1) & 77.3 & (9.1) & 11.3 & (3.5) & 46.5 & (6.2) \\
\hline 2016 & Total & 4.4 & (0.1) & 80.0 & (7.6) & 24.7 & (4.9) & 60.5 & (10.8) \\
\hline 2017 & Total & 3.9 & (0.1) & 366.4 & (74.7) & 71.2 & (15.9) & 91.0 & (10.4) \\
\hline 2018 & Total & 3.9 & (0.1) & 100.7 & (23.3) & 8.7 & (1.9) & & \\
\hline
\end{tabular}

\section*{Dataset= cfdwrelm.d18}

Table 159. Species composition, relative abundance, and CPUE (fish/hr) of bluegill and redear sunfish collected in 1.25 hours of 7.5-minute electrofishing runs in Elmer Davis Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & & \\
\hline Bluegill & 31 & 74 & 95 & 26 & 12 & 58 & 7 & & & 303 & 242.4 (18.2) \\
\hline Redear sunfish & & 2 & 7 & 4 & 1 & & 4 & 8 & 13 & 39 & 31.2 (5.4) \\
\hline
\end{tabular}

Dataset \(=\) cfdpselm.d18

Table 160. Electrofishing CPUE (fish/hr) for each length group of bluegill collected from Elmer Davis Lake from 1994-2018; numbers in parentheses are standard errors.
\begin{tabular}{lccccc}
\hline & \multicolumn{5}{c}{ Length group } \\
\cline { 2 - 4 } Year & \(<3.0\) in & \(3.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & Total \\
\hline 1994 & \(1.0(0.7)\) & \(12.0(3.0)\) & \(29.0(5.7)\) & \(1.5(1.1)\) & \(43.5(6.0)\) \\
1995 & & & NS & & \\
1996 & \(42.0(7.9)\) & \(75.0(9.7)\) & \(55.0(11.2)\) & \(20.0(5.4)\) & \(192.0(22.5)\) \\
1997 & \(0.5(0.5)\) & \(79.5(12.5)\) & \(59.0(16.3)\) & \(5.5(2.1)\) & \(144.5(28.6)\) \\
1998 & \(2.7(1.1)\) & \(17.1(4.5)\) & \(7.7(1.6)\) & \(2.9(1.1)\) & \(30.4(5.8)\) \\
1999 & \(579.5(74.5)\) & \(502.0(65.4)\) & \(23.0(7.6)\) & \(5.0(3.4)\) & \(1,109.5(130.9)\) \\
2000 & & & No Sample & & \\
2001 & \(1.5(0.8)\) & \(109.5(28.0)\) & \(157.0(23.5)\) & \(0.5(0.5)\) & \(268.5(49.6)\) \\
2002 & \(33.6(11.8)\) & \(78.4(19.3)\) & \(272.8(55.3)\) & \(0.8(0.8)\) & \(385.6(78.2)\) \\
2003 & \(17.6(4.7)\) & \(89.6(12.9)\) & \(151.2(30.1)\) & \(2.4(1.7)\) & \(260.8(37.1)\) \\
2004 & \(40.0(8.7)\) & \(100.8(13.7)\) & \(119.2(29.8)\) & \(8.8(3.9)\) & \(268.8(44.7)\) \\
2005 & \(38.4(11.4)\) & \(92.8(16.1)\) & \(59.2(9.8)\) & \(8.8(3.0)\) & \(199.2(23.9)\) \\
2006 & \(162.4(35.9)\) & \(115.2(20.1)\) & \(42.4(8.5)\) & \(16.0(4.5)\) & \(336.0(43.8)\) \\
2007 & \(7.6(1.8)\) & \(81.2(7.4)\) & \(42.8(9.7)\) & \(9.2(2.4)\) & \(140.8(14.9)\) \\
2008 & \(34.4(5.7)\) & \(133.2(24.7)\) & \(58.8(9.3)\) & \(6.8(2.3)\) & \(233.2(33.0)\) \\
2009 & \(8.8(1.8)\) & \(58.1(6.5)\) & \(33.9(3.7)\) & \(1.1(0.5)\) & \(101.9(7.3)\) \\
2010 & \(51.6(12.8)\) & \(126.8(16.2)\) & \(26.8(4.1)\) & \(0.0(0.0)\) & \(205.2(23.4)\) \\
2011 & \(112.4(19.6)\) & \(226.0(18.9)\) & \(50.0(7.3)\) & \(5.6(2.5)\) & \(394.0(36.2)\) \\
2012 & \(42.4(7.3)\) & \(254.4(39.6)\) & \(68.8(15.0)\) & \(0.8(0.8)\) & \(366.4(57.9)\) \\
2013 & \(49.6(18.2)\) & \(179.2(28.4)\) & \(54.4(14.8)\) & \(0.8(0.8)\) & \(284.0(56.5)\) \\
2014 & \(17.6(7.4)\) & \(117.6(25.5)\) & \(33.6(10.2)\) & \(0.0(0.0)\) & \(168.8(26.5)\) \\
2015 & \(0.8(0.8)\) & \(27.2(5.0)\) & \(18.4(7.4)\) & \(0.0(0.0)\) & \(46.4(9.6)\) \\
2016 & & & No Sample & & \\
2017 & \(12.0(3.4)\) & \(84.8(11.4)\) & \(96.0(19.6)\) & \(1.6(1.6)\) & \(194.4(26.5)\) \\
2018 & \(24.8(6.4)\) & \(156.0(15.5)\) & \(56.0(5.3)\) & \(5.6(2.4)\) & \(242.4(18.2)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpselm.d18

Table 161. PSD and RSD values calculated for sunfish collected during 1.25 hours of electrofishing at Elmer Davis Lake during May 2018. Fish were collected in 7.5 -minute runs.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(^{\text {a }}\) \\
\hline Bluegill & 272 & \(28(\pm 5)\) & \(3(\pm 2)\) \\
Redear sunfish & 37 & \(67(\pm 15)\) & \(57(\pm 16)\) \\
\hline
\end{tabular}
abluegill \(=\) RSD 8 ; Redear \(=\) RSD9
Dataset \(=\) cfdpselm.d18

Table 162. Population assessment for bluegill collected during spring electrofishing at Elmer Davis Lake from 2001-2018 (scoring based on statewide assessments).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-2 at capture & Years to 6.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 6.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
3.8^{\star} \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
61.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.6 \\
4
\end{gathered}
\] & - & & 10 & Good \\
\hline 2017 & Value Score & \[
\begin{gathered}
3.8^{*} \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
97.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
3
\end{gathered}
\] & - & & 9 & Fair \\
\hline 2015 & Value Score & \[
\begin{gathered}
3.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4-4+ \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.4 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & - & - & 5 & Poor \\
\hline 2014 & Value Score & \[
\begin{gathered}
4.1^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+{ }^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
33.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & - & - & 8 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
4.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3-3+ \\
3
\end{gathered}
\] & \[
\begin{gathered}
55.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & - & - & 9 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
69.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & 1.305 & 72.9 & 11 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
55.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
5.6 \\
4
\end{gathered}
\] & * & * & 13 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
26.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & 1.471 & 77.0 & 9 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
34.9 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.1 \\
2
\end{gathered}
\] & * & * & 11 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
4.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
65.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.8 \\
4
\end{gathered}
\] & 0.748 & 52.7 & 13 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
4.1 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
52.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
9.2 \\
4
\end{gathered}
\] & 0.718 & 51.2 & 12 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
5.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
58.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
4
\end{gathered}
\] & 0.464 & 37.1 & 15 & Excellent \\
\hline 2005 & Value Score & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
68.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.8 \\
4
\end{gathered}
\] & 0.729 & 51.7 & 13 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
128.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.8 \\
4
\end{gathered}
\] & * & * & 15 & Excellent \\
\hline 2003 & Value Score & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
153.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.4 \\
3
\end{gathered}
\] & * & * & 14 & Excellent \\
\hline 2002 & Value Score & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2-2+ \\
4
\end{gathered}
\] & \[
\begin{gathered}
273.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & * & * & 13 & Good \\
\hline 2001 & Value Score & \[
\begin{gathered}
4.2 \\
2
\end{gathered}
\] & \[
\underset{4}{2-2+}
\] & \[
\begin{gathered}
157.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
2
\end{gathered}
\] & * & * & 12 & Good \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
}

Table 163. Electrofishing CPUE (fish/hr) for each length group of redear sunfish collected from Elmer Davis Lake from 1994-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & \(<3.0\) in & 3.0-5.9 in & 6.0-7.9 in & \(\geq 8.0\) in & \(\geq 10.0\) in & \\
\hline 1994 & 0.0 & 0.5 (0.5) & 0.5 (0.5) & 2.5 (2.0) & 1.5 (1.5) & 3.5 (1.9) \\
\hline 1995 & \multicolumn{6}{|r|}{NS} \\
\hline 1996 & & 7.5 (1.6) & 23.5 (3.3) & 4.0 (1.1) & 1.0 (0.7) & 35.0 (4.6) \\
\hline 1997 & 0.0 & 1.0 (1.0) & 0.5 (0.5) & 13.0 (3.8) & 0.5 (0.5) & 14.5 (4.6) \\
\hline 1998 & 0.0 & 0.3 (0.3) & 0.0 & 0.0 & 0.0 & 0.3 (0.3) \\
\hline 1999 & 0.0 & 19.0 (4.4) & 13.0 (2.2) & 20.5 (5.3) & 0.0 & 52.5 (7.5) \\
\hline 2000 & \multicolumn{6}{|c|}{NS} \\
\hline 2001 & 0.0 & 3.5 (2.1) & 21.0 (5.1) & 3.5 (1.6) & 1.0 (0.7) & 28.0 (4.8) \\
\hline 2002 & 0.8 (0.8) & 4.0 (1.8) & 8.8 (4.7) & 15.2 (4.2) & 0.8 (0.8) & 28.8 (6.1) \\
\hline 2003 & 1.6 (1.1) & 7.2 (5.5) & 31.2 (7.4) & 19.2 (6.2) & 0.8 (0.8) & 59.2 (13.5) \\
\hline 2004 & 4.0 (2.7) & 8.0 (3.4) & 66.4 (18.4) & 24.8 (9.7) & 3.2 (2.4) & 103.2 (29.1) \\
\hline 2005 & 0.0 & 11.2 (2.4) & 54.4 (16.7) & 63.2 (18.6) & 4.8 (1.8) & 128.8 (26.9) \\
\hline 2006 & 0.0 & 12.8 (4.0) & 4.8 (1.8) & 30.4 (6.5) & 4.0 (1.3) & 51.2 (10.0) \\
\hline 2007 & 0.4 (0.4) & 1.6 (0.7) & 18.0 (3.5) & 15.6 (3.4) & 2.0 (1.1) & 35.6 (5.6) \\
\hline 2008 & 1.2 (0.7) & 13.2 (2.7) & 40.8 (9.2) & 17.6 (5.3) & 2.8 (1.5) & 72.8 (14.7) \\
\hline 2009 & 0.8 (0.6) & 5.6 (1.3) & 18.7 (3.2) & 6.4 (1.8) & 1.9 (0.7) & 31.5 (4.3) \\
\hline 2010 & 1.2 (0.9) & 3.2 (1.4) & 23.6 (2.7) & 13.2 (2.9) & 0.8 (0.6) & 41.2 (4.7) \\
\hline 2011 & 4.8 (1.7) & 22.4 (4.5) & 6.8 (2.0) & 58.0 (8.5) & 2.4 (1.3) & 92.0 (10.3) \\
\hline 2012 & 5.6 (2.6) & 31.2 (5.3) & 44.0 (9.3) & 31.2 (7.2) & 4.8 (1.3) & 112.0 (11.6) \\
\hline 2013 & 32.8 (16.3) & 149.6 (40.1) & 39.2 (13.6) & 20.8 (5.6) & 0.8 (0.8) & 242.4 (67.2) \\
\hline 2014 & 0.8 (0.8) & 146.4 (37.0) & 56.8 (19.7) & 27.2 (7.8) & 0.8 (0.8) & 231.2 (53.2) \\
\hline 2015 & 0.0 & 11.2 (3.0) & 61.6 (8.9) & 13.6 (4.0) & 0.0 & 86.4 (13.1) \\
\hline 2016 & \multicolumn{6}{|r|}{NS} \\
\hline 2017 & 0.0 & 0.8 (0.8) & 4.0 (1.8) & 43.2 (13.0) & 0.8 (0.8) & 48.0 (13.2) \\
\hline 2018 & 0.0 & 10.4 (2.7) & 0.8 (0.8) & 20.0 (5.0) & 10.4 (2.9) & 31.2 (5.4) \\
\hline
\end{tabular}

Dataset \(=\) cfdpselm.d18

Table 164. Population assessment for redear sunfish collected during spring electrofishing at Elmer Davis Lake from 2001-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & Years to 8.0 in & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 10.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & \(6.7^{*}\) & 4-4+* & 20.0 & 10.4 & \multirow[b]{2}{*}{12} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 3 & 4 & & \\
\hline \multirow[t]{2}{*}{2017} & Value & \(6.7^{*}\) & 4-4+* & 43.2 & 0.8 & \multirow[b]{2}{*}{11} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 4 & 2 & & \\
\hline \multirow[t]{2}{*}{2015} & Value & 6.7 & 4-4+ & 13.6 & 0.0 & \multirow[b]{2}{*}{9} & \multirow[b]{2}{*}{Fair} \\
\hline & Score & 2 & 3 & 3 & 1 & & \\
\hline \multirow[t]{2}{*}{2014} & Value & 7.7* & 3-3+* & 27.2 & 0.8 & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 3 & 4 & 4 & 2 & & \\
\hline \multirow[t]{2}{*}{2013} & Value & 7.7 & 3-3+ & 20.8 & 0.8 & \multirow[b]{2}{*}{12} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 3 & 4 & 3 & 2 & & \\
\hline \multirow[t]{2}{*}{2012} & Value & 7.7 & 3-3+ & 31.2 & 4.8 & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 3 & 4 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 8.7 & 2-2+ & 58.0 & 2.4 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2010} & Value & 8.4 & 2-2+ & 13.2 & 1.2 & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 3 & & \\
\hline \multirow[t]{2}{*}{2009} & Value & 8.0 & 3-3+ & 6.4 & 1.9 & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 3 & 4 & 2 & 4 & & \\
\hline \multirow[t]{2}{*}{2008} & Value & 8.8 & 2-2+ & 17.6 & 2.8 & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 4 & & \\
\hline \multirow[t]{2}{*}{2007} & Value & 8.6 & 2-2+ & 15.6 & 2.0 & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 4 & & \\
\hline \multirow[t]{2}{*}{2006} & Value & 8.8 & 2-2+ & 30.4 & 4.0 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2005} & Value & 8.7 & 2-2+ & 63.2 & 4.8 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 8. & 4 & , & 4 & & \\
\hline \multirow[t]{2}{*}{2004} & Value & 9.0* & 2-2+* & 24.8 & 3.2 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2003} & Value & 9.0 & 2-2+ & 19.2 & 0.8 & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 4 & 4 & 3 & 2 & & \\
\hline \multirow[t]{2}{*}{2002} & Value & \(6.5^{*}\) & 4-4+* & 15.2 & 0.8 & \multirow[b]{2}{*}{9} & \multirow[b]{2}{*}{Fair} \\
\hline & Score & , & 3 & 3 & 2 & & \\
\hline \multirow[t]{2}{*}{2001} & Value & 6.5 & 4-4+ & 3.5 & 1.0 & & \\
\hline & Score & 1 & 3 & 2 & 3 & 9 & Fair \\
\hline
\end{tabular}
* Age data not collected

Table 165. Number of fish and the relative weight (Wr) for each length group of bluegill and redear sunfish collected at Elmer Davis Lake on 14 September 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{8}{|c|}{Length group} \\
\hline & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline & \multicolumn{2}{|l|}{3.0-5.9 in} & \multicolumn{2}{|r|}{6.0-7.9 in} & \multicolumn{2}{|r|}{\(\geq 8.0\) in} & \multicolumn{2}{|r|}{Total} \\
\hline Bluegill & 62 & 97 (3) & 41 & 91 (1) & 13 & 88 (3) & 116 & 94 (2) \\
\hline & \multicolumn{2}{|r|}{4.0-6.9 in} & \multicolumn{2}{|r|}{7.0-8.9 in} & \multicolumn{2}{|r|}{\(\geq 9.0\) in} & \multicolumn{2}{|r|}{Total} \\
\hline Redear sunfish & 18 & 118 (13) & 8 & 104 (3) & 5 & 101 (3) & 111 & 112 (8) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrelm. \({ }^{118}\)

Table 166. Length composition, relative abundance, and CPUE (fish/set) of channel catfish at Elmer Davis Lake. Channel catfish were collected using baited, tandem hoop nets (72 hours soak time) that were set on 18 October 2018. Nets were pulled three days after setting them, and 3 sets of tandem nets were used for the sampling event.
\begin{tabular}{lrrrrrrrrrrrrrrr}
\hline \multirow{2}{*}{} & \multicolumn{10}{c}{ Inch class } & Total & Average per set \\
\cline { 2 - 15 } & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & & 49 \\
\hline Species & 1 & 2 & 12 & 8 & 10 & 3 & 6 & 3 & 1 & 1 & 1 & 1 & \(49.3(7.0)\) \\
\hline Channel catfish &
\end{tabular}

Dataset = cfdhnelm.d18

Table 167. CPUE (fish/set) for each length group of channel catfish collected by hoop net from Elmer
Davis Lake from 2007-2018; numbers in parentheses are standard errors.
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Length group } \\
\cline { 2 - 4 } Year & \(\geq 12.0\) in & \(\geq 15.0\) in & \(\geq 20.0\) in & Total \\
\hline 2007 & \(71.2(26.0)\) & \(14.0(4.2)\) & \(0.2(0.2)\) & \(118.4(45.2)\) \\
2008 & \(111.8(14.6)\) & \(23.4(4.7)\) & \(0.4(0.4)\) & \(134.0(17.9)\) \\
2009 & \(103.4(38.6)\) & \(21.4(7.2)\) & \(0.4(0.2)\) & \(106.4(39.7)\) \\
2010 & \(28.0(10.8)\) & \(17.0(7.3)\) & \(2.0(1.1)\) & \(32.4(11.8)\) \\
2011 & \(39.8(14.3)\) & \(20.0(6.6)\) & \(2.6(1.0)\) & \(75.0(25.4)\) \\
2015 & \(54.0(5.7)\) & \(23.7(3.7)\) & \(6.0(2.0)\) & \(66.7(10.9)\) \\
2018 & \(16.3(7.0)\) & \(16.0(7.1)\) & \(4.3(1.9)\) & \(16.3(7.0)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdhnelm.d18-.d07

Table 168. PSD and RSD \({ }_{24}\) values obtained for channel catfish from tandem hoop net samples in Elmer Davis Lake in 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq\) stock size & PSD & RSD \(_{24}\) \\
\hline Channel catfish & 49 & \(94(\pm 7)\) & \(4(\pm 4)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdhnelm.d18

Table 169. Number of fish and the relative weight (Wr) for each length group of channel catfish collected at Elmer Davis Lake in October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Species} & \multirow{3}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{11.0-15.9 in} & \multicolumn{2}{|r|}{16.0-23.9 in} & \multicolumn{2}{|l|}{\(\geq 24.0\) in} & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Channel catfish & Total & 3 & 114 (17) & 44 & 100 (1) & 2 & 103 (10) & 49 & 101 (1) \\
\hline
\end{tabular}

Dataset = cfdhnelm.d18

Table 170. Length distribution and CPUE (fish/hr) of largemouth bass collected in 1.5 hours of 15 -minute electrofishing runs in Kincaid Lake in October 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{21}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & \\
\hline Largemouth bass & 26 & 30 & 10 & 6 & 2 & 17 & 32 & 17 & 27 & 17 & 16 & 9 & 6 & 13 & 14 & 15 & 17 & 9 & 4 & 1 & 1 & 289 & 192.7 (11.2) \\
\hline
\end{tabular}

Dataset = cfdwrkin.d18

Table 171. Number of fish and the relative weight (Wr) for each length group of largemouth bass collected at Kincaid Lake on 2 October 2018; standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Area} & \multicolumn{6}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & & . 9 in & 12.0 & 4.9 in & & & & \\
\hline & & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & Total & 93 & 86 (1) & 31 & 91 (1) & 74 & 101 (1) & 198 & 92 (1) \\
\hline
\end{tabular}

Dataset \(=\) cfdwrkin.d18

Table 172. Indices of year class strength at age 0 and age 1 and mean length (in) of largemouth bass collected in the fall in electrofishing samples at Kincaid Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{No. of fish} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|l|}{Age \(0 \geq 5.0\) in} & \multicolumn{2}{|c|}{Age 1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 1999 & 25 & 3.1 & (0.2) & 16.7 & (5.7) & 0.0 & & 1.5 & (1.10) \\
\hline 2000 & 11 & 3.1 & (0.2) & 4.7 & (1.6) & 0.0 & & 0.0 & \\
\hline 2001 & 36 & 2.9 & (0.1) & 20.6 & (6.7) & 0.0 & & 0.0 & \\
\hline 2002 & 76 & 2.6 & (0.1) & 43.4 & (10.6) & 0.0 & & 0.0 & \\
\hline 2003 & 33 & 2.8 & (0.1) & 22.0 & (4.7) & 0.0 & & 1.0 & (0.7) \\
\hline 2004 & 19 & 3.0 & (0.1) & 12.7 & (4.3) & 0.0 & & 0.0 & \\
\hline 2005 & 259 & 2.5 & (0.03) & 129.5 & (19.3) & 0.0 & & 1.5 & (0.7) \\
\hline 2006 & 64 & 2.7 & (0.1) & 42.7 & (11.9) & 0.0 & & 0.0 & \\
\hline 2007 & 29 & 3.2 & (0.1) & 19.3 & (4.8) & 0.7 & (0.7) & 1.0 & (0.7) \\
\hline 2008 & 42 & 3.3 & (0.1) & 28.0 & (2.1) & 0.0 & & 2.5 & (1.1) \\
\hline 2009 & 47 & 2.7 & (0.04) & 31.3 & (8.2) & 0.0 & & 1.3 & (0.5) \\
\hline 2010 & 80 & 4.2 & (0.1) & 53.3 & (12.0) & 14.0 & (3.4) & 5.0 & (1.7) \\
\hline 2011 & 112 & 3.8 & (0.1) & 74.7 & (28.8) & 7.3 & (4.2) & 4.5 & (1.4) \\
\hline 2012 & 71 & 3.4 & (0.1) & 47.3 & (9.1) & 0.7 & (0.7) & 1.0 & (0.7) \\
\hline 2013 & 56 & 3.6 & (0.1) & 37.3 & (13.8) & 0.0 & & NS & \\
\hline 2014 & 37 & 2.6 & (0.1) & 24.7 & (7.4) & 0.0 & & & \\
\hline 2015 & & & & No Sampl & & & & & \\
\hline 2016 & 51 & 3.8 & (0.1) & 34.0 & (6.4) & 3.3 & (1.9) & 2.0 & (1.3) \\
\hline 2017 & 44 & 3.5 & (0.1) & 29.3 & (8.2) & 0.0 & & NS & \\
\hline 2018 & 72 & 3.5 & (0.1) & 48.0 & (8.1) & 4.0 & (2.1) & & \\
\hline
\end{tabular}

Dataset = cfdwrkin.d18

Table 173. Species composition, relative abundance, and CPUE (fish/hr) of largemouth bass collected in 1.5 hour of 15 -minute electrofishing runs for black bass in McNeely Lake in April 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & \\
\hline Largemouth bass & 4 & 54 & 43 & 4 & 5 & 85 & 52 & 61 & 62 & 58 & 34 & 16 & 13 & 8 & 7 & 3 & 3 & 1 & 2 & 1 & 516 & 344.0 (41.4) \\
\hline
\end{tabular}

Dataset = cfdpsmcl.d18

Table 174. Electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from
McNeely Lake from 1996-2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & \(<8.0\) in & \(8.0-11.9\) in & 12.0-14.9 in & \(\geq 15.0\) in & \(\geq 20.0\) in & \\
\hline 1996 & 77.3 (9.2) & 6.7 (2.0) & 18.0 (3.4) & 23.3 (2.8) & 0.0 (0.0) & 125.3 (11.0) \\
\hline 1998 & 80.0 (11.1) & 134.7 (18.6) & 7.3 (2.2) & 14.0 (3.4) & 0.7 (0.7) & 236.0 (26.0) \\
\hline 1999 & 71.0 (10.6) & 161.0 (4.4) & 27.0 (7.4) & 22.0 (5.3) & 2.0 (1.2) & 281.0 (7.5) \\
\hline 2000 & 44.7 (5.0) & 144.7 (13.4) & 104.7 (13.8) & 20.7 (2.2) & 4.0 (1.5) & 314.7 (24.7) \\
\hline 2001 & 71.3 (10.1) & 144.0 (6.4) & 97.7 (16.4) & 31.3 (3.8) & 2.7 (1.3) & 346.0 (28.1) \\
\hline 2002 & 28.7 (3.0) & 48.0 (12.5) & 43.3 (4.8) & 9.3 (1.7) & 0.0 (0.0) & 129.3 (30.3) \\
\hline 2003 & 44.7 (8.2) & 96.0 (12.4) & 56.0 (10.7) & 27.3 (3.2) & 1.3 (0.8) & 224.0 (19.7) \\
\hline 2004 & 27.3 (4.3) & 58.0 (8.9) & 23.3 (4.3) & 28.0 (3.9) & 2.7 (1.3) & 136.7 (15.6) \\
\hline 2005 & 23.3 (6.3) & 76.7 (5.9) & 46.0 (4.9) & 30.0 (6.2) & 1.3 (0.8) & 176.0 (8.6) \\
\hline 2006 & 56.0 (5.6) & 72.7 (12.1) & 37.3 (6.5) & 24.0 (2.5) & 1.3 (0.8) & 190.0 (14.6) \\
\hline 2007 & 14.7 (1.7) & 98.0 (11.9) & 46.7 (13.1) & 40.0 (8.9) & 1.3 (1.3) & 199.3 (30.8) \\
\hline 2008 & 127.3 (6.5) & 124.0 (14.6) & 58.7 (6.6) & 20.7 (4.6) & 1.3 (0.8) & 330.7 (21.5) \\
\hline 2009 & 66.7 (12.3) & 73.3 (10.9) & 28.0 (7.7) & 12.0 (3.3) & 1.3 (0.8) & 180.0 (17.2) \\
\hline 2010 & 49.3 (2.2) & 92.7 (11.5) & 14.7 (2.0) & 14.0 (3.5) & 1.3 (0.8) & 170.7 (12.8) \\
\hline 2011 & 76.0 (14.9) & 64.7 (14.5) & 27.3 (4.2) & 14.7 (2.7) & 2.7 (2.0) & 182.7 (18.8) \\
\hline 2012 & 40.8 (7.5) & 109.6 (12.9) & 31.2 (8.4) & 21.6 (6.1) & 0.8 (0.8) & 203.2 (24.0) \\
\hline 2014 & 26.0 (6.2) & 167.0 (11.8) & 18.0 (2.6) & 21.0 (3.0) & 3.0 (1.0) & 232.0 (16.3) \\
\hline 2015 & 110.0 (27.8) & 198.0 (18.5) & 33.0 (7.6) & 13.0 (5.3) & 2.0 (1.2) & 354.0 (43.1) \\
\hline 2016 & 46.0 (12.9) & 130.0 (10.4) & 44.0 (4.3) & 9.0 (3.0) & 0.0 & 229.0 (15.8) \\
\hline 2018 & 73.3 (25.5) & 173.3 (16.6) & 72.0 (7.9) & 25.3 (2.5) & 2.7 (1.3) & 344.0 (41.4) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsmcl.d18 - d96

Table 175. PSD and RSD \({ }_{15}\) values obtained for largemouth bass from spring electrofishing samples in McNeely Lake in April 2018; confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. \(\geq 8.0\) in & PSD & RSD \(_{15}\) \\
\hline Largemouth bass & 406 & \(36(\pm 5)\) & \(9(\pm 3)\) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsmcl.d18

Table 176. Population assessment for largemouth bass collected during spring electrofishing at McNeely Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean
length
age-3
at capture & Spring CPUE age-1 & \[
\begin{gathered}
\text { Spring } \\
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & Spring CPUE
\[
\geq 15.0 \text { in }
\] & Spring CPUE \(\geq 20.0\) in & \begin{tabular}{l}
Instantaneous mortality \\
(z)
\end{tabular} & Annual mortality (AM) & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
10.9^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
70.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
72.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
25.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
3
\end{gathered}
\] & & & 17 & Excellent \\
\hline 2016 & Value Score & \[
\begin{gathered}
10.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
38.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
44.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 12 & Fair \\
\hline 2015 & Value Score & \[
\begin{gathered}
10.5^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
109.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
33.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & & & 14 & Good \\
\hline 2014 & Value Score & \[
\begin{gathered}
10.5^{*} \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
21.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & & & 12 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
10.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
15.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
31.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
21.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & 0.356 & 30.0 & 12 & Fair \\
\hline 2011 & Value Score & \[
\begin{gathered}
11.4^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
72.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
27.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
3
\end{gathered}
\] & & & 16 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
11.4^{\star} \\
3
\end{gathered}
\] & \[
\begin{gathered}
50.8^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
14.7 \\
2
\end{gathered}
\] & \[
\begin{gathered}
14.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 13 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
11.4^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
67.8^{\wedge}
\end{gathered}
\] & \[
\begin{gathered}
28.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
11.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
130.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
58.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & 0.527 & 40.9 & 16 & Good \\
\hline 2007 & Value Score & \[
\begin{gathered}
11.0^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.3^{\wedge}
\end{gathered}
\] & \[
\begin{gathered}
46.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
40.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2006 & Value Score & \[
\begin{gathered}
11.0^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
50.7^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
37.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
24.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 14 & Good \\
\hline 2005 & Value Score & \[
\begin{gathered}
11.0^{*} \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.7^{\wedge} \\
2
\end{gathered}
\] & \[
\begin{gathered}
46.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
30.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 15 & Good \\
\hline 2004 & Value Score & \[
\begin{gathered}
11.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
24.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
23.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
28.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
3
\end{gathered}
\] & 0.319 & 27.3 & 15 & Good \\
\hline 2003 & Value Score & \[
\begin{gathered}
9.8^{*} \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.0^{\wedge} \\
2
\end{gathered}
\] & \[
\begin{gathered}
56.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
27.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & & & 13 & Good \\
\hline 2002 & Value Score & \[
\begin{gathered}
9.8^{*} \\
1
\end{gathered}
\] & \[
\begin{gathered}
23.3^{\wedge} \\
3
\end{gathered}
\] & \[
\begin{gathered}
43.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
1
\end{gathered}
\] & & & 10 & Fair \\
\hline 2001 & Value Score & \[
\begin{gathered}
9.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
70.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
99.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
31.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
2.7 \\
3
\end{gathered}
\] & 0.392 & 32.4 & 16 & Good \\
\hline 2000 & Value Score & \[
\begin{gathered}
10.4^{*} \\
2 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40.7^{\wedge} \\
3 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
104.7 \\
4 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
20.7 \\
3 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
4 \\
\hline
\end{gathered}
\] & & & 16 & Good \\
\hline
\end{tabular}

\footnotetext{
* Age data not collected
\({ }^{\wedge}\) Calculations based on age data gathered in previous years
-Instantaneous and annual mortality not calculated in years where age and growth data are not collected
}

Table 177. Species composition of fish removed from Big Bone Lick State Park Lake in response to dam failure on 3 July 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{16}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & \\
\hline Largemouth bass & 21 & 40 & 59 & 19 & 27 & 23 & 12 & 22 & 19 & 22 & & & & & & & 264 \\
\hline Bluegill & 5 & 2 & 1 & 1 & 3 & 2 & & & & & & & & & & & 14 \\
\hline Channel catfish & & & & & & & & & & & & & & & 3 & 2 & 5 \\
\hline
\end{tabular}

Table 178. Species composition of fish removed from General
Butler State Park Lake in response to dam repairs on 14 August

\section*{2018.}
\begin{tabular}{lcc}
\hline Species & Size range (in) & Total \\
\hline Largemouth bass & \(3.0-19.0\) & 246 \\
Bluegill & \(4.0-6.0\) & 79 \\
Redear sunfish & \(4.0-7.0\) & 56 \\
Channel catfish & \(12.0-16.0\) & 6 \\
White crappie & \(6.0-8.0\) & 1 \\
\hline
\end{tabular}

Table 179. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 0.5 hours of electrofishing in 15 acre pond on KY River WMA Boone Tract, August 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{14}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & & \\
\hline Largemouth bass & & & 23 & 2 & & 2 & 1 & 3 & 12 & 21 & 20 & 3 & 6 & 1 & 94 & 188.0 \\
\hline Bluegill & 9 & 22 & 13 & 7 & 4 & 7 & 12 & 1 & & & & & & & 75 & 150.0 \\
\hline Black crappie & & 1 & & & & 1 & 3 & & & & & & & & 5 & 10.0 \\
\hline
\end{tabular}

Table 180. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 0.5 hours of electrofishing in 6 acre pond on KY River WMA Boone Tract, August 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{21}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Largemouth bass & & & & 16 & & 2 & 10 & 3 & 12 & 17 & 8 & 2 & 2 & & & & & & 1 & 1 & 1 & 75 & 150.0 \\
\hline Bluegill & 6 & 2 & 6 & 7 & 14 & 12 & 35 & 1 & & & & & & & & & & & & & & 83 & 166.0 \\
\hline Redear sunfish & & & & & & 1 & & & & & & & & & & & & & & & & 1 & 2.0 \\
\hline Black crappie & & & & & & & & 1 & & 2 & 1 & & & & & & & & & & & 4 & 8.0 \\
\hline
\end{tabular}

Table 181. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 0.25 hours of electrofishing in 4 acre pond on KY River WMA Boone Tract, August 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & & \\
\hline Largemouth bass & & & & 9 & & 1 & 5 & 3 & 2 & 8 & 3 & 4 & 2 & & 1 & & & 1 & 39 & 156.0 \\
\hline Bluegill & 3 & 12 & 26 & 43 & 14 & 5 & & & & & & & & & & & & & 103 & 412.0 \\
\hline Redear sunfish & & & 1 & 2 & 5 & 11 & 4 & 1 & & & & & & & & & & & 24 & 96.0 \\
\hline White crappie & & & & & & & & & 2 & & 1 & & & & & & & & 3 & 12.0 \\
\hline
\end{tabular}

Table 182. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 2.0 hours of electrofishing in Sympson Lake, April 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Largemouth bass & 2 & 4 & 18 & 15 & 9 & 17 & 18 & 34 & 19 & 14 & 23 & 11 & 22 & 14 & 10 & 4 & 2 & 236 & 118.0 (17.4) \\
\hline
\end{tabular}

Dataset = cfdpssym.d18

Table 183. Species composition, relative abundance, and CPUE (fish/hr) of fish collected in 1.75 hours of electrofishing in Willisburg Lake, May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline Largemouth bass & 4 & 8 & 4 & 9 & 36 & 29 & 17 & 20 & 37 & 29 & 18 & 21 & 18 & 11 & 16 & 6 & 8 & 6 & 297 & \[
\begin{aligned}
& 169.7 \\
& (12.7)
\end{aligned}
\] \\
\hline
\end{tabular}

Dataset= cfdpswlb.d18

\title{
NORTHEASTERN FISHERY DISTRICT
}

\section*{Project 1: Lake and Tailwaters Fishery Surveys}

\section*{FINDINGS}

All sampling conditions can be found in Table 1. This includes dates, temperatures, secchi depths and any other pertinent sampling information during the sampling events.

\section*{Cave Run Lake (8,720a)}

Muskellunge sampling
On March 19,20 and 22, the upper, middle and lower sections of Cave Run Lake were sampled for an assessment of the muskellunge fishery. In total, 101 fish were collected; of those, 51 (\(50 \%\)) came from the lower section, 44 \((44 \%)\) came from the middle section and \(6(6 \%)\) came from the upper section (Table 2). Relative weights continue to range from the upper \(80 \%\) to lower \(90 \%\) and show very little statistical difference from relative weights obtained prior to the implementation of the 36.0 -in minimum size limit (Table 3). Once again, average length and weight of known-age fish was determined from marked members of the population. In Cave Run Lake, the fish tend to reach the minimum size limit of 36.0 in between their fourth and fifth year (Table 4). In 2018, the fishery overall was rated as "Fair" with a score of 9 ; this drop is very similar to the one experienced in 2016 with an overall decrease in numbers (Table 5). In October of 2016, Cave Run Lake was stocked with 1,080 young-of-year muskellunge.
\begin{tabular}{|c|c|c|c|}
\hline Year & Marking & \begin{tabular}{c}
Number \\
Stocked
\end{tabular} & \begin{tabular}{c}
Average \\
Length (in)
\end{tabular} \\
\hline 2018 & No Mark & 1,080 & 12.2 \\
\hline 2017 & Caudal Wire Tag & 2,700 & 12.0 \\
\hline 2016 & Right Cheek Wire Tag & 2,800 & 11.8 \\
\hline 2015 & Dorsal Fin Wire Tag & 1,307 & 13.0 \\
\hline 2014 & Left Cheek Wire Tag & 2,900 & 13.3 \\
\hline 2013 & Right Pectoral Fin Clip & 2,800 & 12.6 \\
\hline 2012 & Left Pelvic Fin Clip & 1,923 & 12.4 \\
\hline 2011 & Right Pelvic Fin Clip & 2,800 & 12.8 \\
\hline 2010 & Left Pectoral Fin Clip & 2,811 & 12.5 \\
\hline
\end{tabular}

Black bass sampling (Spring/Fall)
On May 7-9, the upper, middle and lower sections of Cave Run Lake were nocturnally electrofished for assessment of the black bass population. In total, 1,512 fish were captured. The majority of these fish were largemouth bass \((65 \%)\), followed by spotted bass (\(33 \%\)) and smallmouth bass (\(2 \%\); Table 6). As is normally the case, the percentage of the population represented by spotted and smallmouth bass increases as you head from the upper sections of the lake to the lower sections of the lake. Catch rates were similar to (or slightly higher than) the 1990-2017 average for all length groups of largemouth bass with the exception of the fish under 8.0 in and over 20.0 in , which were less than this average (Table 7). PSD and RSD \(_{15}\) values for largemouth bass demonstrate that the majority of the fish in the lake are below 12.0 in (Table 8). Overall, the largemouth bass population was rated as "good" (Table 9) and the spotted bass population was rated as "fair" (Table 10). In October, a sample of individuals was collected to determine age and growth characteristics for the largemouth bass population. These samples demonstrate that the growth rates continue to be fair (Table 11). Age characteristics were also determined by section of the lake and showed that growth rates did not vary between the areas of the lake (Table 12).

\section*{Crappie sampling}

Over the last week of October, crappie were sampled in the upper reaches of Cave Run Lake with trap nets. In 40 net-nights, 524 crappie were collected (Table 13). As is usually the case, the majority of the fish collected were white crappie (\(93 \%\)). PSD and \(\mathrm{RSD}_{10}\) showed that far and away the majority of the fish collected are smaller in size
(Table 14). Relative weights were in the upper 80 to lower 90 percent range (Table 15). The overall assessment of the white crappie fishery at Cave Run Lake was "fair" (Table 16).

\section*{Grayson Lake (1,512a)}

\section*{Black bass sampling (Spring/Fall)}

The black bass population of Grayson Lake was nocturnally electrofished on April 23, 25, and 26. In total, 1,558 fish were collected ranging in size from 3.0 to 20.0 in (Table 17). The majority of these fish (79\%) were largemouth and the remainder were spotted bass (\(21 \%\)) and smallmouth bass (\(>1 \%\)). Catch rates by length group were either higher than or not different than the average from 1999-2016 (Table 18). The majority of the population of largemouth bass over 8.0 in is under 12.0 in as demonstrated by PSD values (Table 19). The overall assessment of the largemouth bass fishery at Grayson Lake was "fair" (Table 20).

In September, Grayson Lake was nocturnally electrofished for determination of spawning strength of largemouth bass. Indices of year class strength for largemouth bass continue to be on the high end (Table 21) and the lake was once again not stocked with young of year largemouth bass in 2018.

\section*{Crappie sampling}

On 18 October, crappie were sampled in the upper reaches of Grayson Lake by electrofishing. In total, 302 crappie were collected with the majority of those being white crappie (\(92 \%\); Table 22). PSD and RSD \(_{10}\) showed that far and away the majority of the fish collected are smaller in size (Table 23). Relative weights range from the mid-70's to the lower 90's (Table 24). The overall assessment of the white crappie fishery at Grayson Lake was "good" (Table 25).

\section*{Hybrid striped bass sampling}

From 22-26 October, hybrid striped bass in Grayson Lake were sampled by use of 150 , 5 panel experimental gill nets. In total, 115 fish were collected ranging in size from 7.0 to 24.0 in (Table 26). Relative weights were very similar to previous years (Table 27). A subsample of individuals was collected for determination of age and growth characteristics and this demonstrated fair growth rates (Table 28) and that the majority of the population was made up of individuals from 1-3 years old that ranged in size from 13.0 to 22.0 in (Table 29). The overall assessment of the hybrid striped bass fishery at Grayson Lake was "good" (Table 30). This population assessment was based off of samples collected specifically on Grayson Lake from 2011 to present.

\section*{Clear Creek Lake (39a)}

Black bass sampling (Spring/Fall)
On 25 April, the largemouth bass population was diurnally electrofished to assess the fishery. A total of 85 fish were collected ranging in size from 4.0 to 20.0 in (Table 31). The total catch rate was down from the 10-year average (Table 32). The PSD is also slightly below the 10 -year average; however, \(\mathrm{RSD}_{15}\) is in line with the average (Table 33). The overall assessment for largemouth bass on Clear Creek Lake was "good" (Table 34).

Clear Creek Lake was also diurnally electrofished on 4 October to collect relative weights (Table 36) and assess age class. During that sample, 191 largemouth bass were collected ranging from 2.0 to 19.0 in (Table 35). A sample of the population was kept to determine the back calculated growth. The population was made up of mostly 1-3 year olds with slow growth rates (Table 37).

\section*{Sunfish sampling (Summer)}

On 17 May, sunfish were diurnally electrofished to assess the population. During the sample, 48 bluegill ranging from 3.0 to 8.0 in were collected (Table 38). The overall catch rate of bluegill is lower than it has been in the past 10 years (Table 39). PSD and \(\mathrm{RSD}_{8}\) demonstrate that the majority of the bluegill are stock size with limited amounts breaking into the quality and preferred ranking (Table 40). The bluegill population was not scored this year, but the catch rates of fish over 6.0 in and 8.0 in were poor and fair, respectively (Table 41). Redear sunfish
were also collected during this sample. In total, 15 were collected ranging from 4.0 to 8.0 in (Table 42). Catch rates were extremely low this year; well below the 10-year average (Table 43). The redear sunfish population was not scored this year, but the catch rates of fish over 8.0 in and 10.0 in were good and unscored, respectively (Table 45).

\section*{Greenbo Lake (181a)}

\section*{Black bass sampling (Spring)}

On 2 May, Greenbo Lake was nocturnally electrofished to assess the population. In total, 377 largemouth bass were collected ranging from 2.0 to 23.0 in (Table 46). Catch rate was significantly up across all length groups (Table 47). PSD and \(\mathrm{RSD}_{15}\) mimic the increased catch rates by showing high numbers of both quality and preferred largemouth (Table 48). High numbers of largemouth in the 12.0- to 15.0 -in category and greater than 20.0 in category carried the assessment to a "good" rating again this year (Table 49).

\section*{Miscellaneous}

Hydrilla continues to be a problem at Greenbo Lake. The fall largemouth bass sample was not attempted due to excessive weed coverage. In an effort to reduce the amount of vegetation, grass carp were stocked for a third straight year. Fifty-seven grass carp averaging fifteen inches were stocked this year.

\section*{Creel Survey}

From 01 March to 31 October, a roving creel survey was conducted on Greenbo Lake. In total, there were 5,814 trips on the lake (33 trips per acre), and anglers spent a total of 23,189 hours on the lake (132 hours per acre; Table 50). The majority of the users on Greenbo Lake are male residents who spend time still fishing from a boat. The most fished for species on the lake was "anything" (\(2,345.5\) trips), followed by black bass (\(1,549.7\) trips), panfish (725.6 trips), and trout (657.5 trips; Table 51). The most harvested species were panfish \((3,216)\) followed by trout \((1,562)\) and crappie \((1,319)\). Panfish and trout were also the most caught species (7,345 and 1,814 fish, respectively) but bass took third place for total catch \((1,791)\). Success rates were highest for panfish, trout and crappie (\(35.5 \%\), \(50.4 \%\) and \(39.7 \%\), respectively). Table 52 shows the number of fish harvested and released by in class. This table shows the very low (\(5 \%\) overall) harvest rate for largemouth bass, but high harvest rates for bluegill, both species of crappie, and trout. On average, 193.7 trips were made a month for largemouth bass, but these ranged from 97.8 trips in October to 319.5 trips in May (Table 53). The most successful month was May with 0.53 fish caught per hour of fishing. Trips made for trout slowly declined from 412.4 in March to 8.5 in July, and the most successful month was March (0.99 fish caught per angler hour; Table 54).

\section*{Angler Attitude Survey}

In conjunction with the creel survey, anglers were asked a series of questions pertaining to their attitudes towards fishing on Greenbo Lake (Table 55). Anglers were only surveyed once in the year. Overall, the most fished for species were bass, sunfish and trout. Those that fished for bass were satisfied (\(48.1 \%\)). Those who were not satisfied \((12.9 \%)\) were disappointed in the number of fish and the inability to catch fish \((34.1 \%\) and \(25.0 \%\), respectively). Similarly, the majority of the anglers who fished for sunfish, catfish and trout were also satisfied \((57.0 \%, 47.7 \%\) and \(67.5 \%\), respectively). The majority of the anglers were satisfied with the current size and creel limits (\(97.2 \%\)). Finally, \(3 / 4\) of the anglers were aware of the presence of hydrilla in Greenbo, and the same amount of individuals said it did not hinder their fishing experiences. Slightly more than \(1 / 2\) of the anglers know hydrilla is primarily introduced through boaters and about \(1 / 2\) of anglers took precautions to prevent the spread to other lakes.

\section*{Lake Reba (76a)}

\section*{Black bass sampling (Spring/Fall)}

On 18 April, Lake Reba was diurnally electrofished for assessment of the largemouth bass fishery. In total, 286 fish were collected ranging in size from 3.0 to 18.0 in (Table 56). This catch rate was on par with the average from 1995 - 2017, although the majority of the specific length group categories were at or below average (Table 57). Catch rates showed a higher percentage of smaller size classes of fish, and PSD and \(\operatorname{RSD}_{15}\) values echoed this (Table 58). The overall assessment of the largemouth bass fishery at Lake Reba was "good" (Table 59).

Lake Reba was once again diurnally electrofished in the fall to collect indices related to spawning class strength and based on these values the lake was not stocked in 2018 (Table 60).

\section*{Smokey Valley (36a)}

Black bass sampling (Spring/Fall)
On May 01, Smoky Valley Lake was diurnally electrofished for assessment of the largemouth bass fishery. In total, 256 fish were captured ranging in size from 3.0 to 17.0 in (Table 61). Catch rates were similar to (or slightly higher than) the 1990-2017 average for all length groups of largemouth bass (Table 62). PSD and RSD 15 values for largemouth bass demonstrate that the majority of the fish in the lake are below 12.0 in (Table 63). Overall, the largemouth bass population was rated as "fair" (Table 64).

On 8 October, Smoky Valley was again sampled to determine relative weights and age and growth characteristics for the largemouth bass population. For this sample, 249 fish were caught (Table 65) and the relative weight was in the middle 80 's (Table 66). This sample continued to show slower growth rates overall (Table 67) and that the females tended to grow quicker than the males (Table 68).

\section*{Lake Wilgreen (131a)}

Black bass sampling (Spring/Fall)
On April 19, Lake Wilgreen was diurnally electrofished for assessment of the largemouth bass fishery. In total, 185 fish were captured ranging in size from 2.0 to 22.0 in (Table 69). Catch rates, for the most part, were below the 1990-2017 average with the exception of the larger-sized fish, which continue to be above average (Table 70). PSD and \(\mathrm{RSD}_{15}\) values for largemouth bass demonstrate that the majority of the fish in the lake are above 12.0 in and that a healthy number of the fish are also above 15.0 in (Table 71). Overall, the largemouth bass population was rated as "good" (Table 72).

Table 1. Yearly summary of sampling conditions by waterbody, species sampled and date.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Water body & Species & \[
\begin{gathered}
\text { Date } \\
(2018) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Time } \\
& 24 \mathrm{hr} \\
& \hline
\end{aligned}
\] & Gear & Weather & Water
Temp (\({ }^{\circ} \mathrm{F}\)) & Water level & \begin{tabular}{l}
Secchi \\
(in)
\end{tabular} & Conditions & Pertinent sampling comments \\
\hline Cave Run Lake & Muskie & 3/19 & 900 & electro & overcast & 48 & 733.28 & 38 & fair & middle section (Beaver Creek); 3h sample \\
\hline Cave Run Lake & Muskie & 3/22 & 900 & electro & overcast & 45 & 731.94 & 33 & fair & upper section (Poppin Rock/Bangor) \\
\hline Cave Run Lake & Muskie & 3/20 & 900 & electro & sunny & 47 & 732.56 & 30 & fair & low er section (Dam/Scott's Creek) \\
\hline Cave Run Lake & LMB & 5/7 & 2030 & electro & nocturnal & 71 & 731.39 & 48 & fair & Upper \\
\hline Cave Run Lake & LMB & 5/8 & 2030 & electro & nocturnal & 76 & 731.85 & 60 & fair & middle \\
\hline Cave Run Lake & LMB & 5/9 & 2030 & electro & nocturnal & 70 & 731.69 & 66 & fair & low er \\
\hline Cave Run Lake & LMB & 10/23 & 900 & electro & sunny/cold & 67 & 731.67 & 56 & good & low er/middle, otolith collection \\
\hline Cave Run Lake & LMB & 10/24 & 900 & electro & sunny & 59 & 730.92 & 28 & good & upper, otolith collection \\
\hline Cave Run Lake & BC/WC & 10/30 & 800 & trap net & - & 52 & 727.40 & 29 & good & \\
\hline Cave Run Lake & BC/WC & 10/31 & 800 & trap net & - & 54 & 727.10 & 30 & good & \\
\hline Cave Run Lake & BC/WC & 11/1 & 800 & trap net & - & 56 & 726.97 & 38 & good & \\
\hline Cave Run Lake & BC/WC & 11/2 & 800 & trap net & - & 54 & 727.01 & 34 & good & \\
\hline Grayson Lake & LMB & 4/23 & 2000 & electro & nocturnal & 57 & 645.24 & 33 & good & upper section (Caney) \\
\hline Grayson Lake & LMB & 4/25 & 2000 & electro & nocturnal & 58 & 645.52 & 45 & good & middle section (Bruin) \\
\hline Grayson Lake & LMB & 4/26 & 2030 & electro & nocturnal & 60 & 645.57 & 51 & good & low er section (Dam/Deer Creek) \\
\hline Grayson Lake & LMB & 9/18 & 2000 & electro & nocturnal & 77 & 646.60 & 20 & good & upper section (Caney) \\
\hline Grayson Lake & LMB & 9/19 & 2000 & electro & nocturnal & 83 & 646.30 & 60 & good & middle section (Bruin) \\
\hline Grayson Lake & LMB & 9/20 & 2000 & electro & nocturnal & 84 & 646.8 & 50 & good & low er section (Dam/Deer Creek) \\
\hline Grayson Lake & BC/WC & 10/18 & 830 & electro & clear, cool & 58 & 645.22 & - & good & upper section (Caney) \\
\hline Grayson Lake & hybrids & 10/23 & 830 & gill (125') & sunny & 60 & & 48 & good & \\
\hline Grayson Lake & hybrids & 10/24 & 830 & gill (125') & sunny & 56 & & - & good & \\
\hline Grayson Lake & hybrids & 10/25 & 830 & gill (125 ') & sunny & 60 & & 40 & good & \\
\hline Clear Creek & LMB & 4/25 & 1230 & electro & sunny/w arm & 57 & normal & 33 & good & \\
\hline Clear Creek & LMB & 10/4 & 830 & electro & sunny/w arm & 73 & normal & 26 & good & \\
\hline Clear Creek & SUN & 5/17 & 1100 & electro & sunny/w arm & 78 & normal & 72 & good & \\
\hline Greenbo Lake & LMB & 5/2 & 2000 & electro & clear & 65 & normal & 96 & good & \\
\hline Smoky Valley & LMB & 5/1 & 830 & electro & sunny & 63 & normal & 54 & good & \\
\hline Smoky Valley & LMB & 10/8 & 830 & electro & sunny & - & normal & 32 & good & \\
\hline Lake Reba & LMB & 4/18 & 900 & electro & sunny & 55 & normal & 36 & good & \\
\hline Lake Reba & LMB & 9/18 & 900 & electro & clear & 77 & normal & 18 & good & \\
\hline Lake Wilgreen & LMB & 4/19 & 8300 & electro & sunny & 55 & normal & 36 & good & \\
\hline Slate Creek & "game" & 6/7 & 800 & j. electro & clear & 70 & - & - & good & Site 1 White Oak; dow nstream most \\
\hline Slate Creek & "game" & 6/20 & 800 & j. electro & clear & 81 & - & - & good & Site 2 Bach Hole; 2nd dow nstream most \\
\hline Slate Creek & "game" & 6/8 & 800 & j. electro & clear & 72 & - & - & good & Site 3 Lion's Club; 2nd upstream most \\
\hline Slate Creek & "game" & 6/7 & 800 & j. electro & clear & 72 & - & - & good & Site 4 Shrout Road; upstream most \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Water body & Species & \[
\begin{gathered}
\text { Date } \\
(2018) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Time } \\
& 24 \mathrm{hr} \\
& \hline
\end{aligned}
\] & Gear & Weather & Water
Temp (ㅇF) & Water level & \begin{tabular}{l}
Secchi \\
(in)
\end{tabular} & Conditions & Pertinent sampling comments \\
\hline Licking River & "game" & 6/4 & 1130 & electro & clear & 72 & - & 15" & good & CFD sample, Site 1: Falmouth Ramp \\
\hline Licking River & "game" & 6/5 & 800 & j. electro & clear & 70 & - & - & good & Site 2: Claysville \\
\hline Licking River & "game" & 6/6 & 800 & electro & clear & - & - & - & - & Site 3: Bluelicks \\
\hline Licking River & "game" & 6/6 & 1200 & electro & clear & - & - & - & - & Site 4: Clay WMA \\
\hline Licking River & "game" & 6/5 & 900 & electro & clear & 65 & - & 30 & good & Site 5: Sherburn \\
\hline Licking River & "game" & 6/5 & 1230 & electro & clear & - & - & 32 & good & Site 6: Mouth of Fox Creek \\
\hline Licking River & "game" & 6/6 & 800 & j. electro & clear & 61 & - & - & good & Site 7: Johnson Ford, dow nstream \\
\hline Licking River & "game" & 6/6 & 1230 & j. electro & clear & 60 & - & - & good & Site 8: Johnson Ford, upstream \\
\hline Licking River & "game" & 6/20 & 1030 & electro & clear & 70 & - & - & good & Site 10: CRL Tailw aters \\
\hline Kentucky River & Sander & 11/28 & 1900 & j. electro & clear/cold & 44 & higher & - & fair & Pool 11, below L\&D12 \\
\hline Kentucky River & Sander & 11/28 & 2100 & j. electro & clear/cold & - & higher & - & fair & Pool 09, below L\&D10 \\
\hline
\end{tabular}

Table 2. Relative abundance and CPUE (fish/hour) of muskellunge collected in the upper, middle and lower sections during 15 hours of 30minute runs spread across each area of Cave Run Lake (3 in upper, 6 in middle and lower; 19, 20, 22 March).

Table 3. Number of fish and mean relative weight \(\left(W_{r}\right)\) values for length groups of muskellunge collected across all lake units in Cave Run Lake from 2003-2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{12}{|c|}{Length group} & & & \\
\hline & \multicolumn{3}{|c|}{\(\leq 20.0\) in} & \multicolumn{3}{|c|}{20.1-30.0 in} & \multicolumn{3}{|c|}{30.1-38.0 in} & \multicolumn{3}{|c|}{\(\geq 38.1\) in} & \multicolumn{3}{|c|}{Total} \\
\hline & N & \(\mathrm{W}_{\mathrm{r}}\) & (se) & N & W & (se) & N & W & (se) & N & \(\mathrm{W}_{\mathrm{r}}\) & (se) & N & W & (se) \\
\hline 2018 & 8 & 79.7 & (1.1) & 21 & 88.1 & (1.5) & 20 & 92.4 & (1.7) & 10 & 87.4 & (3.1) & 59 & 88.3 & (1.1) \\
\hline 2017 & 4 & 87.9 & (2.9) & 31 & 91.9 & (0.9) & 54 & 87.8 & (1.0) & 18 & 87.2 & (2.8) & 107 & 88.9 & (0.8) \\
\hline 2016 & 5 & 80.5 & (1.0) & 25 & 88.9 & (2.1) & 31 & 88.5 & (1.3) & 9 & 99.6 & (4.3) & 70 & 89.5 & (1.2) \\
\hline \multicolumn{16}{|l|}{2015*} \\
\hline 2014 & 30 & 79.9 & (1.0) & 24 & 89.4 & (1.1) & 57 & 90.5 & (1.1) & 29 & 91.4 & (1.6) & 140 & 88.2 & (0.7) \\
\hline 2013 & 11 & 79.0 & (1.8) & 4 & 94.7 & (1.9) & 41 & 94.1 & (1.5) & 17 & 91.6 & (2.8) & 73 & 91.3 & (1.3) \\
\hline 2012 & 14 & 74.6 & (1.0) & 28 & 87.5 & (2.1) & 58 & 102.3 & (12.2) & 20 & 86.4 & (1.4) & 120 & 92.9 & (6.0) \\
\hline 2011 & 23 & 83.4 & (2.4) & 29 & 92.8 & (1.5) & 40 & 90.8 & (1.4) & 27 & 87.7 & (1.6) & 119 & 89.2 & (0.9) \\
\hline 2010 & 19 & 79.3 & (1.0) & 64 & 92.1 & (0.9) & 52 & 93.6 & (1.9) & 18 & 89.6 & (1.3) & 153 & 90.7 & (0.9) \\
\hline 2009 & 12 & 87.9 & (4.4) & 11 & 96.8 & (1.5) & 36 & 92.7 & (1.0) & 23 & 93.0 & (1.3) & 82 & 92.6 & (0.9) \\
\hline 2008 & 27 & 76.4 & (1.3) & 40 & 114.3 & (17.4) & 48 & 93.6 & (1.3) & 11 & 89.0 & (1.5) & 126 & 95.9 & (5.6) \\
\hline 2007 & 35 & 83.7 & (0.9) & 9 & 101.8 & (3.8) & 18 & 94.5 & (2.5) & 14 & 91.9 & (1.5) & 76 & 89.9 & (1.1) \\
\hline 2006 & 17 & 74.9 & (1.1) & 13 & 87.6 & (2.2) & 26 & 88.7 & (1.4) & 13 & 87.3 & (1.2) & 69 & 84.8 & (1.0) \\
\hline 2005 & 26 & 81.2 & (3.8) & 23 & 90.6 & (1.1) & 38 & 89.3 & (1.0) & 22 & 85.3 & (2.4) & 109 & 86.8 & (1.2) \\
\hline 2004 & 10 & 79.0 & (2.3) & 10 & 89.9 & (3.2) & 32 & 87.4 & (1.2) & 15 & 80.2 & (1.1) & 67 & 84.9 & (1.0) \\
\hline 2003 & 22 & 82.4 & (3.0) & 16 & 95.5 & (2.6) & 33 & 92.2 & (1.6) & 9 & 87.1 & (2.1) & 80 & 89.6 & (1.3) \\
\hline
\end{tabular}
nedmuscr.d18-d03
* = Lake w as not sampled due to high w ater

Table 4. Average length and weight of known-age muskellunge (standard error in parentheses) in comparison to historical averages (collected from known-age muskie from 1989-2003).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Age class} \\
\hline & Age 1 & Age 2 & Age 3 & Age 4 & Age 5 & Age 6 & Age 7 & Age 8 \\
\hline 2011 & \[
\begin{array}{lcc}
\mathrm{N}= & 33 & \\
\mathrm{~L}= & 14.9 & (0.2) \\
\mathrm{W}= & 0.6 & (0.0) \\
\hline
\end{array}
\] & & & & & & & \\
\hline 2012 & \[
\begin{array}{lll}
\mathrm{N}= & 61 & \\
\mathrm{~L}= & 14.4 & (0.1) \\
\mathrm{W}= & 0.5 & (0.0)
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}= & 15 & \\
\mathrm{~L}= & 23.4 & (0.5) \\
\mathrm{W}= & 2.8 & (0.2)
\end{array}
\] & & & & & & \\
\hline 2013 & \[
\begin{array}{lll}
\mathrm{N}= & 74 & \\
\mathrm{~L}= & 13.9 & (0.1) \\
\mathrm{W}= & 0.5 & (0.0)
\end{array}
\] & \[
\begin{array}{lcc}
\mathrm{N}= & 2 & \\
\mathrm{~L}= & 22.3 & (2.8) \\
\mathrm{W}= & 2.6 & (1.4)
\end{array}
\] & \[
\begin{array}{rcr}
\mathrm{N}= & 7 & \\
\mathrm{~L}= & 31.0 & (0.4) \\
\mathrm{W}= & 7.5 & (0.5)
\end{array}
\] & & & & & \\
\hline 2014 & \[
\begin{array}{lll}
\mathrm{N}= & 73 & \\
\mathrm{~L}= & 14.7 & (0.1) \\
\mathrm{W}= & 0.6 & (0.0)
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}= & 23 & \\
\mathrm{~L}= & 23.4 & (0.4) \\
\mathrm{W}= & 2.9 & (0.2)
\end{array}
\] & \[
\begin{array}{ccc}
\mathrm{N}= & 9 & \\
\mathrm{~L}= & 31.7 & (0.4) \\
\mathrm{W}=8.1 & (0.4)
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}=15 & \\
\mathrm{~L}= & 34.0 & (0.8) \\
\mathrm{W} & =10.2 & (0.9)
\end{array}
\] & & & & \\
\hline 2015 & & & & & & & & \\
\hline 2016 & \[
\begin{array}{lll}
\mathrm{N}=40 & \\
\mathrm{~L}= & 14.0 & (0.1) \\
\mathrm{W}= & 0.6 & (0.1) \\
\hline
\end{array}
\] & \[
\begin{array}{lcl}
\mathrm{N}= & 18 & \\
\mathrm{~L}= & 23.2 & (0.2) \\
\mathrm{W}= & 2.8 & (0.1) \\
\hline
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}= & 15 & \\
\mathrm{~L}= & 31.0 & (0.4) \\
\mathrm{W}= & 7.3 & (0.3) \\
\hline
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}= & 13 & \\
\mathrm{~L}= & 34.2 & (0.5) \\
\mathrm{W}= & 10.2 & (0.6)
\end{array}
\] & \[
\begin{array}{rrr}
\mathrm{N}= & 1 & \\
\mathrm{~L}= & 39.1 & (--) \\
\mathrm{W}= & 16.0 & (--) \\
\hline
\end{array}
\] & \[
\begin{array}{rcr}
\mathrm{N}= & 5 & \\
\mathrm{~L}= & 38.5 & (1.0) \\
\mathrm{W}= & 15.0 & (2.2) \\
\hline
\end{array}
\] & & \\
\hline 2017 & \[
\begin{array}{lcl}
\mathrm{N}= & 59 \\
\mathrm{~L}= & 13.5 & (0.1) \\
\mathrm{W}= & 0.4 & (0.0)
\end{array}
\] & \[
\begin{array}{lll}
\mathrm{N}= & 17 \\
\mathrm{~L}= & 24.1 & (0.7) \\
\mathrm{W}= & 3.4 & (0.5)
\end{array}
\] & \[
\begin{array}{rcc}
\mathrm{N}= & 23 & \\
\mathrm{~L}= & 29.0 & (0.9) \\
\mathrm{W}= & 6.1 & (0.4)
\end{array}
\] & \[
\begin{array}{rlll}
\mathrm{N} & =17 & \\
\mathrm{~L}= & 34.3 & (0.4) \\
\mathrm{W} & =10.2 & (0.4)
\end{array}
\] & \[
\begin{array}{lcc}
\mathrm{N}= & 9 \\
\mathrm{~L}= & 37.3 & (0.5) \\
\mathrm{W}= & 13.5 & (0.9)
\end{array}
\] & \[
\begin{array}{rcc}
\mathrm{N}= & 5 \\
\mathrm{~L}= & 37.5 & (0.5) \\
\mathrm{W}=12.8 & (0.7)
\end{array}
\] & \[
\begin{array}{rccc}
\mathrm{N} & =4 & \\
\mathrm{~L} & =37.6 & (0.4) \\
\mathrm{W} & =13.2 & (0.8)
\end{array}
\] & \\
\hline 2018 & \[
\begin{array}{lll}
\mathrm{N}= & 46 & \\
\mathrm{~L}= & 13.9 & (0.4) \\
\mathrm{W}= & 0.5 & (0.0)
\end{array}
\] & \[
\begin{array}{rll}
\mathrm{N}= & 23 & \\
\mathrm{~L}= & 21.9 & (0.4) \\
\mathrm{W}= & 2.3 & (0.2)
\end{array}
\] & \[
\begin{array}{ccc}
\mathrm{N}= & 2 & \\
\mathrm{~L}= & 32.7 & (1.8) \\
\mathrm{W}= & 9.0 & (1.6)
\end{array}
\] & \[
\begin{array}{ccc}
N= & 3 & \\
L= & 32.9 & (1.0) \\
W= & 10.0 & (0.4)
\end{array}
\] & \[
\begin{array}{ccc}
\mathrm{N}= & 7 & \\
\mathrm{~L}= & 35.1 & (1.0) \\
\mathrm{W}= & 11.0 & (0.9)
\end{array}
\] & \[
\begin{array}{rcr}
\mathrm{N}= & 2 \\
\mathrm{~L}= & 36.2 & (2.2) \\
\mathrm{W}= & 12.0 & (1.5)
\end{array}
\] & \[
\begin{array}{|ccc|}
\hline N= & 5 & \\
L= & 38.2 & (1.7) \\
W= & 14.7 & (1.5)
\end{array}
\] & \[
\begin{aligned}
& \mathrm{N}= \\
& \mathrm{L}= \\
& \mathrm{W}=
\end{aligned}
\] \\
\hline Average (Present) & \[
\begin{array}{lll}
\hline L= & 14.2 & (0.2) \\
W= & 0.5 & (0.0) \\
\hline
\end{array}
\] & \[
\begin{array}{|ccc}
\hline \mathrm{L}= & 23.0 & (0.3) \\
\mathrm{W}= & 2.8 & (0.2) \\
\hline
\end{array}
\] & \[
\begin{array}{|ccc}
\hline \mathrm{L}= & 31.1 & (0.6) \\
\mathrm{W}= & 7.6 & (0.5) \\
\hline
\end{array}
\] & \[
\begin{array}{|ccc|}
\hline L=33.8 & (0.3) \\
W= & 10.1 & (0.1) \\
\hline
\end{array}
\] & \[
\begin{array}{|lll}
\hline \mathrm{L}= & 37.2 & (1.2) \\
\mathrm{W}= & 13.5 & (1.4) \\
\hline
\end{array}
\] & \[
\begin{array}{rll}
\hline \mathrm{L}= & 37.4 & (0.7) \\
\mathrm{W}= & 13.2 & (0.9) \\
\hline
\end{array}
\] & \[
\begin{array}{rll|}
\hline L= & 37.9 & (0.3) \\
W & =13.9 & (0.8) \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{L}= \\
& \mathrm{W}=
\end{aligned}
\] \\
\hline Historical Average & \[
\begin{array}{cc}
\mathrm{L}= & 15.1 \\
\mathrm{~W}= & 0.7
\end{array}
\] & \[
\begin{array}{cc}
\mathrm{L}= & 23.8 \\
\mathrm{~W}= & 3.8
\end{array}
\] & \begin{tabular}{rc}
\(\mathrm{L}=\) & 30.5 \\
\(\mathrm{~W}=\) & 7.8
\end{tabular} & \[
\begin{array}{ll}
\mathrm{L}= & 35.0 \\
\mathrm{~W}= & 11.3
\end{array}
\] & \begin{tabular}{rl}
\(\mathrm{L}=\) & 37.3 \\
\(\mathrm{~W}=\) & 15.7
\end{tabular} & \begin{tabular}{cc}
\(\mathrm{L}=\) & 38.3 \\
\(\mathrm{~W}=\) & 15.3
\end{tabular} & \[
\begin{array}{ll}
\mathrm{L}= & 42.6 \\
\mathrm{~W}= & 20.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline \mathrm{L}= 42.6 \\
& \mathrm{~W}= 20.7 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

Table 5. Muskellunge assessment for Cave Run Lake spring electrofishing from 1995-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 30.0 \text { in }
\end{aligned}
\] & Spring
\[
\begin{aligned}
& \text { CPUE } \\
& \geq 36.0 \text { in }
\end{aligned}
\] & Spring
\[
\begin{aligned}
& \text { CPUE } \\
& \geq 40.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & 3.3 & 3.4 & 2.0 & 0.9 & 0.5 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 2 & 1 & 1 & 2 & 3 & & \\
\hline \multirow[t]{2}{*}{2017} & Value & 3.8 & 5.9 & 4.1 & 2.2 & 0.7 & \multirow[t]{2}{*}{17} & \multirow[t]{2}{*}{Excellent} \\
\hline & Score & 3 & 3 & 3 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2016} & Value & 2.4 & 3.8 & 2.4 & 0.9 & 0.2 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 2 & 2 & 2 & 2 & & \\
\hline \multicolumn{9}{|l|}{2015*} \\
\hline \multirow[t]{2}{*}{2014} & Value & 4.1 & 6.1 & 4.8 & 2.8 & 1.1 & \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{Excellent} \\
\hline & Score & 3 & 3 & 4 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2013} & Value & 4.2 & 3.4 & 3.2 & 1.6 & 0.6 & \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{Good} \\
\hline & Score & 3 & 1 & 3 & 3 & 3 & & \\
\hline \multirow[t]{2}{*}{2012} & Value & 3.5 & 5.9 & 4.3 & 1.9 & 0.6 & \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 4 & 4 & 3 & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 1.9 & 5.3 & 3.7 & 2.2 & 0.9 & \multirow[t]{2}{*}{14} & \multirow[t]{2}{*}{Good} \\
\hline & Score & 1 & 2 & 3 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2010} & Value & 6.8 & 7.4 & 3.9 & 1.9 & 0.6 & \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{Excellent} \\
\hline & Score & 4 & 4 & 3 & 4 & 3 & & \\
\hline \multirow[t]{2}{*}{2009} & Value & 2.6 & 3.9 & 3.3 & 1.7 & 0.7 & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 2 & 3 & 3 & 4 & & \\
\hline \multirow[t]{2}{*}{2008} & Value & 2.7 & 5.5 & 3.3 & 1.3 & 0.3 & \multirow[t]{2}{*}{13} & \multirow[b]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 3 & 3 & 2 & & \\
\hline \multirow[t]{2}{*}{2007} & Value & 3.6 & 2.5 & 1.8 & 1.2 & 0.4 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 2 & 1 & 1 & 2 & 3 & & \\
\hline \multirow[t]{2}{*}{2006} & Value & 2.4 & 2.9 & 2.2 & 1.2 & 0.4 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 1 & 2 & 2 & 3 & & \\
\hline \multirow[t]{2}{*}{2005} & Value & 2.9 & 5.5 & 4.0 & 2.0 & 0.8 & \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{Good} \\
\hline & Score & 2 & 3 & 3 & 4 & 4 & & \\
\hline \multirow[t]{2}{*}{2004} & Value & 1.3 & 3.2 & 2.6 & 1.3 & 0.4 & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 1 & 2 & 3 & 3 & & \\
\hline \multirow[t]{2}{*}{2003} & Value & 1.9 & 3.2 & 2.3 & 1.0 & 0.3 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Poor} \\
\hline & Score & 1 & 1 & 2 & 2 & 2 & & \\
\hline \multicolumn{9}{|l|}{2002*} \\
\hline \multirow[t]{2}{*}{2001} & Value & 2.3 & 4.4 & 3.1 & 1.5 & 0.6 & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 2 & 2 & 3 & 3 & & \\
\hline \multirow[t]{2}{*}{2000} & Value & 1.7 & 2.8 & 1.8 & 0.9 & 0.3 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Poor} \\
\hline & Score & 1 & 1 & 1 & 2 & 2 & & \\
\hline \multirow[t]{2}{*}{1999} & Value & 1.6 & 3.2 & 2.3 & 0.7 & 0.2 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Poor} \\
\hline & Score & 1 & 1 & 2 & 1 & 2 & & \\
\hline \multirow[t]{2}{*}{1998} & Value & 3.8 & 2.8 & 2.8 & 1.0 & 0.3 & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 3 & 1 & 2 & 2 & 2 & & \\
\hline \multirow[t]{2}{*}{1997} & Value & 2.3 & 1.7 & 0.8 & 0.2 & 0.5 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Poor} \\
\hline & Score & 1 & 1 & 1 & 2 & 3 & & \\
\hline \multirow[t]{2}{*}{1996} & Value & 5.2 & 4.2 & 2.4 & 0.8 & 0.4 & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 3 & 2 & 2 & 1 & 3 & & \\
\hline \multirow[t]{2}{*}{1995} & Value & 2.9 & 4.5 & 2.8 & 1.6 & 0.6 & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 2 & 2 & 2 & 3 & 3 & & \\
\hline
\end{tabular}

Table 6. Length frequency and CPUE (fish/hr) of black bass collected in 2.0 hours (6.0 hours total) of 30 -minute nocturnal electrofishing runs in each area of Cave Run Lake from 07-09 May.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & & \\
\hline \multirow[t]{3}{*}{Upper} & Largemouth bass & & 2 & 17 & 22 & 8 & 7 & 43 & 29 & 17 & 15 & 11 & 19 & 12 & 16 & 15 & 6 & 1 & 3 & 1 & 1 & 245 & 122.5 & 4.7 \\
\hline & Spotted bass & & & 3 & 6 & 5 & 7 & 5 & 3 & 1 & 1 & & & & & & & & & & & 31 & 15.5 & 7.1 \\
\hline & Smallmouth bass & & & & & & & & & & & & & & & & 1 & & & & & 1 & 0.5 & 0.5 \\
\hline \multirow[t]{3}{*}{Middle} & Largemouth bass & & 3 & 23 & 27 & 17 & 6 & 38 & 66 & 43 & 42 & 23 & 10 & 11 & 7 & 11 & 2 & 1 & & & & 330 & 165.0 & 37.7 \\
\hline & Spotted bass & & 31 & 54 & 28 & 18 & 37 & 38 & 28 & 12 & 8 & 2 & & 1 & & & & & & & & 257 & 128.5 & 8.9 \\
\hline & Smallmouth bass & & & 6 & 4 & 2 & & 1 & 2 & 2 & 2 & 1 & & & & & & 2 & & & & 22 & 11.0 & 2.7 \\
\hline \multirow[t]{3}{*}{Lower} & Largemouth bass & & 1 & 10 & 33 & 16 & 14 & 60 & 71 & 53 & 33 & 41 & 27 & 14 & 9 & 8 & 7 & 5 & 3 & & & 405 & 202.5 & 35.0 \\
\hline & Spotted bass & 1 & 14 & 13 & 13 & 26 & 32 & 47 & 34 & 12 & 10 & 2 & 2 & 1 & & & & & & & & 207 & 103.5 & 27.1 \\
\hline & Smallmouth bass & & 1 & 4 & & 1 & & 5 & 1 & 1 & 1 & & & & & & & & & & & 14 & 7.0 & 3.7 \\
\hline \multirow[t]{3}{*}{Total} & Largemouth bass & & 6 & 50 & 82 & 41 & 27 & 141 & 166 & 113 & 90 & 75 & 56 & 37 & 32 & 34 & 15 & 7 & 6 & 1 & 1 & 980 & 163.3 & 18.5 \\
\hline & Spotted bass & 1 & 45 & 70 & 47 & 49 & 76 & 90 & 65 & 25 & 19 & 4 & 2 & 2 & & & & & & & & 495 & 82.5 & 17.1 \\
\hline & Smallmouth bass & & 1 & 10 & 4 & 3 & & 6 & 3 & 3 & 3 & 1 & & & & & 1 & 2 & & & & 37 & 6.2 & 1.9 \\
\hline
\end{tabular}
nedpsdcr.d18

Table 7. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Cave Run Lake from 1990-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{\(<8.0\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. error & \multicolumn{2}{|l|}{CPUE Std. error} \\
\hline 2018 & 34.3 & 4.9 & 85.0 & 13.9 & 28.0 & 3.5 & 16.0 & 2.5 & 0.3 & 0.2 & 163.3 & 18.5 \\
\hline 2017 & 73.5 & 8.0 & 55.3 & 7.4 & 32.3 & 3.0 & 21.5 & 2.8 & 0.5 & 0.3 & 182.7 & 15.4 \\
\hline 2016 & 83.8 & 12.7 & 99.7 & 9.2 & 64.3 & 8.4 & 25.5 & 2.9 & 1.3 & 0.6 & 273.3 & 22.8 \\
\hline \multicolumn{13}{|l|}{2015*} \\
\hline 2014 & 59.0 & 7.5 & 69.3 & 10.6 & 23.8 & 3.4 & 20.0 & 3.1 & 2.0 & 0.7 & 172.0 & 12.9 \\
\hline 2013 & 93.0 & 6.1 & 56.7 & 5.0 & 20.7 & 2.3 & 17.7 & 2.3 & 1.5 & 0.4 & 188.0 & 10.1 \\
\hline 2012 & 46.0 & 6.7 & 88.0 & 4.9 & 25.5 & 3.6 & 18.3 & 2.4 & 1.3 & 0.4 & 177.8 & 10.7 \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{\[
2010^{*}
\]}} \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{2009*} \\
\hline 2008 & 25.8 & 6.2 & 23.3 & 2.6 & 8.3 & 1.8 & 3.5 & 1.0 & 0.5 & 0.5 & 61.0 & 8.5 \\
\hline 2007 & 67.5 & 7.2 & 43.3 & 3.5 & 19.9 & 2.8 & 7.9 & 1.3 & 0.3 & 0.2 & 138.7 & 10.7 \\
\hline 2006 & 50.7 & 10.1 & 48.5 & 7.7 & 14.7 & 2.0 & 10.2 & 1.4 & 0.2 & 0.2 & 124.0 & 19.1 \\
\hline 2005 & 75.0 & 13.1 & 41.7 & 6.4 & 14.7 & 2.7 & 7.2 & 1.6 & 0.7 & 0.4 & 138.5 & 22.2 \\
\hline 2004 & 29.0 & 3.0 & 60.7 & 5.9 & 26.0 & 3.0 & 14.1 & 13.5 & 0.3 & 0.2 & 129.8 & 10.1 \\
\hline 2003 & 41.0 & 6.0 & 64.6 & 5.2 & 24.8 & 2.3 & 20.3 & 2.9 & 0.8 & 0.3 & 150.6 & 13.0 \\
\hline \multicolumn{13}{|l|}{\(2002{ }^{*}\)} \\
\hline 2001 & 22.8 & 3.7 & 54.7 & 5.4 & 27.6 & 2.3 & 12.6 & 1.6 & 0.3 & 0.2 & 117.7 & 8.6 \\
\hline 2000 & 45.1 & 4.9 & 78.3 & 6.5 & 26.8 & 2.9 & 9.0 & 1.5 & 0.4 & 0.3 & 159.3 & 10.7 \\
\hline 1999 & 67.6 & 7.2 & 51.3 & 3.5 & 21.6 & 1.8 & 8.6 & 1.5 & & & 149.0 & 8.7 \\
\hline 1998 & 18.7 & 3.5 & 17.9 & 2.9 & 20.6 & 2.1 & 6.9 & 1.5 & & & 64.0 & 7.6 \\
\hline 1997 & 37.1 & 3.6 & 50.4 & 5.2 & 24.6 & 2.6 & 4.4 & 0.8 & 0.1 & 0.1 & 116.5 & 10.4 \\
\hline 1996 & 58.9 & 6.5 & 42.4 & 4.0 & 15.3 & 1.5 & 4.0 & 0.7 & & & 116.1 & 9.5 \\
\hline 1995 & 27.8 & 5.3 & 80.5 & 11.5 & 36.6 & 3.9 & 6.4 & 0.7 & 0.1 & 0.1 & 151.3 & 17.9 \\
\hline 1994 & 62.5 & 7.0 & 54.7 & 7.9 & 38.8 & 3.1 & 3.7 & 0.6 & 0.3 & 0.2 & 159.6 & 15.5 \\
\hline 1993 & 47.1 & 5.4 & 110.7 & 10.3 & 36.2 & 4.8 & 4.9 & 0.8 & 0.3 & 0.1 & 198.8 & 15.3 \\
\hline 1992 & 52.0 & 4.3 & 77.9 & 5.1 & 21.9 & 1.8 & 2.8 & 0.6 & 0.2 & 0.1 & 152.8 & 6.8 \\
\hline 1991 & 32.5 & 4.7 & 64.5 & 4.9 & 31.0 & 2.1 & 6.3 & 1.0 & 0.4 & 0.2 & 134.3 & 7.2 \\
\hline 1990 & 23.3 & 2.7 & 43.0 & 2.7 & 18.5 & 2.2 & 3.4 & 0.9 & 0.2 & 0.1 & 88.2 & 5.8 \\
\hline
\end{tabular}

\footnotetext{
* \(=\) No sample due to high water
nedpsdcr.d90-d18
}

Table 8. PSD and RSD values obtained for largemouth and spotted bass species taken in spring electrofishing samples in each area of Cave Run Lake; 95\% confidence intervals are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Area & Species & No. \(\geq 8.0\) in & \multicolumn{2}{|l|}{PSD (\(\pm 95 \%\))} & \multicolumn{2}{|l|}{RSD \({ }_{\text {a }}(\pm 95 \%)\)} \\
\hline \multirow[t]{2}{*}{Upper} & Largemouth bass & 189 & 45 & (\(\pm 7\) & 23 & (\(\pm 06)\) \\
\hline & Spotted bass & 17 & 6 & \((\pm 12)\) & - & - \\
\hline \multirow[t]{2}{*}{Middle} & Largemouth bass & 254 & 26 & (\(\pm 5\)) & 8 & \((\pm 3)\) \\
\hline & Spotted bass & 126 & 9 & (\(\pm 5\)) & 1 & \((\pm 2)\) \\
\hline \multirow[t]{2}{*}{Lower} & Largemouth bass & 331 & 34 & (\(\pm 5\)) & 10 & \((\pm 3)\) \\
\hline & Spotted bass & 140 & 11 & \((\pm 5)\) & 1 & \((\pm 1)\) \\
\hline \multirow[t]{2}{*}{Total} & Largemouth bass & 774 & 34 & (\(\pm 3\)) & 12 & \((\pm 2)\) \\
\hline & Spotted bass & 283 & 10 & (\(\pm 3\)) & 1 & \(\pm \pm 1)\) \\
\hline
\end{tabular}

nedpsdcr.d18

Table 9. Population assessment of largemouth bass based on samples collected at Cave Run Lake 2003-2018 (scoring based on statewide assessment.

* \(=\) Lake was not sampled due to high water
nedpsdcr.d00 -d 18

Table 10. Population assessment of spotted bass based on samples collected at Cave Run Lake 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{gathered}
\text { Mean Length } \\
\text { age-3 }
\end{gathered}
\] & \[
\begin{gathered}
\text { Spring } \\
\text { CPUE } \\
\text { 11.0-13.9 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 14.0 \text { in }
\end{aligned}
\] & Spring CPUE age-1 & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & & 4.2 & 0.3 & 119.8 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2017} & Value & 8.7 & 5.0 & 0.5 & 27.2 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & 1 & 1 & 2 & 4 & & \\
\hline \multirow[t]{2}{*}{2016} & Value & \multirow[b]{2}{*}{(1)} & 5.3 & 0.8 & 24.8 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 2 & 4 & & \\
\hline \multirow[t]{2}{*}{2015*} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Score}} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{2014} & Value & \multirow[b]{2}{*}{(1)} & 1.8 & 0.3 & 10.8 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2013} & Value & \multirow[b]{2}{*}{(1)} & 4.2 & 0.3 & 11.8 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2012} & Value & \multirow[b]{2}{*}{(1)} & 7.0 & 0.2 & 20.0 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 2 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2011*} & \multicolumn{7}{|l|}{} \\
\hline & Score & & & & & & \\
\hline \multirow[t]{2}{*}{2010*} & \multicolumn{7}{|l|}{Value} \\
\hline & Score & & & & & & \\
\hline \multirow[t]{2}{*}{2009*} & \multicolumn{7}{|l|}{Value} \\
\hline & Score & & & & & & \\
\hline \multirow[t]{2}{*}{2008} & Value & \multirow[b]{2}{*}{(1)} & 0.7 & 0.0 & 7.8 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2007} & Value & \multirow[b]{2}{*}{(1)} & 2.3 & 0.2 & 13.6 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2006} & Value & \multirow[b]{2}{*}{(1)} & 2.8 & 0.3 & 15.3 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2005} & Value & \multirow[b]{2}{*}{(1)} & 1.7 & 0.3 & 9.2 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2004} & Value & \multirow[b]{2}{*}{(1)} & 2.9 & 0.4 & 5.9 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 2 & 4 & & \\
\hline \multirow[t]{2}{*}{2003} & Value & \multirow[b]{2}{*}{(1)} & 3.0 & 0.4 & 13.3 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 2 & 4 & & \\
\hline \multirow[t]{2}{*}{2002*} & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Value}} \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{2001} & Value & \multirow{3}{*}{(1)} & 2.5 & 0.3 & 9.0 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & & 1 & 1 & 4 & & \\
\hline \multirow[t]{2}{*}{2000} & Value & & 2.7 & 0.0 & 13.6 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} \\
\hline & Score & (1) & 1 & 1 & 4 & & \\
\hline
\end{tabular}

\footnotetext{
* = Lake was not sampled due to high water
nedpsdcr.d00-d18
}

Table 11. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Cave Run Lake in October 2018, includes 95\% confidence interval (Cl) for mean length for each age class.
\begin{tabular}{lcccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 9 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2018 & 0 & & & & & & & \\
2017 & 42 & 5.5 & & & & & & \\
2016 & 35 & 5.9 & 9.1 & & & & & \\
2015 & 17 & 5.8 & 9.6 & 11.9 & & & & \\
2014 & 8 & 5.4 & 9.1 & 11.3 & 12.9 & & & \\
2013 & 7 & 6.8 & 10.3 & 12.6 & 14.4 & 16.0 & & \\
2012 & 4 & 7.2 & 10.7 & 12.9 & 14.4 & 15.5 & 16.7 & \\
2011 & 4 & 6.6 & 11.1 & 13.1 & 14.8 & 16.0 & 17.0 & 17.5 \\
& & & & & & & & \\
Mean & & 5.8 & 9.5 & 12.1 & 13.9 & 15.9 & 16.8 & 17.5 \\
Number & & 117 & 75 & 40 & 23 & 15 & 8 & 4 \\
Smallest & & 3.4 & 6.5 & 8.4 & 10.6 & 14.1 & 15.6 & 16.6 \\
Largest & 8.6 & 13.2 & 16.0 & 16.8 & 17.5 & 17.8 & 18.1 \\
Std. error & & 0.1 & 0.1 & 0.2 & 0.3 & 0.3 & 0.3 & 0.4 \\
95\% CI \((\pm)\) & & 0.3 & 0.5 & 0.9 & 1.1 & 1.2 & 1.2 & 1.5 \\
\hline nedaagcr.d18 & & & & & & &
\end{tabular}

Table 12. Back calculated lengths (in) by section of the lake for largemouth bass collected from Cave Run Lake in October 2018, includes \(95 \%\) confidence interval (Cl) for mean length for each age class.
\begin{tabular}{llllccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 8 } & Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \multirow{2}{*}{ Upper } & Number & 37 & 24 & 15 & 11 & 6 & 3 & 2 \\
Lake & Mean & 5.8 & 9.5 & 12.0 & 14.1 & 16.3 & 17.4 & 17.7 \\
& Std. error & 0.2 & 0.3 & 0.5 & 0.5 & 0.5 & 0.4 & 0.4 \\
& & & & & & & & \\
Middle & Number & 36 & 24 & 12 & 6 & 5 & 2 & 1 \\
Lake & Mean & 5.8 & 9.6 & 11.9 & 14.3 & 15.8 & 17.2 & 18.1 \\
& Std. error & 0.1 & 0.1 & 0.3 & 0.3 & 0.5 & 0.5 & - \\
& & & & & & & & \\
Lower & Number & 44 & 27 & 13 & 6 & 4 & 3 & 1 \\
Lake & Mean & 5.9 & 9.5 & 12.4 & 13.4 & 15.3 & 16.0 & 16.6 \\
& Std. error & 0.1 & 0.2 & 0.4 & 0.5 & 0.6 & 0.3 & - \\
& & & & & & & & \\
& Number & 117 & 75 & 40 & 23 & 15 & 8 & 4 \\
Total & Mean & 5.8 & 9.5 & 12.1 & 13.9 & 15.9 & 16.8 & 17.5 \\
& Std. error & 0.1 & 0.1 & 0.2 & 0.3 & 0.3 & 0.3 & 0.4 \\
\hline
\end{tabular}
nedaagcr.d18

Table 13. Length frequency and CPUE (fish/nn) for black and white crappie collected in 40 net-nights of sampling at Cave Run Lake from 30 October to 02 November.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{13}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & & & \\
\hline White crappie & 1 & 3 & 54 & 13 & 100 & 104 & 126 & 42 & 20 & 15 & 8 & 1 & 1 & 488 & 12.2 & 2.5 \\
\hline Black crappie & & & 1 & & 6 & 11 & 11 & 4 & 2 & & 1 & & & 36 & 0.9 & 0.3 \\
\hline
\end{tabular}
nedctncr.d18

Table 14. PSD and \(R S D_{10}\) values obtained for black and white crappie in upper Cave Run Lake; 95\% confidence intervals are in parentheses.
\begin{tabular}{lccccr}
\hline Species & No. \(\geq 5.0\) in & \multicolumn{2}{c}{ PSD (\(\pm 95 \%)\)} & RSD \(_{10}(\pm 95 \%)\) \\
\hline White crappie & 417 & 21 & \((\pm 4)\) & 6 & \((\pm 2)\) \\
Black crappie & 35 & 20 & \((\pm 13)\) & 3 & \((\pm 6)\) \\
\hline nedctncr.d18 & & & &
\end{tabular}

Table 15. Number of fish and mean relative weight \(\left(\mathrm{W}_{\mathrm{r}}\right)\) values for length groups of black and white crappie collected in Cave Run Lake by trap netting.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multicolumn{12}{|c|}{Length group} \\
\hline & \multicolumn{3}{|c|}{5.0-7.9 in} & \multicolumn{3}{|c|}{8.0-9.9 in} & \multicolumn{3}{|c|}{\(\geq 10.0\) in} & \multicolumn{3}{|c|}{Total} \\
\hline & No. & \(\mathrm{W}_{\mathrm{r}}\) & s.e. \\
\hline White crappie & 330 & 97 & 1 & 62 & 85 & 2 & 24 & 88 & 2 & 416 & 95 & 1 \\
\hline Black crappie & 28 & 103 & 4 & 6 & 97 & 3 & 1 & 79 & - & 35 & 102 & 4 \\
\hline
\end{tabular}
nedctncr.d18

Table 16. Population assessment of white crappie based on samples collected at Cave Run Lake in 2018 compared to previous years (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Overall CPUE excluding age-0 & Mean length age-2 & Fall CPUE \(\geq 8.0\) in & CPUE age-1 & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-0 } \\
& \hline
\end{aligned}
\] & Total score & Assessment
rating & Instantaneous mortality (z) & \[
\begin{gathered}
\text { Annual } \\
\text { mortality (A)\% } \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{2018} & Value & 10.8 & & 2.2 & 2.8 & 1.5 & \multirow[b]{2}{*}{10} & \multirow[t]{2}{*}{Fair} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & Score & 2 & 1 & 2 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2017} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Value Score}} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{2016} & Value & 2.7 & 7.4 & 1.1 & 0.4 & 0.1 & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{Poor} & \multirow[b]{4}{*}{-0.800} & \multirow[b]{4}{*}{55.10\%} \\
\hline & Score & 2 & 1 & 1 & 1 & 1 & & & & \\
\hline \multirow[t]{2}{*}{2015} & Value & 3.8 & 7.5 & 1.2 & 1.1 & 0.9 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Poor} & & \\
\hline & Score & 2 & 1 & 1 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2014} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Value Score}} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{2013} & Value & 4.6 & \multirow[b]{2}{*}{1} & 2.0 & 1.4 & 1.5 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} & \multirow[b]{4}{*}{-1.179} & \multirow[b]{4}{*}{69.20\%} \\
\hline & Score & 2 & & 2 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2012} & Value & 5.8 & 7.9 & 0.7 & 2.2 & 2.8 & \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{Fair} & & \\
\hline & Score & 2 & 1 & 1 & 2 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 21.4 & & 3.4 & 11.6 & 17.3 & \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{Good} & & \\
\hline & Score & 4 & 1 & 3 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2010} & Value & 3.6 & & 1.4 & 0.9 & 2.5 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{-1.220} & \multirow[t]{2}{*}{70.50\%} \\
\hline & Score & 2 & 1 & 1 & 1 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2009} & Value & 106.4 & & 3.3 & 59.2 & 56.0 & \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{-1.490} & \multirow[t]{2}{*}{77.50\%} \\
\hline & Score & 4 & 1 & 3 & 4 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2008} & Value & 2.0 & & 0.6 & 0.6 & 1.3 & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{0.588} & \multirow[t]{2}{*}{45.50\%} \\
\hline & Score & 1 & 1 & 1 & 1 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2007} & Value & 2.8 & 7.7 & 0.6 & 0.7 & 0.6 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{1.410} & \multirow[t]{2}{*}{75.50\%} \\
\hline & Score & 2 & 1 & 1 & 1 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2006} & Value & 6.9 & & 0.7 & 5.1 & 3.8 & \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{0.951} & \multirow[t]{2}{*}{66.30\%} \\
\hline & Score & 3 & 1 & 1 & 3 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2005} & Value & 2.2 & & 0.9 & 0.7 & 1.7 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{0.572} & \multirow[t]{2}{*}{43.60\%} \\
\hline & Score & 1 & 1 & 1 & 1 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2004} & Value & 9.3 & 7.9 & 3.0 & 4.2 & 6.4 & \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{0.762} & \multirow[t]{2}{*}{53.30\%} \\
\hline & Score & 3 & 1 & 2 & 3 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2003} & Value & 1.6 & 7.8 & 0.7 & 0.2 & 0.1 & \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{0.391} & \multirow[t]{2}{*}{32.30\%} \\
\hline & Score & 1 & 1 & 1 & 1 & 1 & & & & \\
\hline
\end{tabular}
nedctncr.d92-13; nedaagcr.d92-99, d01-04, 07, 12

Table 17. Length frequency and CPUE (fish/hr) of black bass collected in 4.5 hours (1.5 hours in each section) of nocturnal electrofishing (3-30-minute runs) for black bass in Grayson Lake on 23, 25-26 of April.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area/Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & & \\
\hline \multicolumn{22}{|l|}{Upper} \\
\hline Smallmouth bass & & & & & & & & & & & & & & & & & & & 0 & & \\
\hline Spotted bass & & & & & & & & & 2 & & & & & & & & & & 2 & 1.3 & 0.7 \\
\hline Largemouth bass & & 2 & 1 & 14 & 31 & 20 & 10 & 8 & 12 & 3 & 4 & 1 & 3 & 4 & 2 & 2 & & 4 & 121 & 80.7 & 13.1 \\
\hline \multicolumn{22}{|l|}{Middle} \\
\hline Smallmouth bass & & & & & & & & & & & & & & & & & & & 0 & & \\
\hline Spotted bass & & 4 & 12 & 2 & 5 & 9 & 8 & 8 & 2 & & & & & & & & & & 50 & 33.3 & 10.7 \\
\hline Largemouth bass & & 9 & 116 & 133 & 14 & 85 & 77 & 36 & 23 & 15 & 4 & 4 & 2 & 1 & 1 & 2 & 3 & 1 & 526 & 350.7 & 13.8 \\
\hline \multicolumn{22}{|l|}{Lower} \\
\hline Smallmouth bass & & & & & & & & & & 1 & & & 1 & & & & & & 2 & 1.3 & 1.3 \\
\hline Spotted bass & 2 & 42 & 22 & 18 & 67 & 22 & 27 & 9 & 9 & 5 & & & & & & & & & 223 & 148.7 & 18.1 \\
\hline Largemouth bass & & 22 & 158 & 78 & 9 & 40 & 92 & 78 & 48 & 33 & 7 & 4 & 2 & 3 & 3 & 1 & 4 & & 582 & 388.0 & 56.9 \\
\hline \multicolumn{22}{|l|}{Total} \\
\hline Smallmouth bass & & & & & & & & & & 1 & & & 1 & & & & & & 2 & 0.4 & 0.4 \\
\hline Spotted bass & 2 & 46 & 34 & 20 & 72 & 31 & 35 & 17 & 13 & 5 & & & & & & & & & 275 & 61.1 & 23.2 \\
\hline Largemouth bass & & 33 & 275 & 225 & 54 & 145 & 179 & 122 & 83 & 51 & 15 & 9 & 7 & 8 & 6 & 5 & 7 & 5 & 1229 & 273.1 & 51.4 \\
\hline
\end{tabular}
nedpsdgl.d18

Table 18. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Grayson Lake from 1999-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 130.4 & 26.9 & 117.6 & 22.1 & 16.7 & 3.9 & 8.4 & 1.7 & 1.1 & 0.5 & 273.1 & 51.4 \\
\hline 2017 & 90.9 & 13.7 & 107.1 & 17.9 & 19.8 & 2.3 & 8.9 & 1.3 & 0.9 & 0.5 & 226.7 & 25.5 \\
\hline 2016 & 178.3 & 15.4 & 93.7 & 7.4 & 15.7 & 2.4 & 11.0 & 1.5 & 1.7 & 1.0 & 298.7 & 16.1 \\
\hline 2015 & 55.1 & 14.2 & 90.9 & 12.5 & 18.9 & 4.0 & 14.9 & 2.6 & 3.3 & 0.9 & 179.8 & 27.8 \\
\hline 2014 & 53.5 & 10.7 & 97.3 & 11.3 & 12.7 & 1.6 & 13.5 & 2.0 & 2.2 & 0.7 & 176.9 & 18.3 \\
\hline 2013 & 75.2 & 11.3 & 78.2 & 5.7 & 13.2 & 1.5 & 16.3 & 2.1 & 1.5 & 0.4 & 182.8 & 14.4 \\
\hline 2012 & 67.0 & 11.4 & 91.0 & 6.5 & 16.8 & 2.2 & 13.3 & 2.8 & 0.3 & 0.3 & 188.0 & 16.1 \\
\hline 2011* & & & & & & & & & & & & \\
\hline 2010* & & & & & & & & & & & & \\
\hline 2009 & 22.8 & 4.0 & 41.0 & 4.2 & 17.0 & 2.7 & 12.7 & 2.0 & 0.8 & 0.3 & 93.5 & 10.3 \\
\hline 2008 & 25.7 & 7.2 & 22.5 & 4.4 & 11.5 & 2.5 & 3.7 & 0.9 & 0.3 & 0.2 & 63.3 & 11.5 \\
\hline 2007 & 48.0 & 8.0 & 46.8 & 3.8 & 16.0 & 2.1 & 5.0 & 0.8 & 0.2 & 0.2 & 115.8 & 11.6 \\
\hline 2006 & 18.8 & 2.9 & 55.5 & 7.4 & 23.7 & 3.9 & 5.3 & 1.1 & 0.3 & 0.2 & 103.3 & 10.1 \\
\hline 2005 & 50.1 & 8.0 & 70.2 & 7.9 & 25.1 & 3.7 & 2.9 & 0.5 & 0.2 & 0.2 & 148.3 & 15.9 \\
\hline 2004 & 162.3 & 22.0 & 77.8 & 10.1 & 12.9 & 1.4 & 2.9 & 0.6 & 0.3 & 0.2 & 255.9 & 31.9 \\
\hline 2003 & 128.3 & 10.7 & 79.5 & 6.5 & 6.3 & 0.8 & 2.2 & 0.6 & 0.7 & 0.4 & 216.3 & 15.1 \\
\hline 2002 & 132.5 & 17.9 & 54.5 & 5.5 & 4.8 & 1.4 & 3.0 & 0.8 & 0.8 & 0.4 & 194.8 & 22.7 \\
\hline 2001 & 220.8 & 30.6 & 54.2 & 3.2 & 6.7 & 0.9 & 2.2 & 0.5 & 0.2 & 0.2 & 283.9 & 30.2 \\
\hline 2000 & 143.3 & 20.6 & 65.7 & 5.9 & 13.4 & 1.5 & 6.7 & 1.0 & 0.3 & 0.2 & 229.1 & 25.9 \\
\hline 1999 & 172.7 & 21.6 & 102.4 & 10.1 & 24.1 & 2.1 & 4.6 & 0.7 & 0.2 & 0.2 & 303.8 & 31.3 \\
\hline
\end{tabular}
\({ }^{*}=\) No sample due to high water
nedpsdgl.d18-d12; d09-d99

Table 19. PSD and RSD values obtained for spotted and largemouth bass species taken in spring electrofishing samples in each area of Grayson Lake; 95\% confidence intervals are in parentheses.
\begin{tabular}{llccccc}
\hline Area & Species & No. \(\geq 8.0\) in & PSD (\(\pm 95 \%)\) & RSD \(_{\mathrm{a}}(\pm 95 \%)\) \\
\hline Upper & Spotted bass & 2 & 10 & \((\pm 5)\) & - & \\
& Largemouth bass & 73 & 18 & \((\pm 4)\) & 4 & \((\pm 2)\) \\
\multirow{3}{*}{ Middle } & Spotted bass & 32 & 6 & \((\pm 9)\) & - & \\
& Largemouth bass & 254 & 13 & \((\pm 4)\) & 2 & \((\pm 2)\) \\
& & & & & & \\
Lower & Spotted bass & 139 & 100 & \((\pm 0)\) & - & \\
& Largemouth bass & 315 & 32 & \((\pm 11)\) & 21 & \((\pm 9)\) \\
& & & & & & \\
Total & Spotted bass & 173 & 10 & \((\pm 6)\) & - & \\
& Largemouth bass & 642 & 18 & \((\pm 3)\) & 6 & \((\pm 2)\) \\
\hline
\end{tabular}
a Largemouth bass \(=\) RSD \(_{15}\), spotted bass \(=\) RSD \(_{14}\)
nedpsdgl.d18

Table 20. Population assessment of largemouth bass based on samples collected at Grayson Lake from 2000-2018 (scoring based on statewide assessment).

nedpsdgl.d02-d18; nedaaggl.d03,d08,d17

Table 21. Indices of year class strength at age 0 and age 1 and mean lengths (in) of largemouth bass collected in September while nocturnal electrofishing at Grayson Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Year \\
class
\end{tabular}} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|l|}{Age \(0 \geq 5.0\) in} & \multicolumn{2}{|c|}{Age 1} \\
\hline & & Mean length & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & Std. error \\
\hline 2018 & Total & 4.9 & 0.0 & 164.2 & 39.3 & 74.2 & 19.8 & & \\
\hline 2017 & Total & 5.2 & 0.0 & 91.1 & 20.1 & 63.1 & 15.3 & 126.9 & 28.0 \\
\hline 2016 & Total & 4.7 & 0.0 & 116.4 & 24.1 & 38.9 & 9.7 & 85.1 & 12.7 \\
\hline 2015 & Total & 4.8 & 0.0 & 126.0 & 16.7 & 48.7 & 8.6 & 169.3 & 15.1 \\
\hline 2014 & Total & 4.6 & 0.0 & 101.8 & 15.7 & 31.8 & 8.3 & 53.8 & 14.3 \\
\hline 2013 & Total & 4.3 & 0.0 & 81.3 & 11.2 & 15.3 & 3.3 & 46.9 & 9.5 \\
\hline 2012 & Total & 4.5 & 0.0 & 139.1 & 23.0 & 41.8 & 6.1 & 65.7 & 9.1 \\
\hline 2011 & Total & 4.0 & 0.0 & 83.6 & 15.0 & 11.1 & 2.6 & 48.5 & 12.0 \\
\hline 2010 & Total & 4.8 & 0.0 & 98.2 & 17.3 & 42.0 & 6.9 & * & * \\
\hline 2009 & Total & 4.1 & 0.1 & 33.1 & 5.7 & 4.2 & 1.4 & * & * \\
\hline 2008 & Total & 4.1 & 0.0 & 66.0 & 16.4 & 8.7 & 2.8 & 19.9 & 3.8 \\
\hline 2007 & Total & 4.3 & 0.1 & 44.9 & 9.2 & 12.9 & 2.8 & 29.8 & 10.0 \\
\hline 2006 & Total & 4.1 & 0.0 & 87.1 & 17.9 & 12.0 & 2.6 & 45.9 & 8.0 \\
\hline 2005 & Total & 4.0 & 0.0 & 72.3 & 17.0 & 11.7 & 2.2 & 17.3 & 2.8 \\
\hline 2004 & Total & 4.3 & 0.1 & 40.4 & 5.7 & 11.3 & 2.1 & 46.8 & 7.8 \\
\hline 2003 & Total & 4.3 & 0.0 & 59.1 & 6.8 & 10.4 & 1.7 & 158.9 & 21.7 \\
\hline
\end{tabular}
* No sample collected due to high water
nedbsigl.d18., d16-d13 nedwrsgl.d17,d12-d03; nedpsdgl.d18-d12, d09-d04
nedaaggl.d03, d08, d17

Table 22. Length frequency and CPUE (fish/hr) of black and white crappie collected in 2.0 hours of diurnal electrofishing (8-15-minute runs) on Grayson Lake on 18 October.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{12}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & & & \\
\hline White crappie & 2 & & 18 & 111 & 113 & 20 & 5 & 3 & 2 & 1 & & 1 & 276 & 138.5 & 24.9 \\
\hline Black crappie & & & 1 & 3 & 6 & 11 & 3 & & 1 & & & & 25 & 12.5 & 4.1 \\
\hline
\end{tabular}

Table 23. PSD and \(R S D_{10}\) values for crappie collected while electrofishing on Grayson Lake; 95\% confidence limits are in parentheses.
\begin{tabular}{lccccc}
\hline Species & No. \(\geq 5.0\) in & PSD (\(\pm 95 \%)\) & RSD \(_{10}(\pm 95 \%)\) \\
\hline White crappie & 274 & 12 & \((\pm 4)\) & 3 & \((\pm 2)\) \\
Black crappie & 25 & 60 & \((\pm 20)\) & 4 & \((\pm 8)\) \\
\hline nedcwrgl.d18 & \multicolumn{5}{l}{}
\end{tabular}

Table 24. Number of fish and relative weight (Wr) for each length group of crappie collected at Grayson Lake in 2018. se \(=\) standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{9}{|c|}{Length group} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{3}{|c|}{5.0-7.9 in} & \multicolumn{3}{|c|}{8.0-11.9 in} & \multicolumn{3}{|c|}{\(\geq 10.0\) in} & & & \\
\hline & No. & \(\mathrm{W}_{\mathrm{r}}\) & se & No. & \(\mathrm{W}_{\mathrm{r}}\) & se & No. & W & se & No. & \(\mathrm{W}_{\mathrm{r}}\) & se \\
\hline White crappie & 242 & 83 & 1 & 25 & 74 & 3 & 7 & 90 & 6 & 274 & 82 & 1 \\
\hline Black crappie & 10 & 86 & 3 & 14 & 85 & 2 & 1 & 98 & - & 25 & 86 & 2 \\
\hline
\end{tabular}

Table 25. Population assessment for white crappie based on samples collected during the fall at Grayson Lake from 2005-2018 (scoring based on lake-specific assessment (lake assessment updated in 2018, all scores reflect that update)).

Table 26. Length frequency and CPUE (fish/nn) for hybrid striped bass collected at Grayson Lake while gill netting (11 net-nights) 2225 October.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & & & \\
\hline Hybrid striped bass & 2 & 17 & & & & & 12 & 19 & & 4 & 15 & 19 & 7 & 8 & 5 & 4 & 2 & 1 & 115 & 10.3 & 1.2 \\
\hline
\end{tabular}
nedhybgl.d18

Table 27. Number of fish and relative weight (Wr) for each length group of hybrid striped bass
collected at Grayson Lake. se = standard error
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{9}{|c|}{Length group} & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{3}{|c|}{8.0-11.9 in} & \multicolumn{3}{|c|}{12.0-14.9 in} & \multicolumn{3}{|c|}{\(\geq 15.0\) in} & & & \\
\hline & No. & Wr & se \\
\hline 2018 & 17 & 86 & 1.6 & 31 & 84 & 0.9 & 65 & 83 & 0.8 & 113 & 84 & 0.6 \\
\hline 2016 & 21 & 85 & 1.5 & 26 & 79 & 1.3 & 27 & 81 & 1.1 & 74 & 81 & 0.8 \\
\hline 2014 & 23 & 79 & 1.8 & 10 & 76 & 2.2 & 43 & 83 & 1.0 & 76 & 81 & 0.9 \\
\hline 2011 & 4 & 72 & 0.6 & 26 & 81 & 1.0 & 43 & 85 & 1.0 & 71 & 83 & 0.9 \\
\hline
\end{tabular}
nedhybgl.d18, d16, d14, d11

Table 28. Mean back calculated lengths (in) at each annulus for hybrid striped bass collected from Grayson Lake in October 2018, includes 95\% confidence interval (CI) for mean length for each age class.
\begin{tabular}{lccccccc}
\hline & & \multicolumn{6}{c}{ Age } \\
\cline { 3 - 8 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2018 & 0 & & & & & & \\
2017 & 26 & 9.2 & & & & & \\
2016 & 32 & 9.7 & 15.1 & & & & \\
2015 & 16 & 9.4 & 15.0 & 17.9 & & & \\
2014 & 8 & 8.9 & 14.6 & 17.9 & 20.1 & 20.9 & \\
2013 & 2 & 9.4 & 13.3 & 16.2 & 18.8 & 21.5 & 22.7 \\
2012 & 3 & 9.5 & 14.3 & 17.2 & 19.9 & 21.5 & \\
& & & & & & & \\
Mean & & 9.4 & 14.9 & 17.7 & 19.8 & 21.3 & 22.7 \\
Number & & 87 & 61 & 29 & 13 & 5 & 3 \\
Smallest & & 7.4 & 12.4 & 15.6 & 18.0 & 20.2 & 21.4 \\
Largest & & 11.2 & 17.0 & 19.4 & 21.4 & 22.3 & 23.3 \\
Std. error & & 0.1 & 0.1 & 0.2 & 0.3 & 0.4 & 0.6 \\
95\% Cl (\(\pm\)) & 0.3 & 0.4 & 0.7 & 1.2 & 1.6 & 2.5 \\
\hline nedaaggl.d18 & & & & & & &
\end{tabular}
nedaaggl.d18
Table 29. Age frequency and CPUE (fish/nn) of hybrid striped bass sampled using gill nets for 11 net-nights at Grayson Lake in October 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & 21 & 22 & 23 & 24 & & & & \\
\hline 0 & 2 & 17 & & & & & & & & & & & & & & & & & & 19 & 17 & 1.7 & 0.5 \\
\hline 1 & & & & & & & 12 & 18 & & & & & & & & & & & & 30 & 26 & 2.7 & 0.7 \\
\hline 2 & & & & & & & & 1 & & 4 & 15 & 12 & 2 & & & & & & & 34 & 30 & 3.1 & 0.5 \\
\hline 3 & & & & & & & & & & & & 7 & 5 & 3 & & 2 & 1 & & & 18 & 16 & 1.7 & 0.4 \\
\hline 4 & & & & & & & & & & & & & & 5 & & 2 & 2 & & & 9 & 8 & 0.8 & 0.2 \\
\hline 5 & & & & & & & & & & & & & & & & 1 & & 1 & & 2 & 1 & 0.2 & 0.1 \\
\hline 6 & & & & & & & & & & & & & & & & & 1 & 1 & 1 & 3 & 2 & 0.3 & 0.1 \\
\hline Total & 2 & 17 & 0 & 0 & 0 & 0 & 12 & 19 & 0 & 4 & 15 & 19 & 7 & 8 & & 5 & 4 & 2 & 1 & 115 & 100 & & \\
\hline \% & 1 & 18 & 0 & 0 & 0 & 0 & 10 & 17 & 0 & 3 & 13 & 17 & 6 & 7 & 7 & 4 & 3 & 1 & 0 & 100 & & & \\
\hline
\end{tabular}
nedhybgl.d18; nedaaggl.d18

Table 30. Population assessment for hybrid striped bass based on samples collected during the fall at Grayson Lake (scoring based on lake-specific assessment for 125-foot nets).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{gathered}
\hline \text { CPUE } \\
\text { age-1 } \\
\text { and older } \\
\hline
\end{gathered}
\] & Mean length age-2 & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in }
\end{gathered}
\] & Total score & Assessment rating & Instantaneous mortality (z) & Annual mortality (A)\% \\
\hline \multirow[t]{2}{*}{2018} & Value & 8.7 & 15.1 & 2.7 & 5.9 & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{-0.675} & \multirow[t]{2}{*}{49.1\%} \\
\hline & Score & 4 & 1 & 3 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2016} & Value & 2.6 & 17.5 & 1.4 & 1.4 & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{-0.415} & \multirow[t]{2}{*}{34.0\%} \\
\hline & Score & 3 & 3 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2014} & Value & 3.2 & 14.4 & 2.5 & 0.7 & \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{-0.352} & \multirow[t]{2}{*}{29.7\%} \\
\hline & Score & 3 & 1 & 3 & 1 & & & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 3.6 & 16.5 & 1.5 & 2.2 & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{Good} & & \\
\hline & Score & 4 & 2 & 2 & 2 & & & & \\
\hline
\end{tabular}
nedhybgl.d18

Table 31. Length frequency and CPUE (fish/hr) of black bass collected in 0.375 hours (3 - 7.5 -minute runs) of diurnal electrofishing largemouth bass in Clear Creek Lake on 25 April.
\begin{tabular}{|c|}
\hline & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & & \\
\hline Largemouth bass & 13 & 14 & 3 & 2 & 5 & 13 & 15 & 14 & 2 & & & & & 1 & & 1 & 2 & 85 & 236.1 & 40.4 \\
\hline
\end{tabular}
nedpsdcc.d18

Table 32. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Clear Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{12}{|c|}{Length group} \\
\hline & \multicolumn{2}{|r|}{< 8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & CPUE & s.e. \\
\hline 2018 & 88.9 & 15.5 & 130.6 & 26.5 & 5.6 & 5.6 & 11.1 & 2.8 & 5.6 & 2.8 & 236.1 & 40.4 \\
\hline 2017a & & & & & & & & & & & & \\
\hline 2016a & & & & & & & & & & & & \\
\hline 2015a & & & & & & & & & & & & \\
\hline 2014 & 205.1 & 21.9 & 118.0 & 33.9 & 7.7 & 0.0 & 18.0 & 2.6 & 10.3 & 5.1 & 348.7 & 57.3 \\
\hline 2013a & & & & & & & & & & & & \\
\hline 2012 & 80.0 & 20.1 & 234.7 & 41.4 & 10.7 & 2.7 & 16.0 & 8.0 & 8.0 & 0.0 & 341.3 & 49.4 \\
\hline 2011a & & & & & & & & & & & & \\
\hline 2010a & & & & & & & & & & & & \\
\hline 2009 & 82.7 & 10.7 & 36.0 & 9.2 & 16.0 & 4.6 & 8.0 & 4.6 & 5.3 & 2.7 & 261.3 & 31.4 \\
\hline 2008 & 378.0 & 66.4 & 162.0 & 13.2 & 12.0 & 5.2 & 10.0 & 3.8 & 4.0 & 2.3 & 562.0 & 55.1 \\
\hline
\end{tabular}
nedpsdcc.d08, 09, 12, 14, 18
\(a=\) Lake not sampled

Table 33. Largemouth bass PSD and \(R^{2} D_{15}\) values from spring
electrofishing at Clear Creek Lake; confidence limits are in parentheses.
\begin{tabular}{lclccc}
\hline Year & No. \(\geq 8.0\) in & \multicolumn{2}{l}{ PSD (\(\pm 95 \%)\)} & RSD \(_{15}(\pm 95 \%)\) \\
\hline 2018 & 53 & 11 & \((\pm 9)\) & 8 & \((\pm 7)\) \\
\(2017_{a}\) & & & & & \\
\(2016_{a}\) & & 18 & \((\pm 10)\) & 13 & \((\pm 9)\) \\
2013 & & & & & \\
2014 & 56 & 10 & \((\pm 6)\) & 6 & \((\pm 5)\) \\
\(2013_{a}\) & & & & & \\
2012 & 98 & & 25 & \((\pm 14)\) & 8 \\
\(2011_{a}\) & & 12 & \((\pm 7)\) & \((\pm 9)\) \\
\(2010_{a}\) & & & & 5 & \((\pm 5)\) \\
2009 & 36 & 92 & & & \\
2008 & & & & & \\
\hline
\end{tabular}
nedpsdgl.d18
\(a=\) Lake not sampled

Table 34. Population assessment of largemouth bass based on samples collected at Clear Creek Lake in 2018, 2014 and 2012 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \text { Mean length } \\
& \text { age-3 } \\
& \text { at capture } \\
& \hline
\end{aligned}
\] & Spring CPUE age-1 & Spring
CPUE
\(12.0-14.9\) in & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spring } \\
& \text { CPUE } \\
& \geq 20.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating & Instantaneous mortality (z) & Annual mortality (A)\% \\
\hline 2018 & Value & 9.8 & 83.3 & 5.6 & \[
\overline{11.1}
\] & \[
5.6
\] & 12 & Good & -0.877 & 58.4\% \\
\hline 2017a & & & & & & & & & & \\
\hline 2016a & & & & & & & & & & \\
\hline 2015a & & & & & & & & & & \\
\hline 2014 & Value & 9.1 & 61.5 & \[
7.7
\] & \[
18.0
\] & \[
10.3
\] & 12 & Good & & \\
\hline 2013a & Value Score & & & & & & & & & \\
\hline 2012 & Value & 2 & 65.6
3 & \[
\begin{gathered}
10.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
16.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
4
\end{gathered}
\] & 12 & Good & & \\
\hline
\end{tabular}
nedpsdcc.d18
\(\mathrm{a}=\) Lake was not sampled

Table 35. Length frequency and CPUE (fish/hr) of black bass collected in 0.5 hours (\(4-7.5\)-minute runs) of diurnal electrofishing largemouth bass in Clear Creek Lake on 04 October.
\begin{tabular}{|c|}
\hline & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & & \\
\hline Largemouth bass & 5 & 59 & 46 & 21 & 1 & & 14 & 9 & 15 & 10 & 9 & & & & & & & 1 & 190 & 397.9 & 113.0 \\
\hline
\end{tabular}
nedpsdcc.d18

Table 36. Number of fish and relative weight \(\left(\mathrm{W}_{\mathrm{r}}\right)\) for each length group of largemouth bass collected at Clear Creek Lake in 2018; s.e. \(=\) standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multicolumn{12}{|c|}{Length groups} \\
\hline & \multicolumn{3}{|l|}{8.0-11.9 in} & \multicolumn{3}{|l|}{12.0-14.9 in} & \multicolumn{3}{|c|}{\(\geq 15.0\) in} & \multicolumn{3}{|c|}{Total} \\
\hline & No. & W & s.e. & No. & \(\mathrm{W}_{\mathrm{r}}\) & s.e. & No. & \(\mathrm{W}_{\mathrm{r}}\) & s.e. & No. & W & s.e. \\
\hline Largemouth bass & 48 & 84 & 1 & 10 & 78 & 2 & 1 & 77 & - & 59 & 83 & 1 \\
\hline
\end{tabular}

Table 37. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Clear Creek Lake in October 2018, includes 95\% confidence interval (CI) for mean length for each age class.
\begin{tabular}{lccccccc}
\hline & & \multicolumn{6}{c}{ Age } \\
\cline { 3 - 8 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 2018 & 0 & & & & & & \\
2017 & 17 & 5.5 & & & & & \\
2016 & 13 & 5.7 & 8.8 & & & & \\
2015 & 9 & 5.7 & 8.9 & 10.5 & 11.7 & & \\
2014 & 4 & 5.4 & 8.9 & 10.4 & 10.2 & 11.3 & \\
2013 & 4 & 5.1 & 7.4 & 9.0 & 10.3 & 11.3 & 12.0 \\
2012 & 2 & 5.8 & 8.0 & 9.3 & 10.3 \\
& & & & & & & \\
Mean & & 5.6 & 8.6 & 10.0 & 10.8 & 11.3 & 12.0 \\
Number & & 49 & 32 & 19 & 10 & 6 & 2 \\
Smallest & & 4.8 & 7.3 & 8.5 & 9.7 & 10.7 & 11.7 \\
Largest & 7.2 & 9.9 & 11.1 & 11.8 & 11.9 & 12.3 \\
Std. Error & & 0.1 & 0.1 & 0.2 & 0.3 & 0.2 & 0.3 \\
95\% Cl \((\pm)\) & 0.3 & 0.5 & 0.7 & 1.0 & 0.9 & 1.2 \\
\hline
\end{tabular}
nedaagcc.d18

Table 38. Length frequency and CPUE (fish/hr) for each species of sunfish collected at Clear Creek Lake while electrofishing for 3-7.5-minute runs on 17 May.
\begin{tabular}{lcccccccccc}
\hline & \multicolumn{8}{c}{ Inch class } & & \\
Species & 3 & 4 & 5 & 6 & 7 & 8 & Std. \\
\cline { 2 - 9 } & Sotal & CPUE & error \\
\hline Bluegill & 22 & 10 & 8 & 4 & 2 & 2 & 48 & 123.1 & 29.1 \\
\hline nedsuncc.d18 & & & & & & & & &
\end{tabular}

Table 39. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Clear Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} & \multirow[t]{2}{*}{Total (excl. < 3.0 in)} \\
\hline & \multicolumn{2}{|l|}{\(<3.0\) in} & \multicolumn{2}{|l|}{3.0-5.9 in} & \multicolumn{2}{|l|}{6.0-7.9 in} & \multicolumn{2}{|r|}{\(\geq 6.0\) in} & \multicolumn{2}{|r|}{\(\geq 8.0\) in} & & & \\
\hline & CPUE & s.e. & CPUE \\
\hline 2018 & & & 102.6 & 38.3 & 15.4 & 11.8 & 5.1 & 2.6 & 20.5 & 13.6 & 123.1 & 29.1 & 123.1 \\
\hline \multicolumn{14}{|l|}{2017a} \\
\hline \multicolumn{14}{|l|}{2016a} \\
\hline \multicolumn{14}{|l|}{2015a} \\
\hline 2014 & & & 308.0 & 68.7 & 62.0 & 34.2 & 66.0 & 35.1 & 4.0 & 2.3 & 374.0 & 64.9 & 374.0 \\
\hline \multicolumn{14}{|l|}{2013a} \\
\hline 2012 & & & 74.0 & 18.0 & 54.0 & 36.9 & 56.0 & 38.8 & 2.0 & 2.0 & 130.0 & 26.4 & 130.0 \\
\hline 2011 & 494.0 & 161.8 & 150.0 & 36.1 & 54.0 & 22.2 & 54.0 & 22.2 & & & 698.0 & 151.2 & 204.0 \\
\hline 2010 & 1132.0 & 565.8 & 210.0 & 42.1 & 38.0 & 30.2 & 38.0 & 30.2 & & & 1380.0 & 585.1 & 248.0 \\
\hline 2009 & 121.6 & 44.6 & 174.4 & 43.0 & 33.6 & 13.5 & 33.6 & 13.5 & & & 329.6 & 54.2 & 208.0 \\
\hline 2008 & 378.0 & 162.8 & 112.0 & 33.2 & 72.0 & 69.4 & 72.0 & 69.4 & & & 562.0 & 138.2 & 184.0 \\
\hline \multicolumn{14}{|l|}{nedsuncc.d08-d18} \\
\hline \(\mathrm{a}=\) Lake & was not & sampl & & & & & & & & & & & \\
\hline
\end{tabular}

Table 40. PSD and \(\mathrm{RSD}_{8}\) values obtained for bluegill taken in spring electrofishing samples in each area of Clear Creek Lake; \(95 \%\) confidence intervals are in parentheses.
\begin{tabular}{lclccc}
\hline Year & No. \(\geq 3.0\) in & \multicolumn{2}{l}{ PSD \((\pm 95 \%)\)} & RSD \(_{8}(\pm 95 \%)\) \\
\hline 2018 & 48 & 16 & \((\pm 11)\) & 4 & \((\pm 6)\) \\
\(2017_{\mathrm{a}}\) & & & & & \\
\(2016_{\mathrm{a}}\) & & & & & \\
\(2015_{\mathrm{a}}\) & & 18 & \((\pm 6)\) & 1 & \((\pm 1)\) \\
2014 & 187 & & & & \\
\(2013_{\mathrm{a}}\) & & 43 & \((\pm 12)\) & 2 & \((\pm 2)\) \\
2012 & 65 & 26 & \((\pm 9)\) & & \\
2011 & 102 & & & & \\
\hline
\end{tabular}
nedpsdcc.d18
\(\mathrm{a}=\) Lake not sampled

Table 41. Population assessment of bluegill based on samples collected at Clear Creek Lake from 20092018 (scoring based on statewide assessment).

nedsuncc.d09-18; nedaagcc.d09, d14, d18
\(a=\) Lake not sampled

Table 42. Length frequency and CPUE (fish/hr) for each species of sunfish collected at Clear Creek Lake while electrofishing for 3-7.5-minute runs on 17 May.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{5}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline & 4 & 5 & 6 & 7 & 8 & & & \\
\hline Redear & 4 & 6 & 0 & 1 & 4 & 15 & 38.5 & 19.4 \\
\hline
\end{tabular}
nedsuncc.d18

Table 43. Spring electrofishing CPUE (fish/hr) for each length group of redear sunfish collected at Clear Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{12}{|c|}{Length group} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Total}} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Total } \\
\text { (excl. }<3.0 \mathrm{in} \text {) } \\
\hline \text { CPUE } \\
\hline
\end{gathered}
\]} \\
\hline & \multicolumn{2}{|l|}{\(<3.0\) in} & \multicolumn{2}{|l|}{\(3.0-5.9\) in} & \multicolumn{2}{|l|}{6.0-7.9 in} & \multicolumn{2}{|l|}{\(\geq 6.0\) in} & \multicolumn{2}{|l|}{\(\geq 8.0\) in} & \multicolumn{2}{|l|}{\(\geq 10.0\) in} & & & \\
\hline & CPUE & s.e. & \\
\hline 2018 & & & 25.6 & 12.8 & 2.6 & 2.6 & 10.3 & 5.1 & 12.8 & 6.8 & 0.0 & & 38.5 & 19.4 & 38.5 \\
\hline 2017a & & & & & & & & & & & & & & & \\
\hline 2016a & & & & & & & & & & & & & & & \\
\hline 2015a & & & & & & & & & & & & & & & \\
\hline 2014 & & & 186.0 & 13.2 & 188.0 & 30.0 & 220.0 & 33.1 & 32.0 & 33.1 & 0.0 & & 406.0 & 46.1 & 406.0 \\
\hline 2013a & & & & & & & & & & & & & & & \\
\hline 2012 & & & 22.0 & 6.8 & 122.0 & 38.6 & 124.0 & 38.9 & 2.0 & 2.0 & 0.0 & & 146.0 & 36.6 & 146.0 \\
\hline 2011 & 16.0 & 9.8 & 76.0 & 19.7 & 330.0 & 78.5 & 368.0 & 103.5 & 38.0 & 32.7 & 0.0 & & 460.0 & 124.3 & 444.0 \\
\hline 2010 & 12.0 & 5.2 & 260.0 & 62.4 & 358.0 & 86.9 & 364.0 & 90.4 & 6.0 & 3.8 & 0.0 & & 636.0 & 146.4 & 624.0 \\
\hline 2009 & 4.8 & 2.0 & 238.4 & 37.8 & 129.6 & 68.4 & 131.2 & 70.0 & 1.6 & 1.6 & 0.0 & & 374.4 & 98.8 & 369.6 \\
\hline 2008 & 58.0 & 29.6 & 170.0 & 26.8 & 22.0 & 9.5 & 26.0 & 10.5 & 4.0 & 2.3 & 0.0 & & 254.0 & 43.7 & 196.0 \\
\hline
\end{tabular}
nedsuncc.d08-d18
\(a=\) Lake was not sampled

Table 44. PSD and RSD \(_{10}\) values obtained for redear sunfish taken in spring electrofishing samples in each area of Clear Creek Lake; 95\% confidence intervals are in parentheses.

Table 45. Population assessment of redear sunfish based on samples collected at Clear Creek Lake from 20092018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & Mean length age-3 at capture & Years to 8.0 in & \[
\begin{aligned}
& \text { Spring CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Spring CPUE } \\
& \geq 10.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating & Instantaneous mortality (z) & Annual mortality
(A)\% \\
\hline \multirow[b]{2}{*}{2018} & Value & \multirow{4}{*}{4} & \multirow{4}{*}{2} & 10.3 & 0.0 & & & & \\
\hline & Score & & & 3 & 0 & & & & \\
\hline \multirow[b]{2}{*}{2017 \({ }_{\text {a }}\)} & Value & & & & & & & & \\
\hline & Score & & & & & & & & \\
\hline \multirow[b]{2}{*}{2016a} & Value & & & & & & & & \\
\hline & Score & & & & & & & & \\
\hline \multirow[b]{2}{*}{2015a} & Value & & & & & & & & \\
\hline & Score & & & & & & & & \\
\hline \multirow[t]{2}{*}{2014} & Value & 7.3 & \[
5-5+
\] & \[
32.0
\] & 0.0 & \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{-0.313} & \multirow[t]{2}{*}{0.268} \\
\hline & Score & 4 & 2 & 1 & 0 & & & & \\
\hline \multirow[t]{2}{*}{2013a} & Value & & & & & & & & \\
\hline & Score & & & & & & & & \\
\hline \multirow{2}{*}{2012} & Value & & & 2.0 & 0.0 & & & & \\
\hline & Score & & & 1 & 0 & & & & \\
\hline \multirow{2}{*}{2011} & Value & & & 38.0 & 0.0 & & & & \\
\hline & Score & & & 4 & 0 & & & & \\
\hline \multirow[b]{2}{*}{2010} & Value & & & 6.0 & 0.0 & & & & \\
\hline & Score & & & 2 & 0 & & & & \\
\hline \multirow[t]{2}{*}{2009} & Value & 6.1 & 5-5+ & 1.6 & 0.0 & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{-1.495} & \multirow[t]{2}{*}{77.60\%} \\
\hline & Score & 3 & 2 & 1 & 0 & & & & \\
\hline
\end{tabular}
nedsuncc.d09-18; nedaagcc.d09, nedaagcc.d14, nedaadcc.d18
\(\mathrm{a}=\) Lake not sampled

Table 46. Length frequency and CPUE (fish/hr) of black bass collected in 1.5 hours of nocturnal electrofishing (6-15-minute runs) at Greenbo Lake (Greenup Co.) on 2 May.
\begin{tabular}{|c|}
\hline & \multicolumn{22}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & & \\
\hline Largemouth bass & 2 & 12 & 10 & 8 & 21 & 42 & 20 & 12 & 29 & 48 & 70 & 52 & 21 & 7 & 5 & 5 & & 2 & 4 & 4 & 1 & 2 & 377 & 251.3 & 22.8 \\
\hline
\end{tabular}
nedpsdgb.d18

Table 47. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Greenbo Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{>20.0 in} & & \\
\hline & CPUE & s.e. \\
\hline 2018 & 63.3 & 7.8 & 72.7 & 10.8 & 95.3 & 7.62 & 20.0 & 5.0 & 7.3 & 3.3 & 251.3 & 22.8 \\
\hline 2017 & 24.0 & 5.6 & 78.0 & 13.1 & 82.7 & 10.7 & 16.0 & 2.3 & 4.0 & 1.5 & 200.7 & 17.2 \\
\hline 2016 & 40.7 & 7.8 & 103.3 & 5.5 & 76.7 & 7.6 & 18.0 & 5.5 & 6.0 & 2.9 & 238.7 & 15.0 \\
\hline 2015 & 38.7 & 4.8 & 68.0 & 7.7 & 58.0 & 8.1 & 12.7 & 3.0 & 2.0 & 1.4 & 177.3 & 16.8 \\
\hline 2014 & 28.0 & 7.2 & 52.7 & 3.0 & 116.0 & 16.1 & 7.3 & 1.6 & 3.3 & 1.2 & 204.0 & 16.0 \\
\hline 2013 & 14.0 & 1.7 & 78.7 & 7.4 & 75.3 & 17.3 & 8.7 & 2.2 & 1.3 & 0.8 & 176.7 & 22.4 \\
\hline 2012 & 25.3 & 4.8 & 111.3 & 11.8 & 64.7 & 8.0 & 8.7 & 2.8 & 2.0 & 0.9 & 210.0 & 21.1 \\
\hline 2011 & 46.0 & 13.1 & 91.3 & 9.3 & 58.0 & 8.9 & 6.7 & 3.2 & 1.3 & 0.8 & 202.0 & 14.8 \\
\hline 2010 & 78.0 & 12.9 & 87.3 & 3.5 & 45.3 & 9.3 & 13.3 & 5.8 & 2.0 & 1.4 & 224.0 & 11.3 \\
\hline 2009 & 44.7 & 9.4 & 60.0 & 8.7 & 50.0 & 8.0 & 18.0 & 3.4 & 2.7 & 1.3 & 172.7 & 16.7 \\
\hline 2008 & 24.0 & 7.2 & 27.3 & 5.8 & 19.3 & 2.8 & 9.3 & 3.0 & 2.7 & 1.3 & 80.0 & 15.2 \\
\hline
\end{tabular}
nedpsdgb.d08-d18

Table 48. Largemouth bass PSD and \(\mathrm{RSD}_{15}\) values from spring electrofishing at Greenbo Lake; confidence limits are in parentheses.
\begin{tabular}{lccccc}
\hline Year & No. \(\geq 8.0\) in & \multicolumn{2}{c}{ PSD \((\pm 95 \% \mathrm{Cl})\)} & \(\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})\) \\
\hline 2018 & 282 & 61 & \((\pm 6)\) & 11 & \((\pm 4)\) \\
2017 & 265 & 56 & \((\pm 6)\) & 9 & \((\pm 3)\) \\
2016 & 297 & 48 & \((\pm 6)\) & 8 & \((\pm 3)\) \\
2015 & 208 & 51 & \((\pm 7)\) & 9 & \((\pm 4)\) \\
2014 & 264 & 70 & \((\pm 6)\) & 4 & \((\pm 2)\) \\
2013 & 244 & 52 & \((\pm 6)\) & 5 & \((\pm 3)\) \\
2012 & 277 & 40 & \((\pm 6)\) & 5 & \((\pm 3)\) \\
2011 & 234 & 51 & \((\pm 6)\) & 4 & \((\pm 3)\) \\
2010 & 219 & 40 & \((\pm 7)\) & 9 & \((\pm 4)\) \\
2009 & 192 & 53 & \((\pm 7)\) & 14 & \((\pm 5)\) \\
2008 & 84 & 51 & \((\pm 11)\) & 17 & \((\pm 8)\) \\
\hline
\end{tabular}
nedpsdgb.d08-d18
Malfunctioning electrofishing boat in 2008

Table 49. Population assessment of largemouth bass based on samples collected at Greenbo Lake from 2008-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{gathered}
\hline \text { Mean length } \\
\text { age-3 } \\
\text { at capture } \\
\hline
\end{gathered}
\] & Spring CPUE age-1 & \[
\begin{gathered}
\text { Spring } \\
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & Spring CPUE \(\geq 15.0\) in & Spring CPUE \(\geq 20.0\) in \(\geq\) & Total score & Assessment rating & Instantaneous mortality (z) & Annual mortality (A)\% \\
\hline \multirow[b]{2}{*}{2018} & Value & \multirow{3}{*}{3} & 22.7 & 95.3 & 20.0 & 7.3 & \multirow[b]{2}{*}{16} & \multirow[b]{2}{*}{Good} & \multirow[b]{6}{*}{-1.17} & \multirow[b]{6}{*}{0.688} \\
\hline & Score & & 2 & 4 & 3 & 4 & & & & \\
\hline \multirow[b]{2}{*}{2017} & Value & & 6.0 & 82.7 & 16.0 & 4.0 & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Good} & & \\
\hline & Score & \multirow[t]{2}{*}{3} & 1 & 4 & 2 & 4 & & & & \\
\hline \multirow[b]{2}{*}{2016} & Value & & 14.7 & 76.7 & 18.0 & 6.0 & \multirow[t]{2}{*}{16} & \multirow[b]{2}{*}{Good} & & \\
\hline & Score & 3 & 2 & 4 & 3 & 4 & & & & \\
\hline \multirow[t]{2}{*}{2015} & Value & 11.2 & 38.7 & 58.0 & 12.6 & 2.0 & \multirow[b]{2}{*}{15} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & Score & 3 & 3 & 4 & 2 & 3 & & & & \\
\hline \multirow[b]{2}{*}{2014} & Value & 11.2 & 21.3 & 116.0 & 7.3 & 3.3 & \multirow[b]{2}{*}{14} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & Score & 3 & 2 & 4 & 2 & 3 & & & & \\
\hline \multirow[b]{2}{*}{2013} & Value & 11.2 & 3.8 & 75.3 & 8.7 & 1.3 & \multirow[b]{2}{*}{12} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{-} & \multirow[b]{2}{*}{-} \\
\hline & Score & 3 & 1 & 4 & 2 & 2 & & & & \\
\hline \multirow[b]{2}{*}{2012} & Value & 11.2 & 2.0 & 64.7 & 8.7 & 2.0 & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{-0.812} & \multirow[b]{2}{*}{56.60\%} \\
\hline & Score & 3 & 1 & 4 & 2 & 3 & & & & \\
\hline \multirow[t]{2}{*}{2011} & Value & 10.7 & 9.5 & 58.0 & 6.7 & 1.3 & \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{-} \\
\hline & Score & 2 & 2 & 4 & 2 & 2 & & & & \\
\hline \multirow[t]{2}{*}{2010} & Value & 10.7 & 5.3 & 45.3 & 13.3 & 2.0 & \multirow[b]{2}{*}{13} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{-0.597} & \multirow[t]{2}{*}{45.00\%} \\
\hline & Score & 2 & 1 & 4 & 3 & 3 & & & & \\
\hline \multirow[b]{2}{*}{2009} & Value & 10.7 & 3.2 & 50.0 & 18.0 & 2.7 & \multirow[b]{2}{*}{13} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{-0.415} & \multirow[b]{2}{*}{34.00\%} \\
\hline & Score & 2 & 1 & 4 & 3 & 3 & & & & \\
\hline \multirow[b]{2}{*}{2008} & Value & 10.7 & 1.0 & 19.3 & 9.3 & 2.7 & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{-0.642} & \multirow[b]{2}{*}{47.40\%} \\
\hline & Score & 2 & 1 & 2 & 2 & 3 & & & & \\
\hline
\end{tabular}
nedpsdgb.d08-d18

Table 50. Fishery statistics derived from a daytime creel survey at Greenbo Lake from March through October 2018 as compared to findings from 1990 and 2010.
\begin{tabular}{|c|c|c|c|}
\hline & 2018 & 2010 & 1990 \\
\hline \multicolumn{4}{|l|}{Fishing trips} \\
\hline No. of fishing trips (per acre) & \[
\begin{gathered}
5,814 \\
(33)
\end{gathered}
\] & \[
\begin{gathered}
7,575 \\
(43)
\end{gathered}
\] & \[
\begin{gathered}
27,344 \\
(151)
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{Fishing pressure} \\
\hline Total man-hours (S.E.) & 23,189 (632.3) & 25,532 (1,044.1) & 123,491 (20,165) \\
\hline Man hours/acre & (132) & (145) & (682) \\
\hline \multicolumn{4}{|l|}{Catch/harvest} \\
\hline No. of fish caught (S.E.) & 13,103 (1,504.0) & 16,373 (2,678.9) & 49,758 (8,797) \\
\hline No. of fish harvested (S.E.) & 6,530 \((1,023.3)\) & 11,302 (2,392.7) & 21,829 (5,330) \\
\hline Lbs. of fish harvested & 2,381 & 3,998 & 11,886 \\
\hline \multicolumn{4}{|l|}{Harvest rate} \\
\hline Fish/hour & 0.3 & 0.3 & 0.2 \\
\hline Fish/acre & 37.1 & 64.2 & 120.6 \\
\hline Lbs/acre & 13.5 & 22.7 & 65.7 \\
\hline \multicolumn{4}{|l|}{Catch rates} \\
\hline Fish/hour & 0.6 & 0.6 & 0.4 \\
\hline Fish/acre & 74.5 & 93.0 & 247.9 \\
\hline \multicolumn{4}{|l|}{Misc. characteristics (\%)} \\
\hline Male & 81.4 & 85.1 & 85.0 \\
\hline Female & 18.7 & 14.9 & 15.0 \\
\hline Resident & 85.1 & 88.7 & 81.0 \\
\hline Non-resident & 14.9 & 11.3 & 19.0 \\
\hline \multicolumn{4}{|l|}{Method (\%)} \\
\hline Still fishing & 59.8 & 75.7 & no data \\
\hline Casting & 36.2 & 20.5 & no data \\
\hline Trotline/jugging & 1.2 & 0.6 & no data \\
\hline Trolling & 1.2 & 3.2 & no data \\
\hline \multicolumn{4}{|l|}{Mode (\%)} \\
\hline Boat & 68.1 & 41.0 & 91.0 \\
\hline Bank & 8.2 & 44.6 & 9.0 \\
\hline Dock & 23.7 & 14.4 & 0.0 \\
\hline
\end{tabular}
(S.E.) = Standard error
t < 0.5\%

Table 51. Fish harvest statistics derived from the 2018 creel survey at Greenbo Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Largemouth bass & Spotted bass & Black bass group & Bluegill & Redear sunfish & Warmouth & Panfish group & Rainbow trout & Black crappie & White crappie & Crappie group & Channel catfish & Flathead catfish & Catfish group & Anything \\
\hline Number caught & 1778 & 14 & 1791 & 6306 & 1005 & 26 & 7345 & 1814 & 1533 & 90 & 1622 & 523 & 7 & 529 & \\
\hline (per acre) & 10.1 & 0.1 & 10.2 & 35.8 & 5.7 & 0.2 & 41.7 & 10.3 & 8.7 & 0.5 & 9.2 & 3.0 & 0.0 & 3.0 & \\
\hline Number harvested & 95 & 14 & 109 & 2617 & 591 & 0 & 3216 & 1562 & 1277 & 41 & 1319 & 324 & 0 & 324 & \\
\hline (per acre) & 0.5 & 0.1 & 0.6 & 14.9 & 3.4 & & 18.3 & 8.9 & 7.3 & 0.2 & 7.5 & 1.8 & & 1.8 & \\
\hline \%of total number harvested & 1.5 & 0.2 & 1.7 & 40.1 & 9.1 & & 49.3 & 23.9 & 19.6 & 0.6 & 20.2 & 5.0 & & 5.0 & \\
\hline Pounds harvested & 112.7 & 9.2 & 121.9 & 605.1 & 217.0 & & 822.5 & 489.9 & 0.0 & 6.0 & 609.9 & 336.7 & & 336.7 & \\
\hline (per acre) & 0.6 & 0.1 & 0.7 & 3.4 & 1.2 & & 4.7 & 2.8 & 3.4 & 603.9 & 3.5 & 1.9 & & 1.9 & \\
\hline \%of total pounds harvested & 4.7 & 0.4 & 5.1 & 25.4 & 9.1 & & 34.6 & 20.6 & 25.4 & 0.3 & 25.6 & 14.1 & & 14.1 & \\
\hline M ean length (in) & 12.80 & 11.50 & & 5.20 & 7.30 & & & 12.00 & 10.00 & 7.20 & & 16.70 & & & \\
\hline M ean weight (lb) & 1.10 & 0.70 & & 0.10 & 0.29 & & & 0.80 & 0.50 & 0.01 & & 1.60 & & & \\
\hline Number fishing trips for that species & & & 1549.7 & & & & 725.6 & 657.5 & & & 330.4 & & & 204.9 & 2345.5 \\
\hline \%of all trips & & & 26.7 & & & & 12.5 & 11.3 & & & 5.7 & & & 3.5 & 40.3 \\
\hline Hours fished for that species (per acre) & & & \[
\begin{aligned}
& 6181.7 \\
& (35.1)
\end{aligned}
\] & & & & \[
\begin{gathered}
2894.3 \\
(16.5)
\end{gathered}
\] & \[
\begin{gathered}
2622.6 \\
(14.9)
\end{gathered}
\] & & & \[
\begin{gathered}
1317.8 \\
(7.5)
\end{gathered}
\] & & & \[
\begin{aligned}
& 817.1 \\
& (4.6)
\end{aligned}
\] & \[
\begin{gathered}
9355.6 \\
(53.2)
\end{gathered}
\] \\
\hline Number harvested fishing for that species & & & 49 & & & & 2,303 & 1528 & & & 11.79 & & & 119 & \\
\hline Pounds harvested fishing for that species & & & 49.9 & & & & 598.9 & 457.5 & & & 552.2 & & & 152.9 & \\
\hline Number harvested per hour fishing for that species & & & 0.0 & & & & 0.8 & 0.7 & & & 0.9 & & & 0.1 & \\
\hline \%success fishing for that species & & & 1.1 & & & & 35.5 & 50.4 & & & 39.7 & & & 16.3 & 5.2 \\
\hline
\end{tabular}

Table 52. Length distribution (length of released fish are estimates) for each species of fish harvested (H) or released (R) at Greenbo Lake from March through October 2018.

Table 53. Monthly black bass angling success at Greenbo Lake during the 2018 creel survey period.
\begin{tabular}{lcccccccc}
\hline Total no. & \begin{tabular}{c}
Total no. \\
harvested
\end{tabular} & \begin{tabular}{c}
Total no. of \\
trips for
\end{tabular} & \begin{tabular}{c}
Hours \\
fished for
\end{tabular} & \begin{tabular}{c}
Catch fishing \\
for
\end{tabular} & \begin{tabular}{c}
Catch per \\
hour fishing \\
for
\end{tabular} & \begin{tabular}{c}
No. harvested \\
fishing for
\end{tabular} & \begin{tabular}{c}
No. harvested \\
per hour \\
fishing for
\end{tabular} \\
\hline Month & 79 & 0 & 169.8 & 677.4 & 79 & 0.08 & 0 & 0.00 \\
Apr & 198 & 5 & 293.6 & 1171.0 & 150 & 0.09 & 0 & 0.00 \\
May & 912 & 97 & 319.5 & 1274.4 & 809 & 0.53 & 42 & 0.03 \\
Jun & 196 & 7 & 187.8 & 749.0 & 177 & 0.25 & 7 & 0.01 \\
Jul & 193 & 0 & 234.5 & 935.6 & 185 & 0.11 & 0 & 0.00 \\
Aug & 89 & 0 & 142.4 & 568.0 & 89 & 0.11 & 0 & 0.00 \\
Sep & 23 & 0 & 104.4 & 416.4 & 23 & 0.06 & 0 & 0.00 \\
Oct & 101 & 0 & 97.8 & 390.0 & 101 & 0.22 & 0 & 0.00 \\
\hline Total & 1,791 & 109 & 1549.8 & 6181.8 & 1,613 & & 49 & \\
Mean & & & & & & 0.19 & & 0.01 \\
\hline
\end{tabular}

Table 54. Monthly trout angling success at Greenbo Lake during the 2018 creel survey period.
\begin{tabular}{lcccccccc}
\hline & Total no. & \begin{tabular}{c}
Total no. \\
harvested
\end{tabular} & \begin{tabular}{c}
Total no. of \\
trips for
\end{tabular} & \begin{tabular}{c}
Hours \\
fished for
\end{tabular} & \begin{tabular}{c}
Catch fishing \\
for
\end{tabular} & \begin{tabular}{c}
Catch per \\
hour fishing \\
for
\end{tabular} & \begin{tabular}{c}
No. harvested \\
fishing for
\end{tabular} & \begin{tabular}{c}
No. harvested \\
per hour \\
fishing for
\end{tabular} \\
\hline Month & 1,302 & 1,183 & 412.4 & 1645.0 & 1,278 & 0.99 & 1,175 & 0.91 \\
Mar & 428 & 300 & 188.1 & 750.1 & 348 & 0.61 & 294 & 0.52 \\
Apr & 0 & 0 & 24.6 & 98.0 & 0 & 0.00 & 0 & 0.00 \\
May & 59 & 59 & 18.8 & 74.9 & 59 & 0.86 & 59 & 0.86 \\
Jun & 8 & 8 & 8.5 & 34.0 & 0 & 0.00 & 0 & 0.00 \\
Jul & 17 & 13 & 0.0 & 0.0 & 0 & 0.00 & 0 & 0.00 \\
Aug & 17 & 0 & 0.0 & 0.0 & 0 & 0.00 & 0 & 0.00 \\
Sep & 0 & 0 & 0.0 & 0.0 & 0 & 0.00 & 0 & 0.00 \\
Oct & 0 & & & & & & & \\
Total & 1,814 & 1,562 & 652.3 & 2602.1 & 1,685 & & 1,528 & \\
Mean & & & & & & & & 0.78 \\
\hline
\end{tabular}

Table 55. Angler attitude survey conducted during 2018 creel survey on Greenbo Lake.
2. Which species do you fish for at Greenbo Lake (check all that apply; N=601)?

Bass=48.1\%; Sunfish=34.9\%; Trout=21.1\%; Catfish=12.0\%; Anything=10.6\%;
Crappie=6.0\%
3. Which species do you fish for most at Greenbo Lake (check only one; \(N=576\))?

Bass=39.1\%; Sunfish=23.6\%; Trout=14.8\%; Anything=10.9\%; Catfish=8.2\%; Crappie=3.5\%
4. On average how many times do you fish Greenbo Lake in a year (\(N=576\))?
\begin{tabular}{rrrr}
First Time & \(22.2 \%\) & \(\mathbf{5 - 1 0}\) & \(15.6 \%\) \\
\(\mathbf{1 - 4}\) & \(27.1 \%\) & More than \(\mathbf{1 0}\) & \(35.1 \%\)
\end{tabular}

\section*{Bass Anglers}
5. What level of satisfaction do you have with bass fishing at Greenbo Lake (\(N=364\))?
\begin{tabular}{llllll}
Very Satisfied & \(9.1 \%\) & Somewhat Satisfied & \(39.0 \%\) & Total & \(48.1 \%\) \\
Very Dissatisfied & \(4.4 \%\) & Somewhat Dissatisfied \(8.5 \%\) & Total & \(12.9 \%\) \\
Neutral & \(39.0 \%\) & & &
\end{tabular}

5a. If you responded with somewhat or very dissatisfied in question 5 - what is the single most
reason for your dissatisfaction?
\({ }^{*}\) Note: These numbers are percentages ONL Y of those who were dissatisfied (12.9\%)
\begin{tabular}{lr}
Number of fish & \(34.1 \%\) \\
Can't catch fish & \(25.0 \%\) \\
Water too clear & \(20.5 \%\) \\
Too many weeds & \(6.8 \%\) \\
Hard lake to fish & \(6.8 \%\) \\
Size of fish & \(4.5 \%\) \\
IIlegal harvest & \(2.3 \%\)
\end{tabular}

\section*{Sunfish Anglers}
6. What level of satisfaction do you have with sunfish fishing at Greenbo Lake (\(N=267\))?
\begin{tabular}{llllll}
Very Satisfied & \(27.0 \%\) & Somewhat Satisfied & \(30.0 \%\) & Total & \(57.0 \%\) \\
Very Dissatisfied & \(0.7 \%\) & Somewhat Dissatisfied & \(2.2 \%\) & Total & \(2.9 \%\) \\
Neutral & \(40.1 \%\) & & &
\end{tabular}

6a. If you responded with somewhat or very dissatisfied in question 6 - what is the single most
reason for your dissatisfaction?
*Note: These numbers are percentages ONL \(\boldsymbol{Y}\) of those who were dissatisfied (2.9\%)
\begin{tabular}{ll}
Number of fish & \(80.0 \%\) \\
Size of fish & \(20.0 \%\)
\end{tabular}

\section*{Catfish Anglers}
7. What level of satisfaction do you have with catfish fishing at Greenbo Lake (\(N=132\))?
\begin{tabular}{llllll}
Very Satisfied & \(18.2 \%\) & Somewhat Satisfied & \(29.5 \%\) & Total & \(47.7 \%\) \\
Very Dissatisfied & \(2.3 \%\) & Somewhat Dissatisfied & \(3.0 \%\) & Total & \(5.3 \%\) \\
Neutral & \(47.0 \%\) & & &
\end{tabular}

7a. If you responded with somewhat or very dissatisfied in question 7 - what is the single most reason for your dissatisfaction?
*Note: These numbers are percentages ONLY of those who were dissatisfied (5.3\%)
\begin{tabular}{ll}
No fish & \(60.0 \%\) \\
Number of fish & \(20.0 \%\) \\
Size of fish & \(20.0 \%\)
\end{tabular}

Trout Anglers
8. What level of satisfaction do you have with trout fishing at Greenbo Lake (\(N=194\))?
\begin{tabular}{llllll}
Very Satisfied & \(38.1 \%\) & Somewhat Satisfied & \(29.4 \%\) & Total & \(67.5 \%\) \\
Very Dissatisfied & \(0.0 \%\) & Somewhat Dissatisfied & \(2.6 \%\) & Total & \(2.6 \%\) \\
Neutral & \(29.9 \%\) & & &
\end{tabular}

Table 55 cont.
8a. If you responded with somewhat or very dissatisfied in question 8 - what is the single most reason for your dissatisfaction?
*Note: These numbers are percentages ONL Y of those who were dissatisfied (2.6\%)
Number of fish 100.0\%

\section*{All Anglers}
9. Are you satisifed with the current size and creel limts on Greenbo Lake (\(N=597\))?
\begin{tabular}{lr}
Yes & \(97.2 \%\) \\
No & \(2.8 \%\)
\end{tabular}

9a. If you responded No in question 9- what size and creel limit changes would you like to see? *Note: These numbers are percentages ONL \(\boldsymbol{Y}\) of those who responded no (2.8\%)
\begin{tabular}{lrr}
15" MSL on LMB & 33.3\% Remove 15 fish creel on Sunfish & \(4.8 \%\) \\
"Trophy Bass" Lake & 19.0\% Crappie 10" MSL & \(4.8 \%\) \\
C\&R only on LMB & \(9.5 \%\) 16" MSL on Catfish & \(4.8 \%\) \\
8" or 9" MSL on Sunfish & \(9.5 \%\) "Other" Responses & \(14.3 \%\)
\end{tabular}
10. Are you aware the invasive plant hydrilla is present in Greenbo Lake (\(N=454\))?
\begin{tabular}{ll}
Yes & \(77.5 \%\) \\
No & \(22.5 \%\)
\end{tabular}
11. Has the recent introduction of hydrilla hindered your fishing experience in Greenbo Lake (\(N=597\))?
\begin{tabular}{ll}
Yes & \(28.6 \%\) \\
No & \(71.4 \%\)
\end{tabular}

12 Are you aware the primary means of introduction of invasive plant is through boaters (\(N=597\))?
Yes 60.6\%
No 39.4\%
13. Do you take precautions after fishing Greenbo Lake to prevent the spread of hydrilla (\(N=573\))?
\begin{tabular}{ll}
Yes & \(56.0 \%\) \\
No & \(44.0 \%\)
\end{tabular}

Table 56. Length frequency and CPUE (fish/hr) of black bass collected in 1 hour (4-15-minute runs) of diurnal electrofishing for largemouth bass in Lake Reba on 18 April
\begin{tabular}{|c|}
\hline & \multicolumn{16}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{\begin{tabular}{l}
Std. \\
error
\end{tabular}} \\
\hline Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & & & \\
\hline Largemouth bass & 6 & 56 & 88 & 34 & 9 & 1 & 16 & 28 & 11 & 17 & 8 & 4 & 2 & 3 & 1 & 2 & 286 & 286.0 & 28.3 \\
\hline
\end{tabular}
nedpsdlr.d18

Table 57. Spring electrofishing CPUE (fish/hr) for various length groups of largemouth bass collected at Lake Reba from 1995-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & S.E. \\
\hline 2018 & 193.0 & 45.5 & 56.0 & 8.2 & 29.0 & 6.8 & 8.0 & 8.0 & 0.0 & 0.0 & 286.0 & 28.3 \\
\hline 2017 & 373.6 & 51.5 & 175.2 & 19.9 & 94.4 & 21.2 & 21.6 & 2.4 & 4.8 & 0.8 & 664.8 & 53.0 \\
\hline 2016 & 108.0 & 15.8 & 102.0 & 23.7 & 41.0 & 10.0 & 13.0 & 1.9 & 2.0 & 1.2 & 264.0 & 19.5 \\
\hline 2015 & 103.2 & 26.5 & 84.0 & 9.2 & 96.8 & 12.9 & 33.6 & 5.7 & 4.0 & 1.8 & 317.6 & 23.0 \\
\hline 2014 & 56.0 & 11.0 & 144.0 & 12.4 & 95.0 & 10.8 & 75.0 & 18.1 & 7.0 & 5.7 & 370.0 & 22.7 \\
\hline 2013 & 60.1 & 7.8 & 102.4 & 7.7 & 63.3 & 11.0 & 27.1 & 8.7 & 0.0 & & 252.9 & 26.9 \\
\hline 2012 & 103.3 & 16.5 & 90.7 & 9.0 & 68.0 & 8.2 & 16.7 & 4.2 & 1.3 & 0.8 & 278.7 & 13.5 \\
\hline 2011 & 66.0 & 11.4 & 108.7 & 16.8 & 106.0 & 18.6 & 25.3 & 6.1 & 2.0 & 1.4 & 306.0 & 35.8 \\
\hline 2010 & 67.7 & 8.1 & 118.3 & 19.4 & 57.7 & 8.0 & 6.8 & 1.7 & 0.7 & 0.7 & 246.0 & 26.8 \\
\hline 2009 & 47.3 & 7.6 & 238.7 & 12.9 & 92.7 & 7.3 & 26.0 & 3.2 & 0.7 & 0.7 & 404.7 & 23.4 \\
\hline 2008 & 77.3 & 18.4 & 208.0 & 28.4 & 34.0 & 6.3 & 12.7 & 2.6 & 0.0 & & 332.0 & 47.1 \\
\hline 2007 & 134.7 & 20.9 & 216.7 & 45.9 & 60.7 & 5.2 & 18.7 & 4.1 & 0.7 & 0.7 & 430.7 & 52.2 \\
\hline 2006 & 189.3 & 18.9 & 70.7 & 13.5 & 26.0 & 4.9 & 6.0 & 2.3 & 0.0 & & 292.0 & 27.1 \\
\hline 2005 & 53.3 & 9.3 & 57.3 & 8.1 & 45.3 & 4.3 & 13.3 & 2.2 & 0.7 & 0.7 & 169.3 & 16.4 \\
\hline 2004 & 30.0 & 8.9 & 125.3 & 21.5 & 51.3 & 9.2 & 6.7 & 2.2 & 0.0 & & 213.3 & 26.0 \\
\hline 2003 & 110.0 & 17.9 & 126.0 & 10.9 & 52.0 & 6.1 & 8.0 & 2.5 & 0.7 & 0.7 & 296.0 & 27.3 \\
\hline 2002 & 138.0 & 33.6 & 140.0 & 31.3 & 31.0 & 6.6 & 5.0 & 1.0 & 0.0 & & 314.0 & 67.0 \\
\hline 2001 & 196.0 & 25.0 & 32.0 & 15.1 & 9.3 & 5.3 & 4.0 & 2.3 & 0.0 & & 241.3 & 32.4 \\
\hline 2000 & 104.1 & 17.3 & 35.1 & 6.6 & 4.6 & 0.6 & 8.0 & 3.3 & 0.0 & & 151.7 & 11.3 \\
\hline 1999 & 122.7 & 29.4 & 10.0 & 3.5 & 8.0 & 2.1 & 18.0 & 4.7 & 0.7 & 0.7 & 158.7 & 27.3 \\
\hline 1998 & 76.0 & 23.7 & 10.0 & 2.6 & 23.0 & 5.5 & 21.0 & 3.4 & 2.0 & 1.2 & 130.0 & 28.5 \\
\hline 1997 & & & & & & & & & & & & \\
\hline 1996 & 104.0 & 32.2 & 7.0 & 3.4 & 15.0 & 5.7 & 14.0 & 2.6 & 0.0 & & 140.0 & 28.8 \\
\hline 1995 & 160.0 & 52.9 & 21.0 & 7.7 & 74.0 & 7.4 & 3.0 & 1.9 & 0.0 & & 258.0 & 61.5 \\
\hline
\end{tabular}

Table 58. Largemouth bass PSD and RSD \(_{15}\) values from spring electrofishing at Lake Reba; confidence limits are in parentheses.
\begin{tabular}{cccccc}
\hline Year & No. \(\geq 8.0\) in & \multicolumn{2}{c}{\(\mathrm{PSD}(\pm 95 \% \mathrm{Cl})\)} & \(\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})\) \\
\hline 2018 & 93 & 40 & \((\pm 10)\) & 9 & \((\pm 6)\) \\
2017 & 364 & 40 & \((\pm 5)\) & 7 & \((\pm 3)\) \\
2016 & 156 & 35 & \((\pm 7)\) & 8 & \((\pm 4)\) \\
2015 & 268 & 61 & \((\pm 6)\) & 16 & \((\pm 4)\) \\
2014 & 314 & 54 & \((\pm 6)\) & 24 & \((\pm 5)\) \\
2013 & 243 & 47 & \((\pm 6)\) & 14 & \((\pm 4)\) \\
2012 & 263 & 48 & \((\pm 6)\) & 10 & \((\pm 4)\) \\
2011 & 360 & 55 & \((\pm 5)\) & 11 & \((\pm 3)\) \\
2010 & 270 & 35 & \((\pm 6)\) & 4 & \((\pm 2)\) \\
2009 & 536 & 33 & \((\pm 4)\) & 7 & \((\pm 2)\) \\
2008 & 382 & 18 & \((\pm 4)\) & 5 & \((\pm 2)\) \\
2007 & 444 & 27 & \((\pm 4)\) & 6 & \((\pm 2)\) \\
2006 & 154 & 31 & \((\pm 7)\) & 6 & \((\pm 4)\) \\
2005 & 174 & 51 & \((\pm 7)\) & 11 & \((\pm 5)\) \\
2004 & 275 & 32 & \((\pm 6)\) & 4 & \((\pm 2)\) \\
2003 & 279 & 32 & \((\pm 5)\) & 4 & \((\pm 2)\) \\
2002 & 176 & 20 & \((\pm 6)\) & 3 & \((\pm 2)\) \\
2001 & 33 & 30 & \((\pm 16)\) & 9 & \((\pm 10)\) \\
2000 & 43 & 28 & \((\pm 14)\) & 19 & \((\pm 12)\) \\
1999 & 98 & 72 & \((\pm 12)\) & 50 & \((\pm 13)\) \\
1998 & 26 & 81 & \((\pm 10)\) & 39 & \((\pm 13)\) \\
1997 & & & & & \\
1996 & 54 & 96 & \((\pm 8)\) & 62 & \((\pm 19)\) \\
1995 & 54 & 79 & \((\pm 8)\) & 3 & \((\pm 3)\) \\
\hline nedpsdlr.d18 - d98, d96 - d95 & & &
\end{tabular}

Table 59. Population assessment of largemouth bass based on samples collected at Lake Reba from 2003-2018 (scoring based on statewide assessment).

nedpsdlr.d17

Table 60. Indices of year class strength at age 0 and age 1 and mean lengths (in) of largemouth bass while diurnal electrofishing at Lake Reba.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|c|}{Age 0} & \multicolumn{2}{|l|}{Age \(0 \geq 5.0\) in} & \multicolumn{2}{|c|}{Age 1} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2018 & Total & 4.8 & 0.0 & 318.0 & 43.0 & 126.0 & 27.4 & & \\
\hline 2017 & Total & 4.8 & 0.1 & 501.3 & 123.3 & 196.0 & 34.2 & 184.0 & 42.33 \\
\hline 2016 & Total & 5.1 & 0.1 & 490.0 & 43.9 & 279.0 & 8.1 & 321.6 & 48.5 \\
\hline 2015 & Total & 4.5 & 0.6 & 116.0 & 34.5 & 35.2 & 10.2 & 101.0 & 15.2 \\
\hline 2014 & Total & 4.1 & 0.1 & 375.0 & 29.6 & 74.0 & 16.5 & 100.0 & 27.3 \\
\hline 2013 & Total & 3.9 & 0.1 & 80.0 & 16.4 & 12.0 & 4.4 & 50.0 & 8.9 \\
\hline 2012 & Total & 4.5 & 0.1 & 129.1 & 16.8 & 37.2 & 6.0 & 54.6 & 9.4 \\
\hline 2011 & Total & 4.4 & 0.0 & 334.9 & 44.8 & 84.4 & 19.5 & 76.0 & 14.9 \\
\hline 2010 & Total & 3.9 & 0.1 & 58.7 & 18.9 & 10.7 & 4.8 & 57.3 & 10.5 \\
\hline 2009 & Total & 4.0 & 0.1 & 58.7 & 15.6 & 11.3 & 8.1 & 47.1 & 7.0 \\
\hline 2008 & Total & 4.2 & 0.1 & 58.7 & 15.6 & 11.3 & 8.1 & 65.3 & 7.1 \\
\hline 2007 & Total & 4.3 & 0.1 & 44.0 & 11.2 & 5.3 & 2.2 & 113.0 & 27.2 \\
\hline 2006 & Total & 4.3 & 0.0 & 175.3 & 35.9 & 30.0 & 8.7 & 183.7 & 22.1 \\
\hline 2005 & Total & 5.2 & 0.1 & 225.0 & 48.6 & 133.0 & 30.2 & 192.0 & 19.5 \\
\hline 2004 & Total & 4.2 & 0.1 & 76.7 & 9.6 & 15.3 & 1.9 & 61.0 & 10.4 \\
\hline 2003 & Total & 3.7 & 0.2 & 23.3 & 4.8 & 0.7 & 0.7 & 47.3 & 14.0 \\
\hline
\end{tabular}
nedbsilr.d18-d16, nedwrsIr.d15, nedbsilr.d14-d12, nedwrsIr.d11-d03, nedpsdlr.d18-d02

Table 61. Length frequency and CPUE (fish/hr) for largemouth bass collected in 0.75 hours of nocturnal electrofishing (3-
15-minute runs) at Smoky Valley Lake (Carter Co.) on 01 May.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & & & \\
\hline Largemouth bass & 8 & 18 & 18 & 6 & 42 & 48 & 22 & 26 & 38 & 19 & 7 & 1 & 1 & 1 & 1 & 256 & 341.3 & 59.3 \\
\hline
\end{tabular}

\footnotetext{
nedpsdsv.d18
}

Table 62. Spring electrofishing CPUE (fish/hr) for various length groups of largemouth bass collected at Smoky Valley Lake from 1990-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & S.E. \\
\hline 2018 & 127.7 & 30.1 & 178.7 & 28.2 & 36.0 & 9.2 & 4.0 & 2.3 & & & 341.3 & 59.3 \\
\hline \multicolumn{13}{|l|}{\(2017^{\text {a }}\)} \\
\hline 2016 & 110.6 & 29.5 & 125.2 & 21.1 & 18.1 & 4.9 & 2.0 & 1.2 & & & 256.0 & 52.8 \\
\hline 2015 & 46.1 & 14.3 & 86.4 & 13.2 & 13.4 & 2.2 & 2.0 & 1.2 & & & 147.9 & 26.5 \\
\hline 2014 & 71.1 & 16.6 & 177.4 & 28.8 & 24.4 & 5.5 & 1.0 & 1.0 & & & 273.9 & 42.6 \\
\hline 2013 & 100.9 & 8.5 & 109.8 & 11.5 & 8.9 & 1.9 & 2.0 & 1.2 & & & 221.6 & 6.5 \\
\hline 2012 & 112.1 & 21.8 & 98.9 & 22.3 & 12.8 & 2.0 & 1.0 & 1.0 & & & 224.7 & 41.4 \\
\hline 2011 & 150.0 & 34.0 & 69.0 & 8.7 & 10.0 & 6.2 & & & & & 229.5 & 31.8 \\
\hline 2010 & 47.7 & 9.3 & 65.9 & 7.8 & 3.3 & 1.1 & 1.0 & 1.0 & & & 117.9 & 15.3 \\
\hline 2009 & 97.0 & 6.6 & 145.0 & 23.7 & 14.0 & 2.6 & 1.0 & 1.0 & & & 383.0 & 153.4 \\
\hline 2008 & 155.0 & 23.3 & 199.0 & 34.4 & 46.0 & 7.8 & & & & & 607.0 & 260.2 \\
\hline 2007 & 119.0 & 21.8 & 229.0 & 32.5 & 37.0 & 6.4 & 2.0 & 1.2 & & & 573.0 & 223.4 \\
\hline 2006 & 112.0 & 12.8 & 256.0 & 33.8 & 62.0 & 8.7 & 4.0 & 1.6 & & & 633.5 & 234.4 \\
\hline 2005 & 54.4 & 10.2 & 190.4 & 22.7 & 63.2 & 9.1 & 0.8 & 0.8 & & & 397.6 & 90.9 \\
\hline \multicolumn{13}{|l|}{\(2004{ }^{\text {a }}\)} \\
\hline \multicolumn{13}{|l|}{\(2003^{\text {a }}\)} \\
\hline \multicolumn{13}{|l|}{\(2002^{\text {a }}\)} \\
\hline 2001 & 117.3 & 11.6 & 180.0 & 14.1 & 46.7 & 12.7 & 2.7 & 2.7 & & & 346.7 & 11.6 \\
\hline 2000 & 68.0 & 13.0 & 218.0 & 22.1 & 69.0 & 13.7 & 1.0 & 1.0 & & & 356.0 & 46.8 \\
\hline \multicolumn{13}{|l|}{1999 \({ }^{\text {a }}\)} \\
\hline 1998 & 135.0 & 32.2 & 132.0 & 25.5 & 75.0 & 15.1 & 3.0 & 1.0 & & & 546.0 & 264.9 \\
\hline 1997 & 46.0 & 8.9 & 63.0 & 6.0 & 39.0 & 4.1 & 3.0 & 1.9 & & & 151.0 & 3.8 \\
\hline 1996 & 30.0 & 5.8 & 77.0 & 11.5 & 50.0 & 7.8 & 3.0 & 1.9 & & & 160.0 & 14.3 \\
\hline 1995 & 41.0 & 14.4 & 104.0 & 21.9 & 84.0 & 17.7 & 2.0 & 2.0 & & & 231.0 & 43.7 \\
\hline 1994 & 72.0 & 5.9 & 104.0 & 14.5 & 94.0 & 10.5 & 7.0 & 1.9 & 1.0 & 1.0 & 277.0 & 13.2 \\
\hline 1993 & 34.7 & 18.3 & 58.7 & 28.6 & 24.7 & 13.9 & 4.0 & 4.0 & & & 122.0 & 63.1 \\
\hline 1992 & 43.4 & 8.9 & 96.1 & 10.9 & 94.0 & 6.8. & 7.3 & 3.5 & 1.8 & 1.0 & 261.0 & 36.8 \\
\hline 1991 & 18.0 & 2.6 & 129.0 & 17.1 & 18.0 & 2.0 & 6.0 & 1.2 & 1.0 & 1.0 & 171.0 & 16.9 \\
\hline 1990 & 58.7 & 9.7 & 109.2 & 21.8 & 34.1 & 1.2 & 18.6 & 5.8 & 2.4 & 1.2 & 352.0 & 158.0 \\
\hline \multicolumn{13}{|l|}{nedpsdsv.d18} \\
\hline
\end{tabular}

Table 63. Largemouth bass PSD and RSD \(_{15}\) values from spring electrofishing at Smoky Valley Lake; confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Year & No. \(\geq 8.0\) in & \multicolumn{2}{|l|}{PSD (\(\pm 95 \% \mathrm{Cl})\)} & \multicolumn{2}{|l|}{\(\mathrm{RSD}_{15}(\pm 95 \% \mathrm{Cl})\)} \\
\hline 2018 & 164 & 18 & \((\pm 6)\) & 2 & \((\pm 2)\) \\
\hline \multicolumn{6}{|l|}{\(2017^{\text {a }}\)} \\
\hline 2016 & 137 & 14 & \((\pm 6)\) & 1 & \((\pm 2)\) \\
\hline 2015 & 91 & 15 & \((\pm 7)\) & 2 & \((\pm 3)\) \\
\hline 2014 & 156 & 12 & \((\pm 5)\) & 1 & \((\pm 1)\) \\
\hline 2013 & 105 & 10 & \((\pm 6)\) & 2 & \((\pm 3)\) \\
\hline 2012 & 101 & 13 & \((\pm 7)\) & 1 & \((\pm 2)\) \\
\hline 2011 & 70 & 14 & \((\pm 8)\) & & \\
\hline 2010 & 67 & 6 & \((\pm 6)\) & 1 & \((\pm 3)\) \\
\hline 2009 & 160 & 9 & \((\pm 5)\) & 1 & \((\pm 1)\) \\
\hline 2008 & 245 & 19 & \((\pm 5)\) & & \((\pm 0)\) \\
\hline 2007 & 268 & 15 & \((\pm 4)\) & , & \((\pm 1)\) \\
\hline 2006 & 322 & 20 & \((\pm 4)\) & 1 & \((\pm 1)\) \\
\hline 2005 & 318 & 25 & \((\pm 5)\) & 0 & \((\pm 1)\) \\
\hline \multicolumn{6}{|l|}{\(2004^{\text {a }}\)} \\
\hline \multicolumn{6}{|l|}{\(2003^{\text {a }}\)} \\
\hline \multicolumn{6}{|l|}{\(2002^{\text {a }}\)} \\
\hline 2001 & 172 & 22 & \((\pm 6)\) & 1 & \((\pm 2)\) \\
\hline 2000 & 288 & 24 & \((\pm 5)\) & 0 & \((\pm 1)\) \\
\hline \multicolumn{6}{|l|}{\(1999^{\text {a }}\)} \\
\hline 1998 & 210 & 37 & \((\pm 7)\) & 1 & \((\pm 2)\) \\
\hline 1997 & 105 & 40 & \((\pm 9)\) & 3 & \((\pm 3)\) \\
\hline 1996 & 130 & 41 & \((\pm 8)\) & 2 & \((\pm 3)\) \\
\hline 1995 & 190 & 45 & \((\pm 7)\) & 1 & \((\pm 1)\) \\
\hline 1994 & 205 & 49 & \((\pm 7)\) & 3 & \((\pm 2)\) \\
\hline 1993 & 131 & 33 & \((\pm 8)\) & 5 & \((\pm 4)\) \\
\hline 1992 & 213 & 51 & \((\pm 7)\) & 4 & \((\pm 3)\) \\
\hline 1991 & 153 & 16 & \((\pm 6)\) & 4 & \((\pm 3)\) \\
\hline 1990 & 194 & 30 & \((\pm 6)\) & 11 & \((\pm 4)\) \\
\hline
\end{tabular}
nedpsdsv.d18
\({ }^{\mathrm{a}}=\) Sample not collected

Table 64. Population assessment of largemouth bass based on samples collected at Smoky Valley lake from 2003-2018 (scoring based on statewide assessment).

nedpsdsv.d18
\({ }^{\mathrm{a}}=\) Sample not collected

Table 65. Length frequency and CPUE (fish/hr) for largemouth bass collected in 0.75 hours of nocturnal electrofishing (3-15-minute runs) at Smoky Valley Lake (Carter Co.) on 08 October.
\begin{tabular}{|c|}
\hline & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & & \\
\hline Largemouth bass & 1 & 8 & 24 & 44 & 16 & 3 & 11 & 28 & 37 & 47 & 14 & 6 & 4 & 2 & & 1 & 1 & 1 & 1 & 249 & 332.0 & 16.0 \\
\hline
\end{tabular}
nedwrssv.d18

Table 66. Number of fish and relative weights \(\left(\mathrm{W}_{\mathrm{r}}\right)\) for each length group of largemouth bass captured at Smoky Valley Lake.

Table 67. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Smoky Valley Lake in October 2018, includes 95\% confidence interval (CI) for mean length for each age class.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{7}{|c|}{Age} \\
\hline Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2018 & 0 & & & & & & & \\
\hline 2017 & 30 & 5.0 & & & & & & \\
\hline 2016 & 19 & 5.5 & 8.8 & & & & & \\
\hline 2015 & 5 & 5.0 & 8.6 & 10.6 & & & & \\
\hline 2014 & 7 & 5.4 & 8.4 & 10.2 & 11.8 & & & \\
\hline 2013 & 6 & 5.5 & 8.6 & 10.5 & 11.5 & 12.5 & & \\
\hline 2012 & 1 & 4.5 & 6.8 & 9.2 & 10.6 & 11.3 & 11.8 & \\
\hline 2011 & 1 & 4.8 & 8.6 & 10.1 & 11.3 & 12.2 & 13.3 & 13.9 \\
\hline Mean & & 5.2 & 8.6 & 10.4 & 11.6 & 12.3 & 12.6 & 13.9 \\
\hline Number & & 69 & 39 & 20 & 15 & 8 & 2 & 1 \\
\hline Smallest & & 4.1 & 6.8 & 9.2 & 10.6 & 11.3 & 11.8 & - \\
\hline Largest & & 6.8 & 9.8 & 11.0 & 12.9 & 13.2 & 13.3 & - \\
\hline Std. error & & 0.1 & 0.1 & 0.1 & 0.2 & 0.2 & 0.7 & - \\
\hline 95\% Cl (\(\pm\)) & & 0.3 & 0.4 & 0.5 & 0.6 & 1.0 & 2.9 & - \\
\hline
\end{tabular}
nedaagsv.d18

Table 68. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Smoky Valley Lake in October 2016, by sex.
\begin{tabular}{llccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 2 - 8 } & Year & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \multirow{3}{*}{ Females } & Number & 19 & 19 & 9 & 8 & 4 & 1 & 1 \\
& Mean & 5.5 & 8.8 & 10.3 & 11.6 & 12.5 & 13.3 & 13.9 \\
& Std. error & 0.1 & 0.1 & 0.1 & 0.1 & 0.2 & - & - \\
\multirow{4}{*}{ Males } & & & & & & & & \\
& Number & 20 & 20 & 11 & 7 & 4 & 1 & 0 \\
& Mean & 5.1 & 8.1 & 10.4 & 11.6 & 12.1 & 11.8 & \\
\hline nedaagsv.d18. error & 0.3 & 0.4 & 0.2 & 0.3 & 0.4 & - & \\
\hline
\end{tabular}

Table 69. Length frequency and CPUE (fish/hr) of black bass collected in 1.5 hours (6-15-minute runs) of diurnal electrofishing for largemouth bass in Lake Wilgreen on 19 April.
\begin{tabular}{|c|}
\hline & \multicolumn{21}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. error} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & & \\
\hline Largemouth bass & 3 & 3 & 4 & 1 & 3 & 16 & 18 & 14 & 13 & 15 & 10 & 8 & 14 & 15 & 18 & 8 & 11 & 7 & 3 & & 1 & 185 & 123.3 & 10.3 \\
\hline
\end{tabular}

\footnotetext{
nedpsdlw.d18
}

Table 70. Spring electrofishing CPUE (fish/hr) for various length groups of largemouth bass collected at Lake Wilgreen from 1990-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & S.E. \\
\hline 2018 & 20.0 & 4.5 & 40.0 & 8.8 & 21.3 & 4.1 & 42.0 & 5.0 & 2.7 & 1.3 & 123.3 & 10.3 \\
\hline \multicolumn{13}{|l|}{2017a} \\
\hline 2016 & 68.7 & 12.9 & 91.3 & 10.2 & 80.0 & 7.0 & 164.0 & 12.8 & 6.7 & 1.7 & 404.0 & 26.8 \\
\hline \multicolumn{13}{|l|}{2015a} \\
\hline 2014 & 18.7 & 2.5 & 71.3 & 7.1 & 49.3 & 9.7 & 117.3 & 12.0 & 8.7 & 1.9 & 256.7 & 21.0 \\
\hline \multicolumn{13}{|l|}{2013a} \\
\hline 2012 & 58.0 & 13.1 & 118.0 & 11.0 & 46.7 & 10.2 & 78.7 & 8.2 & 10.7 & 2.2 & 301.3 & 25.1 \\
\hline 2011 & 84.0 & 18.0 & 66.0 & 12.9 & 25.3 & 4.1 & 42.0 & 4.7 & 3.3 & 2.2 & 217.3 & 31.2 \\
\hline 2010 & 42.7 & 5.7 & 79.3 & 14.4 & 53.3 & 6.5 & 51.3 & 4.1 & 1.3 & 0.8 & 226.7 & 21.7 \\
\hline 2009 & 19.3 & 5.6 & 76.0 & 14.2 & 52.0 & 12.0 & 50.0 & 9.5 & 1.3 & 0.8 & 197.3 & 26.5 \\
\hline 2008 & 8.7 & 1.9 & 24.7 & 5.9 & 18.7 & 3.8 & 10.7 & 3.7 & 0.7 & 0.7 & 62.7 & 9.0 \\
\hline 2007 & 238.7 & 25.9 & 194.7 & 16.1 & 115.3 & 15.0 & 18.7 & 2.2 & 2.7 & 1.3 & 567.3 & 30.6 \\
\hline 2006 & 56.7 & 9.9 & 195.3 & 8.6 & 148.0 & 15.8 & 22.0 & 5.8 & 2.7 & 0.8 & 422.0 & 29.1 \\
\hline 2005 & 86.7 & 17.9 & 12.0 & 12.8 & 108.7 & 23.0 & 6.0 & 2.7 & & & 371.3 & 45.3 \\
\hline \multicolumn{13}{|l|}{2004a} \\
\hline 2003 & 89.2 & 11.1 & 376.8 & 41.0 & 48.0 & 6.3 & 12.8 & 2.5 & 0.4 & 0.4 & 526.8 & 50.2 \\
\hline \multicolumn{13}{|l|}{2002a} \\
\hline \multicolumn{13}{|l|}{2001a} \\
\hline 2000 & 361.0 & 51.0 & 274.0 & 10.6 & 58.0 & 12.3 & 6.0 & 1.2 & & & 699.0 & 57.0 \\
\hline 1999 & 152.0 & 6.3 & 235.0 & 29.6 & 43.0 & 11.8 & 8.0 & 2.3 & 2.0 & 1.2 & 438.0 & 42.9 \\
\hline \multicolumn{13}{|l|}{1998a} \\
\hline \multicolumn{13}{|l|}{1997a} \\
\hline 1996 & 149.0 & 47.8 & 247.0 & 24.8 & 90.0 & 19.8 & 15.0 & 6.2 & 5.0 & 1.0 & 601.0 & 73.0 \\
\hline 1995 & 77.0 & 22.7 & 382.0 & 45.3 & 42.0 & 9.3 & 10.0 & 2.6 & 1.0 & 1.0 & 511.0 & 71.6 \\
\hline 1994 & 298.0 & 79.5 & 427.0 & 50.1 & 46.0 & 7.4 & 24.0 & 4.9 & 2.0 & 1.2 & 795.0 & 122.0 \\
\hline \multicolumn{13}{|l|}{1993a} \\
\hline 1992 & 244.0 & 42.4 & 100.0 & 22.3 & 70.7 & 14.1 & 12.0 & 4.0 & 1.3 & 1.3 & 426.7 & 64.1 \\
\hline 1991 & 72.0 & 6.1 & 206.7 & 16.7 & 58.7 & 5.8 & 5.3 & 1.3 & 1.3 & 1.3 & 342.7 & 18.7 \\
\hline \multicolumn{13}{|l|}{1990} \\
\hline \multicolumn{13}{|l|}{nedpsdlw.d18} \\
\hline \multicolumn{13}{|l|}{\(a=\) Lake was not sampled} \\
\hline
\end{tabular}

Table 71. Largemouth bass PSD and \(\mathrm{RSD}_{15}\) values from spring electrofishing at Lake Wilgreen; confidence limits are in parentheses.

Table 72. Population assessment of largemouth bass based on samples collected at Lake Wilgreen from 2003-2018 (scoring based on statewide assessment).

\title{
SOUTHEASTERN FISHERY DISTRICT
}

\author{
Project 1: Lake and Tailwater Fishery Surveys
}

\section*{FINDINGS}

Conditions encountered during sampling at southeastern district lakes are listed in Table 1.

\section*{Lake Cumberland (50,250 acres)}

Lake levels in Lake Cumberland rose to 705 msl in 2013 and 723 msl in 2014 with the completion of repairs to Wolf Creek Dam. Sampling completed after 2013 was conducted in areas that were sampled prior to 2007. Samples from 2007-2012 were conducted in areas farther downstream in the embayments due to reduced water levels during repairs; therefore, any comparisons of the 2007-2012 data should be interpreted accordingly.

\section*{Black Bass Sampling (Spring)}

Diurnal electrofishing studies were conducted at Wolf Creek dam, and in the Faubush Creek, Fishing Creek, and Lily Creek embayments of Lake Cumberland during May 2018 to assess the black bass populations. The lengthfrequency and catch-per-unit-effort (CPUE) of the black bass species collected in each area is shown in Table 2, and the catch-per-hour (by area and length group) of the three black bass species are shown in Tables 3-6. Largemouth bass catch rates decreased in 2018 but remain slightly higher than average. Catch rates of smallmouth and spotted bass in 2018 were higher than rates observed in 2017. The increased catch of spotted bass marks the third straight year of increasing catch rates. Table 7 compares the catch-per-hour by length group of black bass in Lake Cumberland to other SEFD lakes sampled in 2018

Largemouth bass catch rates met three of the four CPUE management objectives (Table 8), and spotted bass greatly exceeded two of the three management objectives (Table 9). The smallmouth bass population met one of the CPUE management objectives (Tables 10).

Largemouth bass populations exhibited excellent size structure, with a PSD value of 85 and an \(\mathrm{RSD}_{15}\) value of 55 (Table 11). It would be good to see a few more fish in the 8.0- to 11.9 -in length group, though. Smallmouth bass and spotted bass populations were also very good, with a PSD value of 61 and an RSD 14 value of 41 for smallmouth bass and a PSD value of 61 and an \(\mathrm{RSD}_{14}\) value of 23 for spotted bass (Table 11). Table 12 compares the size structure of black bass populations in Lake Cumberland to other SEFD lakes sampled in 2018.

\section*{Black Bass Sampling (Fall)}

Diurnal electrofishing was conducted in the Fishing Creek embayment during October to index the largemouth bass year class strength (Tables 13 and 14). Catch rates of age-0 largemouth bass improved in 2018 in relation to the catch rate observed in 2017 (Table 14). Table 15 compares the CPUE of age-0 largemouth bass in Lake Cumberland to other SEFD lakes sampled in fall 2018. Relative weight (Wr) values for largemouth bass and spotted bass collected during October sampling are shown in Table 16. Table 17 compares Wr values for black bass in Lake Cumberland to other SEFD lakes sampled in fall 2018.

\section*{Walleye and White Bass Sampling}

Gill nets were used in November 2018 to evaluate the walleye and white bass populations in the Jamestown/Bugwood, Conley Bottom, and Waitsboro/Burnside areas of Lake Cumberland. A total of 415 walleye were captured in 30 net-nights (nn) for a catch rate of 13.8 fish \(/ \mathrm{nn}\). Length frequency and CPUE of walleye is shown in Table 18. Walleye ranged from 9.0-23.0 in with the mode being the 16.0 -in class (84 fish). All of the catch rate management objectives for walleye were met or exceeded (Table 19). Mean length of age-2+ walleye at capture (18.7 in) met the growth objective of 18.0 in (Table 19). Age-growth data for male and female walleye are shown in Tables 20 and 21, respectively. The age-growth for both sexes combined is shown in Table 22. Eight year-classes were represented in the catch, with the 2017 year class (age-1; 59\%) being most abundant (Table 23). The walleye assessment score was 15 (rating=excellent; Table 24). Relative weight (Wr) values for walleye are shown in Table 25.

A total of 11 white bass were captured in 30 net-nights for a catch rate of 0.4 fish \(/ \mathrm{nn}\). Length frequency and CPUE of white bass is shown in Table 18. White bass ranged from 9.0-16.0 in with the mode being the 10.0 -in class (7 fish). The age-growth data for white bass collected during 2018 is shown in Table 26. Three year-classes were represented in the catch, with the 2018 year class (age-0; 82\%) being the most abundant (Table 27). Relative weight \((\mathrm{Wr})\) values for white bass are in Table 25.

Striped bass were also recorded during walleye gill netting. Thirty net-nights captured 123 striped bass for a catch rate of \(4.1 \mathrm{fish} / \mathrm{nn}\). Length-frequency and CPUE of striped bass are shown in Table 18. Striped bass ranged from 7.0 to 31.0 in with the mode being the 18.0 -in class (31 fish). The age-growth data for striped bass collected during 2018 is shown in Table 28. Eight year-classes were represented in the catch, with the 2017 (age-1) year class being the most abundant (\(59 \%\)) year class collected (Table 29). Relative weight (Wr) values were good for striped bass \(<20.0\) in, but condition values decreased as fish grew larger (Table 25).

\section*{Cumberland Tailwater}

\section*{Trout Sampling (Fall)}

Nocturnal electrofishing sampling was conducted October 28 and 292018 to assess the trout population in the Lake Cumberland tailwater. Electrofishing was completed in seven different areas of the tailwater. Table 30 has the length-frequency and CPUE for the two trout species collected in each area. Brook trout were not observed during the sample. Catch rates of rainbow trout 18.0-19.9 in and greater than 20.0 in improved slightly in 2018, but still remain relatively low (Table 31). Brown trout catch rates continue to decline and remain at or below the 24-year average for the tailwater (Table 32). Relative weight (Wr) values for each trout species is shown in Table 33.

\section*{Laurel River Lake (6,060 acres)}

\section*{Black Bass Sampling (Spring)}

Electrofishing sampling was conducted during April and May 2018 to assess the black bass population in Laurel River Lake. Electrofishing was conducted in four areas of the lake: 1) dam, 2) Spruce Creek, 3) Laurel River arm, and 4) upper Craigs Creek. Length-frequency and CPUE of the three black bass species collected in each area is shown in Table 34. The catch-per-hour (by area and length group) of the three black bass species are shown in Tables 35-38. Catch rates for largemouth bass were lower in 2018 than in previous years of sampling. Catch rates of \(\geq 15.0\)-in largemouth bass decreased in 2018 to \(19.8 \mathrm{fish} / \mathrm{hr}\); however, this catch rate is still above average for the lake. Catch rates of spotted bass increased slightly in 2018, which marks the third straight year of increasing catch rates for spotted bass. Smallmouth bass catch rates were higher in 2018, which was due to an increase in the number of bass less than 8.0 in . Table 7 compares the catch-per-hour by length group of black bass in Laurel River Lake to other SEFD lakes sampled in 2018.

The largemouth bass population met three of the four catch rate objectives (Table 39). Spotted bass met one of the three catch rate management objectives (Table 40). The smallmouth bass population did not meet any of the catch rate management objectives (Table 41).

Largemouth bass exhibited an excellent size structure, having a PSD value of 73 and an \(\mathrm{RSD}_{15}\) value of 35 (Table 42). Smallmouth and spotted bass had a good size structure, with smallmouth bass having a PSD value of 60 and an \(\operatorname{RSD}_{14}\) value of 50 and the spotted bass population having a PSD of 42 and an \(\operatorname{RSD}_{14}\) of 15 (Table 42). Table 12 compares the size structure values of black bass populations in Laurel River Lake to other SEFD lakes sampled in 2018.

\section*{Black Bass Sampling (Fall)}

Diurnal electrofishing was conducted in the Laurel River arm on 4 October 2018 to index largemouth bass year class strength (Tables 43 and 44). Age-0 catch rates in 2018 were higher than average, and no additional largemouth bass were stocked (Table 44). Relative weight (Wr) values for largemouth and spotted bass collected during October sampling are shown in Table 45. Age-growth data from largemouth bass collected in 2018 from Laurel River Lake is shown in Table 46. Growth rates for largemouth bass in Laurel River Lake remain strong, with bass reaching 13.4 in by age- 3 .

\section*{2018 Daytime Creel Survey}

A roving daytime creel survey was conducted on Laurel River Lake (6,060 acres) from March 16-October 312018. The lake was stratified into two survey areas (upper and lower) and the survey was run 16 days per month.

Results of the daytime creel survey are shown in tables 47-53. Anglers took an estimated 19,620 fishing trips during the 2018 creel survey. Based on data collected during past creel surveys, fishing pressure on Laurel River Lake had been on the decline since 1993; however, anglers fished a total of 96,525 man-hours in 2018, which was more than double the number of hours that was observed during the last creel survey in 2010 (41,358 man-hours). According to the 2018 creel results, bass anglers accounted for \(73 \%\) of all trips taken, followed by anglers who were fishing for anything (\(17 \%\)) and walleye (\(4 \%\)). During the creel survey, bass anglers caught 30,964 bass, which resulted in a catch rate of 0.47 fish \(/ \mathrm{hr}\).

\section*{Angler Attitude Survey}

An angler attitude survey was conducted in conjunction with the creel survey to gather angler opinions about the various fisheries at Laurel River Lake (Figure 1). A total of 157 anglers were interviewed. Ninety-eight percent of the anglers interviewed fished for bass, followed by \(27 \%\) of anglers who fished for walleye, and \(13 \%\) who fished for crappie. No anglers indicated that they fished for trout in Laurel River Lake.

Seventy-seven percent of the largemouth bass anglers were satisfied with the largemouth bass fishery at the lake, with the number of fish being the only reason for their dissatisfaction. Only \(50 \%\) of the smallmouth bass anglers were satisfied with the smallmouth bass fishery at Laurel River Lake, which is a drastic decline from the 2010 survey when smallmouth bass angler satisfaction was \(93 \%\). Spotted bass anglers also had a marked decline in their satisfaction, with only \(37 \%\) satisfaction compared to \(64 \%\) in 2010 . Although smallmouth and spotted bass anglers listed the number of fish as the main reason for their dissatisfaction, they also listed too many tournaments and anglers, as well as not enough enforcement, for reasons for angler dissatisfaction.

Fifty percent of the crappie anglers were satisfied with the crappie fishery. Of the crappie anglers dissatisfied with the fishery, the number of fish was the only reason for their dissatisfaction.

Seventy-six percent of the walleye anglers were satisfied with the walleye fishery at Laurel River Lake. Of the walleye anglers that were dissatisfied with the fishery, the number on fish was the only reason listed for their dissatisfaction.

Almost \(80 \%\) of the anglers support the current regulations on Laurel River Lake. Anglers who did not support the current regulations wanted more restrictive size regulations on black bass and crappie species.

Additional questions were asked to gather angler input about the smallmouth bass fishery in Laurel River Lake. These questions revealed that \(27 \%\) of anglers felt fishing for smallmouth bass had improved in the last three years, but \(46 \%\) of anglers felt the smallmouth bass fishing had declined. Anglers would support closures of areas on the lake to create spawning sanctuaries for smallmouth bass. In addition, \(96 \%\) of the anglers were supportive of a catch and release only season during the month of April to protect smallmouth bass during spawning. Anglers were also supportive of a 16 to 21 -in protective slot limit where one fish over 21 inches and one fish under 16 inches may be kept daily for smallmouth bass on Laurel River Lake.

\section*{Cedar Creek Lake (784 acres; Lincoln Co.)}

\section*{Black Bass Sampling (Spring)}

Diurnal electrofishing was conducted on 15 May 2018 to assess the largemouth bass population in Cedar Creek Lake. The length-frequency and CPUE of largemouth bass is shown in Table 54. Size structure of largemouth bass was good (PSD=62, \(\mathrm{RSD}_{15}=50\); Table 55). The catch-per-hour (by length group) of largemouth bass for 2003-2018 is shown in Table 56. Catch rates of largemouth bass in Cedar Creek Lake continue to decline, with marked reductions in fish greater than 12.0 in. Low recruitment from 2011-2014, along with a slight reduction in growth rates, may explain the reduction in fish over 12.0 in . Two of the four CPUE management objectives for the largemouth bass population were met or exceeded (Table 57).

\section*{Black Bass Sampling (Fall)}

Diurnal electrofishing was conducted on 20 September 2018 to index the largemouth bass year-class strength (Tables 58 and 59). Catch rates of age-0 bass in 2018 were lower than 2017 catch rates but were still higher than average (Table 59). Relative weight (Wr) values for largemouth bass are found in Table 60.

\section*{Bluegill/Redear Sunfish Sampling}

Diurnal electrofishing was conducted on 23 May 2018 to assess the bluegill and redear sunfish populations in Cedar Creek Lake. The length-frequency and CPUE of bluegill and redear sunfish is shown in Table 61. The catch-perhour (by length group) of bluegill and redear sunfish is shown in Table 62. PSD and RSD values for bluegill and redear sunfish are shown in Table 63.

\section*{Beulah Lake (87 acres; Jackson Co.)}

\section*{Largemouth Bass Sampling (Spring)}

Diurnal electrofishing was conducted on 3 May 2018 at Beulah Lake to assess the black bass population. Length frequency and CPUE for black bass is shown in Table 64. Catch-per-hour (by length group) for largemouth and smallmouth bass is shown in Table 65. The largemouth bass population remains consistent in the lake. The largemouth bass size structure was poor, with a PSD value of \(17\left(\mathrm{RSD}_{15}=3\right.\); Table 66).

\section*{Bluegill/Redear Sunfish Sampling}

Diurnal electrofishing was conducted on 24 May 2018 at Beulah Lake to assess the bluegill and redear sunfish population. Length-frequency and CPUE for bluegill and redear sunfish is shown in Table 67. Catch-per-hour (by length group) for bluegill is in Table 68. The bluegill population exhibited a fair size structure (\(\mathrm{PSD}=22, \mathrm{RSD}_{8}=10\); Table 69). The bluegill population assessment score was 10 (rating=good; Table 70). Age-growth for bluegill collected during fall 2018 is shown in Table 71. Relative weight values for bluegill are in Table 72.

\section*{Cannon Creek Lake (243 acres; Bell Co.)}

\section*{Black Bass Sampling (Spring)}

Diurnal electrofishing was conducted on 4 May 2018 at Cannon Creek Lake to assess the black bass population. Length frequency and CPUE for bass are shown in Table 73. The catch-per-hour (by length group) for the three bass species is shown in Table 74. Black bass populations in Cannon Creek Lake had increased catch rates in 2018, but the population still consists of small-sized individuals. Table 75 lists the PSD and RSD values for the black bass species in the lake.

\section*{Dale Hollow Lake (6,746 acres; Kentucky portion)}

\section*{Black Bass Sampling (Spring)}

Diurnal electrofishing was conducted on 7 May 2018 in the Illwill Creek and Little Sulphur Creek embayments of Dale Hollow Lake to assess the black bass population. Length frequency and CPUE for the three black bass species are shown in Table 76. The catch-per-hour by length group of the three black bass species are shown in Tables 7779. Catch rates for largemouth bass in 2018 were lower than rates observed in 2014 but still remained much higher than average. Catch rates for spotted and smallmouth bass were lower in 2018 than in 2014. Largemouth and smallmouth bass exhibited excellent size structure, with largemouth bass having a PSD value of \(93\left(\mathrm{RSD}_{15}=48\right)\) and smallmouth bass having a PSD value of \(67\left(\operatorname{RSD}_{14}=22\right.\); Table 80\()\). Lack of smaller largemouth bass in the sample was most likely due to poor sampling habitat for that size of fish, which inflated the PSD value. The size structure of spotted bass was poor, having a PSD value of \(32\left(\right.\) RSD \(_{14}=0\); Table 80\()\).

\section*{Largemouth Bass Sampling (Fall)}

Diurnal electrofishing was conducted on 8 October 2018 at Dale Hollow Lake to collect largemouth bass to determine age-growth. Age-growth data from largemouth bass collected in 2018 is shown in Table 81. Growth
rates for largemouth bass in Dale Hollow Lake are excellent, with bass reaching 14.1 in by age-3. Relative weight values for largemouth bass are in Table 82.

\section*{Wood Creek Lake (625 acres; Laurel Co.)}

\section*{Black Bass Sampling (Spring)}

Diurnal electrofishing was conducted on 1 May 2018 in the Pump Station and Dock areas of Wood Creek Lake to assess the black bass population. Length frequency and CPUE for black bass are shown in Table 83. The size structure for largemouth and spotted bass was poor, with largemouth bass having a PSD value of \(33\left(\mathrm{RSD}_{15}=12\right)\) and spotted bass having a PSD of \(41\left(\mathrm{RSD}_{14}=6\right.\); Table 84\()\). Catch-per-hour (by length group) for largemouth and spotted bass are shown in Tables 85 and 86, respectively. The largemouth bass catch rates remain higher than average, due in large part to increasing numbers of bass less than 12.0 in . A largemouth bass population assessment is shown in Table 87. Three of the four catch rate management objectives were met for the largemouth bass population (Table 87).

\section*{Black Bass Sampling (Fall)}

Diurnal electrofishing was conducted on 19 September 2018 in the Pump Station and Dock areas of Wood Creek Lake to index largemouth bass year class strength (Tables 88 and 89). Catch rates of age-0 largemouth bass in 2018 were above average (Table 89); thus, no additional age-0 bass were stocked in the lake during the fall. Relative weight values for largemouth and spotted bass are shown in Table 90.

\section*{Temperature and Dissolved Oxygen}

Temperature and dissolved oxygen profiles were taken at three locations in Wood Creek Lake on 7 July 2018 to address concerns about lack of available habitat for trout in the lake. The results indicated that suitable habitat is available in the mid and lower portions of the lake (Table 91).

Table 1. Summary of sampling conditions by waterbody, species sampled, and date for the Southeastern Fisheries District in 2018
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Water body Location & Species & Date & \[
\begin{aligned}
& \text { Time } \\
& (24 \mathrm{hr})
\end{aligned}
\] & Gear & Weather & Water temp. F & Water level & \begin{tabular}{l}
Secchi \\
(in)
\end{tabular} & Conditions & Pertinent sampling comments \\
\hline \multicolumn{11}{|l|}{Lake Cumberland} \\
\hline Dam & Black bass & 5/8/2018 & 830 & shock & Sunny, fog early, mid 50s & 63 & 724 & 120 & fair & w ater in trees and floating debris \\
\hline Faubush Creek & Black bass & 5/18/2018 & 745 & shock & Clouds, upper 60s & 77 & 722 & 30-36 & fair & \\
\hline Fishing Creek & Black bass & 5/18/2018 & 1100 & shock & Increasing clouds, 70s, light breeze & 78 & 722 & 24 & fair & w ater slightly murky \\
\hline Lily Creek & Black bass & 5/8/2018 & 1145 & shock & Sunny, w arm 70s & 69 & 724 & 72 & fair & w ater in trees and floating debris \\
\hline Fishing Creek & Black bass & 10/3/2018 & 845 & shock & Fog early, then clear, 60s & 76 & 716 & 30 & good & \\
\hline Jamestow n & Walleye & 11/13-11/15 & & gill net & cold, 30s, windy, rainy, snow y & 60 & 711 & 96 & good & w ater w as higher than usual \\
\hline Conley Bottom & Walleye & 11/13-11/15 & & gill net & cloudy, rainy 30s & 59 & 710 & 72 & good & \\
\hline Burnside & Walleye & 11/19-11/21 & & gill net & 50s, mostly cloudy & 54 & 713 & - & good & \\
\hline \multicolumn{11}{|l|}{Cumberland Tailw ater} \\
\hline Above Helms & Trout & 10/28/2018 & 1900 & shock & Clear, windy, 60s & - & 5180 cfs & & & \\
\hline Below Helms & Trout & 10/28/2018 & 1900 & shock & Clear w ith w est w inds at \(14 \mathrm{mph}, 58^{\circ} \mathrm{F}\) & 57.7 & 5180 cfs & & & \\
\hline Rainbow Run & Trout & 10/28/2018 & 1900 & shock & Clear and windy & 59.4 & 5180 cfs & & & \\
\hline Big Willis & Trout & 10/28/2018 & 1915 & shock & Clear, cool, breezy & 58 & 5180 cfs & & & \\
\hline Crocus Creek & Trout & 10/28/2018 & 1915 & shock & Clear, 50s & 58 & 5180 cfs & & & Electrofishing settings on 15 pps vs 60 pps \\
\hline Hwy 61 Traces & Trout & 10/29/2018 & 1830 & shock & Clear, nice, 60s & 57 & 5320 cfs & & & flow w as increasing during sampling \\
\hline Cloyds & Trout & 10/29/2018 & 1830 & shock & Clear, 50s & 58 & 5320 cfs & & & \\
\hline \multicolumn{11}{|l|}{Laurel River Lake} \\
\hline Dam & Black bass & 4/30/2018 & 955 & shock & Sunny, mid 40s & 58 & 1015 & 96 & good & Water green in color and murkier than usual \\
\hline Spruce Creek & Black bass & 5/16/2018 & 815 & shock & Sun and clouds, 60s & 76 & 1012 & 36 & good & \\
\hline Craig's Creek & Black bass & 4/30/2018 & 1215 & shock & Sunny, nice & 60 & 1015 & 72 & good & \\
\hline 312 Bridge & Black bass & 5/16/2018 & 1045 & shock & Mostly sunny & 77 & 1012 & 24 & good & w ater a little stained \\
\hline 312 Bridge & Black bass & 10/4/2018 & 820 & shock & some clouds, then clear, 60s & 75 & 1011 & 60 & good & \\
\hline \multirow[t]{3}{*}{Cedar Creek Lake} & LMB & 5/15/2018 & 835 & shock & Sunny, 70s and warming quick & 76 & full & 36 & fair & w ater stained brow n , algae thick \\
\hline & LMB & 9/20/2018 & 830 & shock & Sunny and clear, 70s at start & 79 & full & 36 & fair & vegetation thick (Chara, coontail) \\
\hline & BLG/redear & 5/23/2018 & 800 & shock & Overcast, clearing late, low 70s & 78 & full & 48 & fair & thick filamentous algae \\
\hline \multirow[t]{3}{*}{Beulah Lake} & LMB & 5/3/2018 & 1100 & shock & Sunny, 70s, breezy, nice & & full & 66 & good & \\
\hline & BLG/redear & 5/24/2018 & 800 & shock & Sunny, clear, 70s & 75 & full & 78 & good & \\
\hline & BLG & 10/11/2018 & 1045 & shock & Cloudy w ith rain later in the day, 60s & 74 & full & 30 & good & fish collected for age-grow th and condition \\
\hline Cannon Creek Lake & LMB & 5/4/2018 & 920 & shock & Mostly sunny, calm, 60s & 66 & full & 96 & good & \\
\hline \multicolumn{11}{|l|}{Dale Hollow Lake} \\
\hline Illw ill & Black bass & 5/7/2018 & 900 & shock & Some fog early, mid 50s & 68 & 651 & 42 & good & \\
\hline Little Sulphur & Black bass & 5/7/2018 & 1130 & shock & Sunny, nice & 69 & 651 & 48 & good & \\
\hline & LMB & 10/8/2018 & 830 & shock & & 78 & 646 & 48 & good & fish collected for age-grow th and condition; 1 dipper \\
\hline \multirow[t]{2}{*}{Wood Creek Lake} & Black bass & 5/1/2018 & 1200 & shock & Sunny, breezy, 70s & 64 & full & 42 & good & vegetation not as thick as previous years in midlake area \\
\hline & Black bass & 9/19/2018 & 930 & shock & sunny, clear, 70s & 78 & a little low & & & vegetation thick but not as bad as in previous years \\
\hline
\end{tabular}

Table 2. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours of 15-minute diurnal electrofishing runs for black bass in Lake Cumberland during May 2018; standard error is in parentheses.

sedpsdcb.d18

Table 3. Comparison of catch-per-hour of black bass (by area) captured during spring electrofishing on Lake Cumberland during the period of 2014-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Stock} & \multicolumn{5}{|c|}{Quality} & \multicolumn{5}{|c|}{Preferred} \\
\hline Species/Area & 2014 & 2015 & 2016 & 2017 & 2018 & 2014 & 2015 & 2016 & 2017 & 2018 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline \multicolumn{16}{|l|}{Largemouth bass} \\
\hline Dam & 18.7 & 12.0 & 46.7 & 54.7 & 34.7 & 17.3 & 11.3 & 28.0 & 45.3 & 28.7 & 10.0 & 8.0 & 23.3 & 31.3 & 26.0 \\
\hline Faubush Creek & - & - & 14.7 & 63.3 & 48.0 & - & - & 14.0 & 59.3 & 41.3 & - & - & 8.0 & 38.7 & 25.3 \\
\hline Fishing Creek & 25.3 & 61.3 & 41.3 & 30.0 & 38.0 & 19.3 & 41.3 & 25.3 & 26.0 & 31.3 & 6.7 & 11.3 & 8.7 & 10.7 & 12.7 \\
\hline Lily Creek & 72.0 & 44.0 & 25.3 & 28.7 & 20.0 & 28.7 & 32.0 & 23.3 & 28.0 & 18.0 & 14.0 & 10.0 & 11.3 & 20.7 & 12.7 \\
\hline Mean & 30.7 & 31.5 & 32.0 & 44.2 & 35.2 & 17.8 & 22.2 & 22.7 & 39.7 & 29.8 & 8.2 & 8.0 & 12.8 & 25.3 & 19.2 \\
\hline \multicolumn{16}{|l|}{Spotted bass} \\
\hline Dam & 44.7 & 26.0 & 41.3 & 48.7 & 101.3 & 24.7 & 16.7 & 26.7 & 43.3 & 78.0 & 6.7 & 6.0 & 10.0 & 16.0 & 27.3 \\
\hline Faubush Creek & - & - & 22.0 & 13.3 & 15.3 & - & - & 12.0 & 5.3 & 6.0 & - & - & 1.3 & 0.0 & 3.3 \\
\hline Fishing Creek & 5.3 & 12.7 & 8.0 & 9.3 & 11.3 & 1.3 & 6.0 & 1.3 & 8.0 & 3.3 & 0.0 & 0.7 & 0.0 & 0.0 & 1.3 \\
\hline Lily Creek & 44.7 & 42.0 & 19.3 & 40.7 & 96.0 & 13.3 & 31.3 & 12.7 & 21.3 & 50.0 & 2.7 & 6.7 & 2.7 & 6.0 & 19.3 \\
\hline Mean & 25.0 & 22.0 & 22.7 & 28.0 & 56.0 & 10.0 & 13.8 & 13.2 & 19.5 & 34.3 & 2.3 & 3.5 & 3.5 & 5.5 & 12.8 \\
\hline \multicolumn{16}{|l|}{Smallmouth bass} \\
\hline Dam & 21.3 & 2.7 & 8.0 & 8.7 & 3.3 & 10.7 & 2.0 & 3.3 & 6.7 & 2.0 & 6.0 & 2.0 & 2.0 & 4.7 & 2.0 \\
\hline Faubush Creek & - & - & 8.7 & 0.7 & 4.0 & - & - & 6.0 & 0.7 & 1.3 & - & - & 4.0 & 0.7 & 1.3 \\
\hline Fishing Creek & 0.0 & 0.0 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 & 0.7 \\
\hline Lily Creek & 1.3 & 18.0 & 4.7 & 3.3 & 21.3 & 0.0 & 16.0 & 4.7 & 2.0 & 14.0 & 0.0 & 12.7 & 4.0 & 1.3 & 8.0 \\
\hline Mean & 7.5 & 7.8 & 5.3 & 3.2 & 7.3 & 3.7 & 6.8 & 3.5 & 2.3 & 4.5 & 2.0 & 5.2 & 2.5 & 1.7 & 3.0 \\
\hline
\end{tabular}

\footnotetext{
Largemouth bass - \(\geq 8.0\) in = stock, \(\geq 12.0\) in = quality, \(\geq 15.0\) in = preferred.
}

Smallmouth bass and spotted bass - \(\geq 7.0\) in \(=\) stock, \(\geq 11.0\) in \(=\) quality, \(\geq 14.0 \mathrm{in}=\) preferred.
sedpsdcb.d18

Table 4. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Lake Cumberland May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 4.3 & 0.8 & 5.3 & 1.0 & 10.7 & 1.6 & 19.2 & 2.8 & 0.3 & 0.2 & 39.5 & 3.9 \\
\hline 2017 & 2.8 & 0.7 & 4.5 & 1.4 & 14.3 & 2.4 & 25.3 & 3.5 & 0.2 & 0.2 & 47.0 & 5.6 \\
\hline 2016 & 5.0 & 1.8 & 9.3 & 3.3 & 9.8 & 1.5 & 12.8 & 2.4 & 0.5 & 0.4 & 37.0 & 6.4 \\
\hline 2015 & 6.3 & 2.3 & 9.3 & 2.6 & 14.2 & 3.4 & 8.0 & 1.7 & 0.0 & 0.0 & 37.8 & 7.8 \\
\hline 2014 & 9.5 & 3.7 & 12.8 & 4.4 & 9.7 & 2.4 & 8.2 & 2.0 & 0.3 & 0.2 & 40.2 & 8.5 \\
\hline 2013 & 1.8 & 1.1 & 8.2 & 2.6 & 8.2 & 1.8 & 4.7 & 1.1 & 0.2 & 0.2 & 22.8 & 5.0 \\
\hline 2012 & 15.3 & 3.8 & 21.0 & 3.7 & 21.7 & 4.9 & 11.7 & 2.4 & 0.2 & 0.2 & 69.7 & 13.0 \\
\hline 2011 & 5.7 & 2.7 & 6.5 & 2.2 & 5.2 & 1.7 & 3.7 & 1.1 & 0.2 & 0.2 & 21.0 & 6.3 \\
\hline 2010 & 12.3 & 3.0 & 23.3 & 5.3 & 13.7 & 3.3 & 10.7 & 2.0 & 0.5 & 0.3 & 60.0 & 11.7 \\
\hline 2009 & 20.3 & 6.5 & 9.7 & 3.5 & 8.5 & 2.8 & 8.2 & 2.3 & 0.5 & 0.3 & 46.7 & 12.5 \\
\hline 2008 & 7.3 & 2.3 & 11.0 & 2.8 & 20.2 & 5.7 & 18.0 & 4.0 & 0.2 & 0.2 & 56.5 & 13.2 \\
\hline 2007 & 8.4 & 3.2 & 14.1 & 4.5 & 20.9 & 7.1 & 15.3 & 4.1 & 0.5 & 0.3 & 58.6 & 18.1 \\
\hline 2006 & 0.8 & 0.4 & 6.2 & 2.2 & 8.8 & 3.1 & 10.2 & 2.6 & 0.5 & 0.3 & 26.0 & 7.6 \\
\hline 2005 & 0.8 & 0.5 & 1.6 & 0.7 & 9.9 & 3.6 & 5.5 & 1.3 & 0.0 & 0.0 & 17.7 & 5.2 \\
\hline 2004 & 0.8 & 0.3 & 5.2 & 1.5 & 6.9 & 1.4 & 6.5 & 1.6 & 0.0 & 0.0 & 19.5 & 4.0 \\
\hline 2003 & 2.0 & 0.8 & 5.7 & 1.4 & 6.1 & 1.9 & 8.3 & 1.9 & 0.1 & 0.1 & 22.1 & 4.3 \\
\hline 2002 & 0.4 & 0.2 & 1.9 & 0.6 & 7.7 & 2.5 & 6.3 & 1.0 & 0.1 & 0.1 & 16.3 & 3.3 \\
\hline
\end{tabular}
sedpsdcb.d18

Table 5. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Lake Cumberland during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 12.8 & 2.4 & 15.5 & 3.2 & 21.5 & 5.3 & 12.8 & 3.3 & 0.3 & 0.3 & 62.7 & 11.7 \\
\hline 2017 & 6.5 & 1.3 & 6.7 & 1.4 & 14.0 & 2.4 & 5.5 & 2.2 & 0.0 & 0.0 & 32.7 & 5.2 \\
\hline 2016 & 4.8 & 1.9 & 7.2 & 1.2 & 9.7 & 2.4 & 3.5 & 1.2 & 0.0 & 0.0 & 25.2 & 4.5 \\
\hline 2015 & 4.2 & 1.2 & 6.0 & 1.2 & 10.3 & 2.5 & 3.5 & 1.0 & 0.0 & 0.0 & 24.0 & 4.2 \\
\hline 2014 & 7.2 & 1.9 & 11.2 & 2.5 & 7.7 & 2.4 & 2.3 & 1.2 & 0.0 & 0.0 & 28.3 & 6.0 \\
\hline 2013 & 1.8 & 0.6 & 7.7 & 1.6 & 9.8 & 2.4 & 1.5 & 0.7 & 0.0 & 0.0 & 20.8 & 3.8 \\
\hline 2012 & 27.3 & 4.7 & 20.5 & 3.9 & 8.8 & 2.6 & 0.7 & 0.5 & 0.0 & 0.0 & 57.3 & 10.1 \\
\hline 2011 & 8.7 & 1.7 & 12.2 & 2.1 & 5.7 & 2.4 & 0.3 & 0.2 & 0.0 & 0.0 & 26.8 & 4.6 \\
\hline 2010 & 28.3 & 4.0 & 26.7 & 5.5 & 12.2 & 2.6 & 0.8 & 0.4 & 0.0 & 0.0 & 68.0 & 9.2 \\
\hline 2009 & 22.7 & 4.3 & 20.5 & 5.1 & 10.0 & 2.1 & 1.0 & 0.4 & 0.0 & 0.0 & 54.2 & 10.3 \\
\hline 2008 & 34.7 & 4.5 & 26.7 & 3.7 & 15.3 & 4.0 & 5.0 & 2.1 & 0.0 & 0.0 & 81.7 & 11.1 \\
\hline 2007 & 27.1 & 6.8 & 27.5 & 5.0 & 13.6 & 3.6 & 7.0 & 2.7 & 0.4 & 0.2 & 75.1 & 13.5 \\
\hline 2006 & 12.0 & 2.5 & 16.5 & 2.3 & 13.8 & 3.0 & 8.0 & 2.1 & 0.2 & 0.2 & 50.3 & 7.1 \\
\hline 2005 & 16.3 & 3.6 & 9.5 & 1.4 & 11.2 & 2.0 & 3.1 & 1.2 & 0.0 & 0.0 & 40.0 & 6.3 \\
\hline 2004 & 15.6 & 2.7 & 25.5 & 3.9 & 10.5 & 2.1 & 1.9 & 0.7 & 0.0 & 0.0 & 53.5 & 7.8 \\
\hline 2003 & 32.6 & 5.5 & 31.6 & 3.8 & 9.1 & 1.5 & 2.9 & 0.8 & 0.0 & 0.0 & 76.1 & 8.6 \\
\hline 2002 & 8.1 & 1.8 & 10.3 & 1.7 & 5.2 & 1.1 & 1.5 & 0.5 & 0.0 & 0.0 & 25.1 & 3.7 \\
\hline
\end{tabular}
sedpsdcb.d18

Table 6. Spring electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected at Lake Cumberland during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 2.8 & 0.8 & 1.8 & 0.8 & 1.5 & 0.7 & 3.0 & 1.0 & 1.7 & 0.6 & 9.2 & 2.4 \\
\hline 2017 & 0.5 & 0.3 & 0.7 & 0.3 & 0.7 & 0.4 & 1.7 & 0.9 & 1.2 & 0.7 & 3.5 & 1.4 \\
\hline 2016 & 4.2 & 2.2 & 1.2 & 0.6 & 1.0 & 0.4 & 2.5 & 0.8 & 1.0 & 0.4 & 8.8 & 2.6 \\
\hline 2015 & 1.2 & 0.7 & 1.0 & 0.4 & 1.7 & 0.6 & 5.2 & 1.8 & 2.0 & 0.8 & 9.0 & 2.4 \\
\hline 2014 & 1.2 & 0.6 & 3.2 & 1.5 & 1.7 & 0.7 & 2.0 & 1.1 & 0.8 & 0.4 & 8.0 & 2.8 \\
\hline 2013 & 1.0 & 0.6 & 2.3 & 0.6 & 0.3 & 0.2 & 1.7 & 0.5 & 0.3 & 0.2 & 5.3 & 1.3 \\
\hline 2012 & 4.3 & 1.4 & 2.3 & 0.7 & 0.3 & 0.2 & 1.7 & 0.7 & 0.5 & 0.3 & 8.7 & 2.1 \\
\hline 2011 & 0.5 & 0.4 & 0.3 & 0.2 & 0.7 & 0.3 & 0.2 & 0.2 & 0.2 & 0.2 & 1.7 & 0.5 \\
\hline 2010 & 2.8 & 0.7 & 2.5 & 0.8 & 1.2 & 0.4 & 3.7 & 1.2 & 2.3 & 1.0 & 10.2 & 1.9 \\
\hline 2009 & 3.5 & 1.3 & 1.5 & 0.6 & 0.2 & 0.2 & 0.7 & 0.3 & 0.2 & 0.2 & 5.8 & 1.5 \\
\hline 2008 & 5.2 & 1.8 & 2.0 & 0.8 & 1.2 & 0.5 & 2.7 & 1.0 & 0.8 & 0.4 & 11.0 & 2.8 \\
\hline 2007 & 6.8 & 2.6 & 7.1 & 2.4 & 3.8 & 1.3 & 1.4 & 0.6 & 0.5 & 0.4 & 19.1 & 5.4 \\
\hline 2006 & 2.5 & 0.9 & 1.2 & 0.4 & 0.3 & 0.3 & 0.3 & 0.2 & 0.2 & 0.2 & 4.3 & 1.2 \\
\hline 2005 & 2.3 & 0.9 & 0.8 & 0.6 & 1.3 & 0.5 & 3.9 & 1.5 & 1.3 & 0.7 & 8.3 & 2.3 \\
\hline 2004 & 2.9 & 1.8 & 1.9 & 0.9 & 1.2 & 0.5 & 1.3 & 0.7 & 0.0 & 0.0 & 7.3 & 3.1 \\
\hline 2003 & 2.1 & 1.0 & 3.9 & 1.1 & 1.6 & 0.6 & 3.4 & 1.1 & 1.0 & 0.4 & 11.0 & 2.7 \\
\hline 2002 & 2.9 & 1.1 & 3.5 & 1.3 & 2.4 & 0.8 & 0.9 & 0.5 & 0.1 & 0.1 & 9.7 & 2.9 \\
\hline
\end{tabular}
sedpsdcb.d18

Table 7. Catch-per-hour of black bass captured during spring electrofishing on lakes in the Southeastern Fishery District during 2018.
\begin{tabular}{lccc}
\hline Species/Lake & Stock \(^{*}\) & Quality* & Preferred* \\
\hline Largemouth bass & & & \\
Lake Cumberland & 35.2 & 29.8 & 19.2 \\
Laurel River Lake & 56.2 & 40.8 & 19.8 \\
Cedar Creek Lake & 65.3 & 40.7 & 32.7 \\
Beulah Lake & 176.7 & 30.0 & 4.7 \\
Cannon Creek Lake & 60.7 & 10.0 & 0.7 \\
Dale Hollow Lake & 73.7 & 68.3 & 35.7 \\
Wood Creek Lake & 148.7 & 49.3 & 17.3 \\
& & & \\
Spotted bass & & & \\
\(\quad\) Lake Cumberland & 56.0 & 34.3 & 12.8 \\
Laurel River Lake & 19.5 & 8.2 & 3.0 \\
Beulah Lake & 2.0 & 0.0 & 0.0 \\
Cannon Creek Lake & 48.0 & 6.7 & 0.0 \\
Dale Hollow Lake & 13.7 & 4.3 & 0.0 \\
Wood Creek Lake & 11.3 & 4.7 & 0.7 \\
& & & \\
Smallmouth bass & & & \\
Lake Cumberland & 7.3 & 4.5 & 3.0 \\
Laurel River Lake & 1.7 & 1.0 & 0.8 \\
Beulah Lake & 6.7 & 5.3 & 2.0 \\
Cannon Creek Lake & 3.3 & 2.7 & 0.0 \\
Dale Hollow Lake & 6.0 & 4.0 & 1.3 \\
\hline
\end{tabular}

\footnotetext{
*Largemouth bass - \(\geq 8.0\) in = stock, \(\geq 12.0\) in = quality, \(\geq 15.0 \mathrm{in}=\) preferred
*Smallmouth and spotted bass - \(\geq 7.0 \mathrm{in}=\) stock, \(\geq 11.0 \mathrm{in}=\) quality, \(\geq 14.0 \mathrm{in}=\) preferred
sedpsdcb.d18
sedpsdlr.d18
sedpsccl.d18
sedpsdbl.d18
sedpsdcc.d18
sedpsddh.d18
sedpsdwc.d18
}

Table 8. Population assessment for largemouth bass based on spring electrofishing at Lake Cumberland from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3
\(\qquad\) at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { CPUE } \\
12.0-14.9 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \text { in }
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in }
\end{gathered}
\] & Total score & Assessment rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 13.0\) in & \(\geq 5.0 \mathrm{fish} / \mathrm{hr}\) & \(\geq 10.0\) fish/hr & \(\geq 8.0\) fish/hr & \(\geq 0.5 \mathrm{fish} / \mathrm{hr}\) & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 6.3 & 10.7 & 19.2 & 0.3 & & \\
\hline & Score & 4 & 1 & 1 & 3 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2017} & Value & & 3.8 & 14.3 & 25.3 & 0.2 & & \\
\hline & Score & 4 & 1 & 1 & 4 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & 13.7 & 9.2 & 9.8 & 12.8 & 0.5 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 3 & 11 & F \\
\hline \multirow[t]{2}{*}{2015} & Value & & 8.3 & 14.2 & 8.0 & 0.0 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 1 & 9 & F \\
\hline \multirow[t]{2}{*}{2014} & Value & & 12.8 & 9.7 & 8.2 & 0.3 & & \\
\hline & Score & 4 & 2 & 1 & 2 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2013} & Value & & 6.6 & 8.2 & 4.7 & 0.2 & & \\
\hline & Score & 4 & 1 & 1 & 1 & 2 & 9 & F \\
\hline \multirow[t]{2}{*}{2012} & Value & 14.0 & 21.0 & 21.7 & 11.7 & 0.2 & & \\
\hline & Score & 4 & 2 & 2 & 2 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2011} & Value & & 6.8 & 5.2 & 3.7 & 0.2 & & \\
\hline & Score & 4 & 1 & 1 & 1 & 2 & 9 & F \\
\hline \multirow[t]{2}{*}{2010} & Value & & 11.5 & 13.7 & 10.7 & 0.5 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 3 & 11 & F \\
\hline \multirow[t]{2}{*}{2009} & Value & & 25.7 & 8.5 & 8.2 & 0.5 & & \\
\hline & Score & 4 & 3 & 1 & 2 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2008} & Value & & 10.0 & 20.2 & 18.0 & 0.2 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2007} & Value & 13.4 & 10.3 & 20.9 & 15.3 & 0.5 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 1.2 & 8.8 & 10.2 & 0.5 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 3 & 11 & F \\
\hline \multirow[t]{2}{*}{2005} & Value & & 1.2 & 9.9 & 5.5 & 0.0 & & \\
\hline & Score & 4 & 1 & 1 & 1 & 1 & 8 & P \\
\hline \multirow[t]{2}{*}{2004} & Value & & 1.1 & 7.0 & 6.5 & 1.0 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 3 & 11 & F \\
\hline \multirow[t]{2}{*}{2003} & Value & & 3.0 & 6.1 & 8.3 & 0.1 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 1 & 9 & F \\
\hline \multirow[t]{2}{*}{2002} & Value & 13.6 & 0.4 & 7.6 & 6.4 & 0.1 & & \\
\hline & Score & 4 & 1 & 1 & 2 & 1 & 9 & F \\
\hline \multirow[t]{2}{*}{2001} & Value & & 2.9 & 7.7 & 5.2 & 0.3 & & \\
\hline & Score & 4 & 1 & 1 & 1 & 2 & 9 & F \\
\hline \multirow[t]{2}{*}{2000} & Value & & 2.8 & 9.5 & 5.2 & 0.3 & & \\
\hline & Score & 4 & 1 & 1 & 1 & 2 & 9 & F \\
\hline
\end{tabular}

Table 9. Population assessment for spotted bass based on spring electrofishing at Lake Cumberland from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
11.0-13.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 14.0 \text { in } \\
& \hline
\end{aligned}
\] & Total score & \[
\begin{gathered}
\text { Assessment } \\
\text { rating } \\
\hline
\end{gathered}
\] \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 9.6\) in & \(\geq 4.0\) fish/hr & \(\geq 7.0\) fish/hr & \(\geq 2.0\) fish/hr & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 2.5 & 21.5 & 12.8 & & \\
\hline & Score & 3 & 3 & 4 & 4 & 14 & E \\
\hline \multirow[t]{2}{*}{2017} & Value & & 0.6 & 14.0 & 5.5 & & \\
\hline & Score & 3 & 1 & 4 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2016} & Value & & 1.2 & 9.7 & 3.5 & & \\
\hline & Score & 3 & 2 & 3 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2015} & Value & & 1.7 & 10.3 & 3.5 & & \\
\hline & Score & 3 & 2 & 4 & 4 & 13 & G \\
\hline \multirow[t]{2}{*}{2014} & Value & & 1.2 & 7.7 & 2.3 & & \\
\hline & Score & 3 & 2 & 2 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2013} & Value & 11.1 & 0.0 & 9.8 & 1.5 & & \\
\hline & Score & 3 & 1 & 3 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2012} & Value & & 14.0 & 8.8 & 0.7 & & \\
\hline & Score & 3 & 4 & 3 & 2 & 12 & G \\
\hline \multirow[t]{2}{*}{2011} & Value & & 3.9 & 5.7 & 0.3 & & \\
\hline & Score & 3 & 3 & 2 & 1 & 9 & F \\
\hline \multirow[t]{2}{*}{2010} & Value & & 9.7 & 12.2 & 0.8 & & \\
\hline & Score & 3 & 4 & 4 & 2 & 13 & G \\
\hline \multirow[t]{2}{*}{2009} & Value & & 6.8 & 10.0 & 1.0 & & \\
\hline & Score & 3 & 4 & 3 & 2 & 12 & G \\
\hline \multirow[t]{2}{*}{2008} & Value & 11.0 & 8.8 & 15.3 & 5.0 & & \\
\hline & Score & 3 & 4 & 4 & 4 & 15 & E \\
\hline \multirow[t]{2}{*}{2007} & Value & & 1.3 & 13.6 & 7.0 & & \\
\hline & Score & 4 & 2 & 4 & 4 & 14 & E \\
\hline \multirow[t]{2}{*}{2006} & Value & & 1.8 & 13.8 & 8.0 & & \\
\hline & Score & 4 & 2 & 4 & 4 & 14 & E \\
\hline \multirow[t]{2}{*}{2005} & Value & & 5.1 & 11.2 & 3.1 & & \\
\hline & Score & 4 & 4 & 4 & 4 & 16 & E \\
\hline \multirow[t]{2}{*}{2004} & Value & & 6.0 & 10.5 & 1.9 & & \\
\hline & Score & 4 & 4 & 4 & 3 & 15 & E \\
\hline \multirow[t]{2}{*}{2003} & Value & 11.4 & 16.7 & 9.1 & 2.9 & & \\
\hline & Score & 4 & 4 & 3 & 4 & 15 & E \\
\hline \multirow[t]{2}{*}{2002} & Value & & 5.1 & 5.2 & 1.5 & & \\
\hline & Score & 4 & 4 & 1 & 3 & 12 & G \\
\hline \multirow[t]{2}{*}{2001} & Value & & 2.1 & 4.7 & 1.6 & & \\
\hline & Score & 4 & 3 & 1 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2000} & Value & & 1.9 & 5.6 & 1.2 & & \\
\hline & Score & 4 & 2 & 2 & 2 & 10 & G \\
\hline
\end{tabular}

Table 10. Population assessment for smallmouth bass based on spring electrofishing at Lake Cumberland from 1990-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
11.0-13.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 14.0 \mathrm{in}
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 11.0\) in & \(\geq 2.0\) fish/hr & \(\geq 3.0 \mathrm{fish} / \mathrm{hr}\) & \(\geq 2.0\) fish/hr & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 1.0 & 1.5 & 3.0 & & \\
\hline & Score & 1 & 2 & 3 & 4 & 10 & G \\
\hline \multirow[t]{2}{*}{2017} & Value & & 0.0 & 0.7 & 1.7 & & \\
\hline & Score & 1 & 1 & 2 & 3 & 7 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & & 2.8 & 1.0 & 2.5 & & \\
\hline & Score & 1 & 3 & 3 & 4 & 11 & G \\
\hline \multirow[t]{2}{*}{2015} & Value & & 0.3 & 1.7 & 5.2 & & \\
\hline & Score & 1 & 1 & 3 & 4 & 9 & F \\
\hline \multirow[t]{2}{*}{2014} & Value & & 0.2 & 1.7 & 2.0 & & \\
\hline & Score & 1 & 1 & 3 & 4 & 9 & F \\
\hline \multirow[t]{2}{*}{2013} & Value & & 0.3 & 0.3 & 1.7 & & \\
\hline & Score & 1 & 1 & 2 & 3 & 7 & F \\
\hline \multirow[t]{2}{*}{2012} & Value & & 2.5 & 0.3 & 1.7 & & \\
\hline & Score & 1 & 3 & 2 & 3 & 9 & F \\
\hline \multirow[t]{2}{*}{2011} & Value & & 0.0 & 0.7 & 0.2 & & \\
\hline & Score & 1 & 1 & 2 & 1 & 5 & P \\
\hline \multirow[t]{2}{*}{2010} & Value & 11.3 & 0.7 & 1.2 & 3.7 & & \\
\hline & Score & 1 & 2 & 3 & 4 & 10 & G \\
\hline \multirow[t]{2}{*}{2009} & Value & & 1.8 & 0.2 & 0.7 & & \\
\hline & Score & 2 & 3 & 1 & 2 & 8 & F \\
\hline \multirow[t]{2}{*}{2008} & Value & & 2.5 & 1.2 & 2.7 & & \\
\hline & Score & 2 & 3 & 3 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2007} & Value & & 2.6 & 3.8 & 1.4 & & \\
\hline & Score & 2 & 3 & 4 & 3 & 12 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 0.0 & 0.3 & 0.3 & & \\
\hline & Score & 2 & 1 & 2 & 2 & 7 & F \\
\hline \multirow[t]{2}{*}{2005} & Value & 12.2 & 0.8 & 1.3 & 3.9 & & \\
\hline & Score & 2 & 2 & 3 & 4 & 11 & G \\
\hline \multirow[t]{2}{*}{2004} & Value & & 1.9 & 1.2 & 1.3 & & \\
\hline & Score & 1 & 3 & 3 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2003} & Value & & 1.3 & 1.6 & 3.4 & & \\
\hline & Score & 1 & 2 & 3 & 4 & 10 & G \\
\hline \multirow[t]{2}{*}{2002} & Value & & 1.7 & 2.4 & 0.9 & & \\
\hline & Score & 1 & 3 & 4 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2001} & Value & & 0.5 & 0.4 & 0.9 & & \\
\hline & Score & 1 & 2 & 2 & 3 & 8 & F \\
\hline \multirow[t]{2}{*}{2000} & Value & & 0.0 & 1.4 & 1.1 & & \\
\hline & Score & 1 & 1 & 3 & 3 & 8 & F \\
\hline \multicolumn{2}{|l|}{sedpsdcb.d18} & & 395 & & & & \\
\hline
\end{tabular}

Table 11. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Lake Cumberland during May 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Smallmouth bass} \\
\hline & & \[
\begin{gathered}
\mathrm{No} . \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & No. \(\geq\) stock size & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+-95 \%) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{5}{*}{2018} & Dam & 52 & \(83(\pm 10)\) & \(75(\pm 12)\) & 152 & \(77(\pm 7)\) & \(27(\pm 7)\) & 5 & \(60(\pm 48)\) & \(60(\pm 48)\) \\
\hline & Faubush Creek & 72 & \(86(\pm 8)\) & \(53(\pm 12)\) & 23 & \(39(\pm 20)\) & \(22(\pm 17)\) & 6 & \(33(\pm 41)\) & \(33(\pm 41)\) \\
\hline & Fishing Creek & 57 & \(82(\pm 10)\) & \(33(\pm 12)\) & 17 & \(29(\pm 22)\) & \(12(\pm 16)\) & 1 & \(100(\pm 0)\) & \(100(\pm 0)\) \\
\hline & Lily Creek & 30 & \(90(\pm 11)\) & \(63(\pm 18)\) & 144 & \(52(\pm 8)\) & \(20(\pm 7)\) & 32 & \(66(\pm 17)\) & \(38(\pm 17)\) \\
\hline & Total & 211 & \(85(\pm 5)\) & \(55(\pm 7)\) & 336 & \(61(\pm 5)\) & \(23(\pm 5)\) & 44 & \(61(\pm 15)\) & \(41(\pm 15)\) \\
\hline 2017 & Total & 265 & \(90(\pm 4)\) & \(57(\pm 6)\) & 168 & \(70(\pm 7)\) & \(20(\pm 6)\) & 19 & \(74(\pm 20)\) & \(53(\pm 23)\) \\
\hline 2016 & Total & 192 & \(71(\pm 6)\) & \(40(\pm 7)\) & 136 & \(58(\pm 8)\) & \(15(\pm 6)\) & 32 & \(66(\pm 17)\) & \(47(\pm 18)\) \\
\hline 2015 & Total & 189 & \(70(\pm 7)\) & \(25(\pm 6)\) & 132 & \(63(\pm 8)\) & \(16(\pm 6)\) & 47 & \(87(\pm 10)\) & \(66(\pm 14)\) \\
\hline 2014 & Total & 184 & \(58(\pm 7)\) & \(27(\pm 6)\) & 150 & \(40(\pm 8)\) & \(9(\pm 5)\) & 45 & \(49(\pm 15)\) & \(27(\pm 13)\) \\
\hline 2013 & Total & 126 & \(61(\pm 9)\) & \(22(\pm 7)\) & 121 & \(56(\pm 9)\) & \(7(\pm 5)\) & 27 & \(44(\pm 19)\) & \(37(\pm 19)\) \\
\hline 2012 & Total & 326 & \(61(\pm 5)\) & \(21(\pm 4)\) & 224 & \(25(\pm 6)\) & \(2(\pm 2)\) & 33 & \(36(\pm 17)\) & \(30(\pm 16)\) \\
\hline 2011 & Total & 92 & \(58(\pm 10)\) & \(24(\pm 9)\) & 124 & \(29(\pm 8)\) & \(2(\pm 2)\) & 8 & \(63(\pm 36)\) & \(13(\pm 25)\) \\
\hline 2010 & Total & 286 & \(51(\pm 6)\) & \(22(\pm 5)\) & 293 & \(27(\pm 5)\) & \(2(\pm 1)\) & 51 & \(57(\pm 14)\) & \(43(\pm 14)\) \\
\hline 2009 & Total & 158 & \(63(\pm 8)\) & \(31(\pm 7)\) & 230 & \(29(\pm 6)\) & \(3(\pm 2)\) & 17 & \(29(\pm 22)\) & \(24(\pm 21)\) \\
\hline 2008 & Total & 295 & \(78(\pm 5)\) & \(37(\pm 6)\) & 349 & \(35(\pm 5)\) & \(9(\pm 3)\) & 42 & \(55(\pm 15)\) & \(38(\pm 15)\) \\
\hline 2007 & Total & 289 & \(72(\pm 5)\) & \(30(\pm 5)\) & 310 & \(38(\pm 5)\) & \(13(\pm 4)\) & 81 & \(37(\pm 11)\) & \(10(\pm 7)\) \\
\hline 2006 & Total & 151 & \(75(\pm 7)\) & \(40(\pm 8)\) & 259 & \(51(\pm 6)\) & \(19(\pm 5)\) & 13 & \(31(\pm 26)\) & \(15(\pm 20)\) \\
\hline 2005 & Total & 127 & \(91(\pm 5)\) & \(32(\pm 8)\) & 216 & \(50(\pm 7)\) & \(11(\pm 4)\) & 49 & \(80(\pm 11)\) & \(59(\pm 14)\) \\
\hline 2004 & Total & 140 & \(88(\pm 6)\) & \(39(\pm 9)\) & 325 & \(42(\pm 13)\) & \(12(\pm 8)\) & 42 & \(36(\pm 8)\) & \(8(\pm 5)\) \\
\hline
\end{tabular}

Table 12. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Lake Cumberland, Laurel River Lake, Cedar Creek Lake, Beulah Lake, Cannon Creek Lake, Dale Hollow Lake, and Wood Creek Lake during 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Lake} & \multicolumn{2}{|l|}{Largemouth bass} & \multicolumn{2}{|l|}{Smallmouth bass} & \multicolumn{2}{|c|}{Spotted bass} \\
\hline & PSD & \(\mathrm{RSD}_{15}\) & PSD & \(\mathrm{RSD}_{14}\) & PSD & \(\mathrm{RSD}_{14}\) \\
\hline Lake Cumberland & \(85(\pm 5)\) & \(55(\pm 7)\) & \(61(\pm 15)\) & \(41(\pm 15)\) & \(61(\pm 5)\) & \(23(\pm 5)\) \\
\hline Laurel River Lake & \(73(\pm 5)\) & \(35(\pm 5)\) & \(60(\pm 32)\) & \(50(\pm 33)\) & \(42(\pm 9)\) & \(15(\pm 7)\) \\
\hline Cedar Creek Lake & \(62(\pm 10)\) & \(50(\pm 10)\) & & & & \\
\hline Beulah Lake & \(17(\pm 5)\) & \(3(\pm 2)\) & \(80(\pm 26)\) & \(30(\pm 30)\) & & \\
\hline Cannon Creek Lake & \(16(\pm 8)\) & \(1(\pm 2)\) & \(80(\pm 39)\) & \(0(\pm 0)\) & \(14(\pm 8)\) & \(0(\pm 0)\) \\
\hline Dale Hollow Lake & \(93(\pm 3)\) & \(48(\pm 7)\) & \(67(\pm 22)\) & \(22(\pm 20)\) & \(32(\pm 14)\) & \(0(\pm 0)\) \\
\hline Wood Creek Lake & \(33(\pm 6)\) & \(12(\pm 4)\) & & & \(41(\pm 24)\) & \(6(\pm 12)\) \\
\hline
\end{tabular}
sedpsdcb.d18
sedpsdlr.d18
sedpsccl.d18
sedpsdbl.d18
sedpsdcc.d18
sedpsddh.d18
sedpsdwc.d18

Table 13. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15-minute diurnal electrofishing runs for black bass in Fishing Creek of Lake Cumberland on 3 October 2018; standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{15}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 17 & 19 & & \\
\hline Largemouth bass & 2 & 1 & 4 & 13 & 5 & 1 & & & & & 3 & 3 & 1 & 1 & & 34 & 22.7 (2.7) \\
\hline Spotted bass & 4 & 1 & 2 & & 5 & 5 & 4 & 5 & 6 & 3 & 3 & 3 & & & & 41 & 27.3 (5.6) \\
\hline Smallmouth bass & & & & & & & & & & & 1 & & & & 1 & 2 & 1.3 (0.8) \\
\hline
\end{tabular}

Table 14. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples in the Fishing Creek area of Lake Cumberland.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|r|}{Age-1 \({ }^{\text {a }}\)} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline
\end{tabular}
\begin{tabular}{lccccccccc}
& Lake Cumberland & & & & & & \\
2018 & Fishing Creek & 6.2 & 0.2 & 17.3 & 2.9 & 15.3 & 2.2 & & \\
2017 & Fishing Creek & 4.2 & 0.5 & 11.3 & 4.4 & 3.3 & 1.6 & 6.7 & 2.0 \\
2016 & Fishing Creek & 6.8 & 0.2 & 20.0 & 9.2 & 19.3 & 8.7 & 4.0 & 2.1 \\
2015 & Fishing Creek & 5.1 & 0.2 & 18.7 & 14.1 & 8.7 & 6.4 & 13.3 & 4.9 \\
2014 & Fishing Creek & 6.7 & 0.2 & 9.3 & 2.2 & 9.3 & 2.2 & 26.0 & 4.9 \\
2013 & Fishing Creek & 6.1 & 0.1 & 80.0 & 23.8 & 61.3 & 15.9 & 26.0 & 13.6 \\
2012 & Fishing Creek & 6.1 & 0.1 & 96.7 & 24.6 & 80.0 & 19.6 & 21.8 & 6.2 \\
2011 & Fishing Creek & 6.1 & 0.1 & 114.7 & 25.1 & 102.0 & 23.2 & 46.5 & 7.0 \\
2010 & Fishing Creek & 5.8 & 0.1 & 85.3 & 9.4 & 67.3 & 8.4 & 16.7 & 11.5 \\
2009 & Fishing Creek & 4.8 & 0.2 & 42.0 & 9.5 & 22.7 & 6.4 & 21.3 & 6.6 \\
2008 & Fishing Creek & 5.0 & 0.1 & 166.0 & 40.1 & 80.7 & 31.3 & 81.3 & 13.5 \\
2007 & Fishing Creek & 5.0 & 0.3 & 4.7 & 3.2 & 2.7 & 1.3 & 24.9 & 5.5 \\
2006 & Fishing Creek & 6.3 & 0.2 & 22.0 & 3.1 & 20.7 & 2.4 & 32.0 & 8.2 \\
2005 & Fishing Creek & 6.2 & 0.2 & 14.0 & 4.5 & 13.3 & 4.1 & 3.3 & 1.2 \\
2004 & Fishing Creek & 6.2 & 0.1 & 50.7 & 8.2 & 41.3 & 7.4 & 4.0 & 2.1 \\
2003 & Fishing Creek & 5.8 & 0.4 & 6.0 & 2.7 & 4.0 & 2.5 & 1.3 & 0.8 \\
2002 & Fishing Creek & 6.0 & 0.1 & 192.7 & 36.7 & 160.7 & 36.3 & 4.0 & 1.5
\end{tabular}
\({ }^{\text {a }}\) Age-1 largemouth bass CPUE based only on Fishing Creek location sedyoycb.d18

Table 15. Year class strength at age-0 and mean lengths (in) of largemouth bass collected in September and October 2018 in electrofishing samples at Lake Cumberland, Laurel River Lake, Cedar Creek Lake, and Wood Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Lake} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|l|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline Lake Cumberland & Fishing Creek & 6.2 & 0.2 & 17.3 & 2.9 & 15.3 & 2.2 \\
\hline Laurel River Lake & Laurel River Arm & 4.2 & 0.3 & 21.3 & 7.6 & 6.7 & 3.7 \\
\hline Cedar Creek Lake & & 4.2 & 0.1 & 52.7 & 10.6 & 9.3 & 2.0 \\
\hline Wood Creek Lake & & 4.3 & 0.1 & 37.3 & 14.9 & 8.0 & 3.7 \\
\hline
\end{tabular}

\footnotetext{
sedyoycb.d18
sedyoylr.d18
sedyoycc.d18
sedyoywc.d18
}

Table 16. Number of fish and mean relative weight (Wr) for each length group of black bass collected in Fishing Creek of Lake Cumberland on 3 October 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & & & & group & & \\
\hline \multirow{3}{*}{Largemouth bass} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline & 1 & 86 (-) & 6 & 86 (4) & 2 & 87 (3) \\
\hline \multirow{3}{*}{Spotted bass} & \multicolumn{2}{|r|}{7.0-10.9 in} & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline & 19 & 93 (3) & 12 & 91 (2) & 3 & 93 (11) \\
\hline
\end{tabular}

Table 17. Number of fish and mean relative weight (Wr) for each length group of black bass collected in Lake Cumberland, Laurel River Lake, Cedar Creek Lake, Dale Hollow Lake, and Wood Creek Lake during September and October 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multirow[b]{2}{*}{Location} & \multicolumn{6}{|c|}{Length group} \\
\hline & & No. & Wr & No. & Wr & No. & Wr \\
\hline \multicolumn{2}{|l|}{Largemouth bass} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} \\
\hline & Lake Cumberland (Fishing Creek) & 1 & 86 (-) & 6 & 86 (4) & 2 & 87 (3) \\
\hline & Laurel River Lake (Laurel River Arm) & 27 & 98 (2) & 14 & 100 (3) & 7 & 106 (2) \\
\hline & Cedar Creek Lake & 30 & 83 (2) & 8 & 91 (2) & 13 & 89 (2) \\
\hline & Dale Hollow Lake & 4 & 92 (3) & 3 & 87 (2) & 11 & 84 (3) \\
\hline & Wood Creek Lake & 66 & 84 (1) & 8 & 80 (3) & 0 & 0 (0) \\
\hline \multirow[t]{4}{*}{Spotted} & & \multicolumn{2}{|r|}{7.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|c|}{\(\geq 14.0\) in} \\
\hline & Lake Cumberland (Fishing Creek) & 19 & 93 (3) & 12 & 91 (2) & 3 & 93 (11) \\
\hline & Laurel River Lake (Laurel River Arm) & 6 & 106 (3) & 2 & 112 (15) & 0 & 0 (0) \\
\hline & Wood Creek Lake & 3 & 91 (3) & 0 & 0 (0) & 0 & 0 (0) \\
\hline
\end{tabular}

\footnotetext{
sedyoycb.d18
sedyoylr.d18
sedyoycc.d18
sedwrdh.d18
sedyoywc.d18
}

Table 18. Length frequency and CPUE (fish/nn) of walleye, white bass, sauger, and striped bass collected from the Jamestown/Bugwood (10 netnights), Conley Bottom (10 net-nights), and Burnside/Waitsboro (10 net-nights) areas of Lake Cumberland in November 2018.

\begin{tabular}{|c|}
\hline \multicolumn{29}{|l|}{Jamestow \(\mathrm{n} /\) Bugw ood} \\
\hline Walleye & & & & & & & 1 & 2 & 11 & 38 & 33 & 17 & 24 & 17 & 7 & 4 & 1 & & & & & & & & & 155 & 15.5 & 3.7 \\
\hline White bass & 0 & 0.0 & 0.0 \\
\hline Sauger & 0 & 0.0 & 0.0 \\
\hline Striped bass & & & & & & & & & 1 & & 6 & 9 & 2 & 2 & 3 & 1 & 3 & & & 2 & 1 & & 1 & 2 & 1 & 34 & 3.4 & 0.8 \\
\hline \multicolumn{29}{|l|}{Conley Bottom} \\
\hline Walleye & & & 2 & 5 & 1 & & 1 & 13 & 28 & 18 & 11 & 12 & 18 & 9 & 1 & & & & & & & & & & & 119 & 11.9 & 1.8 \\
\hline White bass & & & 1 & 1 & & & & & & 1 & & & & & & & & & & & & & & & & 3 & 0.3 & 0.2 \\
\hline Sauger & 0 & 0.0 & 0.0 \\
\hline Striped bass & 1 & 2 & & 1 & & & & & & 5 & 15 & 19 & 4 & 4 & 4 & 4 & & 1 & & 2 & & & & & & 62 & 6.2 & 1.4 \\
\hline \multicolumn{29}{|l|}{Burnside/Waitsboro} \\
\hline Walleye & & & 1 & 15 & 17 & 1 & 1 & 13 & 35 & 28 & 10 & 7 & 6 & 5 & 2 & & & & & & & & & & & 141 & 14.1 & 2.5 \\
\hline White bass & & & 1 & 6 & & & & & 1 & & & & & & & & & & & & & & & & & 8 & 0.8 & 0.4 \\
\hline Sauger & & & & & & & & & & & 1 & & & & & & & & & & & & & & & 1 & 0.1 & 0.1 \\
\hline Striped bass & 1 & 8 & 2 & & & & & & & 1 & 8 & 3 & 1 & & & & 1 & & 1 & & & 1 & & & & 27 & 2.7 & 0.9 \\
\hline \multicolumn{29}{|l|}{Total} \\
\hline Walleye & & & 3 & 20 & 18 & 1 & 3 & 28 & 74 & 84 & 54 & 36 & 48 & 31 & 10 & 4 & 1 & & & & & & & & & 415 & 13.8 & 1.6 \\
\hline White bass & & & 2 & 7 & & & & & 1 & 1 & & & & & & & & & & & & & & & & 11 & 0.4 & 0.2 \\
\hline Sauger & & & & & & & & & & & 1 & & & & & & & & & & & & & & & 1 & 0.0 & 0.0 \\
\hline Striped bass & 2 & 10 & 2 & 1 & & & & & 1 & 6 & 29 & 31 & 7 & 6 & 7 & 5 & 4 & 1 & 1 & 4 & 1 & 1 & 1 & 2 & 1 & 123 & 4.1 & 0.7 \\
\hline
\end{tabular}
sedgncbw.d18

Table 19. Population assessment for walleye based on fall gill netting at Lake Cumberland from 1991-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Year}} & \multicolumn{4}{|c|}{Parameters} & \multirow[b]{2}{*}{Total score} & \multirow[b]{2}{*}{Assessment rating} \\
\hline & & \[
\begin{aligned}
& \text { CPUE } \\
& \geq \text { age } 1+ \\
& \hline
\end{aligned}
\] & Mean length age 2+ at capture & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age } 1+ \\
& \hline
\end{aligned}
\] & & \\
\hline \multicolumn{2}{|l|}{Management objective} & \[
\begin{gathered}
\geq 6.0 \\
\text { fish } / \mathrm{nn}
\end{gathered}
\] & \(\geq 18.0\) in & \[
\begin{gathered}
\geq 1.5 \\
\text { fish/nn }
\end{gathered}
\] & \[
\begin{gathered}
\geq 3.0 \\
\text { fish/nn }
\end{gathered}
\] & & \\
\hline \multirow[t]{2}{*}{2018} & Value & 12.5 & 18.7 & 1.5 & 8.2 & & \\
\hline & Score & 4 & 3 & 4 & 4 & 15 & E \\
\hline \multirow[t]{2}{*}{2016} & Value & 8.4 & 19.4 & 1.1 & 4.9 & & \\
\hline & Score & 4 & 4 & 4 & 4 & 16 & E \\
\hline \multirow[t]{2}{*}{2014} & Value & 9.3 & 18.3 & 0.8 & 3.6 & & \\
\hline & Score & 4 & 2 & 3 & 4 & 13 & G \\
\hline \multirow[t]{2}{*}{2012} & Value & 6.3 & 18.2 & 0.2 & 3.1 & & \\
\hline & Score & 3 & 2 & 2 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2010} & Value & 3.3 & 17.6 & 0.1 & 1.9 & & \\
\hline & Score & 2 & 2 & 1 & 3 & 8 & F \\
\hline \multirow[t]{2}{*}{2008} & Value & 5.9 & 18.5 & 0.9 & 2.5 & & \\
\hline & Score & 3 & 3 & 3 & 3 & 12 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & 14.8 & 19.1 & 3.9 & 3.1 & & \\
\hline & Score & 4 & 4 & 4 & 3 & 15 & E \\
\hline \multirow[t]{2}{*}{2004} & Value & 8.9 & 18.8 & 1.8 & 4.6 & & \\
\hline & Score & 4 & 3 & 4 & 4 & 15 & E \\
\hline \multirow[t]{2}{*}{2002} & Value & 12.1 & 19.1 & 2.5 & 6.4 & & \\
\hline & Score & 4 & 4 & 4 & 4 & 16 & E \\
\hline \multirow[t]{2}{*}{2000} & Value & 4.3 & 18.6 & 1.5 & 1.6 & & \\
\hline & Score & 3 & 3 & 4 & 2 & 12 & G \\
\hline \multirow[t]{2}{*}{1998} & Value & 7.9 & 18.5 & 2.4 & 1.9 & & \\
\hline & Score & 4 & 3 & 4 & 3 & 14 & E \\
\hline \multirow[t]{2}{*}{1996} & Value & 5.3 & 18.5 & 0.9 & 3.6 & & \\
\hline & Score & 3 & 3 & 3 & 4 & 13 & G \\
\hline \multirow[t]{2}{*}{1994} & Value & 3.5 & 18.5 & 0.9 & 0.7 & & \\
\hline & Score & 2 & 3 & 3 & 1 & 9 & F \\
\hline \multirow[t]{2}{*}{1991} & Value & 5.1 & 18.5* & 0.2 & 2.7 & & \\
\hline & Score & 3 & 3 & 2 & 3 & 11 & G \\
\hline
\end{tabular}
sedgncbw.d18
sedagcbw.d18
* Data from 1994 used for age-growth

Table 20. Mean back calculated lengths (in) at each annulus for male walleye collected from Lake Cumberland during 2018, including the 95\% confidence interval \((\mathrm{Cl})\) for each mean length per age group.
\begin{tabular}{lcccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 9 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & & & & & & & & \\
2017 & 36 & 10.8 & & & & & & \\
2016 & 11 & 11.5 & 16.5 & & & & & \\
2015 & 15 & 11.5 & 16.8 & 18.9 & & & & \\
2014 & 4 & 11.0 & 15.6 & 17.9 & 19.1 & & & \\
2013 & 8 & 11.4 & 15.8 & 18.3 & 19.6 & 20.4 & & \\
2011 & 1 & 10.9 & 15.8 & 17.8 & 19.0 & 19.8 & 20.2 & 20.6 \\
& & & & & & & & \\
Mean & & 11.1 & 16.4 & 18.5 & 19.4 & 20.3 & 20.2 & 20.6 \\
Number & & 75 & 39 & 28 & 13 & 9 & 1 & 1 \\
Smallest & & 7.2 & 13.4 & 16.2 & 17.9 & 18.9 & 20.2 & 20.6 \\
Largest & & 13.5 & 17.7 & 19.9 & 20.4 & 21.2 & 20.2 & 20.6 \\
Std error & & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & & \\
95\% CI \(\pm\) & & 0.3 & 0.4 & 0.3 & 0.4 & 0.5 & & \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations; Intercept \(=0\)
sedagcwm.d18

Table 21. Mean back calculated lengths (in) at each annulus for female walleye collected from Lake Cumberland during 2018, including the 95\% confidence interval \((\mathrm{Cl})\) for each mean length per age group.
\begin{tabular}{lccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 8 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & & & & & & & \\
2017 & 3 & 12.7 & & & & & \\
2016 & 1 & 11.3 & 16.6 & & & & \\
2015 & 1 & 11.7 & 17.2 & 18.7 & & & \\
2014 & 1 & 12.2 & 18.9 & 21.7 & 22.1 & & \\
2013 & 3 & 11.6 & 16.4 & 19.2 & 20.5 & 21.2 & \\
2012 & 2 & 12.4 & 16.9 & 18.4 & 19.9 & 21.2 & 21.8 \\
& & & & & & & \\
Mean & & 12.1 & 17.0 & 19.2 & 20.6 & 21.2 & 21.8 \\
Number & & 11 & 8 & 7 & 6 & 5 & 2 \\
Smallest & & 9.7 & 15.4 & 17.8 & 19.1 & 20.4 & 20.8 \\
Largest & & 14.3 & 18.9 & 21.7 & 22.1 & 22.0 & 22.8 \\
Std error & & 0.4 & 0.4 & 0.5 & 0.4 & 0.3 & 1.0 \\
95\% CI \(\pm\) & & 0.8 & 0.8 & 0.9 & 0.8 & 0.6 & 2.0 \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations; Intercept \(=0\) sedagcwf.d18

Table 22. Mean back calculated lengths (in) at each annulus for walleye (both sexes) collected from Lake Cumberland during 2018, including the \(95 \%\) confidence interval (CI) for each mean length per age group.
\begin{tabular}{ccccccccc}
\hline & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 9 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline & & & & & & & & \\
2017 & 53 & 10.7 & & & & & & \\
2016 & 12 & 11.5 & 16.5 & & & & & \\
2015 & 16 & 11.5 & 16.8 & 18.8 & & & & \\
2014 & 5 & 11.2 & 16.3 & 18.6 & 19.7 & & & \\
2013 & 11 & 11.4 & 15.9 & 18.6 & 19.8 & 20.6 & & \\
2012 & 2 & 12.4 & 16.9 & 18.4 & 19.9 & 21.2 & 21.8 & \\
2011 & 1 & 10.9 & 15.8 & 17.8 & 19.0 & 19.8 & 20.2 & 20.6 \\
& & & & & & & & \\
Mean & & 11.0 & 16.5 & 18.7 & 19.7 & 20.7 & 21.3 & 20.6 \\
Number & & 100 & 47 & 35 & 19 & 14 & 3 & 1 \\
Smallest & & 7.2 & 13.4 & 16.2 & 17.9 & 18.9 & 20.2 & 20.6 \\
Largest & & 14.3 & 18.9 & 21.7 & 22.1 & 22.0 & 22.8 & 20.6 \\
Std error & & 0.2 & 0.1 & 0.2 & 0.2 & 0.2 & 0.8 & \\
95\% CI \(\pm\) & & 0.3 & 0.3 & 0.4 & 0.5 & 0.5 & 1.6 & \\
\hline
\end{tabular}

\footnotetext{
Otoliths were used for age-growth determinations; Intercept \(=0\) sedagcbw.d18
}

Table 23. Age-frequency and CPUE (fish/nn) of walleye collected at Lake Cumberland in 30 net-nights during November 2018.
\begin{tabular}{|c|}
\hline & \multicolumn{15}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std error} \\
\hline Age & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & & & & \\
\hline 0 & 3 & 20 & 18 & 1 & & & & & & & & & & & & 42 & 10.1 & 1.4 & 0.6 \\
\hline 1 & & & & & 3 & 28 & 74 & 84 & 50 & 7 & & & & & & 246 & 59.1 & 8.2 & 1.0 \\
\hline 2 & & & & & & & & & 5 & 20 & 18 & & & & & 43 & 10.3 & 1.4 & 0.2 \\
\hline 3 & & & & & & & & & & 10 & 18 & 22 & 1 & & & 51 & 12.3 & 1.7 & 0.3 \\
\hline 4 & & & & & & & & & & & 7 & 6 & & 1 & & 14 & 3.4 & 0.5 & 0.1 \\
\hline 5 & & & & & & & & & & & 4 & 3 & 7 & 3 & & 17 & 4.1 & 0.6 & 0.1 \\
\hline 6 & & & & & & & & & & & & & 1 & & 1 & 2 & 0.5 & 0.1 & 0.0 \\
\hline 7 & & & & & & & & & & & & & 1 & & & 1 & 0.2 & 0.0 & 0.0 \\
\hline Total & 3 & 20 & 18 & 1 & 3 & 28 & 74 & 84 & 55 & 37 & 47 & 31 & 10 & 4 & 1 & 416 & 100.0 & 13.9 & \\
\hline \% & 0.7 & 4.8 & 4.3 & 0.2 & 0.7 & 6.7 & 17.8 & 20.2 & 13.2 & 8.9 & 11.3 & 7.5 & 2.4 & 1.0 & 0.2 & & & & \\
\hline
\end{tabular}
sedgncbw.d18
sedagcbw.d18

Table 24. Walleye population assessment for walleye gill netted at Lake Cumberland in November 2018.
\begin{tabular}{|c|c|c|}
\hline Parameter & Actual value & Assessment score \\
\hline Population density (CPUE age 1 and older) & 12.5 & 4 \\
\hline \begin{tabular}{l}
Growth rate \\
(Mean length age 2+ at capture)
\end{tabular} & 18.7 & 3 \\
\hline Size structure (CPUE \(\geq 20.0\) in) & 1.5 & 4 \\
\hline Recruitment (CPUE age 1) & 8.2 & 4 \\
\hline Instantaneous mortality (Z) & 0.850 & \\
\hline Annual mortality (A) & 57.3 & \\
\hline Total score & & 15 \\
\hline Assessment rating & & E \\
\hline sedgncbw.d18 sedagcbw.d18 & & \\
\hline
\end{tabular}

Table 25. Number of fish and mean relative weight (Wr) for each length group of walleye, white bass, and striped bass collected in Lake Cumberland during November 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{6}{|c|}{Length group} \\
\hline \multirow{4}{*}{Walleye} & \multicolumn{2}{|l|}{10.0-14.9 in} & \multicolumn{2}{|l|}{15.0-19.9 in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline & 67 & 93 (1) & 279 & 89 (0) & 45 & 88 (1) \\
\hline & \multicolumn{2}{|r|}{6.0-8.9 in} & \multicolumn{2}{|l|}{9.0-11.9 in} & \multicolumn{2}{|c|}{\(\geq 12.0\) in} \\
\hline \multirow{3}{*}{White bass} & No. & Wr & No. & Wr & No. & Wr \\
\hline & 0 & 0 (0) & 7 & 101 (2) & 2 & 84 (1) \\
\hline & \multicolumn{2}{|l|}{12.0-19.9 in} & \multicolumn{2}{|l|}{20.0-29.9 in} & \multicolumn{2}{|c|}{\(\geq 30.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline Striped bass & 69 & 89 (1) & 29 & 80 (2) & 3 & 79 (2) \\
\hline
\end{tabular}

Table 26. Mean back calculated lengths (in) at each annulus for white bass collected from Lake Cumberland during 2018, including the \(95 \%\) confidence interval (CI)
for each mean length per age group.
\begin{tabular}{cccccc}
\hline & & \multicolumn{4}{c}{ Age } \\
\cline { 3 - 6 } Year & No. & 1 & 2 & 3 & 4 \\
\hline & & & & & \\
2015 & 1 & 11.7 & 13.8 & 14.9 & \\
2014 & 1 & 10.0 & 13.0 & 14.2 & 16.0 \\
& & & & & \\
Mean & & 10.8 & 13.4 & 14.5 & 16.0 \\
Number & & 2 & 2 & 2 & 1 \\
Smallest & & 10.0 & 13.0 & 14.2 & 16.0 \\
Largest & & 11.7 & 13.8 & 14.9 & 16.0 \\
Std error & & 0.9 & 0.4 & 0.3 & \\
\(95 \% \mathrm{Cl} \pm\) & & 1.7 & 0.8 & 0.7 & \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations;
Intercept = 0
sedagcwb.d18

Table 27. Age-frequency and CPUE (fish/nn) of white bass collected at Lake Cumberland in 30 net-nights of walleye gill netting during November 2018.
\begin{tabular}{cccccccccc}
\hline & \multicolumn{4}{c}{ Inch class } & & & & Std \\
\cline { 2 - 5 } Age & 9 & 10 & 15 & 16 & Total & \(\%\) & CPUE & error \\
\hline 0 & 2 & 7 & & & 9 & 81.8 & 0.3 & 0.2 \\
3 & & & 1 & & & 1 & 9.1 & 0.0 & 0.0 \\
4 & & & & 1 & & 1 & 9.1 & 0.0 & 0.0 \\
\hline Total & 2 & 7 & 1 & 1 & 11 & 100.0 & 0.4 & \\
\(\%\) & 18.2 & 63.6 & 9.1 & 9.1 & & & & \\
\hline
\end{tabular}
sedgncbw.d18
sedagcwb.d18

Table 28. Mean back calculated lengths (in) at each annulus for striped bass collected from Lake Cumberland during 2018, including the \(95 \%\) confidence interval (CI) for each mean length per age group.
\begin{tabular}{lcccccccccc}
\hline & & \multicolumn{9}{c}{ Age } \\
\cline { 3 - 11 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & & & & & & & & & \\
2017 & 29 & 12.4 & & & & & & & & \\
2016 & 16 & 11.4 & 18.4 & & & & & & & \\
2015 & 2 & 12.2 & 19.9 & 23.0 & & & & & & \\
2014 & 2 & 11.0 & 19.7 & 24.5 & 27.5 & & & & & \\
2013 & 4 & 13.7 & 19.9 & 22.9 & 25.8 & 27.5 & & & & \\
2012 & 1 & 12.1 & 19.0 & 21.2 & 23.6 & 25.1 & 26.3 & & \\
2009 & 1 & 13.1 & 18.4 & 20.3 & 23.0 & 24.6 & 26.2 & 27.9 & 29.2 & 29.8 \\
& & & & & & & & & & \\
Mean & & 12.2 & 18.9 & 22.8 & 25.6 & 26.6 & 26.3 & 27.9 & 29.2 & 29.8 \\
Number & & 55 & 26 & 10 & 8 & 6 & 2 & 1 & 1 & 1 \\
Smallest & & 7.9 & 16.7 & 20.2 & 23.0 & 24.6 & 26.2 & 27.9 & 29.2 & 29.8 \\
Largest & & 14.3 & 21.6 & 25.7 & 29.1 & 30.6 & 26.3 & 27.9 & 29.2 & 29.8 \\
Std error & & 0.2 & 0.3 & 0.6 & 0.9 & 1.0 & 0.0 & & & \\
95\% Cl \(\pm\) & & 0.5 & 0.5 & 1.2 & 1.7 & 2.0 & 0.1 & & & \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations; Intercept \(=0\)
sedagcbs.d18

Table 29. Age-frequency and CPUE (fish/nn) of striped bass collected at Lake Cumberland in 30 net-nights of walleye gill netting during November 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{\%} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std error} \\
\hline & 7 & 8 & 9 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 25 & 26 & 27 & 29 & 30 & 31 & & & & \\
\hline 0 & 2 & 10 & 2 & & & & & & & & & & & & & & & & 14 & 11.6 & 0.5 & 0.2 \\
\hline 1 & & & & 1 & 6 & 29 & 31 & 4 & & & & & & & & & & & 71 & 58.7 & 2.4 & 0.4 \\
\hline 2 & & & & & & & & 4 & 6 & 7 & 5 & 3 & & & & & & & 25 & 20.7 & 0.8 & 0.3 \\
\hline 3 & & & & & & & & & & & & 1 & 1 & & & & & & 2 & 1.7 & 0.1 & 0.0 \\
\hline 4 & & & & & & & & & & & & & & & 1 & & 1 & & 2 & 1.7 & 0.1 & 0.0 \\
\hline 5 & & & & & & & & & & & & & & 3 & & 1 & & 1 & 5 & 4.1 & 0.2 & 0.1 \\
\hline 6 & & & & & & & & & & & & & & 1 & & & & & 1 & 0.8 & 0.0 & 0.0 \\
\hline 9 & & & & & & & & & & & & & & & & & 1 & & 1 & 0.8 & 0.0 & 0.0 \\
\hline Total & 2 & 10 & 2 & 1 & 6 & 29 & 31 & 8 & 6 & 7 & 5 & 4 & 1 & 4 & 1 & 1 & 2 & 1 & 121 & 100.0 & 4.0 & \\
\hline \% & 1.7 & 8.3 & 1.7 & 0.8 & 5.0 & 24.0 & 25.6 & 6.6 & 5.0 & 5.8 & 4.1 & 3.3 & 0.8 & 3.3 & 0.8 & 0.8 & 1.7 & 0.8 & & & & \\
\hline
\end{tabular}
sedgncbw.d18
sedagcbs.d18

Table 30. Species composition, relative abundance, and CPUE (fish/hr) of trout collected during 8.75 hours of 15-minute nocturnal electrofishing runs for trout in Cumberland tailwater during October 2018; standard error is in parentheses.

sedcbtw n.d18

Table 31. Fall electrofishing mean CPUE (fish/hr) of 15.0-17.9 in, 18.019.9 in, and \(\geq 20.0\) in rainbow trout in the Lake Cumberland tailwater from 1995 to 2018. Data collected from sample sites 1-5 each year. *2011 sampling was conducted in February.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{6}{|c|}{Length group} \\
\hline & \multicolumn{2}{|l|}{15.0-17.9 in} & \multicolumn{2}{|r|}{18.0-19.9 in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} \\
\hline & CPUE & Std. err. & CPUE & Std. err. & CPUE & Std. err. \\
\hline 2018 & 13.1 & 2.2 & 1.9 & 0.6 & 0.2 & 0.2 \\
\hline 2017 & 21.8 & 2.4 & 1.4 & 0.5 & 0.0 & \\
\hline 2016 & 6.2 & 1.3 & 1.0 & 0.4 & 0.5 & 0.3 \\
\hline 2015 & 9.0 & 1.9 & 1.3 & 0.6 & 0.2 & 0.2 \\
\hline 2014 & 8.6 & 1.1 & 3.0 & 0.7 & 0.2 & 0.2 \\
\hline 2013 & 23.2 & 3.6 & 0.5 & 0.3 & 0.0 & \\
\hline 2012 & 0.5 & 0.3 & 0.2 & 0.2 & 0.0 & \\
\hline 2011 & 1.1 & 0.6 & 0.0 & & 0.2 & 0.2 \\
\hline 2010 & 1.3 & 0.5 & 0.3 & 0.2 & 0.0 & \\
\hline 2009 & 5.4 & 1.6 & 0.5 & 0.3 & 0.0 & \\
\hline 2008 & 18.1 & 4.3 & 1.4 & 0.5 & 0.0 & \\
\hline 2007 & 25.0 & 3.5 & 6.4 & 1.3 & 0.6 & 0.3 \\
\hline 2006 & 29.3 & 3.0 & 4.3 & 1.2 & 0.3 & 0.2 \\
\hline 2005 & 9.3 & 2.4 & 2.1 & 0.8 & 0.0 & \\
\hline 2004 & 2.2 & 0.8 & 0.6 & 0.4 & 0.0 & \\
\hline 2003 & 2.1 & 0.7 & 1.0 & 0.4 & 0.2 & 0.2 \\
\hline 2002 & 10.7 & 2.4 & 1.4 & 0.7 & 1.0 & 0.6 \\
\hline 2001 & 21.0 & 3.7 & 5.5 & 1.3 & 0.7 & 0.4 \\
\hline 2000 & 9.4 & 1.3 & 1.4 & 0.7 & 0.5 & 0.4 \\
\hline 1999 & 1.9 & 0.5 & 0.3 & 0.2 & 0.3 & 0.2 \\
\hline 1998 & 0.3 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
\hline 1997 & 1.4 & 0.5 & 1.0 & 0.5 & 0.3 & 0.2 \\
\hline 1996 & 1.8 & 0.6 & 0.6 & 0.3 & 0.5 & 0.5 \\
\hline 1995 & 0.7 & 0.5 & 0.5 & 0.4 & 0.5 & 0.5 \\
\hline
\end{tabular}

\footnotetext{
sedcbtw1.t18
}

Table 32. Fall electrofishing mean CPUE (fish/hr) of 15.0-17.9 in, 18.019.9 in , and \(\geq 20.0\) in brown trout in the Lake Cumberland tailwater from 1995 to 2018. Data collected from sample sites 1-5 each year. *2011 sampling was conducted in February.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{6}{|c|}{Length group} \\
\hline & \multicolumn{2}{|l|}{15.0-17.9 in} & \multicolumn{2}{|r|}{18.0-19.9 in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} \\
\hline & CPUE & Std. err. & CPUE & Std. err. & CPUE & Std. err. \\
\hline 2018 & 1.0 & 0.5 & 0.5 & 0.3 & 2.2 & 0.6 \\
\hline 2017 & 1.4 & 0.5 & 1.4 & 0.5 & 2.6 & 0.7 \\
\hline 2016 & 4.5 & 1.1 & 3.0 & 0.8 & 2.2 & 0.8 \\
\hline 2015 & 5.6 & 1.8 & 1.9 & 0.7 & 1.9 & 0.7 \\
\hline 2014 & 7.2 & 2.1 & 1.4 & 0.6 & 1.6 & 0.8 \\
\hline 2013 & 2.4 & 0.8 & 1.1 & 0.6 & 4.6 & 1.5 \\
\hline 2012 & 2.6 & 0.8 & 3.2 & 1.2 & 2.7 & 0.9 \\
\hline 2011 & 6.6 & 1.2 & 3.4 & 0.9 & 4.0 & 1.2 \\
\hline 2010 & 3.7 & 0.9 & 1.3 & 0.5 & 0.6 & 0.4 \\
\hline 2009 & 9.1 & 2.0 & 5.3 & 1.7 & 2.7 & 1.1 \\
\hline 2008 & 14.1 & 2.9 & 6.4 & 1.0 & 2.6 & 0.7 \\
\hline 2007 & 29.0 & 6.2 & 5.8 & 1.3 & 3.4 & 0.7 \\
\hline 2006 & 30.2 & 10.1 & 5.6 & 1.5 & 5.0 & 1.5 \\
\hline 2005 & 14.9 & 3.1 & 7.0 & 1.7 & 9.3 & 2.4 \\
\hline 2004 & 11.8 & 3.3 & 7.7 & 2.0 & 3.2 & 0.9 \\
\hline 2003 & 20.2 & 5.0 & 3.8 & 1.4 & 1.9 & 0.7 \\
\hline 2002 & 31.2 & 6.6 & 5.6 & 1.1 & 2.9 & 0.9 \\
\hline 2001 & 30.2 & 8.7 & 5.8 & 1.5 & 5.2 & 1.3 \\
\hline 2000 & 18.9 & 4.7 & 6.6 & 1.6 & 9.0 & 2.5 \\
\hline 1999 & 6.1 & 1.1 & 5.1 & 1.8 & 2.6 & 0.7 \\
\hline 1998 & 6.4 & 1.2 & 1.1 & 0.5 & 1.8 & 0.7 \\
\hline 1997 & 2.2 & 0.7 & 1.8 & 0.9 & 3.2 & 1.4 \\
\hline 1996 & 6.8 & 2.5 & 1.0 & 0.6 & 2.0 & 0.9 \\
\hline 1995 & 0.7 & 0.4 & 0.4 & 0.3 & & \\
\hline
\end{tabular}

\footnotetext{
sedcbtw1.t18
}

Table 33. Number of fish and mean relative weight (Wr) for each species of trout collected in the Cumberland tailwater during October 2018.
Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Location} & \multicolumn{4}{|c|}{Species} \\
\hline & \multicolumn{2}{|l|}{Rainbow trout} & \multicolumn{2}{|c|}{Brown trout} \\
\hline & No. & Wr & No. & Wr \\
\hline Above Helms & 159 & 83 (1) & 96 & 86 (1) \\
\hline Below Helms & 124 & 84 (1) & 67 & 86 (1) \\
\hline Rainbow Run & 25 & 83 (2) & 21 & 97 (5) \\
\hline Big Willis & 47 & 87 (1) & 15 & 91 (3) \\
\hline Crocus Creek & 19 & \(88(2)\) & 7 & 115 (8) \\
\hline Hwy 61 & 48 & 89 (1) & 30 & \(98(3)\) \\
\hline Cloyds & 14 & 86 (2) & 4 & 96 (4) \\
\hline Total & 436 & 85 (0) & 240 & 90 (1) \\
\hline
\end{tabular}
sedcbtwn.d18

Table 34. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 6.0 hours of 15-minute electrofishing runs for black bass in Laurel River Lake during April and May 2018; standard error is in parentheses
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline \multirow[t]{3}{*}{Dam} & Largemouth bass & & & 1 & & 3 & 2 & 3 & 5 & 2 & 6 & 9 & 13 & 9 & 14 & 5 & 1 & 1 & 1 & 1 & 1 & 77 & 51.3 (3.8) \\
\hline & Spotted bass & & & & & & 1 & 1 & & & & & 1 & & & & & & & & & 3 & 2.0 (1.4) \\
\hline & Smallmouth bass & & 1 & & & & & & 1 & & & & & & & & & & & & & 2 & 1.3 (0.8) \\
\hline Spruce & Largemouth bass & & & & & & 3 & 4 & 4 & 6 & 3 & 11 & 13 & 8 & 5 & 11 & 8 & 2 & 1 & & & 79 & 52.7 (8.0) \\
\hline Creek & Spotted bass & 1 & 3 & & 1 & 1 & 8 & 9 & 5 & 4 & 3 & 2 & 4 & 6 & 4 & & & & & & & 51 & 34.0 (4.5) \\
\hline & Smallmouth bass & & 5 & 1 & 1 & & 2 & & & & & & & 2 & & 1 & 1 & & & & & 13 & 8.7 (2.4) \\
\hline Laurel & Largemouth bass & 1 & & & 1 & 1 & 1 & 12 & 5 & 8 & 12 & 7 & 6 & 13 & 13 & 20 & 10 & 4 & 2 & 1 & & 117 & 78.0 (10.1) \\
\hline River & Spotted bass & & & & & & 3 & 4 & 5 & 6 & & & 3 & & 2 & & & & & & & 23 & 15.3 (4.7) \\
\hline Arm & Smallmouth bass & & & & & 1 & 1 & & & & & & & & & & & & & & & 2 & 1.3 (0.8) \\
\hline Upper & Largemouth bass & & 1 & & & 1 & 4 & 6 & 4 & 1 & 11 & 10 & 12 & 15 & 9 & 6 & 1 & 2 & & & & 83 & 55.3 (12.7) \\
\hline Craigs & Spotted bass & & & & 2 & & 5 & 7 & 3 & 7 & 3 & 9 & 6 & 4 & 1 & 1 & & & & & & 48 & 32.0 (3.6) \\
\hline Creek & Smallmouth bass & & & & & & & & & & & 1 & & & & 1 & & & & & & 2 & 1.3 (0.8) \\
\hline \multirow[t]{3}{*}{Total} & Largemouth bass & 1 & 1 & 1 & 1 & 5 & 10 & 25 & 18 & 17 & 32 & 37 & 44 & 45 & 41 & 42 & 20 & 9 & 4 & 2 & 1 & 356 & 59.3 (4.9) \\
\hline & Spotted bass & 1 & 3 & & 3 & 1 & 17 & 21 & 13 & 17 & 6 & 11 & 14 & 10 & 7 & 1 & & & & & & 125 & 20.8 (3.2) \\
\hline & Smallmouth bass & & 6 & 1 & 1 & 1 & 3 & & 1 & & & 1 & & 2 & & 2 & 1 & & & & & 19 & 3.2 (0.9) \\
\hline
\end{tabular}
sedpsdlr.d18

Table 35. Comparison of catch-per-hour of black bass (by area) captured during spring electrofishing on Laurel River Lake during the period of 20142018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{Stock} & \multicolumn{5}{|c|}{Quality} & \multicolumn{5}{|c|}{Preferred} \\
\hline Species/Area & 2014 & 2015 & 2016 & 2017 & 2018 & 2014 & 2015 & 2016 & 2017 & 2018 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline \multicolumn{16}{|l|}{Largemouth bass} \\
\hline Dam & 26.7 & 59.3 & 74.0 & 54.7 & 47.3 & 21.3 & 45.3 & 53.3 & 39.3 & 36.7 & 13.3 & 21.3 & 21.3 & 17.3 & 16.0 \\
\hline Spruce Creek & 43.3 & 54.0 & 48.7 & 72.7 & 50.7 & 33.3 & 42.0 & 45.3 & 38.0 & 39.3 & 17.3 & 27.3 & 22.0 & 29.3 & 18.0 \\
\hline Laurel River Arm & 102.7 & 87.3 & 109.3 & 85.3 & 75.3 & 47.3 & 54.7 & 70.0 & 56.7 & 50.7 & 24.0 & 16.0 & 34.0 & 21.3 & 33.3 \\
\hline Craigs Cr. headwaters & 60.7 & 44.0 & 24.0 & 69.3 & 51.3 & 51.3 & 36.7 & 14.7 & 50.0 & 36.7 & 31.3 & 22.0 & 5.3 & 28.0 & 12.0 \\
\hline Mean & 58.3 & 61.2 & 64.0 & 70.5 & 56.2 & 38.3 & 44.7 & 45.8 & 46.0 & 40.8 & 21.5 & 21.7 & 20.7 & 24.0 & 19.8 \\
\hline \multicolumn{16}{|l|}{Spotted bass} \\
\hline Dam & 5.3 & 8.7 & 9.3 & 4.0 & 2.0 & 2.0 & 7.3 & 4.7 & 4.0 & 0.7 & 0.7 & 2.7 & 2.7 & 0.7 & 0.0 \\
\hline Spruce Creek & 14.7 & 10.7 & 8.7 & 24.0 & 30.0 & 9.3 & 7.3 & 6.0 & 12.0 & 12.7 & 4.7 & 6.0 & 4.0 & 5.3 & 6.7 \\
\hline Laurel River Arm & 18.0 & 7.3 & 24.0 & 18.7 & 15.3 & 4.0 & 4.0 & 11.3 & 8.7 & 3.3 & 0.0 & 0.7 & 1.3 & 1.3 & 1.3 \\
\hline Craigs Cr. headwaters & 42.0 & 20.0 & 17.3 & 19.3 & 30.7 & 25.3 & 14.0 & 5.3 & 12.7 & 16.0 & 10.0 & 4.0 & 1.3 & 4.7 & 4.0 \\
\hline Mean & 20.0 & 11.7 & 14.8 & 16.5 & 19.5 & 10.2 & 8.2 & 6.8 & 9.3 & 8.2 & 3.8 & 3.3 & 2.3 & 3.0 & 3.0 \\
\hline \multicolumn{16}{|l|}{Smallmouth bass} \\
\hline Dam & 1.3 & 0.0 & 7.3 & 2.0 & 0.7 & 1.3 & 0.0 & 4.0 & 1.3 & 0.0 & 1.3 & 0.0 & 4.0 & 1.3 & 0.0 \\
\hline Spruce Creek & 4.7 & 2.0 & 1.3 & 2.0 & 4.0 & 2.0 & 2.0 & 1.3 & 2.0 & 2.7 & 2.0 & 2.0 & 1.3 & 2.0 & 2.7 \\
\hline Laurel River Arm & 0.7 & 0.0 & 0.0 & 2.7 & 0.7 & 0.7 & 0.0 & 0.0 & 2.7 & 0.0 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline Craigs Cr. headwaters & 8.0 & 6.7 & 6.0 & 0.0 & 1.3 & 7.3 & 4.0 & 4.7 & 0.0 & 1.3 & 5.3 & 3.3 & 2.7 & 0.0 & 0.7 \\
\hline Mean & 3.7 & 2.2 & 3.7 & 1.7 & 1.7 & 2.8 & 1.5 & 2.5 & 1.5 & 1.0 & 2.3 & 1.3 & 2.0 & 0.8 & 0.8 \\
\hline
\end{tabular}

Largemouth bass - \(\geq 8.0\) in = stock, \(\geq 12.0\) in = quality, \(\geq 15.0\) in = preferred.
Smallmouth bass and spotted bass \(-\geq 7.0\) in \(=\) stock, \(\geq 11.0\) in \(=\) quality, \(\geq 14.0\) in = preferred.
sedpsdlr.d18

Table 36. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Laurel River Lake during April and May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 3.2 & 0.8 & 15.3 & 2.2 & 21.0 & 2.2 & 19.8 & 2.2 & 0.5 & 0.3 & 59.3 & 4.9 \\
\hline 2017 & 8.7 & 1.3 & 24.5 & 3.0 & 22.0 & 2.6 & 24.0 & 2.2 & 0.2 & 0.2 & 79.2 & 5.2 \\
\hline 2016 & 6.5 & 1.5 & 18.2 & 3.3 & 25.2 & 2.9 & 20.7 & 3.0 & 0.8 & 0.3 & 70.5 & 7.9 \\
\hline 2015 & 11.5 & 2.6 & 16.5 & 2.5 & 23.0 & 3.2 & 21.7 & 2.2 & 1.2 & 0.5 & 72.7 & 7.1 \\
\hline 2014 & 5.8 & 1.2 & 20.0 & 4.9 & 16.8 & 2.5 & 21.5 & 2.6 & 0.8 & 0.3 & 64.2 & 7.9 \\
\hline 2013 & 5.0 & 1.2 & 13.3 & 2.1 & 26.3 & 3.0 & 21.2 & 2.1 & 1.2 & 0.4 & 65.8 & 4.6 \\
\hline 2012 & 6.0 & 1.2 & 23.3 & 3.6 & 18.8 & 2.9 & 18.3 & 2.0 & 0.2 & 0.2 & 66.5 & 7.6 \\
\hline 2011 & 11.5 & 3.7 & 19.8 & 4.1 & 26.7 & 4.7 & 20.0 & 2.9 & 0.8 & 0.3 & 78.0 & 11.6 \\
\hline 2010 & 15.8 & 3.0 & 31.0 & 4.4 & 20.7 & 3.1 & 21.2 & 2.4 & 0.8 & 0.4 & 88.7 & 8.4 \\
\hline 2009 & 13.2 & 2.4 & 12.2 & 2.7 & 16.8 & 2.6 & 20.8 & 3.2 & 0.8 & 0.5 & 63.0 & 8.5 \\
\hline 2008 & 37.5 & 11.5 & 15.0 & 2.0 & 7.8 & 1.5 & 17.7 & 2.7 & 0.7 & 0.5 & 78.0 & 13.8 \\
\hline 2007 & 2.3 & 0.8 & 7.8 & 1.9 & 14.5 & 1.9 & 21.8 & 2.6 & 0.5 & 0.3 & 46.5 & 4.0 \\
\hline 2006 & 20.8 & 5.7 & 13.9 & 2.7 & 17.1 & 2.9 & 19.5 & 2.8 & 0.6 & 0.3 & 71.4 & 11.4 \\
\hline 2005 & 6.2 & 1.2 & 15.0 & 2.9 & 18.5 & 2.7 & 22.5 & 2.9 & 0.2 & 0.2 & 62.2 & 7.5 \\
\hline 2004 & 3.8 & 1.5 & 11.0 & 1.4 & 18.5 & 3.0 & 14.2 & 1.9 & 0.0 & 0.0 & 47.5 & 4.8 \\
\hline 2003 & 9.8 & 2.9 & 37.0 & 5.8 & 29.3 & 4.1 & 13.8 & 2.0 & 0.0 & 0.0 & 90.0 & 12.3 \\
\hline 2002 & 21.7 & 5.0 & 24.0 & 3.8 & 23.3 & 3.3 & 8.3 & 1.4 & 0.0 & 0.0 & 77.3 & 9.7 \\
\hline
\end{tabular}
sedpsdlr.d18

Table 37. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Laurel River Lake during April and May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|c|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 4.2 & 0.9 & 8.5 & 1.4 & 5.2 & 1.2 & 3.0 & 1.0 & 0.0 & 0.0 & 20.8 & 3.2 \\
\hline 2017 & 4.8 & 1.1 & 5.3 & 0.9 & 6.3 & 1.5 & 3.0 & 0.8 & 0.0 & 0.0 & 19.5 & 3.2 \\
\hline 2016 & 4.0 & 0.9 & 6.3 & 1.4 & 4.5 & 1.1 & 2.3 & 0.7 & 0.0 & 0.0 & 17.2 & 2.4 \\
\hline 2015 & 2.0 & 0.7 & 2.8 & 0.7 & 4.8 & 1.0 & 3.3 & 0.9 & 0.0 & 0.0 & 13.0 & 1.9 \\
\hline 2014 & 3.0 & 0.7 & 8.2 & 1.7 & 6.3 & 1.5 & 3.8 & 1.2 & 0.0 & 0.0 & 21.3 & 3.6 \\
\hline 2013 & 3.3 & 0.8 & 4.8 & 1.4 & 10.8 & 2.9 & 2.2 & 0.7 & 0.0 & 0.0 & 21.2 & 3.9 \\
\hline 2012 & 6.3 & 1.6 & 8.3 & 1.8 & 6.8 & 1.6 & 1.7 & 0.5 & 0.0 & 0.0 & 23.2 & 3.3 \\
\hline 2011 & 7.3 & 1.4 & 9.2 & 1.3 & 7.5 & 1.7 & 2.0 & 0.5 & 0.0 & 0.0 & 26.0 & 3.5 \\
\hline 2010 & 25.2 & 4.2 & 13.0 & 2.3 & 9.0 & 2.0 & 4.8 & 1.2 & 0.0 & 0.0 & 52.0 & 6.1 \\
\hline 2009 & 6.5 & 1.5 & 12.5 & 2.4 & 6.8 & 1.5 & 2.7 & 0.8 & 0.2 & 0.2 & 28.5 & 4.6 \\
\hline 2008 & 20.2 & 4.2 & 12.7 & 2.6 & 8.5 & 1.4 & 2.3 & 0.6 & 0.0 & 0.0 & 43.7 & 7.0 \\
\hline 2007 & 12.2 & 2.3 & 13.5 & 2.2 & 10.7 & 1.7 & 2.0 & 0.6 & 0.0 & 0.0 & 38.3 & 4.0 \\
\hline 2006 & 15.0 & 2.4 & 13.4 & 1.7 & 9.1 & 1.7 & 2.6 & 0.7 & 0.0 & 0.0 & 40.2 & 4.6 \\
\hline 2005 & 4.8 & 0.8 & 3.3 & 0.8 & 7.7 & 1.6 & 3.7 & 1.1 & 0.0 & 0.0 & 19.5 & 2.7 \\
\hline 2004 & 3.2 & 1.0 & 12.5 & 2.9 & 9.8 & 2.3 & 2.2 & 0.7 & 0.0 & 0.0 & 27.7 & 5.6 \\
\hline 2003 & 23.3 & 5.3 & 17.8 & 3.1 & 10.2 & 2.0 & 0.8 & 0.5 & 0.0 & 0.0 & 52.2 & 8.9 \\
\hline 2002 & 13.7 & 3.2 & 13.3 & 1.8 & 5.5 & 1.4 & 0.3 & 0.2 & 0.0 & 0.0 & 32.8 & 5.6 \\
\hline
\end{tabular}
sedpsdlr.d18

Table 38. Spring electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected at Laurel River Lake during April and May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 2.0 & 0.8 & 0.2 & 0.2 & 0.2 & 0.2 & 0.8 & 0.3 & 0.2 & 0.2 & 3.2 & 0.9 \\
\hline 2017 & 0.7 & 0.4 & 0.2 & 0.2 & 0.7 & 0.4 & 0.8 & 0.4 & 0.2 & 0.2 & 2.3 & 0.7 \\
\hline 2016 & 0.5 & 0.3 & 1.0 & 0.5 & 0.5 & 0.4 & 2.0 & 0.6 & 1.2 & 0.5 & 4.0 & 1.1 \\
\hline 2015 & 0.3 & 0.3 & 0.3 & 0.3 & 0.2 & 0.2 & 1.3 & 0.5 & 0.5 & 0.3 & 2.2 & 0.9 \\
\hline 2014 & 0.7 & 0.3 & 0.5 & 0.3 & 0.5 & 0.4 & 2.3 & 0.6 & 1.0 & 0.4 & 4.0 & 0.9 \\
\hline 2013 & 0.3 & 0.2 & 0.2 & 0.2 & 1.0 & 0.6 & 0.8 & 0.4 & 0.0 & 0.0 & 2.3 & 0.8 \\
\hline 2012 & 0.3 & 0.2 & 0.2 & 0.2 & 0.3 & 0.2 & 1.0 & 0.4 & 0.5 & 0.3 & 1.8 & 0.6 \\
\hline 2011 & 1.0 & 0.4 & 1.7 & 0.5 & 0.5 & 0.3 & 0.8 & 0.4 & 0.7 & 0.3 & 4.0 & 1.1 \\
\hline 2010 & 10.2 & 2.2 & 1.2 & 0.5 & 0.7 & 0.4 & 2.8 & 0.7 & 1.2 & 0.4 & 14.8 & 3.0 \\
\hline 2009 & 1.7 & 1.2 & 1.0 & 0.4 & 0.7 & 0.4 & 3.5 & 1.5 & 1.8 & 0.8 & 6.8 & 2.4 \\
\hline 2008 & 1.7 & 0.7 & 1.8 & 0.7 & 1.3 & 0.5 & 3.2 & 1.2 & 1.8 & 0.6 & 8.0 & 2.3 \\
\hline 2007 & 2.8 & 0.8 & 1.7 & 0.7 & 0.3 & 0.2 & 1.2 & 0.5 & 0.8 & 0.4 & 6.0 & 1.4 \\
\hline 2006 & 0.5 & 0.3 & 0.5 & 0.4 & 0.2 & 0.2 & 1.0 & 0.6 & 0.3 & 0.2 & 2.1 & 1.0 \\
\hline 2005 & 0.2 & 0.2 & 0.8 & 0.4 & 1.5 & 0.6 & 5.5 & 1.5 & 2.8 & 1.1 & 8.0 & 1.8 \\
\hline 2004 & 2.0 & 0.6 & 1.2 & 0.4 & 0.7 & 0.4 & 1.2 & 0.5 & 0.0 & 0.0 & 5.0 & 1.1 \\
\hline 2003 & 8.3 & 2.2 & 7.5 & 1.8 & 1.8 & 0.8 & 2.2 & 0.8 & 0.2 & 0.2 & 19.8 & 4.3 \\
\hline 2002 & 8.2 & 2.5 & 4.5 & 1.5 & 2.2 & 0.6 & 0.7 & 0.3 & 0.2 & 0.2 & 15.5 & 3.8 \\
\hline
\end{tabular}
sedpsdlr.d18

Table 39. Population assessment for largemouth bass based on spring electrofishing at Laurel River Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 15.0 \mathrm{in}
\end{gathered}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \mathrm{in}
\end{gathered}
\] & \begin{tabular}{l}
Total \\
score
\end{tabular} & Assessment rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 13.0\) in & \(\geq 10.0\) fish/hr & \(\geq 20.0\) fish/hr & \(\geq 10.0\) fish/hr & \(\geq 0.5 \mathrm{fish} / \mathrm{hr}\) & & \\
\hline \multirow[t]{2}{*}{2018} & Value & 13.4 & 1.5 & 21.0 & 19.8 & 0.5 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2017} & Value & & 4.3 & 22.0 & 24.0 & 0.2 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & & 3.3 & 25.2 & 20.7 & 0.8 & & \\
\hline & Score & 3 & 1 & 3 & 4 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2015} & Value & & 1.3 & 23.0 & 21.7 & 1.2 & & \\
\hline & Score & 3 & 1 & 3 & 4 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2014} & Value & & 1.6 & 16.8 & 21.5 & 0.8 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2013} & Value & 13.1 & 1.2 & 26.3 & 21.2 & 1.2 & & \\
\hline & Score & 3 & 1 & 3 & 4 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2012} & Value & & 3.3 & 18.8 & 18.3 & 0.2 & & \\
\hline & Score & 3 & 1 & 2 & 3 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2011} & Value & & 9.2 & 26.7 & 20.0 & 0.8 & & \\
\hline & Score & 3 & 1 & 3 & 4 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2010} & Value & & 6.5 & 20.7 & 21.2 & 0.8 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2009} & Value & & 12.2 & 16.8 & 20.8 & 0.8 & & \\
\hline & Score & 3 & 2 & 2 & 4 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2008} & Value & 13.3 & 36.3 & 7.8 & 17.7 & 0.7 & & \\
\hline & Score & 3 & 3 & 1 & 3 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2007} & Value & & 2.1 & 14.5 & 21.8 & 0.5 & & \\
\hline & Score & 4 & 1 & 1 & 4 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 18.4 & 17.1 & 19.5 & 0.6 & & \\
\hline & Score & 4 & 2 & 2 & 3 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2005} & Value & & 4.6 & 18.5 & 22.5 & 0.2 & & \\
\hline & Score & 4 & 1 & 2 & 4 & 2 & 13 & G \\
\hline \multirow[t]{2}{*}{2004} & Value & & 2.6 & 18.5 & 14.2 & 0.0 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 1 & 11 & F \\
\hline \multirow[t]{2}{*}{2003} & Value & 13.7 & 7.8 & 29.3 & 13.8 & 0.0 & & \\
\hline & Score & 4 & 1 & 3 & 3 & 1 & 12 & F \\
\hline \multirow[t]{2}{*}{2002} & Value & & 18.2 & 23.3 & 8.8 & 0.0 & & \\
\hline & Score & 4 & 2 & 3 & 2 & 1 & 12 & F \\
\hline \multirow[t]{2}{*}{2001} & Value & & 17.8 & 22.1 & 2.5 & 0.3 & & \\
\hline & Score & 4 & 2 & 2 & 1 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2000} & Value & & 2.3 & 16.3 & 2.1 & 0.1 & & \\
\hline & Score & 4 & 1 & 2 & 1 & 1 & 9 & F \\
\hline
\end{tabular}

Table 40. Population assessment for spotted bass based on spring electrofishing at Laurel River Lake from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
11.0-13.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 14.0 \mathrm{in}
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 11.0\) in & \(\geq 3.0\) fish/hr & \(\geq 7.0\) fish/hr & \(\geq 1.0\) fish/hr & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 0.7 & 5.2 & 3.0 & & \\
\hline & Score & 1 & 1 & 1 & 4 & 7 & F \\
\hline \multirow[t]{2}{*}{2017} & Value & & 1.3 & 6.3 & 3.0 & & \\
\hline & Score & 1 & 2 & 2 & 4 & 9 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & & 1.0 & 4.5 & 2.3 & & \\
\hline & Score & 1 & 2 & 1 & 3 & 7 & F \\
\hline \multirow[t]{2}{*}{2015} & Value & & 0.3 & 4.8 & 3.3 & & \\
\hline & Score & 1 & 1 & 1 & 4 & 7 & F \\
\hline \multirow[t]{2}{*}{2014} & Value & & 0.5 & 6.3 & 3.8 & & \\
\hline & Score & 1 & 1 & 2 & 4 & 8 & F \\
\hline \multirow[t]{2}{*}{2013} & Value & & 0.3 & 10.8 & 2.2 & & \\
\hline & Score & 1 & 1 & 4 & 3 & 9 & F \\
\hline \multirow[t]{2}{*}{2012} & Value & 10.0 & 0.5 & 6.8 & 1.7 & & \\
\hline & Score & 1 & 1 & 2 & 3 & 7 & F \\
\hline \multirow[t]{2}{*}{2011} & Value & & 0.8 & 7.5 & 2.0 & & \\
\hline & Score & 2 & 1 & 2 & 3 & 8 & F \\
\hline \multirow[t]{2}{*}{2010} & Value & & 2.5 & 9.0 & 4.8 & & \\
\hline & Score & 2 & 3 & 3 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2009} & Value & & 0.3 & 6.8 & 2.7 & & \\
\hline & Score & 2 & 1 & 2 & 4 & 9 & F \\
\hline \multirow[t]{2}{*}{2008} & Value & & 4.0 & 8.5 & 2.3 & & \\
\hline & Score & 2 & 3 & 3 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2007} & Value & 10.4 & 0.8 & 10.7 & 2.0 & & \\
\hline & Score & 2 & 1 & 4 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 4.3 & 9.1 & 2.6 & & \\
\hline & Score & 4 & 3 & 3 & 4 & 14 & E \\
\hline \multirow[t]{2}{*}{2005} & Value & & 1.5 & 7.7 & 3.7 & & \\
\hline & Score & 4 & 2 & 2 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2004} & Value & & 0.0 & 9.8 & 2.2 & & \\
\hline & Score & 4 & 1 & 3 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2003} & Value & & 2.3 & 10.2 & 0.8 & & \\
\hline & Score & 4 & 3 & 3 & 2 & 12 & G \\
\hline \multirow[t]{2}{*}{2002} & Value & 11.5 & 2.2 & 5.5 & 0.3 & & \\
\hline & Score & 4 & 3 & 2 & 1 & 10 & G \\
\hline \multirow[t]{2}{*}{2001} & Value & & 6.0 & 8.3 & 0.1 & & \\
\hline & Score & 4 & 4 & 3 & 1 & 12 & G \\
\hline \multirow[t]{2}{*}{2000} & Value & & 2.6 & 2.3 & 0.1 & & \\
\hline & Score & 4 & 3 & 1 & 1 & & F \\
\hline
\end{tabular}

Table 41. Population assessment for smallmouth bass based on spring electrofishing at Laurel River Lake from 1990-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{aligned}
& \text { CPUE } \\
& \text { age-1 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \text { 11.0-13.9 in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 14.0 \mathrm{in}
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 13.0\) in & \(\geq 3.0\) fish/hr & \(\geq 1.5 \mathrm{fish} / \mathrm{hr}\) & \(\geq 1.0 \mathrm{fish} / \mathrm{hr}\) & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 1.3 & 0.2 & 0.8 & & \\
\hline & Score & 3 & 2 & 1 & 2 & 8 & F \\
\hline \multirow[t]{2}{*}{2017} & Value & & 0.3 & 0.7 & 0.8 & & \\
\hline & Score & 3 & 1 & 2 & 2 & 8 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & & 0.2 & 0.5 & 2.0 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 10 & G \\
\hline \multirow[t]{2}{*}{2015} & Value & & 0.0 & 0.2 & 1.3 & & \\
\hline & Score & 3 & 1 & 1 & 3 & 8 & F \\
\hline \multirow[t]{2}{*}{2014} & Value & & 0.0 & 0.5 & 2.3 & & \\
\hline & Score & 3 & 1 & 2 & 4 & 10 & G \\
\hline \multirow[t]{2}{*}{2013} & Value & 13.2 & 0.0 & 1.0 & 0.8 & & \\
\hline & Score & 3 & 1 & 3 & 2 & 9 & F \\
\hline \multirow[t]{2}{*}{2012} & Value & & 0.0 & 0.3 & 1.0 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2011} & Value & & 0.3 & 0.5 & 0.8 & & \\
\hline & Score & 4 & 1 & 2 & 2 & 9 & F \\
\hline \multirow[t]{2}{*}{2010} & Value & & 3.8 & 0.7 & 2.8 & & \\
\hline & Score & 4 & 4 & 2 & 4 & 14 & E \\
\hline \multirow[t]{2}{*}{2009} & Value & & 0.3 & 0.7 & 3.5 & & \\
\hline & Score & 4 & 1 & 2 & 4 & 11 & G \\
\hline \multirow[t]{2}{*}{2008} & Value & 13.6 & 0.8 & 1.3 & 3.2 & & \\
\hline & Score & 4 & 2 & 3 & 4 & 13 & G \\
\hline \multirow[t]{2}{*}{2007} & Value & & 1.2 & 0.3 & 1.2 & & \\
\hline & Score & 4 & 2 & 2 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 0.4 & 0.2 & 1.0 & & \\
\hline & Score & 4 & 2 & 1 & 3 & 10 & G \\
\hline \multirow[t]{2}{*}{2005} & Value & & 0.1 & 1.5 & 5.5 & & \\
\hline & Score & 4 & 1 & 3 & 4 & 12 & G \\
\hline \multirow[t]{2}{*}{2004} & Value & & 0.4 & 0.7 & 1.2 & & \\
\hline & Score & 4 & 2 & 2 & 3 & 11 & G \\
\hline \multirow[t]{2}{*}{2003} & Value & 13.6 & 4.0 & 1.8 & 2.2 & & \\
\hline & Score & 4 & 4 & 3 & 4 & 15 & E \\
\hline \multirow[t]{2}{*}{2002} & Value & & 6.0 & 2.2 & 0.7 & & \\
\hline & Score & 4 & 4 & 4 & 2 & 14 & E \\
\hline \multirow[t]{2}{*}{2001} & Value & & 3.4 & 2.8 & 1.1 & & \\
\hline & Score & 4 & 3 & 4 & 3 & 14 & E \\
\hline \multirow[t]{2}{*}{2000} & Value & & 0.9 & 1.3 & 0.6 & & \\
\hline & Score & 4 & 2 & 3 & 2 & 11 & G \\
\hline
\end{tabular}

Table 42. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Laurel River Lake during April and May 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Smallmouth bass} \\
\hline & & \[
\begin{aligned}
& \text { No. } \geq \\
& \text { stock size }
\end{aligned}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%)
\end{gathered}
\] & \begin{tabular}{l}
No. \(\geq\) \\
stock size
\end{tabular} & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%)
\end{gathered}
\] & \begin{tabular}{l}
No. \(\geq\) \\
stock size
\end{tabular} & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%)
\end{gathered}
\] \\
\hline 2018 & Dam & 71 & \(77(\pm 10)\) & \(34(\pm 11)\) & 3 & \(33(\pm 65)\) & 0 (\(\pm 0\)) & 1 & 0 (\(\pm 0\)) & \(0(\pm 0)\) \\
\hline & Spruce Creek & 76 & \(78(\pm 9)\) & \(36(\pm 11)\) & 45 & \(42(\pm 15)\) & \(22(\pm 12)\) & 6 & \(67(\pm 41)\) & \(67(\pm 41)\) \\
\hline & Laurel River Arm & 113 & \(67(\pm 9)\) & \(44(\pm 9)\) & 23 & \(22(\pm 17)\) & \(9(\pm 12)\) & 1 & \(0(\pm 0)\) & \(0(\pm 0)\) \\
\hline & Upper Craigs Creek & 77 & \(71(\pm 10)\) & \(23(\pm 10)\) & 46 & \(52(\pm 15)\) & \(13(\pm 10)\) & 2 & \(100(\pm 0)\) & \(50(\pm 98)\) \\
\hline & Total & 337 & \(73(\pm 5)\) & \(35(\pm 5)\) & 117 & \(42(\pm 9)\) & \(15(\pm 7)\) & 10 & \(60(\pm 32)\) & \(50(\pm 33)\) \\
\hline 2017 & Total & 423 & \(65(\pm 5)\) & \(34(\pm 5)\) & 99 & \(57(\pm 10)\) & \(18(\pm 8)\) & 10 & \(90(\pm 20)\) & \(50(\pm 33)\) \\
\hline 2016 & Total & 384 & \(72(\pm 5)\) & \(32(\pm 5)\) & 89 & \(46(\pm 10)\) & \(16(\pm 8)\) & 22 & \(68(\pm 20)\) & \(55(\pm 21)\) \\
\hline 2015 & Total & 367 & \(73(\pm 5)\) & \(35(\pm 5)\) & 70 & \(70(\pm 11)\) & \(29(\pm 11)\) & 13 & \(69(\pm 26)\) & \(62(\pm 28)\) \\
\hline 2014 & Total & 350 & \(66(\pm 5)\) & \(37(\pm 5)\) & 120 & \(51(\pm 9)\) & \(19(\pm 7)\) & 22 & \(77(\pm 18)\) & \(64(\pm 21)\) \\
\hline 2013 & Total & 365 & \(78(\pm 4)\) & \(35(\pm 5)\) & 114 & \(68(\pm 9)\) & \(11(\pm 6)\) & 13 & \(85(\pm 20)\) & \(38(\pm 28)\) \\
\hline 2012 & Total & 363 & \(61(\pm 5)\) & \(30(\pm 5)\) & 124 & \(41(\pm 9)\) & \(8(\pm 5)\) & 9 & \(89(\pm 22)\) & \(67(\pm 33)\) \\
\hline 2011 & Total & 399 & \(70(\pm 4)\) & \(30(\pm 5)\) & 132 & \(43(\pm 8)\) & \(9(\pm 5)\) & 21 & \(38(\pm 21)\) & \(24(\pm 19)\) \\
\hline 2010 & Total & 437 & \(57(\pm 5)\) & \(29(\pm 4)\) & 211 & \(39(\pm 7)\) & \(14(\pm 5)\) & 41 & \(51(\pm 15)\) & \(41(\pm 15)\) \\
\hline 2009 & Total & 299 & \(76(\pm 5)\) & \(42(\pm 6)\) & 145 & \(39(\pm 8)\) & \(11(\pm 5)\) & 36 & \(69(\pm 15)\) & \(58(\pm 16)\) \\
\hline 2008 & Total & 243 & \(63(\pm 6)\) & \(44(\pm 6)\) & 193 & \(34(\pm 7)\) & \(7(\pm 4)\) & 38 & \(71(\pm 15)\) & \(50(\pm 16)\) \\
\hline 2007 & Total & 265 & \(82(\pm 5)\) & \(49(\pm 6)\) & 192 & \(40(\pm 7)\) & \(6(\pm 3)\) & 27 & \(33(\pm 18)\) & \(26(\pm 17)\) \\
\hline 2006 & Total & 316 & \(72(\pm 5)\) & \(39(\pm 5)\) & 193 & \(38(\pm 7)\) & \(8(\pm 4)\) & 10 & \(70(\pm 30)\) & \(60(\pm 32)\) \\
\hline 2005 & Total & 336 & \(73(\pm 5)\) & \(40(\pm 5)\) & 98 & \(69(\pm 9)\) & \(22(\pm 8)\) & 47 & \(89(\pm 9)\) & \(70(\pm 13)\) \\
\hline 2004 & Total & 262 & \(75(\pm 5)\) & \(32(\pm 6)\) & 158 & \(41(\pm 19)\) & \(26(\pm 17)\) & 27 & \(46(\pm 8)\) & \(8(\pm 4)\) \\
\hline
\end{tabular}
sedpsdlr.d18

Table 43. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15minute diurnal electrofishing runs for black bass in Laurel River Lake on 4 October 2018; standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{14}{|l|}{} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & & \\
\hline \multirow[t]{3}{*}{Laurel River Arm} & Largemouth bass & 6 & 14 & 2 & 1 & 8 & 2 & 5 & 5 & 5 & 4 & 3 & 3 & 1 & 2 & 61 & 40.7 (12.0) \\
\hline & Spotted bass & 1 & 11 & 1 & 1 & 1 & 2 & 3 & & 1 & & 2 & & & & 23 & 15.3 (3.0) \\
\hline & Smallmouth bass & & & & & & & & 1 & & & & & & & 1 & 0.7 (0.7) \\
\hline
\end{tabular}
sedyoylr.d18

Table 44. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples at Laurel River Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multirow[b]{2}{*}{Area} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1 \({ }^{\text {a }}\)} \\
\hline & & Mean length & Std. error & CPUE & Std. error & CPUE & Std. error & CPUE & Std. error \\
\hline 2018 & Laurel River Arm & 4.2 & 0.3 & 21.3 & 7.6 & 6.7 & 3.7 & & \\
\hline 2017 & Laurel River Arm & 3.6 & 0.3 & 7.3 & 2.4 & 1.3 & 1.3 & 2.0 & 1.4 \\
\hline 2016 & Laurel River Arm & 3.4 & 0.1 & 24.0 & 4.8 & 2.7 & 1.3 & 4.7 & 1.9 \\
\hline 2015 & Laurel River Arm & 3.5 & 0.1 & 5.3 & 2.0 & 0.0 & 0.0 & 6.7 & 2.5 \\
\hline 2014 & Laurel River Arm & 4.4 & 0.1 & 19.3 & 4.3 & 4.0 & 1.0 & 4.0 & 1.5 \\
\hline 2013 & Laurel River Arm & 4.0 & 0.1 & 21.3 & 6.6 & 2.7 & 1.3 & 6.7 & 2.2 \\
\hline 2012 & Laurel River Arm & 4.6 & 0.1 & 11.3 & 3.6 & 3.3 & 1.9 & 4.0 & 2.1 \\
\hline \(2011{ }^{\text {b }}\) & Laurel River Arm & 4.1 & 0.3 & 10.7 & 5.6 & 3.3 & 1.9 & \(6.0^{\text {c }}\) & 0.9 \\
\hline \(2010{ }^{\text {b }}\) & Laurel River Arm & 5.4 & 0.4 & 2.7 & 0.8 & 2.0 & 0.9 & \(31.5{ }^{\text {d }}\) & 7.5 \\
\hline 2009 & Laurel River Arm & 3.8 & 0.3 & 6.0 & 3.2 & 0.7 & 0.7 & 19.3 & 7.0 \\
\hline \(2008{ }^{\text {b }}\) & Laurel River Arm & 3.2 & 0.3 & 1.3 & 0.8 & 0.0 & 0.0 & \(14.0{ }^{\text {e }}\) & 4.6 \\
\hline \(2007{ }^{\text {b }}\) & Laurel River Arm & 3.5 & 0.1 & 5.3 & 4.6 & 0.0 & 0.0 & \(118.9{ }^{\text {f }}\) & 12.4 \\
\hline \(2006{ }^{\text {b }}\) & Laurel River Arm & 3.7 & 0.1 & 12.7 & 4.9 & 0.7 & 0.7 & \(5.4{ }^{\text {g }}\) & 2.1 \\
\hline \(2005{ }^{\text {b }}\) & Laurel River Arm & 4.4 & 0.2 & 14.0 & 3.5 & 3.3 & 1.6 & \(58.3{ }^{\text {h }}\) & 9.2 \\
\hline 2004 & Laurel River Arm & 4.9 & 0.2 & 14.0 & 5.8 & 8.0 & 3.4 & 8.3 & 2.4 \\
\hline 2003 & Laurel River Arm & 3.4 & 0.1 & 36.7 & 14.0 & 0.7 & 0.7 & 2.6 & 1.0 \\
\hline 2002 & Laurel River Arm & 4.5 & 0.1 & 30.7 & 5.8 & 8.7 & 3.5 & 10.3 & 4.1 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) Age-1 largemouth bass CPUE based only on Laurel River Arm location
\({ }^{\mathrm{b}}\) Age-0 largemouth bass stocked in the fall
\({ }^{\text {c }}\) Includes bass stocked in fall 2011; CPUE of fin-clipped bass=0.0 fish/hr
\({ }^{\text {d }}\) Includes bass stocked in fall 2010; CPUE of fin-clipped bass=8.0 fish/hr
\({ }^{e}\) Includes bass stocked in fall 2008; CPUE of fin-clipped bass=8.0 fish/hr
\({ }^{\dagger}\) Includes bass stocked in fall 2007; CPUE of fin-clipped bass=108.0 fish/hr
\({ }^{9}\) Includes bass stocked in fall 2006; CPUE of fin-clipped bass=2.0 fish/hr
\({ }^{\mathrm{h}}\) Includes bass stocked in fall 2005; CPUE of fin-clipped bass=36.0 fish/hr
sedyoylr.d18

Table 45. Number of fish and mean relative weight (Wr) for each length group of black bass collected at 312 Bridge in Laurel River Lake on 4 October 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{6}{|c|}{Length group} \\
\hline \multirow{3}{*}{Largemouth bass *} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline & 27 & \(98(2)\) & 14 & 100 (3) & 7 & 106 (2) \\
\hline \multirow{3}{*}{Spotted bass} & \multicolumn{2}{|l|}{7.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|c|}{\(\geq 14.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline & 6 & 106 (3) & 2 & 112 (15) & 0 & 0 (0) \\
\hline
\end{tabular}
sedwrlr.d18
* Includes fish collected during standardized sample and additional fish collected for age and growth

Table 46. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Laurel River Lake during fall 2018, including the \(95 \%\) confidence interval (Cl) for each mean length per age group.
\begin{tabular}{ccccccccccc}
\hline & & \multicolumn{10}{c}{ Age } \\
\cline { 3 - 11 } Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline & & & & & & & & & & \\
2017 & 22 & 5.2 & & & & & & & & \\
2016 & 15 & 5.5 & 9.3 & & & & & & & \\
2015 & 8 & 6.0 & 10.7 & 13.4 & & & & & & \\
2014 & 2 & 5.5 & 9.2 & 11.8 & 13.7 & & & & & \\
2012 & 1 & 5.8 & 10.7 & 13.7 & 15.3 & 16.2 & 16.8 & & 18.7 & 19.1 \\
2009 & 1 & 4.3 & 10.2 & 14.5 & 16.1 & 17.1 & 17.8 & 18.4 & 18.7 & \\
& & & & & & & & & & 18.1 \\
Mean & & 5.4 & 9.8 & 13.3 & 14.7 & 16.6 & 17.3 & 18.4 & 18.7 & 19.1 \\
Number & & 49 & 27 & 12 & 4 & 2 & 2 & 1 & 1 & 1 \\
Smallest & & 3.2 & 7.4 & 11.5 & 12.9 & 16.2 & 16.8 & 18.4 & 18.7 & 19.1 \\
Largest & & 9.2 & 12.0 & 14.7 & 16.1 & 17.1 & 17.8 & 18.4 & 18.7 & 19.1 \\
Std error & & 0.2 & 0.3 & 0.3 & 0.7 & 0.5 & 0.5 & & & \\
95\% CI \(\pm\) & & 0.4 & 0.5 & 0.6 & 1.4 & 0.9 & 1.0 & & & \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations; Intercept \(=0\)
sedaglrb.d18

Table 47. Fishery statistics derived from a daytime creel survey on Laurel River Lake (6,060 acres) from 16 March - 31 October 2018, 8 March-31 October 2010, and 16 March - 31 October 2006.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Year} \\
\hline & 2018 & 2010 & 2006 \\
\hline \multicolumn{4}{|l|}{Fishing trips} \\
\hline Number of fishing trips (per acre) & 19,620 (3.24) & 10,817 (1.78) & 15,110 (2.49) \\
\hline Average trip length (hours) & 4.92 & 3.82 & 3.77 \\
\hline \multicolumn{4}{|l|}{Fishing pressure} \\
\hline Total man-hours (S.E.) \({ }^{\text {a }}\) & 96,525 (2,459) & 41,358 (1,094) & 57,033 (1,581) \\
\hline Man hours/acre & 15.9 & 6.8 & 9.4 \\
\hline \multicolumn{4}{|l|}{Catch/harvest} \\
\hline Number of fish caught (S.E.) & 61,484 (4,890) & 32,699 (3,558) & 50,541 (4,588) \\
\hline Number of fish harvested (S.E.) & 12,615 (1,496) & 15,309 (2,383) & 17,192 (1,803) \\
\hline Pounds of fish harvested & 13,087 & 11,315 & 17,097 \\
\hline \multicolumn{4}{|l|}{Harvest rates} \\
\hline Fish/hour & 0.14 & 0.34 & 0.29 \\
\hline Fish/acre & 2.08 & 2.53 & 2.84 \\
\hline Pounds/acre & 2.16 & 1.87 & 2.82 \\
\hline \multicolumn{4}{|l|}{Catch rates} \\
\hline Fish/hour & 0.66 & 0.78 & 0.90 \\
\hline Fish/acre & 10.15 & 5.40 & 8.34 \\
\hline \multicolumn{4}{|l|}{Miscellaneous characteristics (\%)} \\
\hline Male & 91 & 92 & 89 \\
\hline Female & 9 & 8 & 11 \\
\hline Resident & 98 & 91 & 93 \\
\hline Non-resident & 2 & 9 & 7 \\
\hline \multicolumn{4}{|l|}{Method (\%)} \\
\hline Still fishing & 20 & 14 & 19 \\
\hline Casting & 76 & 65 & 62 \\
\hline Trolling & 4 & 21 & 19 \\
\hline Spider rig & <1 & - & - \\
\hline Fly & <1 & <1 & - \\
\hline \multicolumn{4}{|l|}{Mode (\%)} \\
\hline Boat & 93 & 95 & 98 \\
\hline Bank & 6 & 5 & 2 \\
\hline Dock & 1 & <1 & - \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) S.E. \(=\) standard error
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Black bass
group & Largemouth
bass & Spotted
bass & Smallmouth
bass & Crappie group & White crappie & Black crappie & Blacknose crappie & Trout group & \[
\begin{gathered}
\text { Rainbow } \\
\text { trout } \\
\hline
\end{gathered}
\] & Walleye & Catfish group & Channel catfish & Flathead catfish \\
\hline No. caught & 34,052 & 20,805 & 8,153 & 5,094 & 2,688 & 398 & 2,253 & 37 & 525 & 525 & 935 & 1,772 & 1,724 & 48 \\
\hline (per acre) & 5.62 & 3.43 & 1.35 & 0.84 & 0.44 & 0.07 & 0.37 & 0.01 & 0.09 & 0.09 & 0.15 & 0.29 & 0.28 & 0.01 \\
\hline No. harvested & 3,827 & 2,273 & 1,021 & 533 & 1,997 & 147 & 1,813 & 37 & 36 & 36 & 500 & 963 & 932 & 31 \\
\hline (per acre) & 0.63 & 0.38 & 0.17 & 0.09 & 0.33 & 0.02 & 0.30 & 0.01 & 0.01 & 0.01 & 0.08 & 0.16 & 0.15 & 0.01 \\
\hline \% of total no. harvested & 30.3 & 18.0 & 8.1 & 4.2 & 15.8 & 1.2 & 14.4 & t & t & t & 4.0 & 7.6 & 7.4 & t \\
\hline Lbs. harvested & 8,829 & 6,201 & 917 & 1,711 & 1,656 & 108 & 1,501 & 47 & 39 & 39 & 1,003 & 1,191 & 1,125 & 66 \\
\hline Lbs. harvested (per acre) & 1.46 & 1.02 & 0.15 & 0.28 & 0.27 & 0.02 & 0.25 & 0.01 & 0.01 & 0.01 & 0.17 & 0.20 & 0.19 & 0.01 \\
\hline \% of total llbs & & & & & & & & & & & & & & \\
\hline harvested & 67.5 & 47.4 & 7.0 & 13.1 & 12.7 & 0.8 & 11.5 & t & t & t & 7.7 & 9.1 & 8.6 & 0.5 \\
\hline Mean length (in) & & 17.1 & 12.7 & 19.0 & & 12.9 & 11.8 & 13.0 & & 13.0 & 19.0 & & 14.9 & 17.5 \\
\hline Mean w eight (lb) & & 2.63 & 0.89 & 3.23 & & 1.21 & 0.91 & 1.26 & & 1.03 & 2.37 & & 1.11 & 2.12 \\
\hline Number of fishing trips for that species & 14,290 & & & & 592 & & & & - & & 768 & 344 & & \\
\hline Percent of all trips & 72.9 & & & & 3.0 & & & & - & & 3.9 & 1.8 & & \\
\hline Hours fished for that species & 70,305 & & & & 2,913 & & & & - & & 3,777 & 1,694 & & \\
\hline Hours fished for that species (per acre) & 11.60 & & & & 0.48 & & & & - & & 0.62 & 0.28 & & \\
\hline Number harvested fishing for that species & 3,371 & & & & 1,598 & & & & - & & 422 & 325 & & \\
\hline Lb harvested fishing for that species & 8,246 & & & & 1,298 & & & & - & & 791 & 606 & & \\
\hline No./hr harvested fishing for that species & 0.05 & & & & 0.51 & & & & - & & 0.14 & 0.11 & & \\
\hline Percent success fishing for that species & 8.4 & & & & 46.4 & & & & 0.0 & & 20.5 & 23.7 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Panfish group & & \begin{tabular}{l}
Rock \\
bass
\end{tabular} & & Freshw ater drum & Common carp & & \[
\begin{aligned}
& \hline \text { Illegal } \\
& \text { bass } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Illegal } \\
\text { smallmouth }
\end{gathered}
\] \\
\hline No. caught & 21,316 & 21,244 & 34 & 38 & 36 & 48 & & 79 & 32 \\
\hline (per acre) & 3.52 & 3.51 & 0.01 & 0.01 & 0.01 & 0.01 & & 0.01 & 0.01 \\
\hline No. harvested & 5,179 & 5,179 & - & - & - & - & & 79 & 32 \\
\hline (per acre) & 0.85 & 0.85 & - & - & - & - & & 0.01 & 0.01 \\
\hline \% of total no. harvested & 41.1 & 41.1 & - & - & - & - & & 0.6 & t \\
\hline Lbs. harvested & 322 & 322 & - & - & - & - & & 47 & - \\
\hline Lbs. harvested (per acre) & 0.05 & 0.05 & - & - & - & - & & 0.01 & - \\
\hline \% of total lbs harvested & 2.5 & 2.5 & - & - & - & - & & t & - \\
\hline Mean length (in) & & 4.8 & - & - & - & - & & 10.4 & 13.0 \\
\hline Mean w eight (lb) & & 0.08 & - & - & - & - & & 0.55 & - \\
\hline Number of fishing trips for that species & 231 & & & & & & 3,378 & & \\
\hline Percent of all trips & 1.2 & & & & & & 17.2 & & \\
\hline Hours fished for that species & 1,138 & & & & & & 16,620 & & \\
\hline Hours fished for that species (per acre) & 0.19 & & & & & & 2.74 & & \\
\hline Number harvested fishing for that species & 622 & & & & & & & & \\
\hline Lb harvested fishing for that species & 36 & & & & & & & & \\
\hline No./hr harvested fishing for that species & 1.00 & & & & & & & & \\
\hline Percent success fishing for that species & 30.8 & & & & & & 25.5 & & \\
\hline
\end{tabular}
\(\mathrm{t}<0.005 \mathrm{fish} / \mathrm{hr}\) or \(<0.5 \%\)

Table 49. Length distribution for each species of fish harvested and released during the day at Laurel River Lake (6,060 acres) during 16 March - 31 October 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{26}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 30 & \\
\hline \multicolumn{28}{|l|}{Largemouth bass} \\
\hline Harvested & & & & & & & & & & & & & & 289 & 451 & 631 & 451 & 216 & 180 & 55 & & & & & & & 2273 \\
\hline Released & & & & & & & 624 & 232 & 2069 & 196 & 3211 & 945 & 3621 & 2372 & 1873 & 1195 & 1338 & 339 & 285 & 143 & 36 & 18 & & 35 & & & 18532 \\
\hline \multicolumn{28}{|l|}{Spotted bass} \\
\hline Harvested & & & & & & & & & 143 & 90 & 269 & 125 & 233 & 161 & & & & & & & & & & & & & 1021 \\
\hline Released & & & & 52 & 138 & 224 & 708 & 311 & 1951 & 639 & 1813 & 363 & 760 & 173 & & & & & & & & & & & & & 7132 \\
\hline \multicolumn{28}{|l|}{Smallmouth bass} \\
\hline Harvested & & & & & & & & & & & & & & & & & 192 & 235 & 64 & 42 & & & & & & & 533 \\
\hline Released & & & & & 19 & 37 & 131 & 93 & 299 & 56 & 561 & 299 & 598 & 318 & 598 & 355 & 710 & 243 & 93 & 112 & 19 & 20 & & & & & 4561 \\
\hline \multicolumn{28}{|l|}{Illegal bass} \\
\hline Harvested & & & & & & & & & 64 & & & 15 & & & & & & & & & & & & & & & 79 \\
\hline \multicolumn{28}{|l|}{lllegal smallmouth bass} \\
\hline Harvested & & & & & & & & & & 16 & & & & 16 & & & & & & & & & & & & & 32 \\
\hline \multicolumn{28}{|l|}{White crappie} \\
\hline Harvested & & & & & & & & & 74 & & 55 & & & 18 & & & & & & & & & & & & & 147 \\
\hline Released & & & & & & & 182 & 68 & & & & & & & & & & & & & & & & & & & 250 \\
\hline \multicolumn{28}{|l|}{Black crappie} \\
\hline Harvested & & & & & & & & 115 & 363 & 610 & 461 & 33 & 165 & 16 & & 16 & 34 & & & & & & & & & & 1813 \\
\hline Released & & & 18 & 53 & 70 & 18 & 176 & 53 & 18 & 34 & & & & & & & & & & & & & & & & & 440 \\
\hline \multicolumn{28}{|l|}{Blacknose crappie} \\
\hline Harvested & & & & & & & & & & & & 37 & & & & & & & & & & & & & & & 37 \\
\hline \multicolumn{28}{|l|}{Rainbow Trout} \\
\hline Harvested & & & & & & & & & 18 & & & & & & 18 & & & & & & & & & & & & 36 \\
\hline Released & & & & & 24 & & 147 & 24 & 49 & 49 & 73 & & 49 & 24 & & 49 & & & & & & & & & & & 488 \\
\hline \multicolumn{28}{|l|}{Walleye} \\
\hline Harvested & & & & & & & & & & & & & & 33 & 150 & 50 & 50 & 50 & 100 & 17 & 17 & 17 & & 16 & & & 500 \\
\hline Released & & & & & & & & & 32 & & 64 & 97 & 177 & & 16 & & & & & & & & 49 & & & & 435 \\
\hline \multicolumn{28}{|l|}{Channel catfish} \\
\hline Harvested & & & & & & & & 17 & 102 & 68 & 136 & 51 & 119 & 51 & 102 & & 85 & 17 & 51 & 34 & 51 & 17 & 31 & & & & 932 \\
\hline Released & & & & & & & 186 & 67 & 34 & 51 & 219 & & 51 & & 67 & & 34 & & 51 & & & & & 17 & & 16 & 793 \\
\hline \multicolumn{28}{|l|}{Flathead catfish} \\
\hline Harvested & & & & & & & & & & & & 16 & & & & & & & & & 15 & & & & & & 31 \\
\hline Released & & & & & & & & & & & & & & & 17 & & & & & & & & & & & & 17 \\
\hline \multicolumn{28}{|l|}{Bluegill} \\
\hline Harvested & 97 & 241 & 2461 & 1592 & 756 & & 32 & 5179 \\
\hline Released & 17 & 4502 & 8868 & 2319 & 358 & 16064 \\
\hline \multicolumn{28}{|l|}{Rock bass} \\
\hline Released & & & & & & 34 & 34 \\
\hline \multicolumn{28}{|l|}{Warmouth} \\
\hline Released & & & & & 38 & 38 \\
\hline \multicolumn{28}{|l|}{Freshw ater drum} \\
\hline Released & & & & & & & & & & & & & & & & & & & 18 & & & & & & 18 & & 36 \\
\hline \multicolumn{28}{|l|}{Common carp} \\
\hline Released & & & & & & & & & & & & & & & & & & & 16 & & & & 32 & & & & 48 \\
\hline
\end{tabular}

Table 50. Black bass catch and harvest statistics derived from a daytime creel survey at Laurel River Lake (6,060 acres) for each species of black bass caught and released by all anglers from 16 March - 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multicolumn{4}{|c|}{Largemouth bass} & \multicolumn{4}{|c|}{Spotted bass} & \multicolumn{4}{|c|}{Smallmouth bass} \\
\hline & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{C\&R} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{C\&R} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Harvest} & \multicolumn{2}{|l|}{C\&R} & \multirow[b]{2}{*}{Total} \\
\hline & & 12.0-14.9 & >15.0 & & & 12.0-14.9 & \(>15.0\) & & & 12.0-14.9 & \(>15.0\) & \\
\hline Total number of bass & 2,273 & 7,777 & 7,634 & 20,805 & 1,021 & 2,936 & 173 & 8,153 & 533 & 1,458 & 2,468 & 5,094 \\
\hline \multicolumn{12}{|l|}{\% of black bass harvested} & \\
\hline Total weight of fish (lb) & 6,201 & 10,769 & 10,571 & 31,863 & 917 & 1,690 & 99 & 5,023 & 1,711 & 2,255 & 3,816 & 8,766 \\
\hline \% of black bass harvested by weight & 70.2 & & & & 10.4 & & & & 19.4 & & & \\
\hline Mean length (in) & 17.1 & & & & 12.7 & & & & 19.0 & & & \\
\hline Mean weight (lb) & 2.63 & & & & 0.89 & & & & 3.23 & & & \\
\hline Rate (fish/hour) & 0.024 & & & & 0.011 & & & & 0.005 & & & \\
\hline
\end{tabular}

Table 51. Monthly black bass angling success at Laurel River Lake (6,060 acres) during the 2018 daytime creel survey period; data does not include black bass < 8.0 in.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of bass caught & Total no. of bass harvested & Number of bass fishing trips & Hours fished by bass anglers & Bass caught by bass anglers & Bass caught/hour by bass anglers & Bass harvested by bass anglers & Bass harvested/hour by bass anglers \\
\hline Mar & 6,233 & 1,074 & 3,776 & 18,576 & 6,112 & 0.33 & 983 & 0.05 \\
\hline Apr & 7,368 & 895 & 3,387 & 16,662 & 7,064 & 0.42 & 783 & 0.05 \\
\hline May & 7,756 & 1,259 & 1,906 & 9,375 & 6,902 & 0.81 & 1,228 & 0.14 \\
\hline Jun & 3,224 & 202 & 1,279 & 6,293 & 2,838 & 0.49 & 141 & 0.02 \\
\hline Jul & 2,044 & 68 & 1,128 & 5,547 & 1,874 & 0.35 & 51 & 0.01 \\
\hline Aug & 2,178 & 84 & 846 & 4,163 & 1,759 & 0.43 & 34 & 0.01 \\
\hline Sep & 2,270 & 96 & 705 & 3,467 & 1,923 & 0.55 & 57 & 0.02 \\
\hline Oct & 2,979 & 150 & 1,265 & 6,222 & 2,492 & 0.38 & 94 & 0.01 \\
\hline Total & 34,052 & 3,828 & 14,292 & 70,305 & 30,964 & & 3,371 & \\
\hline Mean & & & & & & 0.47 & & 0.05 \\
\hline
\end{tabular}

Table 52. Monthly crappie angling success at Laurel River Lake (\(6,060 \mathrm{acres}\)) during the 2018 daytime creel survey period.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of crappie caught & Total no. of crappie harvested & \[
\begin{gathered}
\text { Number of } \\
\text { crappie } \\
\text { fishing } \\
\text { trips } \\
\hline
\end{gathered}
\] & Hours fished by crappie anglers & Crappie caught by crappie anglers & Crappie caught/hour by crappie anglers & Crappie harvested by crappie anglers & Crappie harvested/hour by crappie anglers \\
\hline Mar & 149 & 30 & 81 & 397 & 149 & 0.26 & 30 & 0.05 \\
\hline Apr & 1,007 & 927 & 178 & 874 & 847 & 1.02 & 799 & 0.96 \\
\hline May & 528 & 451 & 172 & 848 & 419 & 0.45 & 357 & 0.38 \\
\hline Jun & 47 & 47 & - & - & - & - & - & - \\
\hline July & 17 & - & - & - & - & - & - & - \\
\hline Sep & 115 & - & - & - & - & - & - & - \\
\hline Oct & 824 & 543 & 116 & 570 & 693 & 0.81 & 412 & 0.48 \\
\hline Total & 2,687 & 1,998 & 547 & 2,689 & 2,108 & & 1,598 & \\
\hline Mean & & & & & & 0.65 & & 0.51 \\
\hline
\end{tabular}

Table 53. Monthly walleye angling success at Laurel River Lake (6,060 acres) during the 2018 daytime creel survey period.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Month & Total no. of walleye caught & Total no. of walleye harvested & \[
\begin{gathered}
\text { Number of } \\
\text { walleye } \\
\text { fishing } \\
\text { trips } \\
\hline
\end{gathered}
\] & Hours fished by walleye anglers & Walleye caught by walleye anglers & Walleye caught/hour by walleye anglers & Walleye harvested by walleye anglers & Walleye harvested/hour by walleye anglers \\
\hline Apr & 64 & 32 & - & - & - & - & - & - \\
\hline May & 31 & 31 & 91 & 446 & - & - & - & - \\
\hline Jun & 465 & 186 & 182 & 893 & 419 & 0.52 & 171 & 0.21 \\
\hline Jul & 187 & 102 & 58 & 286 & 136 & 0.43 & 102 & 0.32 \\
\hline Aug & 34 & 34 & 149 & 732 & 34 & 0.06 & 34 & 0.06 \\
\hline Sep & 154 & 115 & 170 & 835 & 134 & 0.19 & 115 & 0.17 \\
\hline Oct & - & - & 97 & 475 & - & - & - & - \\
\hline Total & 935 & 500 & 747 & 3,667 & 723 & & 422 & \\
\hline Mean & & & & & & 0.24 & & 0.14 \\
\hline
\end{tabular}

Table 54. Length frequency and CPUE (fish/hr) of largemouth bass collected at Cedar Creek Lake in 1.5 hours (0.75 hours in lower end; 0.75 hours upper end; 15-min runs) of diurnal electrofishing on 15 May 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{Std. error} \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & & \\
\hline Lower & Largemouth bass & 5 & 20 & 16 & 11 & 2 & 8 & 6 & 7 & 2 & 2 & 4 & 5 & 2 & 5 & 3 & & 1 & 99 & 132.0 & 46.0 \\
\hline Upper & Largemouth bass & & 1 & 5 & 11 & 2 & 3 & 6 & 2 & 3 & 1 & 5 & 3 & 9 & 12 & 6 & 2 & 1 & 72 & 96.0 & 17.4 \\
\hline Total & Largemouth bass & 5 & 21 & 21 & 22 & 4 & 11 & 12 & 9 & 5 & 3 & 9 & 8 & 11 & 17 & 9 & 2 & 2 & 171 & 114.0 & 23.4 \\
\hline
\end{tabular}
sedpsccl.d18

Table 55. PSD and RSD \({ }_{15}\) values obtained for largemouth bass taken in spring electrofishing samples in each area of Cedar Creek Lake on 15 May 2018; 95\% confidence levels are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Lower Lake} & \multicolumn{3}{|c|}{Upper Lake} & \multicolumn{3}{|c|}{Total} \\
\hline Year & \[
\begin{aligned}
& \text { No. } \geq \\
& 8.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { No. } \geq \\
& 8.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { No. } \geq \\
& 8.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] \\
\hline 2018 & 45 & \(49(\pm 15)\) & \(36(\pm 14)\) & 53 & \(74(\pm 12)\) & \(62(\pm 13)\) & 98 & \(62(\pm 10)\) & \(50(\pm 10)\) \\
\hline 2017 & 37 & \(54(\pm 16)\) & \(30(\pm 15)\) & 81 & \(72(\pm 10)\) & \(52(\pm 11)\) & 118 & \(66(\pm 9)\) & \(45(\pm 9)\) \\
\hline \(2016{ }^{\text {a }}\) & 73 & \(67(\pm 11)\) & \(47(\pm 12)\) & 104 & \(75(\pm 8)\) & \(52(\pm 10)\) & 177 & \(72(\pm 7)\) & \(50(\pm 7)\) \\
\hline \(2015{ }^{\text {b }}\) & 95 & \(79(\pm 8)\) & \(52(\pm 10)\) & 107 & \(81(\pm 7)\) & \(53(\pm 9)\) & 202 & \(80(\pm 6)\) & \(52(\pm 7)\) \\
\hline 2014 & 237 & \(82(\pm 5)\) & \(48(\pm 6)\) & 345 & \(81(\pm 4)\) & \(47(\pm 5)\) & 582 & \(82(\pm 3)\) & \(47(\pm 4)\) \\
\hline 2013 & 448 & \(69(\pm 4)\) & \(33(\pm 4)\) & 299 & \(66(\pm 5)\) & \(36(\pm 5)\) & 747 & \(68(\pm 3)\) & \(34(\pm 3)\) \\
\hline 2012 & 406 & \(56(\pm 5)\) & \(27(\pm 4)\) & 409 & \(60(\pm 5)\) & \(30(\pm 4)\) & 815 & \(58(\pm 3)\) & \(29(\pm 3)\) \\
\hline 2011 & 283 & \(55(\pm 6)\) & \(22(\pm 5)\) & 172 & \(62(\pm 7)\) & \(31(\pm 7)\) & 455 & \(57(\pm 5)\) & \(25(\pm 4)\) \\
\hline 2010 & 386 & \(43(\pm 5)\) & \(22(\pm 4)\) & 310 & \(48(\pm 6)\) & \(23(\pm 5)\) & 696 & \(45(\pm 4)\) & \(22(\pm 3)\) \\
\hline 2009 & 260 & \(55(\pm 6)\) & \(27(\pm 5)\) & 208 & \(50(\pm 7)\) & \(27(\pm 6)\) & 468 & \(53(\pm 5)\) & \(27(\pm 4)\) \\
\hline 2008 & 249 & \(39(\pm 6)\) & \(27(\pm 6)\) & 177 & \(45(\pm 7)\) & \(26(\pm 6)\) & 426 & \(42(\pm 5)\) & \(27(\pm 4)\) \\
\hline 2007 & 322 & \(36(\pm 5)\) & \(22(\pm 5)\) & 145 & \(49(\pm 8)\) & \(36(\pm 8)\) & 467 & \(40(\pm 4)\) & \(26(\pm 4)\) \\
\hline 2006 & 238 & \(36(\pm 6)\) & \(31(\pm 6)\) & 99 & \(55(\pm 10)\) & \(43(\pm 10)\) & 337 & \(42(\pm 5)\) & \(35(\pm 5)\) \\
\hline 2005 & 228 & \(83(\pm 5)\) & \(50(\pm 7)\) & 95 & \(93(\pm 6)\) & \(63(\pm 10)\) & 323 & \(86(\pm 4)\) & \(54(\pm 6)\) \\
\hline 2004 & 277 & \(66(\pm 6)\) & \(6(\pm 3)\) & 178 & \(76(\pm 7)\) & \(5(\pm 3)\) & 455 & \(70(\pm 5)\) & \(6(\pm 3)\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) diurnal sampling beginning in 2016
\({ }^{\text {b }}\) sampling effort was reduced to 1.5 hours beginning in 2015 sedpsccl.d18
}

Table 56. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected from Cedar Creek Lake from 2003-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multirow[b]{3}{*}{Area} & \multicolumn{10}{|c|}{Length group} & \multirow[b]{3}{*}{Total} & \multirow[b]{3}{*}{Std. err.} \\
\hline & & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} & & \\
\hline & & CPUE & Std. err. & & \\
\hline 2018 & Total & 48.7 & 21.7 & 24.7 & 6.8 & 8.0 & 1.5 & 32.7 & 7.1 & 1.3 & 0.8 & 114.0 & 23.4 \\
\hline 2017 & Total & 44.7 & 8.9 & 26.7 & 6.5 & 16.7 & 2.6 & 35.3 & 9.3 & 2.0 & 0.9 & 123.3 & 9.3 \\
\hline 2016 & Total & 19.3 & 5.0 & 33.3 & 3.2 & 26.0 & 5.7 & 58.7 & 8.2 & 5.3 & 1.7 & 137.3 & 7.5 \\
\hline 2015 & Total & 14.0 & 4.8 & 26.7 & 4.2 & 37.3 & 5.7 & 70.7 & 6.1 & 5.3 & 1.3 & 148.7 & 8.7 \\
\hline 2014 & Total & 6.3 & 1.7 & 30.3 & 6.0 & 57.7 & 8.8 & 78.3 & 12.0 & 5.7 & 1.1 & 172.6 & 25.7 \\
\hline 2013 & Total & 6.3 & 2.1 & 69.1 & 3.7 & 72.0 & 8.1 & 72.3 & 5.0 & 10.3 & 2.3 & 219.7 & 12.1 \\
\hline 2012 & Total & 21.4 & 7.4 & 98.6 & 8.5 & 67.7 & 7.1 & 66.6 & 7.8 & 7.4 & 1.6 & 254.3 & 17.4 \\
\hline 2011 & Total & 69.4 & 13.1 & 55.4 & 7.2 & 41.7 & 4.4 & 32.9 & 5.8 & 4.3 & 1.1 & 199.4 & 18.6 \\
\hline 2010 & Total & 36.1 & 8.1 & 105.3 & 10.0 & 45.0 & 5.8 & 42.8 & 6.5 & 4.1 & 1.3 & 229.2 & 15.8 \\
\hline 2009 & Total & 91.1 & 26.7 & 63.4 & 7.7 & 34.0 & 4.3 & 36.3 & 6.1 & 5.1 & 1.0 & 224.9 & 25.3 \\
\hline 2008 & Total & 70.9 & 13.7 & 70.9 & 9.1 & 18.3 & 2.5 & 32.6 & 5.1 & 4.3 & 1.8 & 192.6 & 20.6 \\
\hline 2007 & Total & 30.3 & 8.5 & 79.7 & 19.0 & 18.9 & 4.2 & 34.9 & 2.1 & 3.4 & 0.6 & 163.7 & 28.2 \\
\hline 2006 & Total & 24.0 & 6.9 & 56.3 & 15.6 & 6.6 & 1.5 & 33.4 & 3.7 & 0.3 & 0.3 & 120.3 & 24.5 \\
\hline 2005 & Total & 79.7 & 21.1 & 12.9 & 4.8 & 30.0 & 5.1 & 49.4 & 7.9 & 0.0 & 0.0 & 172.0 & 33.4 \\
\hline 2004 & Total & 27.9 & 6.6 & 34.5 & 4.6 & 74.7 & 10.2 & 6.3 & 2.0 & 0.0 & 0.0 & 143.3 & 16.1 \\
\hline 2003 & Total & 165.8 & 23.3 & 12.5 & 4.1 & 17.3 & 2.4 & 0.5 & 0.3 & 0.0 & 0.0 & 196.0 & 24.7 \\
\hline
\end{tabular}
sedpsccl.d18

Table 57. Population assessment for largemouth bass based on spring electrofishing at Cedar Creek Lake from 2003-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & \[
\begin{aligned}
& \text { Mean length } \\
& \text { age-3 } \\
& \text { at capture } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\text { CPUE } \\
\text { age } 1 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { CPUE } \\
\text { 12.0-14.9 in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Total } \\
& \text { score } \\
& \hline
\end{aligned}
\] & Assessement rating \\
\hline \multicolumn{2}{|l|}{Management objective} & \(\geq 11.5\) in & \(\geq 16.0\) fish/hr & \(\geq 20.0\) fish/hr & \(\geq 30.0\) fish/hr & \(\geq 4.0\) fish/hr & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 51.3 & 8.0 & 32.7 & 1.3 & & \\
\hline & Score & 4 & 3 & 1 & 4 & 2 & 14 & G \\
\hline \multirow[t]{2}{*}{2017} & Value & & 44.7 & 16.7 & 35.3 & 2.0 & & \\
\hline & Score & 4 & 3 & 2 & 4 & 3 & 16 & G \\
\hline \multirow[t]{2}{*}{2016} & Value & & 16.0 & 26.0 & 58.7 & 5.3 & & \\
\hline & Score & 4 & 2 & 3 & 4 & 4 & 17 & E \\
\hline \multirow[t]{2}{*}{2015} & Value & 12.0 & 8.0 & 37.3 & 70.7 & 5.3 & & \\
\hline & Score & 4 & 2 & 3 & 4 & 4 & 17 & E \\
\hline \multirow[t]{2}{*}{2014} & Value & & 3.7 & 57.7 & 78.3 & 5.7 & & \\
\hline & Score & 4 & 1 & 4 & 4 & 4 & 17 & E \\
\hline \multirow[t]{2}{*}{2013} & Value & & 4.9 & 72.0 & 72.3 & 10.3 & & \\
\hline & Score & 4 & 1 & 4 & 4 & 4 & 17 & E \\
\hline \multirow[t]{2}{*}{2012} & Value & & 16.3 & 67.7 & 66.6 & 7.4 & & \\
\hline & Score & 4 & 2 & 4 & 4 & 4 & 18 & E \\
\hline \multirow[t]{2}{*}{2011} & Value & & 68.6 & 41.7 & 32.9 & 4.3 & & \\
\hline & Score & 4 & 4 & 3 & 4 & 4 & 19 & E \\
\hline \multirow[t]{2}{*}{2010} & Value & 13.5 & 35.5 & 45.0 & 42.8 & 4.1 & & \\
\hline & Score & 4 & 3 & 4 & 4 & 4 & 19 & E \\
\hline \multirow[t]{2}{*}{2009} & Value & & 92.6 & 34.0 & 36.3 & 5.1 & & \\
\hline & Score & 4 & 4 & 3 & 4 & 4 & 19 & E \\
\hline \multirow[t]{2}{*}{2008} & Value & & 72.6 & 18.3 & 32.6 & 4.3 & & \\
\hline & Score & 4 & 4 & 2 & 4 & 4 & 18 & E \\
\hline \multirow[t]{2}{*}{2007} & Value & 12.0 & 26.6 & 18.9 & 34.9 & 3.4 & & \\
\hline & Score & 4 & 3 & 2 & 4 & 3 & 16 & G \\
\hline \multirow[t]{2}{*}{2006} & Value & & 23.1 & 6.6 & 33.4 & 0.3 & & \\
\hline & Score & 4 & 3 & 1 & 4 & 2 & 14 & G \\
\hline \multirow[t]{2}{*}{2005} & Value & 14.0 & 1.7 & 30.0 & 49.4 & 0.0 & & \\
\hline & Score & 4 & 1 & 3 & 4 & 1 & 13 & G \\
\hline \multirow[t]{2}{*}{2004} & Value & & 5.4 & 74.7 & 6.3 & 0.0 & & \\
\hline & Score & 4 & 1 & 4 & 2 & 1 & 12 & F \\
\hline \multirow[t]{2}{*}{2003} & Value & & 6.0 & 17.3 & 0.5 & 0.0 & & \\
\hline & Score & 4 & 1 & 2 & 1 & 1 & 9 & F \\
\hline
\end{tabular}
sedpsccl.d18

Table 58. Length-frequency and CPUE (fish/hr) of largemouth bass collected during 1.5 hours of nocturnal electrofishing (0.75 hours in lower end; 0.75 hours in upper end; 15-minute runs) at Cedar Creek Lake on 20 September 2018; standard error is in parentheses.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 20 & & \\
\hline Lower & 1 & 6 & 14 & 7 & 1 & 4 & 7 & 1 & 1 & 3 & & 1 & 1 & 2 & & & 2 & & 51 & 68.0 (6.9) \\
\hline Upper & 4 & 17 & 23 & 7 & 3 & 1 & 5 & 3 & 6 & 4 & 1 & 2 & 3 & 1 & 5 & 2 & & 1 & 88 & 117.3 (21.5) \\
\hline Total & 5 & 23 & 37 & 14 & 4 & 5 & 12 & 4 & 7 & 7 & 1 & 3 & 4 & 3 & 5 & 2 & 2 & 1 & 139 & 92.7 (15.0) \\
\hline
\end{tabular}
sedyoycc.d18

Table 59. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in the fall (September and October) in electrofishing samples at Cedar Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & Mean length & Std. error & CPUE & Std. error & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & Std. error \\
\hline 2018 & 4.2 & 0.1 & 52.7 & 10.6 & 9.3 & 2.0 & & \\
\hline 2017 & 4.0 & 0.1 & 68.7 & 15.8 & 10.7 & 3.8 & 51.3 & 21.9 \\
\hline 2016 & 4.0 & 0.1 & 131.3 & 45.2 & 36.7 & 10.1 & 44.7 & 8.9 \\
\hline 2015 & 3.4 & 0.1 & 50.0 & 18.6 & 4.0 & 1.5 & 16.0 & 4.5 \\
\hline 2014 & 3.8 & 0.2 & 19.3 & 7.6 & 3.3 & 1.2 & 8.0 & 4.0 \\
\hline 2013 & 3.5 & 0.2 & 9.4 & 3.9 & 0.3 & 0.3 & 3.7 & 1.2 \\
\hline 2012 & 4.0 & 0.2 & 18.3 & 7.6 & 7.1 & 1.8 & 4.9 & 2.1 \\
\hline 2011 & 4.2 & 0.1 & 27.1 & 4.0 & 6.0 & 1.1 & 16.3 & 6.5 \\
\hline 2010 & 5.0 & 0.1 & 59.5 & 15.8 & 33.4 & 6.1 & 68.6 & 12.9 \\
\hline 2009 & 4.1 & 0.1 & 17.4 & 4.3 & 3.7 & 1.8 & 35.5 & 7.9 \\
\hline 2008 & 4.7 & 0.1 & 55.7 & 8.6 & 24.9 & 5.4 & 92.6 & 26.9 \\
\hline 2007 & 5.4 & 0.0 & 32.9 & 7.8 & 28.6 & 6.6 & 72.6 & 13.5 \\
\hline 2006 & 4.7 & 0.1 & 43.7 & 11.3 & 17.7 & 5.3 & 26.6 & 7.4 \\
\hline 2005 & 4.8 & 0.1 & 55.7 & 9.5 & 28.0 & 7.7 & 23.1 & 6.7 \\
\hline 2004 & 4.8 & 0.0 & 17.4 & 3.1 & 12.9 & & 1.7 & 0.9 \\
\hline
\end{tabular}
sedyoycc.d18

Table 60. Number of fish and mean relative weight (Wr) for each length group of largemouth bass collected in Cedar Creek Lake on 20 September 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multirow[b]{3}{*}{Area} & \multicolumn{6}{|c|}{Length group} \\
\hline & & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} \\
\hline & & No. & Wr & No. & Wr & No. & Wr \\
\hline \multirow[t]{3}{*}{Largemouth bass} & Lower & 12 & 83 (3) & 2 & 86 (1) & 4 & 94 (4) \\
\hline & Upper & 18 & 82 (2) & 6 & 93 (3) & 9 & 86 (3) \\
\hline & Total & 30 & 83 (2) & 8 & 91 (2) & 13 & 89 (2) \\
\hline
\end{tabular}
sedyoycc.d18

Table 61. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected at Cedar Creek Lake in 1.25 hours (7.5-min runs) of diurnal electrofishing on 23 May 2018.
\begin{tabular}{lccccccccccc}
\hline & \multicolumn{11}{c}{ Inch class } \\
\cline { 2 - 9 } Species & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & & Total & CPUE \\
Bluegill & 197 & 418 & 174 & 108 & 53 & 5 & 6 & 1 & 962 & 769.6 & 150.6 \\
Redear sunfish & & 18 & 18 & 22 & 25 & 19 & 14 & 2 & 118 & 94.4 & 12.8 \\
\hline sedbgccl.d18 & & & & & & & & & & & \\
\hline
\end{tabular}

Table 62. Spring electrofishing CPUE (fish/hr) for each length group of bluegill and redear sunfish collected at Cedar Creek from 2007-2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species} & \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|c|}{\(<3.0\) in} & \multicolumn{2}{|c|}{3.0-5.9 in} & \multicolumn{2}{|c|}{6.0-7.9 in} & \multicolumn{2}{|c|}{\(\geq 8.0\) in} & \multicolumn{2}{|c|}{\(\geq 10.0\) in} & & \\
\hline & & CPUE & Std. err. \\
\hline \multicolumn{14}{|l|}{Bluegill} \\
\hline & 2018 & 492.0 & 137.7 & 268.0 & 31.4 & 8.8 & 5.5 & 0.8 & 0.8 & & & 769.6 & 150.6 \\
\hline & 2016 & 599.2 & 108.4 & 464.0 & 90.4 & 8.0 & 2.7 & 0.0 & 0.0 & & & 1071.2 & 164.8 \\
\hline & 2015 & 372.0 & 51.8 & 510.4 & 66.9 & 12.8 & 4.8 & 0.0 & 0.0 & & & 895.2 & 110.5 \\
\hline & 2014 & 396.5 & 60.6 & 367.5 & 98.4 & 27.5 & 5.9 & 1.0 & 0.7 & & & 792.5 & 116.2 \\
\hline & 2013 & 410.0 & 102.7 & 318.5 & 48.2 & 21.5 & 4.6 & 0.0 & 0.0 & & & 750.0 & 126.4 \\
\hline & 2012 & 65.1 & 14.0 & 206.9 & 40.8 & 16.5 & 5.3 & 0.0 & 0.0 & & & 288.5 & 52.7 \\
\hline & 2011 & 301.0 & 45.9 & 411.0 & 56.7 & 21.0 & 4.8 & 0.0 & 0.0 & & & 733.0 & 81.1 \\
\hline & 2010 & 411.7 & 106.5 & 426.1 & 48.6 & 20.3 & 3.9 & 0.0 & 0.0 & & & 858.1 & 145.7 \\
\hline & 2009 & 579.6 & 92.4 & 217.2 & 22.8 & 20.4 & 7.8 & 0.0 & 0.0 & & & 817.2 & 95.6 \\
\hline & 2008 & 408.8 & 78.7 & 370.0 & 35.6 & 23.6 & 5.1 & 0.0 & 0.0 & & & 802.4 & 91.7 \\
\hline & 2007 & 234.8 & 57.1 & 289.6 & 25.2 & 25.6 & 6.1 & 0.0 & 0.0 & & & 550.0 & 63.4 \\
\hline \multicolumn{14}{|l|}{Redear sunfish} \\
\hline & 2018 & 14.4 & 4.9 & 52.0 & 7.1 & 26.4 & 7.5 & 1.6 & 1.1 & 0.0 & 0.0 & 94.4 & 12.8 \\
\hline & 2016 & 5.6 & 2.1 & 63.2 & 16.3 & 24.0 & 6.5 & 2.4 & 1.2 & 0.0 & 0.0 & 95.2 & 20.7 \\
\hline & 2015 & 1.6 & 1.1 & 45.6 & 9.2 & 42.4 & 8.5 & 8.8 & 2.8 & 1.6 & 1.1 & 98.4 & 14.9 \\
\hline & 2014 & 5.0 & 1.6 & 45.0 & 10.8 & 27.0 & 7.6 & 8.5 & 3.3 & 0.0 & 0.0 & 85.5 & 16.1 \\
\hline & 2013 & 4.0 & 2.2 & 33.0 & 7.2 & 163.5 & 75.4 & 31.0 & 10.9 & 0.5 & 0.5 & 231.5 & 84.4 \\
\hline & 2012 & 2.1 & 1.2 & 22.4 & 5.3 & 43.7 & 10.5 & 3.2 & 1.3 & 0.0 & 0.0 & 71.5 & 14.7 \\
\hline & 2011 & 3.0 & 1.4 & 56.5 & 10.7 & 21.0 & 3.9 & 0.5 & 0.5 & 0.0 & 0.0 & 81.0 & 14.3 \\
\hline & 2010 & 12.8 & 4.7 & 56.0 & 9.6 & 26.1 & 7.0 & 3.7 & 1.7 & 0.0 & 0.0 & 98.7 & 15.2 \\
\hline & 2009 & 27.2 & 6.5 & 51.6 & 7.8 & 36.4 & 5.8 & 2.4 & 1.7 & 0.0 & 0.0 & 117.6 & 13.4 \\
\hline & 2008 & 10.4 & 3.0 & 66.0 & 12.1 & 102.0 & 25.1 & 8.0 & 4.0 & 0.0 & 0.0 & 186.4 & 32.7 \\
\hline & 2007 & 13.2 & 3.7 & 46.0 & 8.2 & 159.6 & 48.8 & 16.4 & 6.2 & 0.0 & 0.0 & 235.2 & 52.0 \\
\hline
\end{tabular}

Table 63. PSD and RSD values obtained for bluegill and redear sunfish taken in spring electrofishing samples in Cedar Creek Lake on 23 May 2018; 95\% confidence levels are in parentheses.
\begin{tabular}{|c|c|c|c|c|}
\hline Species & Year & No. \(\geq\) stock size & PSD & RSD \({ }^{\text {a }}\) \\
\hline \multicolumn{5}{|l|}{Bluegill} \\
\hline & 2018 & 347 & \(3(\pm 2)\) & \(0(\pm 1)\) \\
\hline & 2016 & 590 & \(2(\pm 1)\) & \(0(\pm 0)\) \\
\hline & 2015 & 654 & \(2(\pm 1)\) & \(0(\pm 0)\) \\
\hline & 2014 & 792 & \(7(\pm 2)\) & \(0(\pm 0)\) \\
\hline & 2013 & 680 & \(6(\pm 2)\) & \(0(\pm 0)\) \\
\hline & 2012 & 419 & \(7(\pm 3)\) & \(0(\pm 0)\) \\
\hline & 2011 & 864 & \(5(\pm 1)\) & \(0(\pm 0)\) \\
\hline & 2010 & 837 & \(5(\pm 1)\) & \(0(\pm 0)\) \\
\hline \multicolumn{5}{|l|}{Redear sunfish} \\
\hline & 2018 & 82 & \(20(\pm 9)\) & \(0(\pm 0)\) \\
\hline & 2016 & 73 & \(19(\pm 9)\) & \(0(\pm 0)\) \\
\hline & 2015 & 115 & \(29(\pm 8)\) & \(4(\pm 4)\) \\
\hline & 2014 & 144 & \(34(\pm 8)\) & \(1(\pm 2)\) \\
\hline & 2013 & 434 & \(65(\pm 4)\) & \(1(\pm 1)\) \\
\hline & 2012 & 124 & \(35(\pm 8)\) & \(1(\pm 2)\) \\
\hline & 2011 & 140 & \(6(\pm 4)\) & \(0(\pm 0)\) \\
\hline & 2010 & 135 & \(28(\pm 8)\) & \(0(\pm 0)\) \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Bluegill \(=\mathrm{RSD}_{8}\), redear sunfish \(=\mathrm{RSD}_{9}\)
sedbgccl.d18
}

Table 64. Length frequency and CPUE (fish/hr) of black bass collected at Beulah Lake in 1.5 hours (15.0-min runs) of diurnal electrofishing on 3 May 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{Std. error} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 20 & 21 & 24 & & & \\
\hline Largemouth bass & 6 & 11 & 9 & 7 & 31 & 73 & 36 & 47 & 64 & 31 & 5 & 2 & 1 & 1 & 1 & & & 3 & 1 & 329 & 219.3 & 20.9 \\
\hline Spotted bass & & & & 1 & 1 & 1 & 1 & & & & & & & & & & & & & 4 & 2.7 & 1.3 \\
\hline Smallmouth bass & 1 & 2 & & & & & & 2 & 2 & 2 & 1 & & & & & 2 & 1 & & & 13 & 8.7 & 3.5 \\
\hline
\end{tabular}
sedpsdbl.d18

Table 65. Spring electrofishing CPUE (fish/hr) for each length group of largemouth and smallmouth bass collected at Beulah Lake on 3 May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Species Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. Err. \\
\hline \multicolumn{13}{|l|}{Largemouth bass} \\
\hline 2018 & 42.7 & 8.5 & 146.7 & 16.2 & 25.3 & 3.7 & 4.7 & 2.2 & 2.7 & 1.7 & 219.3 & 20.9 \\
\hline 2015 & 90.0 & 16.1 & 124.0 & 5.2 & 12.0 & 4.0 & 4.0 & 1.8 & 2.7 & 0.8 & 230.0 & 18.3 \\
\hline 2012 & 54.0 & 11.0 & 155.3 & 19.9 & 22.0 & 4.1 & 10.0 & 3.7 & 6.0 & 3.2 & 241.3 & 29.7 \\
\hline 2009 & 82.0 & 12.8 & 168.7 & 23.3 & 51.3 & 6.9 & 6.7 & 1.7 & 4.0 & 1.5 & 308.7 & 20.5 \\
\hline 2006 & 87.3 & 18.2 & 185.3 & 13.3 & 4.7 & 1.9 & 4.7 & 1.9 & 2.0 & 0.9 & 282.0 & 23.9 \\
\hline & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|c|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & CPUE & Std. Err. \\
\hline \multicolumn{13}{|l|}{Smallmouth bass} \\
\hline 2018 & 2.0 & 1.4 & 1.3 & 0.8 & 3.3 & 2.2 & 2.0 & 2.0 & 2.0 & 2.0 & 8.7 & 3.5 \\
\hline 2015 & 15.3 & 1.6 & 1.3 & 0.8 & 0.7 & 0.7 & 0.0 & 0.0 & 0.0 & 0.0 & 17.3 & 2.0 \\
\hline 2012 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2009 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 2006 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
sedpsdbl.d18

Table 66. PSD and \(R_{S D_{15}}\) values obtained for largemouth bass taken in spring electrofishing samples in Beulah Lake on 3 May 2018; 95\%
confidence levels are in parentheses.
\begin{tabular}{lccc}
\hline Year & No. \(\geq 8.0\) in & PSD (\(+/-95 \%)\) & \(\mathrm{RSD}_{15}(+/-95 \%)\) \\
\hline 2018 & 265 & \(17(\pm 5)\) & \(3(\pm 2)\) \\
2015 & 210 & \(11(\pm 4)\) & \(3(\pm 2)\) \\
2012 & 281 & \(17(\pm 4)\) & \(5(\pm 3)\) \\
2009 & 340 & \(26(\pm 5)\) & \(3(\pm 2)\) \\
2006 & 292 & \(5(\pm 2)\) & \(2(\pm 2)\) \\
\hline
\end{tabular}
sedpsdbl.d18

Table 67. Length frequency and CPUE (fish/hr) of bluegill and redear sunfish collected at Beulah Lake in 1.25 hours (7.5-min runs) of diurnal electrofishing on 24 May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{14}{|c|}{Inch class} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 11 & Total & CPUE & Std. error \\
\hline Bluegill & 54 & 190 & 171 & 77 & 72 & 17 & 14 & 11 & 21 & 1 & & 628 & 502.4 & 137.5 \\
\hline Redear sunfish & & & & & & 2 & 2 & 4 & 3 & 1 & 1 & 13 & 10.4 & 4.3 \\
\hline
\end{tabular}
sedbgbl.d18

Table 68. Spring electrofishing CPUE (fish/hr) for each length group of bluegill collected at Beulah Lake on 24 May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{8}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{<3.0 in} & \multicolumn{2}{|r|}{3.0-5.9 in} & \multicolumn{2}{|r|}{6.0-7.9 in} & \multicolumn{2}{|r|}{\(\geq 8.0\) in} & & \\
\hline & CPUE & Std. Err. \\
\hline 2018 & 332.0 & 114.0 & 132.8 & 38.8 & 20.0 & 4.0 & 17.6 & 4.9 & 502.4 & 137.5 \\
\hline 2012 & 64.0 & 29.7 & 80.0 & 26.3 & 13.6 & 2.1 & 4.8 & 3.2 & 162.4 & 50.6 \\
\hline 2006 & 474.6 & 123.9 & 36.2 & 10.5 & 20.8 & 8.3 & 0.8 & 0.8 & 532.3 & 130.8 \\
\hline
\end{tabular}
sedbgbl.d18

Table 69. PSD and \(\mathrm{RSD}_{8}\) values obtained for bluegill taken in spring
electrofishing samples in Beulah Lake on 24 May 2018; 95\%
confidence levels are in parentheses.
\begin{tabular}{lcccc}
\hline Species & Year & No. \(\geq\) stock size & PSD & RSD \(_{8}\) \\
\hline Bluegill & 2018 & 213 & \(22(\pm 6)\) & \(10(\pm 4)\) \\
& 2012 & 123 & \(19(\pm 7)\) & \(5(\pm 4)\) \\
& 2006 & 75 & \(37(\pm 11)\) & \(1(\pm 3)\) \\
\hline
\end{tabular}
sedbgbl.d18

Table 70. Population assessment for bluegill collected from Beulah Lake in May 2018.
\begin{tabular}{lcc}
\hline & \begin{tabular}{c}
Actual \\
value
\end{tabular} & \begin{tabular}{c}
Assessment \\
score
\end{tabular} \\
\hline Mearameter length age-2 at capture & 3.8 & 1 \\
Years to 6.0 inches & \(3-3+\) & 3 \\
Spring CPUE of \(\geq 6.0\)-in fish & 37.6 & 2 \\
Spring CPUE of \(\geq 8.0\)-in fish & 17.6 & 4 \\
\hline \begin{tabular}{l}
Total score \\
Assessment rating
\end{tabular} & \\
\begin{tabular}{l}
sedbgbl.d18 \\
sedagblb.d18
\end{tabular} & & 10 \\
\end{tabular}

Table 71. Mean back calculated lengths (in) at each annulus for bluegill collected from Beulah Lake during fall 2018, including the \(95 \%\) confidence interval (CI) for each mean length per age group.
\begin{tabular}{lccccc}
\hline & \multirow{5}{c}{ Age } \\
\cline { 3 - 6 } Year & No. & 1 & 2 & 3 & 4 \\
\hline & & & & & \\
2017 & 26 & 1.9 & & & \\
2016 & 14 & 2.0 & 3.8 & & \\
2014 & 2 & 2.7 & 5.1 & 6.8 & 7.7 \\
& & & & & \\
Mean & & 2.0 & 3.9 & 6.8 & 7.7 \\
Number & & 42 & 16 & 2 & 2 \\
Smallest & & 1.0 & 2.9 & 6.5 & 7.5 \\
Largest & & 3.5 & 6.0 & 7.2 & 7.9 \\
Std error & & 0.1 & 0.2 & 0.4 & 0.2 \\
\(95 \% \mathrm{Cl}_{ \pm}\) & & 0.2 & 0.4 & 0.7 & 0.4 \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations;
Intercept \(=0\)
sedagblb.d18

Table 72. Number of fish and mean relative weight (Wr) for each length group of bluegill collected at Beulah Lake on 11 October 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Species & \multicolumn{6}{|c|}{Length group} \\
\hline & \multicolumn{2}{|c|}{3.0-5.9 in} & \multicolumn{2}{|c|}{6.0-7.9 in} & \multicolumn{2}{|c|}{\(\geq 8.0\) in} \\
\hline & No. & Wr & No. & Wr & No. & Wr \\
\hline Bluegill & 32 & 82 (2) & 6 & 79 (2) & 1 & 78 (-) \\
\hline
\end{tabular}
sedwrblb.d18

Table 73. Length frequency and CPUE (fish/hr) of black bass collected at Cannon Creek Lake in 1.5 hours (15.0 -min runs) of nocturnal electrofishing on 4 May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{12}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{Std. Err.} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 16 & & & \\
\hline Largemouth bass & 1 & & & & 1 & 5 & 12 & 30 & 29 & 12 & 2 & 1 & 93 & 62.0 & 11.0 \\
\hline Spotted bass & & 1 & & 1 & 5 & 4 & 21 & 32 & 10 & & & & 74 & 49.3 & 7.1 \\
\hline Smallmouth bass & & 5 & 1 & & & 1 & & & 4 & & & & 11 & 7.3 & 2.6 \\
\hline
\end{tabular}

Table 74. Spring electrofishing CPUE (fish/hr) for each length group of black bass collected at Cannon Creek Lake on 4 May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Species Year}} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|r|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & & CPUE & Std. Err. \\
\hline \multicolumn{14}{|l|}{Largemouth bass} \\
\hline & 2018 & 1.3 & 0.8 & 50.7 & 9.2 & 9.3 & 2.0 & 0.7 & 0.7 & 0.0 & 0.0 & 62.0 & 11.0 \\
\hline & 2015 & 3.3 & 1.6 & 10.0 & 2.0 & 9.3 & 3.2 & 0.7 & 0.7 & 0.7 & 0.7 & 23.3 & 4.3 \\
\hline & 2012 & 2.5 & 1.5 & 23.0 & 3.8 & 5.0 & 1.5 & 1.5 & 0.7 & 0.5 & 0.5 & 32.0 & 5.1 \\
\hline & 2009 & 12.5 & 1.9 & 13.0 & 3.0 & 10.0 & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 35.5 & 4.8 \\
\hline & 2006 & 2.4 & 1.1 & 15.2 & 2.1 & 2.8 & 0.9 & 2.4 & 0.9 & 0.4 & 0.4 & 22.8 & 2.6 \\
\hline & & \multicolumn{2}{|r|}{\(<8.0\) in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & & CPUE & Std. Err. \\
\hline
\end{tabular}

\section*{Spotted bass}
\begin{tabular}{lllllllllllll}
2018 & 4.7 & 1.9 & 38.0 & 4.7 & 6.7 & 1.7 & 0.0 & 0.0 & 0.0 & 0.0 & 49.3 & 7.1 \\
2015 & 18.7 & 8.3 & 14.7 & 2.9 & 4.7 & 1.9 & 0.0 & 0.0 & 0.0 & 0.0 & 38.0 & 8.1 \\
2012 & 10.0 & 3.1 & 24.5 & 4.6 & 4.5 & 1.8 & 0.0 & 0.0 & 0.0 & 0.0 & 39.0 & 8.5 \\
2009 & 31.5 & 7.2 & 24.0 & 3.6 & 10.5 & 3.1 & 0.0 & 0.0 & 0.0 & 0.0 & 66.0 & 9.4 \\
2006 & 3.2 & 1.4 & 15.2 & 3.3 & 2.8 & 1.0 & 0.4 & 0.4 & 0.0 & 0.0 & 21.6 & 4.9
\end{tabular}

Table 74 cont.

sedpsdcc.d18

Table 75. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Cannon Creek Lake on 4 May 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Smallmouth bass} \\
\hline & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] \\
\hline 2018 & 91 & \(16(\pm 8)\) & \(1(\pm 2)\) & 72 & \(14(\pm 8)\) & \(0(\pm 0)\) & 5 & \(80(\pm 39)\) & \(0(\pm 0)\) \\
\hline 2015 & 30 & \(50(\pm 18)\) & \(3(\pm 7)\) & 32 & \(22(\pm 15)\) & \(0(\pm 0)\) & 4 & \(100(\pm 0)\) & \(0(\pm 0)\) \\
\hline 2012 & 59 & \(22(\pm 11)\) & \(5(\pm 6)\) & 70 & \(13(\pm 8)\) & \(0(\pm 0)\) & 14 & \(57(\pm 27)\) & \(0(\pm 0)\) \\
\hline 2009 & 46 & \(43(\pm 14)\) & \(0(\pm 0)\) & 85 & \(25(\pm 9)\) & \(0(\pm 0)\) & 22 & \(86(\pm 15)\) & \(0(\pm 0)\) \\
\hline 2006 & 51 & \(25(\pm 12)\) & \(12(\pm 9)\) & 47 & \(17(\pm 11)\) & \(2(\pm 4)\) & 18 & \(39(\pm 23)\) & \(0(\pm 0)\) \\
\hline
\end{tabular}
sedpsdcc.d18

Table 76. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 3.0 hours of 15-minute diurnal electrofishing runs for black bass in Dale Hollow Lake on 7 May 2018; standard error is in parentheses.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
IIlw ill \\
Creek
\end{tabular}} & Largemouth bass & & & & 1 & 1 & 1 & 1 & & 1 & 2 & 7 & 15 & 16 & 10 & 10 & 13 & 8 & 4 & 3 & 93 & 62.0 (6.6) \\
\hline & Spotted bass & 1 & 1 & & 1 & 1 & 1 & & & 3 & 1 & 2 & & & & & & & & & 11 & 7.3 (3.0) \\
\hline & Smallmouth bass & & & & & & & 1 & 1 & 1 & 1 & 1 & 1 & & & & & & 1 & & 7 & 4.7 (1.6) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Little Sulphur \\
Creek
\end{tabular}} & Largemouth bass & & & & 1 & 2 & & 2 & 2 & 3 & 5 & 5 & 26 & 29 & 18 & 9 & 15 & 10 & 5 & 2 & 134 & 89.3 (8.7) \\
\hline & Spotted bass & & & 1 & 2 & 2 & 5 & 12 & 3 & 4 & 7 & 1 & 2 & & & & & & & & 39 & 26.0 (5.0) \\
\hline & Smallmouth bass & & & 1 & & 1 & 1 & 1 & 1 & & 3 & 2 & & 1 & 2 & & & & & & 13 & 8.7 (3.5) \\
\hline \multirow[t]{3}{*}{Total} & Largemouth bass & & & & 2 & 3 & 1 & 3 & 2 & 4 & 7 & 12 & 41 & 45 & 28 & 19 & 28 & 18 & 9 & 5 & 227 & 75.7 (6.6) \\
\hline & Spotted bass & 1 & 1 & 1 & 3 & 3 & 6 & 12 & 3 & 7 & 8 & 3 & 2 & & & & & & & & 50 & 16.7 (4.0) \\
\hline & Smallmouth bass & & & 1 & & 1 & 1 & 2 & 2 & 1 & 4 & 3 & 1 & 1 & 2 & & & & 1 & & 20 & 6.7 (1.9) \\
\hline
\end{tabular}
sedpsddh.d18

Table 77. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Dale Hollow Lake during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|r|}{\(<8.0\) in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 2.0 & 0.9 & 5.3 & 1.6 & 32.7 & 3.3 & 35.7 & 3.7 & 1.7 & 0.8 & 75.7 & 6.6 \\
\hline 2014 & 2.0 & 1.0 & 13.7 & 3.1 & 22.0 & 3.3 & 56.0 & 7.1 & 0.7 & 0.5 & 93.7 & 8.9 \\
\hline 2011 & 2.3 & 1.3 & 10.3 & 3.3 & 4.0 & 1.6 & 2.3 & 0.9 & 0.0 & 0.0 & 19.0 & 5.2 \\
\hline 2008 & 1.0 & 0.5 & 3.3 & 1.1 & 6.0 & 1.9 & 16.7 & 4.2 & 0.0 & 0.0 & 27.0 & 5.7 \\
\hline 2005 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & 1.0 & 1.0 & 0.5 & 0.0 & 0.0 & 2.0 & 1.4 \\
\hline
\end{tabular}
sedpsddh.d18

Table 78. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Dale Hollow Lake during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 5.0 & 1.1 & 7.3 & 2.4 & 4.3 & 1.9 & 0.0 & 0.0 & 0.0 & 0.0 & 16.7 & 4.0 \\
\hline 2014 & 1.7 & 0.6 & 10.0 & 2.3 & 10.0 & 3.4 & 2.0 & 0.8 & 0.0 & 0.0 & 23.7 & 5.6 \\
\hline 2011 & 22.3 & 4.1 & 13.7 & 1.8 & 5.7 & 1.7 & 1.3 & 0.8 & 0.0 & 0.0 & 43.0 & 5.0 \\
\hline 2008 & 8.3 & 2.6 & 12.0 & 3.2 & 11.0 & 1.8 & 3.3 & 2.0 & 0.0 & 0.0 & 34.7 & 5.4 \\
\hline 2005 & 6.7 & 3.6 & 9.7 & 4.4 & 6.0 & 2.2 & 3.3 & 1.4 & 0.0 & 0.0 & 25.7 & 9.2 \\
\hline
\end{tabular}
sedpsddh.d18

Table 79. Spring electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected at Dale Hollow Lake during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|r|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018 & 1.0 & 0.7 & 1.7 & 0.9 & 2.7 & 0.9 & 1.3 & 0.6 & 0.3 & 0.3 & 6.7 & 1.9 \\
\hline 2014 & 1.0 & 0.5 & 2.3 & 0.9 & 3.7 & 1.2 & 5.0 & 1.6 & 2.0 & 0.8 & 12.0 & 2.4 \\
\hline 2011 & 4.0 & 0.9 & 2.3 & 0.8 & 1.7 & 0.8 & 3.0 & 1.0 & 0.3 & 0.3 & 11.0 & 2.0 \\
\hline 2008 & 4.3 & 1.5 & 2.7 & 1.0 & 5.7 & 1.4 & 4.7 & 1.3 & 1.7 & 0.9 & 17.3 & 3.5 \\
\hline 2005 & 3.0 & 1.4 & 3.0 & 1.0 & 1.7 & 0.6 & 3.3 & 1.1 & 2.3 & 1.2 & 11.0 & 1.8 \\
\hline
\end{tabular}
sedpsddh.d18

Table 80. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Dale Hollow Lake on 7 May 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Smallmouth bass} \\
\hline & & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
No. \(\geq\) \\
stock size
\end{tabular} & \[
\begin{gathered}
\text { PSD } \\
(+--95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%)
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{2018} & Illw ill Creek & 90 & \(96(\pm 4)\) & \(53(\pm 10)\) & 7 & \(43(\pm 40)\) & \(0(\pm 0)\) & 7 & \(57(\pm 40)\) & \(14(\pm 28)\) \\
\hline & Little Sulphur Creek & 131 & \(91(\pm 5)\) & \(45(\pm 9)\) & 34 & \(29(\pm 16)\) & \(0(\pm 0)\) & 11 & \(73(\pm 28)\) & \(27(\pm 28)\) \\
\hline & Total & 221 & \(93(\pm 3)\) & \(48(\pm 7)\) & 41 & \(32(\pm 14)\) & \(0(\pm 0)\) & 18 & \(67(\pm 22)\) & \(22(\pm 20)\) \\
\hline 2014 & Total & 275 & \(85(\pm 4)\) & \(61(\pm 6)\) & 69 & \(52(\pm 12)\) & \(9(\pm 7)\) & 35 & \(74(\pm 15)\) & \(43(\pm 17)\) \\
\hline 2011 & Total & 50 & \(38(\pm 14)\) & \(14(\pm 10)\) & 91 & \(23(\pm 9)\) & \(4(\pm 4)\) & 21 & \(67(\pm 21)\) & \(43(\pm 22)\) \\
\hline 2008 & Total & 78 & \(87(\pm 7)\) & \(64(\pm 11)\) & 90 & \(48(\pm 10)\) & \(11(\pm 7)\) & 45 & \(69(\pm 14)\) & \(31(\pm 14)\) \\
\hline 2005 & Total & 6 & \(100(\pm 0)\) & \(50(\pm 44)\) & 66 & \(42(\pm 12)\) & \(15(\pm 9)\) & 27 & \(56(\pm 19)\) & \(37(\pm 19)\) \\
\hline
\end{tabular}
sedpsddh.d18

Table 81. Mean back calculated lengths (in) at each annulus for largemouth bass collected from Dale Hollow Lake during fall 2018, including the \(95 \%\) confidence interval (CI) for each mean length per age group.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{10}{|c|}{Age} \\
\hline Year & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 2017 & 5 & 4.6 & & & & & & & & & \\
\hline 2015 & 11 & 4.8 & 10.9 & 14.1 & & & & & & & \\
\hline 2012 & 1 & 5.8 & 11.6 & 13.1 & 14.5 & 16.0 & 16.8 & & & & \\
\hline 2010 & 1 & 5.2 & 11.5 & 13.8 & 14.4 & 14.7 & 14.9 & 15.2 & 15.5 & & \\
\hline 2008 & 1 & 9.5 & 14.3 & 16.3 & 16.6 & 16.9 & 17.3 & 17.6 & 17.9 & 18.2 & 18.6 \\
\hline Mean & & 5.1 & 11.3 & 14.1 & 15.2 & 15.8 & 16.3 & 16.4 & 16.7 & 18.2 & 18.6 \\
\hline Number & & 19 & 14 & 14 & 3 & 3 & 3 & 2 & 2 & 1 & 1 \\
\hline Smallest & & 3.4 & 9.4 & 12.9 & 14.4 & 14.7 & 14.9 & 15.2 & 15.5 & 18.2 & 18.6 \\
\hline Largest & & 9.5 & 14.3 & 16.3 & 16.6 & 16.9 & 17.3 & 17.6 & 17.9 & 18.2 & 18.6 \\
\hline Std error & & 0.4 & 0.4 & 0.2 & 0.7 & 0.7 & 0.7 & 1.2 & 1.2 & & \\
\hline 95\% CI \(\pm\) & & 0.8 & 0.7 & 0.5 & 1.5 & 1.4 & 1.4 & 2.3 & 2.4 & & \\
\hline
\end{tabular}

Otoliths were used for age-growth determinations; Intercept \(=0\)
sedagdhb.d18

Table 82. Number of fish and mean relative weight (Wr) for each length group of largemouth bass collected at Dale Hollow Lake on 8 October 2018. Standard error is in
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Species} & \multicolumn{5}{|c|}{Length group} \\
\hline & 8.0-11.9 in & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} \\
\hline & No. Wr & No. & Wr & No. & Wr \\
\hline Largemouth bass & 492 (3) & 3 & 87 (2) & 11 & 84 (3) \\
\hline
\end{tabular}
sedwrdh.d18

Table 83. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15-minute diurnal electrofishing runs for black bass in Wood Creek Lake on 1 May 2018; standard error is in parentheses.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline Pump & Largemouth bass & 1 & 5 & 2 & 5 & 4 & 8 & 12 & 11 & 18 & 9 & 6 & 3 & 3 & & 3 & 1 & 2 & 1 & 94 & 125.3 (15.0) \\
\hline Station & Spotted bass & & 2 & & & 1 & 3 & & 6 & 3 & 1 & 1 & & 1 & & & & & & 18 & 24.0 (4.6) \\
\hline Dock & Largemouth bass & 4 & 33 & 11 & 6 & 14 & 38 & 22 & 18 & 22 & 15 & 11 & 4 & 6 & 3 & 4 & 1 & 1 & 1 & 214 & 285.3 (12.7) \\
\hline & Spotted bass & & & & & & & & & & 1 & & & & & & & & & 1 & 1.3 (1.3) \\
\hline Total & Largemouth bass & 5 & 38 & 13 & 11 & 18 & 46 & 34 & 29 & 40 & 24 & 17 & 7 & 9 & 3 & 7 & 2 & 3 & 2 & 308 & 205.3 (36.8) \\
\hline & Spotted bass & & 2 & & & 1 & 3 & & 6 & 3 & 2 & 1 & & 1 & & & & & & 19 & 12.7 (5.5) \\
\hline
\end{tabular}
sedpsdwc.d18

Table 84. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples at Wood Creek Lake on 1 May 2018; 95\% confidence limits are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} \\
\hline & & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{15} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { No. } \geq \\
\text { stock size }
\end{gathered}
\] & \[
\begin{gathered}
\text { PSD } \\
(+/-95 \%)
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RSD}_{14} \\
(+/-95 \%) \\
\hline
\end{gathered}
\] \\
\hline \multirow[t]{3}{*}{2018*} & Pump Station & 77 & \(36(\pm 11)\) & \(13(\pm 8)\) & 16 & \(38(\pm 25)\) & \(6(\pm 12)\) \\
\hline & Dock & 146 & \(32(\pm 8)\) & \(11(\pm 5)\) & 1 & \(100(\pm 0)\) & \(0(\pm 0)\) \\
\hline & Total & 223 & \(33(\pm 6)\) & \(12(\pm 4)\) & 17 & \(41(\pm 24)\) & \(6(\pm 12)\) \\
\hline 2017* & Total & 181 & \(25(\pm 6)\) & \(4(\pm 3)\) & 32 & \(34(\pm 17)\) & \(3(\pm 6)\) \\
\hline 2016* & Total & 110 & \(42(\pm 9)\) & \(8(\pm 5)\) & 23 & \(26(\pm 18)\) & \(0(\pm 0)\) \\
\hline 2015 & Total & 259 & \(41(\pm 6)\) & \(10(\pm 4)\) & 37 & \(30(\pm 15)\) & \(0(\pm 0)\) \\
\hline 2014 & Total & 334 & \(34(\pm 5)\) & \(10(\pm 3)\) & 61 & \(21(\pm 10)\) & \(0(\pm 0)\) \\
\hline 2013 & Total & 256 & \(23(\pm 5)\) & \(9(\pm 4)\) & 79 & \(14(\pm 8)\) & \(1(\pm 2)\) \\
\hline 2012 & Total & 215 & \(20(\pm 5)\) & \(5(\pm 3)\) & 60 & \(17(\pm 10)\) & \(0(\pm 0)\) \\
\hline 2011 & Total & 185 & \(39(\pm 7)\) & \(16(\pm 5)\) & 47 & \(17(\pm 11)\) & \(0(\pm 0)\) \\
\hline 2010 & Total & 181 & \(52(\pm 7)\) & \(15(\pm 5)\) & 55 & \(20(\pm 11)\) & \(0(\pm 0)\) \\
\hline 2009 & Total & 241 & \(55(\pm 6)\) & \(17(\pm 5)\) & 69 & \(16(\pm 9)\) & \(1(\pm 3)\) \\
\hline 2008 & Total & 223 & \(40(\pm 6)\) & \(19(\pm 5)\) & 66 & \(12(\pm 8)\) & \(2(\pm 3)\) \\
\hline 2007 & Total & 223 & \(32(\pm 6)\) & \(24(\pm 6)\) & 109 & \(23(\pm 8)\) & \(5(\pm 4)\) \\
\hline 2006 & Total & 165 & \(56(\pm 8)\) & \(38(\pm 7)\) & 93 & \(44(\pm 10)\) & \(11(\pm 6)\) \\
\hline 2005 & Total & 138 & \(74(\pm 7)\) & \(23(\pm 7)\) & 86 & \(57(\pm 11)\) & \(13(\pm 7)\) \\
\hline
\end{tabular}

\footnotetext{
* Lower lake area was not sampled sedpsdwc.d18
}

Table 85. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Wood Creek Lake during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|r|}{8.0-11.9 in} & \multicolumn{2}{|r|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|r|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018* & 56.7 & 15.9 & 99.3 & 15.9 & 32.0 & 5.8 & 17.3 & 3.7 & 1.3 & 0.8 & 205.3 & 36.8 \\
\hline 2017* & 121.3 & 48.5 & 90.0 & 19.9 & 25.3 & 4.3 & 5.3 & 1.7 & 0.7 & 0.7 & 242.0 & 70.8 \\
\hline 2016* & 40.0 & 14.5 & 42.7 & 9.0 & 24.7 & 3.2 & 6.0 & 0.9 & 0.7 & 0.7 & 113.3 & 21.3 \\
\hline 2015 & 11.7 & 2.4 & 51.3 & 10.6 & 26.3 & 6.0 & 8.7 & 2.0 & 1.3 & 0.6 & 98.0 & 15.8 \\
\hline 2014 & 19.0 & 4.2 & 74.0 & 13.4 & 25.7 & 4.7 & 11.7 & 3.1 & 1.0 & 0.7 & 130.3 & 19.8 \\
\hline 2013 & 16.7 & 5.4 & 65.3 & 12.1 & 12.0 & 1.8 & 8.0 & 1.6 & 1.0 & 0.5 & 102.0 & 17.7 \\
\hline 2012 & 13.7 & 4.6 & 57.0 & 15.2 & 11.0 & 2.5 & 3.7 & 0.9 & 0.3 & 0.3 & 85.3 & 19.4 \\
\hline 2011 & 28.3 & 5.8 & 37.7 & 5.9 & 14.3 & 3.3 & 9.7 & 2.7 & 1.0 & 0.5 & 90.0 & 12.9 \\
\hline 2010 & 27.5 & 9.2 & 43.0 & 11.3 & 33.5 & 5.2 & 14.0 & 2.8 & 2.5 & 1.1 & 118.0 & 26.6 \\
\hline 2009 & 6.7 & 3.1 & 36.0 & 7.5 & 31.0 & 2.5 & 13.3 & 3.6 & 2.7 & 0.9 & 87.0 & 14.1 \\
\hline 2008 & 6.7 & 3.6 & 44.7 & 6.8 & 15.3 & 2.7 & 14.3 & 2.4 & 2.0 & 0.8 & 81.0 & 12.3 \\
\hline 2007 & 6.7 & 2.3 & 50.3 & 8.5 & 6.0 & 1.2 & 18.0 & 3.3 & 1.3 & 0.6 & 81.0 & 12.5 \\
\hline 2006 & 30.3 & 7.0 & 24.3 & 6.2 & 10.0 & 2.1 & 20.7 & 5.0 & 2.0 & 1.0 & 85.3 & 17.5 \\
\hline 2005 & 4.0 & 2.0 & 14.4 & 3.6 & 28.0 & 4.4 & 12.8 & 2.3 & 3.2 & 1.7 & 59.2 & 9.3 \\
\hline
\end{tabular}
* Lower lake area was not sampled
sedpsdwc.d18

Table 86. Spring electrofishing CPUE (fish/hr) for each length group of spotted bass collected at Wood Creek Lake during May 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|r|}{8.0-10.9 in} & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|r|}{\(\geq 14.0\) in} & \multicolumn{2}{|r|}{\(\geq 17.0\) in} & & \\
\hline & CPUE & Std. err. \\
\hline 2018* & 2.0 & 1.4 & 6.0 & 3.2 & 4.0 & 2.5 & 0.7 & 0.7 & 0.0 & 0.0 & 12.7 & 5.5 \\
\hline 2017* & 6.7 & 4.0 & 11.3 & 5.6 & 6.7 & 4.0 & 0.7 & 0.7 & 0.0 & 0.0 & 25.3 & 12.5 \\
\hline 2016* & 5.3 & 4.6 & 9.3 & 5.7 & 4.0 & 2.5 & 0.0 & 0.0 & 0.0 & 0.0 & 18.7 & 10.6 \\
\hline 2015 & 4.3 & 1.7 & 7.3 & 2.1 & 3.7 & 0.9 & 0.0 & 0.0 & 0.0 & 0.0 & 15.3 & 3.9 \\
\hline 2014 & 6.3 & 2.5 & 13.7 & 2.7 & 4.3 & 1.5 & 0.0 & 0.0 & 0.0 & 0.0 & 24.3 & 5.1 \\
\hline 2013 & 6.0 & 2.0 & 19.7 & 5.4 & 3.3 & 1.7 & 0.3 & 0.3 & 0.0 & 0.0 & 29.3 & 7.0 \\
\hline 2012 & 17.7 & 4.4 & 11.0 & 2.3 & 3.3 & 1.2 & 0.0 & 0.0 & 0.0 & 0.0 & 32.0 & 7.1 \\
\hline 2011 & 16.3 & 4.2 & 9.0 & 2.8 & 2.7 & 1.2 & 0.0 & 0.0 & 0.0 & 0.0 & 28.0 & 7.3 \\
\hline 2010 & 13.5 & 5.5 & 19.0 & 2.9 & 5.5 & 1.3 & 0.0 & 0.0 & 0.0 & 0.0 & 38.0 & 8.0 \\
\hline 2009 & 16.7 & 4.9 & 15.7 & 3.4 & 3.3 & 1.0 & 0.3 & 0.3 & 0.0 & 0.0 & 36.0 & 6.5 \\
\hline 2008 & 11.7 & 3.3 & 16.7 & 2.9 & 2.3 & 1.2 & 0.3 & 0.3 & 0.0 & 0.0 & 31.0 & 5.4 \\
\hline 2007 & 14.7 & 3.9 & 20.7 & 3.8 & 6.7 & 1.6 & 1.7 & 1.0 & 0.0 & 0.0 & 43.7 & 7.5 \\
\hline 2006 & 13.7 & 2.7 & 14.0 & 2.8 & 10.3 & 2.2 & 3.3 & 1.0 & 0.0 & 0.0 & 41.3 & 6.0 \\
\hline 2005 & 8.8 & 2.9 & 13.6 & 5.5 & 15.2 & 2.8 & 4.4 & 1.3 & 0.0 & 0.0 & 42.0 & 10.2 \\
\hline
\end{tabular}
* Lower lake area was not sampled sedpsdwc.d18

Table 87. Population assessment for largemouth bass based on spring electrofishing at Wood Creek Lake from 2005-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Year} & Mean length age-3 at capture & \[
\begin{array}{r}
\text { CPUE } \\
\text { age } 1 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { CPUE } \\
12.0-14.9 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
\geq 20.0 \text { in } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Total \\
score
\end{tabular} & Assessement rating \\
\hline \multicolumn{2}{|l|}{Management objectives} & \(\geq 11.5\) in & \(\geq 8.0 \mathrm{fish} / \mathrm{hr}\) & \(\geq 20.0 \mathrm{fish} / \mathrm{hr}\) & \(\geq 17.0 \mathrm{fish} / \mathrm{hr}\) & \(\geq 2.0\) fish/hr & & \\
\hline \multirow[t]{2}{*}{2018} & Value & & 40.7 & 32.0 & 17.3 & 1.3 & & \\
\hline & Score & 3 & 3 & 3 & 3 & 2 & 14 & G \\
\hline \multirow[t]{2}{*}{2017} & Value & & 105.3 & 25.3 & 5.3 & 0.7 & & \\
\hline & Score & 3 & 4 & 2 & 1 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2016} & Value & & 29.3 & 24.7 & 6.0 & 0.7 & & \\
\hline & Score & 3 & 3 & 2 & 2 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2015} & Value & & 5.0 & 26.3 & 8.7 & 1.3 & & \\
\hline & Score & 3 & 1 & 3 & 2 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2014} & Value & 11.3 & 6.0 & 25.7 & 11.7 & 1.0 & & \\
\hline & Score & 3 & 1 & 3 & 2 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2013} & Value & & 14.0 & 12.0 & 8.0 & 1.0 & & \\
\hline & Score & 3 & 2 & 1 & 2 & 2 & 10 & F \\
\hline \multirow[t]{2}{*}{2012} & Value & & 4.3 & 11.0 & 3.7 & 0.3 & & \\
\hline & Score & 3 & 1 & 1 & 1 & 2 & 8 & P \\
\hline \multirow[t]{2}{*}{2011} & Value & & 24.8 & 14.3 & 9.7 & 1.0 & & \\
\hline & Score & 3 & 3 & 2 & 2 & 2 & 12 & F \\
\hline \multirow[t]{2}{*}{2010} & Value & 11.4 & 15.1 & 33.5 & 14.0 & 2.5 & & \\
\hline & Score & 3 & 2 & 3 & 3 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2009} & Value & & 5.3 & 31.0 & 13.3 & 2.7 & & \\
\hline & Score & 4 & 1 & 3 & 3 & 3 & 14 & G \\
\hline \multirow[t]{2}{*}{2008} & Value & & 5.7 & 15.3 & 14.3 & 2.0 & & \\
\hline & Score & 4 & 1 & 2 & 3 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2007} & Value & & 5.3 & 6.0 & 18.0 & 1.3 & & \\
\hline & Score & 4 & 1 & 1 & 3 & 2 & 11 & F \\
\hline \multirow[t]{2}{*}{2006} & Value & & 11.8 & 10.0 & 20.7 & 2.0 & & \\
\hline & Score & 4 & 2 & 1 & 3 & 3 & 13 & G \\
\hline \multirow[t]{2}{*}{2005} & Value & 12.3 & 2.4 & 28.0 & 12.8 & 3.2 & & \\
\hline & Score & 4 & 1 & 3 & 2 & 3 & 13 & G \\
\hline
\end{tabular}

\footnotetext{
sedpsdw c.d18
}

Table 88. Species composition, relative abundance, and CPUE (fish/hr) of black bass collected during 1.5 hours of 15-minute diurnal electrofishing runs for black bass in Wood Creek Lake on 19 September 2018; standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{12}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & & \\
\hline \multirow[t]{2}{*}{Pump station} & Largemouth bass & 1 & 3 & & & 2 & 3 & 3 & 6 & 3 & 2 & 1 & & 24 & 32.0 (6.9) \\
\hline & Spotted bass & & & 1 & 1 & & 2 & 1 & & & & & & 5 & 6.7 (3.5) \\
\hline \multirow[t]{2}{*}{Dock} & Largemouth bass & 17 & 23 & 12 & 1 & 18 & 19 & 14 & 11 & 7 & 4 & & 1 & 127 & 169.3 (9.3) \\
\hline & Spotted bass & & & & & & & & & & & & & 0 & 0.0 (0.0) \\
\hline \multirow[t]{2}{*}{Total} & Largemouth bass & 18 & 26 & 12 & 1 & 20 & 22 & 17 & 17 & 10 & 6 & 1 & 1 & 151 & 100.7 (31.2) \\
\hline & Spotted bass & & & 1 & 1 & & 2 & 1 & & & & & & 5 & 3.3 (2.2) \\
\hline
\end{tabular}
sedyoywc.d18

Table 89. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected in fall (September and October) electrofishing samples at Wood Creek Lake.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year Class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & \begin{tabular}{l}
Mean \\
length
\end{tabular} & Std. error & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} & CPUE & \begin{tabular}{l}
Std. \\
error
\end{tabular} \\
\hline 2018 & 4.3 & 0.1 & 37.3 & 14.9 & 8.0 & 3.7 & & \\
\hline \(2017{ }^{\text {a }}\) & 4.1 & 0.2 & 16.0 & 4.4 & 2.7 & 1.3 & 40.7 & 12.7 \\
\hline 2016 & 4.0 & 0.1 & 74.7 & 22.6 & 8.7 & 1.6 & 105.3 & 43.5 \\
\hline 2015 & 4.2 & 0.1 & 32.7 & 7.8 & 8.0 & 2.2 & 29.3 & 12.8 \\
\hline \(2014{ }^{\text {a }}\) & 3.7 & 0.2 & 2.7 & 0.9 & 0.0 & 0.0 & 5.0 & 1.0 \\
\hline \(2013{ }^{\text {a }}\) & 3.4 & 0.2 & 11.3 & 3.0 & 1.0 & 0.5 & 6.0 & 1.7 \\
\hline 2012 & 4.3 & 0.1 & 34.7 & 10.1 & 8.3 & 4.2 & 14.0 & 4.9 \\
\hline \(2011{ }^{\text {a }}\) & 4.0 & 0.1 & 12.3 & 4.1 & 0.7 & 0.7 & \(4.3{ }^{\text {b }}\) & 1.6 \\
\hline 2010 & 5.0 & 0.1 & 36.7 & 14.9 & 18.0 & 6.6 & 24.8 & 6.0 \\
\hline \(2009{ }^{\text {a }}\) & 3.7 & 0.4 & 2.7 & 1.7 & 0.7 & 0.5 & \(15.1^{\text {c }}\) & 7.4 \\
\hline 2008 & 3.8 & 0.1 & 13.3 & 3.2 & 1.0 & 0.7 & 5.3 & 2.7 \\
\hline 2007 & 4.2 & 0.1 & 13.3 & 7.6 & 2.7 & 1.2 & 5.7 & 3.2 \\
\hline \(2006{ }^{\text {a }}\) & 4.4 & 0.3 & 3.7 & 1.7 & 0.7 & 0.5 & \(5.3{ }^{\text {d }}\) & 2.4 \\
\hline 2005 & 4.0 & 0.1 & 23.7 & 11.9 & 3.3 & 1.4 & 11.8 & 4.4 \\
\hline 2004 & 4.2 & 0.1 & 17.9 & 4.8 & 4.3 & 1.5 & 2.4 & 1.2 \\
\hline
\end{tabular}
sedyoywc.d18
\({ }^{\text {a }}\) Age-0 largemouth bass stocked in the fall
\({ }^{\text {b }}\) Includes fish stocked in fall 2011; CPUE stocked fish=1.0 fish/hr
\({ }^{\text {c }}\) Includes fish stocked in fall 2009; CPUE stocked fish=10.0 fish/hr
\({ }^{\text {d }}\) Includes fish stocked in fall 2006; CPUE stocked fish=0.3 fish/hr

Table 90. Number of fish and mean relative weight (Wr) for each length group of black bass collected at Wood Creek Lake during 19 September 2018. Standard error is in parentheses.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Species & \multicolumn{5}{|c|}{Length group} \\
\hline \multirow{3}{*}{Largemouth bass} & 8.0-11.9 in & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} \\
\hline & No. Wr & No. & Wr & No. & Wr \\
\hline & 66 84 (1) & 8 & 80 (3) & 0 & - \\
\hline & 7.0-10.9 in & \multicolumn{2}{|l|}{11.0-13.9 in} & \multicolumn{2}{|c|}{\(\geq 14.0\) in} \\
\hline \multirow[t]{2}{*}{Spotted bass} & No. Wr & No. & Wr & No. & Wr \\
\hline & \(3 \quad 91\) (3) & 0 & - & 0 & - \\
\hline
\end{tabular}

Table 91. Temperature and dissolved oxygen profiles collected at three locations at Wood Creek Lake on 7 July 2018.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Depth} & \multicolumn{2}{|c|}{Dam} & \multicolumn{2}{|l|}{Pump House} & \multicolumn{2}{|c|}{Ramp} \\
\hline & Temp (\({ }^{\circ} \mathrm{F}\)) & DO (mg/L) & Temp (\({ }^{\circ} \mathrm{F}\)) & DO (mg/L) & Temp (\({ }^{\circ} \mathrm{F}\)) & DO (mg/L) \\
\hline Surface & 83.5 & 7.04 & 84.4 & 7.29 & 84.7 & 7.98 \\
\hline 5 & 83.7 & 6.74 & 84.0 & 7.10 & 84.4 & 7.76 \\
\hline 10 & 80.1 & 8.36 & 80.0 & 6.00 & 79.9 & 6.39 \\
\hline 15 & 73.0 & 8.84 & 73.8 & 3.44 & 73.2 & 0.79 \\
\hline 20 & 59.9 & 9.49 & 59.5 & 1.48 & 59.7 & 0.05 \\
\hline 25 & 51.3 & 8.52 & 51.8 & 1.87 & 51.6 & 0.03 \\
\hline 30 & 46.8 & 6.74 & 47.3 & 0.07 & 47.3 & 0.04 \\
\hline 35 & 44.1 & 6.15 & 44.8 & 0.04 & 44.8 & 0.02 \\
\hline 40 & 42.6 & 5.39 & 43.3 & 1.14 & & \\
\hline 45 & 41.7 & 4.92 & 42.3 & 3.17 & & \\
\hline 50 & 41.4 & 5.16 & 41.7 & 3.86 & & \\
\hline 55 & 41.0 & 4.99 & 41.2 & 4.93 & & \\
\hline 60 & 40.8 & 4.21 & 41.0 & 4.59 & & \\
\hline 65 & 40.6 & 4.54 & 41.0 & 3.02 & & \\
\hline 70 & 40.5 & 4.62 & & & & \\
\hline 75 & 40.5 & 4.40 & & & & \\
\hline 80 & 40.5 & 1.67 & & & & \\
\hline
\end{tabular}

Figure 1. Results of the Laurel Rive Lake angler attitude survey conducted from March 16-October 31, 2018.

\section*{LAUREL RIVER LAKE ANGLER ATTITUDE SURVEY 2018}
1. Have you been surveyed this year? Yes - stop survey
2. Name \(\qquad\) Zip code \(\qquad\)
3. Have you ever fished at Laurel River Lake before? (\(\mathrm{N}=157\)) \(99 \%\) Yes \(\quad \underline{1 \%}\) No If NO, go to question 15.
4. How many times do you fish Laurel River Lake a year? (\(\mathrm{N}=149\))
\(\underline{2 \%} 1\) to \(4 \quad \underline{13 \%} 5\) to \(10 \quad\) 85\% More than 10
5. Which species of fish do you fish for at Laurel River Lake (check all that apply)? (\(\mathrm{N}=224\))

98\% Bass 13\% Crappie \(\quad\) 0\% Trout \(\quad \underline{27 \%}\) Walleye \(\quad\) 1\% Bluegill \(\quad\) \% Catfish
6. Which one species do you fish for most at Laurel River Lake (check only one)? \((\mathrm{N}=156)\)
93\% Bass \(\quad \underline{3 \%}\) Crappie \(\quad \underline{0 \%}\) Trout Wluegill \(\quad \underline{1 \%}\) Catfish

\section*{-Answer the following questions for each species you fish for - (see question 5) \\ Largemouth Bass Anglers}
7. In general, what level of satisfaction do you have with largemouth bass fishing at Laurel River Lake? (\(\mathrm{N}=152\))
\(\underline{22 \%}\) Very satisfied \(\quad \underline{55 \%}\) Somewhat satisfied \(\quad \underline{13 \%}\) Neutral \(\quad \underline{10 \%}\) Somewhat dissatisfied \(\underline{0 \%}\) Very dissatisfied \(0 \%\) No opinion
7a. If you responded with somewhat or very dissatisfied in question (7) - what is the single most important reason for your dissatisfaction? \((\mathrm{N}=15)\)

100\% Number of fish \(\quad \underline{0 \%}\) Size of fish \(\underline{0}\) Not happy with regulations \(0 \%\) Too many anglers/boaters

Smallmouth Bass Anglers
8. In general, what level of satisfaction do you have with smallmouth bass fishing at Laurel River Lake? (\(\mathrm{N}=153\)) \(\underline{20 \%}\) Very satisfied \(\quad \underline{30 \%}\) Somewhat satisfied \(\quad 13 \%\) Neutral \(\quad \underline{24 \%}\) Somewhat dissatisfied \(\quad 12 \%\) Very dissatisfied 1\% No opinion
8a. If you responded with somewhat or very dissatisfied in question (8) - what is the single most important reason for your dissatisfaction? \((\mathrm{N}=57)\)

93\% Number of fish \(0 \%\) Size of fish \(0 \%\) Not happy with regulations \(2 \%\) Too many anglers/boaters \(\underline{2 \%}\) Not enough enforcement \(4 \%\) Too many tournaments

Spotted Bass Anglers
9. In general, what level of satisfaction do you have with spotted bass fishing at Laurel River Lake? (\(\mathrm{N}=141\)) \(\underline{4 \%}\) Very satisfied \(\quad \underline{33} \%\) Somewhat satisfied \(\quad \underline{34 \%}\) Neutral \(\underline{24 \%}\) Somewhat dissatisfied Very dissatisfied No opinion
9a. If you responded with somewhat or very dissatisfied in question (9) - what is the single most important reason for your dissatisfaction? (\(\mathrm{N}=36\))
\(\underline{97 \%}\) Number of fish \(\underline{0 \%}\) Size of fish \(\underline{0 \%}\) Not happy with regulations \(\quad\) \% Too many anglers/boaters 3\% Too many tournaments

\section*{Crappie Anglers}
10. In general, what level of satisfaction do you have with crappie fishing at Laurel River Lake? (\(\mathrm{N}=20\))

5\% Very satisfied \(\underline{45 \%}\) Somewhat satisfied \(\underline{20 \%}\) Neutral \(\underline{30 \%}\) Somewhat dissatisfied \(\underline{0 \%}\) Very dissatisfied No opinion

10a. If you responded with somewhat or very dissatisfied in question (10) - what is the single most important reason for your dissatisfaction? (\(\mathrm{N}=6\))

\section*{\(100 \%\) Number of fish \(0 \%\) Size of fish \(0 \%\) Not happy with regulations 0\% Too many anglers/boaters}

\section*{Trout Anglers}
11. How many times do you fish for trout at Laurel River Lake a year? \((\mathrm{N}=0)\)
\(\underline{0 \%} 1\) to \(4 \quad \underline{0 \%} 5\) to \(10 \quad\) More than 10
12. In general, what level of satisfaction do you have with trout fishing Laurel River Lake? (\(\mathrm{N}=0\))

0\% Very satisfied 0\% Somewhat satisfied 0\% Neutral 0\% Somewhat dissatisfied 0\% Very dissatisfied 0\% No opinion
12a. If you responded with somewhat or very dissatisfied in question (12) - what is the single most important reason for your dissatisfaction? \((\mathrm{N}=0)\)

\section*{0\% Number of fish 0\% Size of fish 0\% Not happy with regulations 0\% Too many anglers/boaters}

Walleye Anglers
13. In general, what level of satisfaction do you have with walleye fishing Laurel River Lake? (\(\mathrm{N}=37\))

16\% Very satisfied \(\underline{60 \%}\) Somewhat satisfied \(\quad \underline{3 \%}\) Neutral \(\underline{22 \%}\) Somewhat dissatisfied \(\quad \underline{0 \%}\) Very dissatisfied No opinion

13a. If you responded with somewhat or very dissatisfied in question (13) - what is the single most important reason for your dissatisfaction? (\(\mathrm{N}=8\))

100\% Number of fish \(\quad \underline{0 \%}\) Size of fish 0\% Not happy with regulations 0\% Too many anglers/boaters

\section*{Bluegill Anglers}
14. In general, what level of satisfaction do you have with bluegill fishing at Laurel River Lake? (\(\mathrm{N}=0\)) 0\% Very satisfied 0\% Somewhat satisfied 0\% Neutral 0\% Somewhat dissatisfied 0\% Very dissatisfied 0\% No opinion

14a. If you responded with somewhat or very dissatisfied in question (14) - what is the single most important reason for your dissatisfaction? \((\mathrm{N}=0)\)
\(\underline{0 \%}\) Number of fish \(\underline{0 \%}\) Size of fish \(\underline{0 \%}\) Not happy with regulations \(\underline{0 \%}\) Too many anglers/boaters

\section*{All Anglers}
15. Are you satisfied with the current size and creel limits on all sport fish at Laurel River Lake? (\(\mathrm{N}=157\)) \(\quad \underline{78 \%}\) Yes \(\underline{22 \%}\) No If NO :

15a. If not, which species are you dissatisfied with and what size and creel limits would you prefer?
```

Largemouth bass size limit (N=13)
Largemouth bass creel limit ( }\textrm{N}=1\mathrm{ )
8% 13 in
100% 3
46% 16 in
46% 18 in

```
\begin{tabular}{ll}
Smallmouth bass size limit \((N=12)\) & Smallmouth bass creel limit (N=3) \\
\(\underline{8 \%} 12\) in & \(\underline{33 \%} 1\) \\
\(\underline{8 \%} 15\) in & \(\underline{33 \%} 2\) \\
\(\underline{8 \%} 16-21\) in slot & \(\underline{33 \%} 3\) \\
\(\underline{25 \%} 20\) in & \\
\(\underline{42 \%} 21\) in & \\
\(\underline{8 \%} 22\) in & \\
Spotted bass size limit \((N=10)\) & \(\underline{100 \%} 10\) \\
\(\underline{50 \%} 12\) in & \\
\(\underline{30 \%} 14\) in & \\
\(\underline{20 \%} 15\) in & \(\underline{C r a p p i e ~ c r e e l ~ l i m i t ~}(N=4)\) \\
Crappie size limit \((N=6)\) & \(\underline{75 \%} 10\) \\
\(\underline{50 \%} 10\) in & \(\underline{25 \%} 30\) \\
\(\underline{50 \%} 11\) in & Walleye creel limit \((N=1)\) \\
& \(\underline{100 \%} 2\)
\end{tabular}
16. During the past three years, do you believe the smallmouth bass fishing in Laurel River Lake has? (\(\mathrm{N}=158\)) 10\% Greatly improved \(\quad 17 \%\) Slightly improved \(20 \%\) Stayed the same \(20 \%\) Slightly declined \(26 \%\) Greatly declined 7\% No opinion
17. Would you support or oppose closing areas of the lake to fishing at Laurel River Lake to create smallmouth bass spawning sanctuaries? (\(\mathrm{N}=158\))

79\% Support 16\% Oppose 5\% No opinion
18. Would you support or oppose a catch and release only season during the month of April for smallmouth bass on Laurel River Lake? (\(\mathrm{N}=158\))
96\% Support \(\quad 3 \%\) Oppose \(2 \%\) No opinion
19. Would you support or oppose a 16 to 21 -inch protective slot limit where one fish over 21 inches and one fish under 16 inches may be kept daily on smallmouth bass on Laurel River Lake? (\(\mathrm{N}=86\))
85\% Support \(\quad 12 \%\) Oppose \(4 \%\) No opinion

\section*{EASTERN FISHERY DISTRICT}

Project 1: Lake and Tailwater Fishery Surveys

\section*{FINDINGS}

Table 1 shows sampling conditions by water body for eastern fishery district lakes in 2018.

\section*{Buckhorn Lake}

Muskellunge were sampled via boat electrofishing during mid-April (Tables 2-4). This was later than the normal sampling time of January - February. Several high water events contributed to the late sample date. Due to the late sample time and low observed numbers, it is presumed that fish had already dispersed into upper lake stream areas. The largest fish collected were in the 36.0 -in class (Table 2). These two fish were females with respective lengths and weights of \(36.2 \mathrm{in}, 13.13\) pounds and \(36.8 \mathrm{in}, 14.68\) pounds. Possibly two fish larger \(\geq 36.0\) in fish were observed and not caught. Fish were sampled from 11.3-36.8 in (Table 2). Relative weights by length group are listed in Table 3 and the \(\log _{10}\) length-weight equation for muskellunge during 2018 sampling was \(-4.34+3.50\left(\log _{10}\right.\) length). An assessment rating of "Poor" was observed for the fishery (Table 4). The assessment ratings of the last two years have both rated "Poor" (Table 4), but the 2017 and 2018 sample events were conducted during poor conditions. The 2018 hatchery production of muskellunge was low, therefore the stocking rate was reduced from a planned rate of 0.33 fish/acre to 0.12 fish/acre. Total number stocked in October was 150 with an average size of 12.2 in. Stocking sites included the marina and Trace Fork boat ramps. These fish were marked with a left pectoral fin clip.

Spring and fall electrofishing was used to sample black bass (Tables 5-10). Largemouth bass were only sampled to 17.0 inches in the spring (Table 5). This influenced assessment values of larger fish resulting in a population assessment of "Fair" (Table 8). Prior assessments from 2015 and 2017 were "Good". Additionally, the fall sample was collected early to acquire age-0 data for determination of stocking needs and did not collect larger fish either. Recruitment has been good in recent years and during fall sampling, another above average CPUE was observed for age-0 fish (Table 10). No supplemental stocking of largemouth bass was necessary.

During 2019, white crappie will be sampled in the fall with trap nets for updated population statistics.
Approximately 5,000 rainbow trout (8.0-12.0 in) were stocked in the tailwater during the months of April-June and October-November.

\section*{Carr Creek Lake}

Black bass were sampled with electrofishing in the spring and fall (Tables 11-16). There was a good size distribution in both sample efforts. The spring largemouth bass population assessment was "Good", which it has been five of the last 6 years (Table 14). Some of the spring age-1 CPUE's for largemouth bass have been high in recent years due to supplemental stocking in the spring instead of the fall (Table 16). Total age-0 largemouth bass numbers in the fall were considered average; however, a decision was made to stock supplemental fingerling bass in the spring of 2019. No smallmouth bass were collected in either the spring or the fall samples. However, they continue to make up part of the black bass fishery as observed in early spring walleye sampling. During March 2018, a total of 7,104 largemouth bass fingerlings (6.2 in) were stocked to supplement the 2017 age- 0 class.

Walleye were sampled in the early spring with electrofishing (Tables 17-19). Additionally, during this sampling effort, broodfish were collected for Minor Clark Fish Hatchery. The size distribution of 14.0-26.0 in and the total CPUE was comparable to the last several years (Table 17). Relative weight values were just under 100 for fish \(\geq\) 20.0 in (Table 19). This value is influenced by the high number of males collected. The \(\log _{10}\) length-weight equation for walleye during 2018 sampling was \(-3.31+2.92\) (\(\log _{10}\) length). A total of 35,052 walleye (1.5 in) were stocked in May.

During June, 100 grass carp were stocked for control of hydrilla in the lake. Tailwater stockings included 1000 rainbow trout/month during the months of April, May, June, October and November.

Tentative scheduling will include early spring electrofishing in 2019 to collect black and white crappie population data.

\section*{Cranks Creek Lake}

Tables 20-25 contain black bass data from spring and fall boat electrofishing at Cranks Creek Lake. Largemouth bass are the dominant black bass species and produce some trophy-size fish at this lake. Length distribution of largemouth bass ranged from 3.0-23.0 in (Table 20). CPUE of largemouth bass \(\geq 20.0\) in has predominantly been greater than 5.0 fish/hr since 2010 (Table 21). The population assessment of largemouth bass in the spring was "Fair" (Table 23). Fall total CPUE of age-0 and age- \(0>5.0\) in was above average (Table 25) and supplemental stocking of largemouth bass fingerlings was not required.

Rainbow trout (1,250 fish/mo) were stocked in the tailwater in January, April, May, and October. Approximately 2,640 channel catfish were stocked in the lake. No herbicides were applied in 2018 for aquatic vegetation control in the upper end of the lake. Grass carp and some early muddy water conditions were sufficient controls for nuisance vegetation during the year.

\section*{Dewey Lake}

Black bass sampling was completed during the spring and fall (Tables 26-32). Largemouth bass numbers greater than 15.0 in continue to be very good (Table 27) and have resulted in attracting a good number of tournaments to the lake. PSD values are near or above 60 for lower and upper lake fish (Table 28), showing a population with a greater proportion of larger fish. The population assessment for largemouth bass remained "Good" (Table 29), as it has been for the last 6 years (Table 29). The total CPUE of age-0 and age- \(0 \geq 5.0\) in fish was above average (Table 32) and no supplemental age-0 fingerling bass were stocked.

Trap netting was conducted in the fall to sample black and white crappie (Tables 33-40). Total CPUE was 27.6 and 32.7 fish/nn for white and black crappie, respectively (Table 33). Age-3 white crappie (Table 37) and age-4 black crappie (Table 38) were the most numerous age classes for each species. The population assessment was "Good" for white crappie (Table 39) and "Fair" for black crappie (Table 40). Mean total length of age- 2 fish at capture was 8.1 in for white crappie (Table 39) and 6.6 in for black crappie (Table 40). Mean total length at age-2 for either species failed to reach the 9.0 or 10.0 in size desired for currently-used minimum size limits.

A total of 11,000 blue catfish (5.0-9.0 in) were stocked in April. Approximately 140 muskellunge (12.6 in) were stocked in late summer. Rainbow trout (\(1,000 \mathrm{fish} / \mathrm{mo}\); 8.0-12.0 in) were stocked in the Dewey Lake tailwater in April, May, October, and November.

A daytime creel survey was conducted at Dewey Lake from 1 March-31 October 2018 (Tables 41-48). The creel survey was a random roving creel design (date, time, and angler count) and the lake was treated as one area. Surveys consisted of 2-6-hour periods (morning and afternoon). Approximate start times were 0600 morning and 1300 afternoon.

Results of the 2018 creel survey found some differences and similarities with surveys of 2010 and 2007. The number of fishing trips during the 2018 creel survey (\(\mathrm{N}=7,004\); Table 41) was approximately double of what was observed in previous creel surveys of \(2010(\mathrm{~N}=3,862)\) and \(2007(\mathrm{~N}=3,827)\). However, total angler hours \((27,218)\) in 2018 (Table 41) was similar to the 26,491 hours in 2010 and with both of these surveys having increased effort versus 2007 with 17,907 hours.

Catfish and crappie are popular fisheries at the lake and success rates continued to be good in the 2018 creel survey. The percent fishing success was 46.3 for catfish and 45.5 for crappie (Table 42). This compares well to surveys in 2010 and 2007. During 2010, the percent fishing success was 20.5 for catfish and 46.5 for crappie. The survey in

2007 observed percent success of 26.5 for catfish and 37.2 for crappie. Prior to 2009 , the catfish fishery was composed of channel and flathead catfish. During 2009, a stocking program was initiated for blue catfish, which has continued annually through 2018. This added fishery may account for the increased success rate for catfish in 2018 versus previous creel surveys.

Several catch, harvest, and size statistics were greater in 2018 than other years, which bodes well for increased angler opportunity at the lake. The most numerous fish caught (\(\mathrm{N}=14,596\)) and harvested \((\mathrm{N}=4,404)\) was white crappie (Table 42). Total weight of harvested fish was greatest and about equal for channel catfish at 1319.1 lbs and white crappie at 1331.6 lbs (Table 42). Greatest total length of fish caught was 38.0 in for muskellunge (Table 43). However, blue, channel, and flathead catfish were all caught in excess of 30.0 in as well (Table 43).

An angler attitude survey was conducted at the lake to obtain further opinion data. Anglers were asked to answer a series of questions regarding the fishery at Dewey Lake (Appendix A). Anglers were surveyed throughout the creel during 2018 with anglers only being asked the questions once. A total of 48 surveys were completed during the lake creel. Catfish at \(72.9 \%(\mathrm{~N}=35)\) were the most popular species fished for on the lake followed by crappie \(66.7 \%\) (\(\mathrm{N}=32\)), largemouth bass \(60.4 \% ~(\mathrm{~N}=29)\), bluegill/redear sunfish \(50.5 \%(\mathrm{~N}=24)\), and muskellunge \(16.7 \%(\mathrm{~N}=8)\). Level of fishing satisfaction was asked for several fish groups (bass, crappie, bluegill/redear, catfish). Angler satisfaction (somewhat to very satisfied) was \(48.3 \%\) for bass, \(45.1 \%\) for crappie, \(52.0 \%\) for bluegill/redear, and \(74.3 \%\) for catfish. Approximately \(10.6 \%\) of anglers use the KDFWR tournament website to plan activities at a particular boat ramp. A total of \(79.2 \%\) of anglers were aware of the presence of hydrilla in the lake. Fish habitat questions found \(78.3 \%\) of anglers feeling that KDFWR-placed attractors/structures improved their fishing results.

\section*{Fishtrap Lake}

Spring flooding and debris issues prevented boat traffic until early June, whereby only fall electrofishing was completed for black bass population data. The previous spring assessment in 2017 was "Fair". This lake experienced an extreme drawdown of approximately 42 ft during the winter of 2016-2017 for hydraulic gate repairs in the dam. Fall length frequencies and CPUE for smallmouth, spotted, and largemouth bass are presented in Table 49. The total largemouth bass CPUE of 227.0 fish/hr is high (Table 49), but consistent for the lake. Age-0 largemouth bass numbers were good (Table 50); however, due to the 2017 draining of the lake, 6,729 (6.2-in) fingerlings were stocked. This was approximately half the normal stocking rate.

Hybrid striped bass and white bass were sampled with gill nets in the fall. A length distribution of 8.0-26.0 in was observed for hybrid striped bass and 6.0-17.0 in for white bass (Table 51). Age and growth data is presented in Tables 52-53 for hybrid striped bass and white bass. Both species are attaining good sizes. Hybrid striped bass ages ranged from age- 0 to age- 5 with age- 1 fish being most numerous (Table 54). White bass ages ranged from age- 0 to age- 7 with age- 1 fish being most numerous (Table 55). Population assessments were "Excellent" for both hybrid striped bass (Table 56) and white bass (Table 57). Relative weights (Wr) are listed in Table 58 and are all slightly below a value of 100 for each length group. This may have been influenced by the length of time that fish were entangled in nets before their removal. The \(\log _{10}\) length-weight equation for hybrid striped bass was \(-3.41+\) \(3.07\left(\log _{10}\right.\) length) and for white bass was \(-3.40+3.06\left(\log _{10}\right.\) length \()\).

Several fish stockings occurred during the year at Fishtrap Lake. A total of 11,200 blue catfish (6.0-9.0 in) were stocked in the lake during April. During June, 3,000 native strain walleye (2.5 in) were stocked in the Levisa Fork River upstream of Fishtrap Lake. A total of 23,338 hybrid striped bass (1.5 in) were stocked in June. Rainbow trout (\(2000 \mathrm{fish} / \mathrm{mo}\)) were stocked in the tailwater in April, May, June, October and November.

\section*{Martins Fork Lake}

Electrofishing was completed in the spring and fall for black bass and native strain walleye (Tables 59-64). During spring, all four black bass species and native strain walleye were collected (Table 59). However, large fish of any species were not collected. The spring assessment of largemouth bass was "Fair" (Table 62). Large fish were also not collected in the fall electrofishing sample (Table 63); however, the sample was collected early in the fall, with emphasis on collecting age- 0 fish and resulting water temperature was warm. Largemouth bass age- 0 density in the
fall was above average (Table 64), but a decision was made to stock age- 1 fingerlings in the spring of 2019 due to impacts of flooding. There were no walleye collected in the fall sample. Some walleye sampling was done during March for preliminary investigation into potential locations to collect walleye broodfish in early 2019. The native strain walleye have been stocked annually since 2013. During 2019, in addition to spring and fall CPUE and length frequency data collection for black bass and walleye, there will be additional early spring electrofishing for walleye broodfish acquisition.

A total of 3,779 native strain walleye (3.2 in) were stocked in June. Rainbow trout (\(750 \mathrm{fish} / \mathrm{mo}\)) were stocked at the tailwater in April, May, June, October and November.

\section*{Pan Bowl Lake}

Largemouth bass were sampled in the spring with electrofishing (Tables 65-68). Fish were sampled from the 4.0- to 23.0-in class (Table 65). CPUE of the smaller length groups was high, resulting in elevated total CPUE (Table 66). Additionally, the PSD value of 7 (Table 67) is very low and relates to high numbers of small fish. During the 1990's to early 2000's, it was common to observe largemouth bass PSD values of 60-70. A population assessment of "Fair" was observed in 2018 (Table 68). This lake was added to the trout stocking program in 2013 and this may assist with increasing the PSD and assessment values for largemouth bass.

\section*{Paintsville Lake}

Tables 69-75 provide spring and fall electrofishing data for black bass. The largemouth bass assessment rated "Fair" which is similar to most previous years (Table 72). Spring CPUE of age-1 fish has been the only value in the assessment that routinely scores high (Table 72). This is influenced by the lake having minimal winter pool drawdown and most shoreline or shallow water areas having dense aquatic plant habitat. During the fall sampling, age and growth information was collected for largemouth bass (Table 74). Mean length of age-3 fish at capture was 11.9 in, slightly better than the 11.2 in observed in 2012. Age-0 largemouth bass CPUE was average (Table 75) and no supplemental stocking of fingerlings took place. The 12.0- to 15.0 -in slot length limit for largemouth bass will be replaced with a minimum length limit of 12.0 in beginning 1 March 2019. The slot length regulation was in effect for 17 years (2002-2018).

Spring electrofishing was not completed for walleye and crappie. Walleye broodfish collection was conducted in March. A total of 17 walleye (13 male and 4 female) were sampled from 14.3-30.2 in. The largest fish, a 30.2-in female weighed 11.43 pounds. Relative weights were not calculated as there were insufficient numbers collected.

The lake received a stocking of 4,500 rainbow trout (\(8.0-12.0 \mathrm{in}\)) during February. The tailwater trout fishery received 20,000 rainbow trout from April to November and 300 brown trout in April.

\section*{Yatesville Lake}

Electrofishing was utilized to sample black bass during the spring and fall (Tables 76-81). Largemouth bass were collected from 2.8-20.9 inches in the spring (Table 76). The spring assessment was "Good" for largemouth bass (Table 79). This fishery has a large number of tournaments and receives heavy pressure from spring into fall, but assessments for largemouth bass have primarily held at "Good" since 2007 (Table 79). Fall sample data observed above average numbers of age-0 largemouth bass (Table 81) and no supplemental stocking took place.

White crappie were sampled with trap nets in November. A total of 564 fish were collected from 3.3-12.9 in for a CPUE of 56.4 fish/nn (Table 82). Data for PSD/RSD, age and growth, and age frequency can be found in Tables 83-85. Age-3 fish accounted for the greatest numbers of any year class (Table 85). The assessment rating was "Excellent" (Table 86). Additionally, mean length of age-2 fish at capture increased from 5.4 inches in 2016 to 6.3 inches in 2018 (Table 86). The fishery should provide good numbers of keeper-size fish in 2019.

Rainbow trout (750 fish/mo) were stocked in the tailwater of Yatesville Lake in April, May and November.

Table 1: Summary of 2018 sampling conditions by waterbody, species sampled and date.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Water body & Species & Date & \[
\begin{aligned}
& \text { Time } \\
& (24 \mathrm{hr})
\end{aligned}
\] & Gear & Weather & Water Temp (\({ }^{\circ} \mathrm{F}\)) & & \begin{tabular}{l}
Secchi \\
(in)
\end{tabular} & Pertinent sampling comments \({ }^{\text {a,b }}\) \\
\hline Buckhorn Lake & Musky & 4/19 & 1100 & shock & w indy & 58.5 & 773.50 & 30 & outflow : 192CFS; bp: 30.04; cond: 395; 2 boats (w/Habitat Branch); w hole lake \\
\hline Buckhorn Lake & LMB & 5/8 & 1100 & shock & clear & 72.0 & 782.30 & 77 & outflow : 541CFS; cond: 321; 2 boats; w hole lake; w ater clear \\
\hline Buckhorn Lake & LMB & 9/20 & 1100 & shock & clear & 81.0 & 782.00 & 134 & outflow : 400CFS; bp: 30.09; cond: 480; 2 boats; w hole lake \\
\hline Carr Creek Lake & w alleye & 3/1 & 1000 & shock & cloudy/rain & 56.0 & 1021.50 & & broodfish collection; outflow : 291CFS; bp: 29.72; cond: 245; 1 boat; upper lake \\
\hline Carr Creek Lake & w alleye & 3/6 & 1000 & shock & rain & 54.0 & 1018.70 & 15 & broodfish collection; outflow : 76CFS; bp: 29.84; cond: 286; 2 boats; w hole lake \\
\hline Carr Creek Lake & w alleye & 3/15 & 1000 & shock & pt. sunny & 47.0 & 1017.30 & 18 & broodf ish collection; outflow : 30CFS; bp: 29.90; 1 boat; low er lake \\
\hline Carr Creek Lake & w alleye & 3/19 & 1000 & shock & cloudy & 47.0 & 1017.80 & & broodfish collection; outflow : 5CFS; bp: 29.83; 1 boat; upper lake \\
\hline Carr Creek Lake & LMB & 5/7 & 1000 & shock & pt. cloudy & 72.0 & 1028.30 & 77 & outflow : 93CFS; bp: 30.09; cond: 426; 2 boats; w hole lake \\
\hline Carr Creek Lake & LMB & 9/24 & 1000 & shock & cloudy/rain & 78.8 & 1028.20 & 88 & outflow : 12CFS; bp: 30.14; cond: 682; 2 boats; w hole lake \\
\hline Cranks Creek Lake & LMB & 5/10 & 1100 & shock & cloudy & 70.0 & normal & 80 & bp: 29.96; 1 boat; w hole lake \\
\hline Cranks Creek Lake & LMB & 9/25 & 1100 & shock & cloudy & 76.0 & normal & & bp: 30.13; 1 boat; w hole lake \\
\hline Dew ey Lake & LMB & 5/2 & 1000 & shock & cloudy & 69.0 & 650.50 & 48 & outflow : 161.2CFS; bp: 30.16; cond: 413; 2 boats; w hole lake \\
\hline Dew ey Lake & LMB & 9/21 & 2000 & shock & clear & 81.7 & 650.50 & 72 & outflow : 69CFS; bp: 30.11; cond: 627; 2 boats; w hole lake; LMB age and grow th \\
\hline Dew ey Lake & crappie & 11/13 & 1000 & trap net & rain/snow & 50.0 & 648.96 & & outflow : variable 563-681CFS; bp: 30.19; upper (middle) lake \\
\hline Fishtrap Lake & LMB & 9/27 & 1000 & shock & cloudy/rain & 76.6 & 757.50 & 91 & outflow : 332.7CFS; bp: 30.05; cond: 695; 2 boats; w hole lake \\
\hline Fishtrap Lake & HSB & 12/5 & 1000 & gill net & rain/snow & 50.0 & 736.46 & & outflow : 1650CFS; bp: 30.20; Low er lake; 250' experimental nets \\
\hline Martins Fk Lake & LMB & 5/10 & 1100 & shock & cloudy/rain & 73.5 & 1308.30 & 62 & bp: 29.96; cond: 153; 1 boat; w hole lake \\
\hline Martins Fk Lake & LMB & 9/25 & 1100 & shock & cloudy & 77.7 & 1310.01 & 102 & bp: 30.13; cond: 157; 1 boat; w hole lake \\
\hline Paintsville Lake & w alleye & 3/7 & 1000 & shock & cloudy/snow & 51.0 & 709.50 & 33 & broodf ish collection; outflow : 251.3CFS; bp: 29.91; cond: 87; 1 boat; low er lake; \\
\hline Paintsville Lake & LMB & 5/16 & 1000 & shock & cloudy/rain & 78.0 & 709.80 & 96 & outflow : 375.7CFS; bp: 29.94; cond: 80; 1 boat; w hole lake \\
\hline Paintsville Lake & LMB & 10/25 & 1000 & shock & cloudy & 62.0 & 709.80 & 80 & outflow : 23.2CFS; bp: 30.22; cond: 135; 1 boat; w hole lake; age and grow th \\
\hline Panbow I Lake & LMB & 5/4 & 1100 & shock & cloudy & 71.0 & normal & 84 & bp: 30.07; cond: 167; 1 boat; w hole lake \\
\hline Yatesville Lake & LMB & 5/14 & 1000 & shock & cloudy & 79.0 & 630.3 & 66 & outflow : 138.7CFS; bp: 30.04; cond: 150; 2 boats; w hole lake \\
\hline Yatesville Lake & LMB & 9/26 & 1000 & shock & cloudy & 76.6 & 632.5 & 50 & outflow : 626.8CFS; cond: 155; 2 boats; w hole lake \\
\hline Yatesville Lake & crappie & 11/19 & 1000 & trap net & rain/w ind & 48.0 & 628.2 & & outflow : variable 1382-1356CFS; bp: 30.09; upper (middle) lake \\
\hline
\end{tabular}
\({ }^{\text {a }}\) cond \(=\) conductivity in \(\mu \mathrm{S} / \mathrm{cm}\)
\({ }^{\mathrm{b}} \mathrm{bp}=\) barometric pressure in inches
L= lower lake
U= upper lake

Table 2. Length frequency and electrofishing CPUE (fish/hr) of muskellunge collected during spring sampling on Buckhorn Lake from 1998-2018; numbers in parentheses are standard errors. Results from 2002 are from fall electrofishing.

EFDBLMSS.D98-D10, D12, D14, D16-D18
LFRBHLSP.D11, D13

Table 3. Number of fish and relative weight (Wr) for each length group of muskellunge collected at Buckhorn Lake (710 acres) on 19 April 2018. Numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & & \multicolumn{2}{|l|}{20.0-29.9 in} & \multicolumn{2}{|l|}{30.0-37.9 in} & \multicolumn{2}{|c|}{\(>38.0\) in} & & \\
\hline No. & Wr & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline 4 & 83.4 & 2 & 90.7 & 6 & 94.5 & 0 & & 12 & 90.2 \\
\hline & (3.6) & & (3.9) & & (2.6) & & & & (2.6) \\
\hline
\end{tabular}

EFDBLMSS.D18

Table 4. Population assessment for muskellunge from Buckhorn Lake (1,230 acres) captured during spring electrofishing from 2003-2018. Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|c|}{Year} \\
\hline Parameter & 2003 & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2016 & 2017 & 2018 \\
\hline CPUE age 1 & \[
\begin{gathered}
2 \\
(3.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(5.9)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(7.9)
\end{gathered}
\] & \[
\begin{gathered}
\hline 1 \\
(1.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(9.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(5.1)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(7.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(7.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 2 \\
(3.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(3.4)
\end{gathered}
\] & \[
\begin{gathered}
\hline 2 \\
(2.7)
\end{gathered}
\] & \[
\begin{gathered}
\hline 2 \\
(3.4)
\end{gathered}
\] & \[
\begin{gathered}
\hline 1 \\
(1.1)
\end{gathered}
\] \\
\hline CPUE \(\geq 20.0\) in & \[
\begin{gathered}
2 \\
(3.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(3.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(6.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(12.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(3.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(7.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(7.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(4.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(5.9)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(4.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(4.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.8)
\end{gathered}
\] \\
\hline CPUE \(\geq 30.0\) in & \[
\begin{gathered}
1 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(5.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(3.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.9)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(3.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.9)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.3)
\end{gathered}
\] \\
\hline CPUE \(\geq 36.0\) in & \[
\begin{gathered}
1 \\
(0.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.4)
\end{gathered}
\] \\
\hline CPUE \(\geq 40.0\) in & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(0.9)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] \\
\hline Total score Assessment & \begin{tabular}{l}
\[
8
\] \\
Poor
\end{tabular} & \begin{tabular}{l}
\[
17
\] \\
Excellent
\end{tabular} & \begin{tabular}{l}
\[
14
\] \\
Good
\end{tabular} & & \begin{tabular}{l}
\[
17
\] \\
Excellent
\end{tabular} & \[
\begin{gathered}
11 \\
\text { Fair }
\end{gathered}
\] & Excellent & \[
\begin{gathered}
16 \\
\text { Good }
\end{gathered}
\] & \[
\begin{gathered}
13 \\
\text { Good }
\end{gathered}
\] & \[
\begin{gathered}
15 \\
\text { Good }
\end{gathered}
\] & \[
\begin{gathered}
\hline 6 \\
\text { Poor }
\end{gathered}
\] & \[
\begin{gathered}
\hline 11 \\
\text { Fair }
\end{gathered}
\] & \[
\begin{gathered}
11 \\
\text { Fair }
\end{gathered}
\] & \[
\begin{gathered}
6 \\
\text { Poor }
\end{gathered}
\] & \[
\begin{gathered}
5 \\
\text { Poor }
\end{gathered}
\] \\
\hline
\end{tabular}

EFDBLMSS.D03-D10, D12, D14, D16-D18
LFRBHLSP.D11, D13

Table 5. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.5 hours of 15 -minute electrofishing samples at Buckhorn Lake (1,230 acres) on 8 May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline & & \multicolumn{15}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{CPUE}} \\
\hline Area & Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & & & \\
\hline Lower & Largemouth bass & & 2 & 14 & 24 & 6 & & 18 & 28 & 14 & 20 & 11 & 6 & 2 & & & 145 & 116.0 & (7.4) \\
\hline Upper & Largemouth bass & 1 & 10 & 29 & 21 & 9 & 6 & 30 & 34 & 18 & 26 & 6 & 2 & 2 & 2 & 1 & 197 & 157.6 & (17.6) \\
\hline Total & Largemouth bass & 1 & 12 & 43 & 45 & 15 & 6 & 48 & 62 & 32 & 46 & 17 & 8 & 4 & 2 & 1 & 342 & 136.8 & (11.3) \\
\hline EFDBL & SS.D18 & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 6. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Buckhorn Lake (1,230 acres). SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{12}{|c|}{Length group} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & CPUE & SE \\
\hline 2003 & 22.7 & 3.5 & 18.7 & 2.3 & 28.3 & 3.8 & 6.3 & 1.2 & 0.0 & & 76.0 & 6.9 \\
\hline 2004 & 38.0 & 6.2 & 51.7 & 6.5 & 29.3 & 4.2 & 4.3 & 1.2 & 0.0 & & 123.3 & 11.6 \\
\hline 2005 & 17.0 & 3.5 & 45.0 & 5.1 & 38.3 & 5.5 & 8.3 & 1.2 & 0.3 & 0.3 & 108.7 & 7.9 \\
\hline 2006 & 14.2 & 2.2 & 35.2 & 4.6 & 40.5 & 5.1 & 15.2 & 3.4 & 0.3 & 0.3 & 105.1 & 11.0 \\
\hline 2007 & 14.5 & 4.3 & 26.0 & 2.7 & 20.5 & 3.3 & 14.0 & 2.4 & 0.5 & 0.5 & 75.0 & 6.0 \\
\hline 2008 & 14.8 & 5.5 & 27.0 & 7.2 & 21.4 & 3.3 & 13.8 & 1.8 & 0.0 & & 77.0 & 12.0 \\
\hline 2009 & 41.2 & 3.5 & 32.0 & 7.7 & 17.2 & 4.8 & 14.5 & 3.0 & 0.0 & & 104.8 & 13.2 \\
\hline 2010 & 21.2 & 4.5 & 31.8 & 6.6 & 18.3 & 3.7 & 10.7 & 2.6 & 0.4 & 0.4 & 82.0 & 11.7 \\
\hline 2011 & \multicolumn{12}{|c|}{no sample} \\
\hline 2012 & 32.5 & 6.3 & 26.5 & 5.3 & 7.5 & 0.9 & 3.5 & 1.2 & 0.5 & 0.5 & 70.0 & 8.3 \\
\hline 2013 & \multicolumn{12}{|c|}{no sample} \\
\hline 2014 & 9.3 & 3.4 & 25.3 & 6.3 & 6.0 & 1.7 & 2.7 & 1.3 & 0.0 & & 43.3 & 9.9 \\
\hline 2015 & 56.4 & 6.0 & 29.8 & 5.2 & 27.1 & 5.3 & 3.6 & 1.2 & 0.9 & 0.6 & 116.9 & 9.1 \\
\hline 2016 & & & & & & no s & mple & & & & & \\
\hline 2017 & 91.3 & 19.9 & 40.0 & 4.3 & 34.7 & 7.1 & 8.7 & 2.4 & 0.7 & 0.7 & 174.7 & 19.7 \\
\hline 2018 & 46.4 & 7.0 & 59.2 & 6.4 & 28.4 & 4.0 & 2.8 & 1.3 & 0.4 & 0.4 & 136.8 & 11.3 \\
\hline
\end{tabular}

EFDBLLSS.D03-D18

Table 7. PSD and \(\mathrm{RSD}_{15}\) values for largemouth bass in each area of Buckhorn Lake (1,230 acres) on 8 May 2018. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are 95\% confidence intervals.
\begin{tabular}{lccc}
\hline & \multicolumn{3}{c}{ Largemouth bass } \\
\cline { 2 - 4 } Area & No. & \(\mathrm{PSD}_{8}\) & \(\mathrm{RSD}_{15}\) \\
\hline Lower & 99 & 39 & 2 \\
& & \((30-49)\) & \((0-5)\) \\
Upper & 127 & 31 & 4 \\
& & \((23-39)\) & \((1-7)\) \\
& & 35 & 3 \\
Total & 226 & \((28-41)\) & \((1-5)\) \\
\hline
\end{tabular}

EFDBLLSS.D18

Table 8. Population assessment for largemouth bass collected during spring at Buckhorn Lake (1,230 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{11}{|c|}{Year} \\
\hline Parameter & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 & 2012 & 2014 & 2015 & 2017 & 2018 \\
\hline Mean length age 3 at capture & \[
\begin{gathered}
3 \\
(12.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(12.1)
\end{gathered}
\] \\
\hline Spring CPUE age 1 & \[
\begin{gathered}
2 \\
(16.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(13.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.19)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(43.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(26.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(36.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(8.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(56.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(90.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(48.4)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
4 \\
(38.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(40.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(21.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(18.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(7.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(27.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(34.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(28.4)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
2 \\
(8.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(15.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(14.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(14.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.8)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.4)
\end{gathered}
\] \\
\hline Total score & 13 & 13 & 13 & 10 & 13 & 12 & 10 & 6 & 13 & 15 & 12 \\
\hline Assessment rating & Good & Good & Good & Fair & Good & Fair & Fair & Poor & Good & Good & Fair \\
\hline Instantaneous mortality (z) & 0.67 & 0.48 & 0.45 & 0.42 & 0.64 & 0.73 & 0.77 & & & & \\
\hline Annual mortality (A) & 48.70 & 38.00 & 36.40 & 34.20 & 47.40 & 51.80 & 54.90 & & & & \\
\hline \[
\begin{aligned}
& \text { EFDBLLSS.D05-D10, D12, D1 } \\
& \text { EFDBLLAS.D04, D09 } \\
& \text { EFDBLLAF.D14 }
\end{aligned}
\] & D18 & & & & & & & & & & \\
\hline
\end{tabular}

Table 9. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.0 hours of 15 -minute electrofishing samples at Buckhorn Lake (1,230 acres) on 20 September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{12}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & & & \\
\hline Lower & Largemouth bass & 3 & 33 & 40 & 32 & 15 & & 9 & 14 & 5 & 6 & 4 & 2 & 163 & 163.0 & (53.6) \\
\hline Upper & Largemouth bass & 1 & 26 & 37 & 30 & 12 & 3 & 6 & 11 & 10 & 7 & 1 & 2 & 146 & 146.0 & (14.3) \\
\hline Total & Largemouth bass & 4 & 59 & 77 & 62 & 27 & 3 & 15 & 25 & 15 & 13 & 5 & 4 & 309 & 154.5 & (25.9) \\
\hline
\end{tabular}

Table 10. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Buckhorn Lake (1,230 acres) from electrofishing. CPUE=fish/hr, SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2002 & 4.5 & 0.1 & 99.3 & 7.4 & 38.7 & 2.6 & 19.2 & 3.3 \\
\hline 2003 & 4.7 & 0.5 & 106.0 & 13.8 & 39.7 & 4.6 & 35.5 & 5.4 \\
\hline 2004 & 3.6 & 0.0 & 176.7 & 34.0 & 9.3 & 4.6 & 16.3 & 3.5 \\
\hline 2005 & 4.0 & 0.2 & 44.7 & 6.6 & 10.0 & 3.5 & 11.2 & 2.1 \\
\hline 2006 & 4.2 & 0.2 & 17.6 & 4.1 & 5.3 & 1.9 & 13.0 & 3.7 \\
\hline 2007 & 4.5 & 0.2 & 18.8 & 6.4 & 9.6 & 3.4 & 11.2 & 3.8 \\
\hline 2008 & 4.9 & 0.1 & 21.4 & 3.7 & 9.9 & 2.3 & 43.8 & 3.5 \\
\hline 2009 & & & no fal & mple & & & 26.1 & 5.2 \\
\hline 2010 & 4.3 & 0.1 & 67.0 & 5.0 & 22.5 & 5.8 & no sprin & sample \\
\hline 2011 & 4.5 & 0.1 & 126.7 & 26.7 & 42.0 & 10.0 & 36.1 & 6.5 \\
\hline 2012 & 5.0 & 0.2 & 39.0 & 9.6 & 21.0 & 7.2 & no sprin & sample \\
\hline 2013 & 4.1 & 0.1 & 68.8 & 10.8 & 16.8 & 4.3 & 8.7 & 3.5 \\
\hline 2014 & 4.4 & 0.1 & 86.5 & 24.9 & 26.5 & 8.6 & 56.0 & 6.0 \\
\hline 2015 & 4.2 & 0.1 & 80.0 & 15.9 & 17.6 & 2.0 & no sprin & sample \\
\hline 2016 & 5.0 & 0.0 & 169.7 & 44.0 & 85.7 & 23.9 & 90.7 & 20.0 \\
\hline 2017 & 4.6 & 0.1 & 161.6 & 20.1 & 49.6 & 9.4 & 48.4 & 7.9 \\
\hline 2018 & 4.7 & 0.1 & 114.5 & 29.8 & 44.5 & 9.1 & & \\
\hline
\end{tabular}

EFDBLLSF.D02-D08, D10-D18
EFDBLLAS.D04, D09
EFDBLLAF.D14
EFDBLLSS.D03-D18

Table 11. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.0 hours of 15-minute electrofishing samples at Carr Creek Lake (710 acres) on 7 May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline \multirow[t]{3}{*}{Lower} & Smallmouth bass & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline & Spotted bass & & & 1 & 2 & 3 & 6 & 3 & 1 & & 1 & & & & 1 & & & & 18 & 18.0 (10.9) \\
\hline & Largemouth bass & 9 & 36 & 67 & 2 & 9 & 9 & 4 & 6 & 4 & & 3 & 1 & 3 & 2 & 1 & 1 & & 157 & 157.0 (37.6) \\
\hline \multirow[t]{3}{*}{Upper} & Smallmouth bass & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline & Spotted bass & 1 & 1 & 2 & & 3 & 1 & 1 & & & 1 & & & & & & & & 10 & 10.0 (4.2) \\
\hline & Largemouth bass & 16 & 32 & 35 & 17 & 24 & 15 & 11 & 4 & 3 & 7 & 5 & 8 & 6 & 6 & 5 & 4 & 1 & 199 & 199.0 (12.9) \\
\hline \multirow[t]{3}{*}{Total} & Smallmouth bass & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline & Spotted bass & 1 & 1 & 3 & 2 & 6 & 7 & 4 & 1 & & 2 & & & & 1 & & & & 28 & 14.0 (5.6) \\
\hline & Largemouth bass & 25 & 68 & 102 & 19 & 33 & 24 & 15 & 10 & 7 & 7 & 8 & 9 & 9 & 8 & 6 & 5 & 1 & 356 & 178.0 (20.0) \\
\hline
\end{tabular}

EFDCLLSS.D18

Table 12. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Carr Creek Lake (710 acres). SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 2002 & 116.3 & 14.2 & 16.9 & 1.7 & 12.3 & 1.6 & 7.1 & 1.2 & 0.0 & & 152.7 & 13.3 \\
\hline 2003 & 67.6 & 11.3 & 15.9 & 2.2 & 11.1 & 1.5 & 10.7 & 1.5 & 0.4 & 0.3 & 105.2 & 14.4 \\
\hline 2004 & 135.0 & 17.7 & 24.4 & 5.3 & 8.4 & 1.4 & 9.0 & 1.2 & 0.2 & 0.2 & 176.9 & 18.8 \\
\hline 2005 & 20.0 & 2.7 & 19.8 & 1.6 & 24.8 & 2.4 & 14.0 & 1.8 & 0.3 & 0.3 & 78.6 & 4.9 \\
\hline 2006 & 22.3 & 7.0 & 30.9 & 4.8 & 27.9 & 3.3 & 29.9 & 3.1 & 0.7 & 0.5 & 111.0 & 10.2 \\
\hline 2007 & 8.0 & 1.9 & 20.8 & 4.7 & 18.6 & 3.4 & 15.7 & 3.6 & 0.5 & 0.5 & 63.0 & 5.5 \\
\hline 2008 & 3.0 & 1.3 & 16.4 & 2.6 & 24.7 & 5.4 & 23.7 & 3.3 & 0.5 & 0.5 & 67.8 & 8.4 \\
\hline 2009 & 5.1 & 0.7 & 10.3 & 2.6 & 17.1 & 3.0 & 16.0 & 3.4 & 0.6 & 0.6 & 48.6 & 6.1 \\
\hline 2010 & 13.8 & 3.2 & 10.8 & 2.6 & 10.8 & 2.1 & 12.6 & 3.5 & 0.9 & 0.6 & 47.9 & 4.8 \\
\hline 2011 & 11.0 & 4.4 & 10.5 & 2.6 & 5.5 & 1.3 & 16.0 & 4.5 & 1.0 & 1.0 & 43.0 & 9.8 \\
\hline 2012 & 15.0 & 3.1 & 21.5 & 3.5 & 9.0 & 1.5 & 13.5 & 3.5 & 1.5 & 0.7 & 59.0 & 8.4 \\
\hline 2013 & 113.3 & 51.4 & 20.0 & 4.5 & 16.0 & 3.7 & 16.7 & 2.2 & 2.7 & 1.3 & 166.0 & 53.2 \\
\hline 2014 & 115.0 & 23.6 & 48.0 & 7.8 & 25.0 & 4.3 & 18.5 & 3.5 & 1.0 & 0.7 & 206.5 & 18.1 \\
\hline 2015 & 69.5 & 23.2 & 18.5 & 4.1 & 15.5 & 3.7 & 22.0 & 6.1 & 1.0 & 0.7 & 125.5 & 28.5 \\
\hline 2016 & 30.0 & 7.6 & 40.0 & 11.9 & 10.7 & 3.0 & 15.3 & 3.6 & 0.0 & & 96.0 & 16.8 \\
\hline 2017 & 28.5 & 6.6 & 25.5 & 7.1 & 12.5 & 3.3 & 17.0 & 3.1 & 0.5 & 0.5 & 83.5 & 12.6 \\
\hline 2018 & 107.0 & 13.8 & 41.0 & 10.5 & 11.0 & 2.1 & 19.0 & 5.3 & 0.5 & 0.5 & 178.0 & 20.0 \\
\hline \multicolumn{13}{|l|}{BBRPSCFL.D02-D05} \\
\hline EFDC & LSS.D & -D18 & & & & & & & & & & \\
\hline
\end{tabular}

Table 13. PSD and RSD values for each species of black bass collected in each area of Carr Creek Lake (710 acres) on 7 May 2018. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are 95\% confidence intervals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Smallmouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Largemouth bass} \\
\hline & No. & PSD & \(\mathrm{RSD}_{15}\) & No. & PSD & \(\mathrm{RSD}_{14}\) & No. & PSD & \(\mathrm{RSD}_{14}\) \\
\hline \multirow[t]{2}{*}{Lower} & 0 & & & 17 & 18 & 6 & 43 & 35 & 19 \\
\hline & & & & & (0-36) & (0-17) & & (20-49) & (7-30) \\
\hline \multirow[t]{2}{*}{Upper} & 0 & & & 6 & 17 & & 99 & 45 & 30 \\
\hline & & & & & (0-49) & & & (36-55) & (21-39) \\
\hline \multirow[t]{2}{*}{Total} & 0 & & & 23 & 17 & 4 & 142 & 42 & 27 \\
\hline & & & & & (2-33) & \[
(0-13)
\] & & (34-50) & (19-34) \\
\hline
\end{tabular}

EFDCLLSS.D18

Table 14. Population assessment for largemouth bass collected from Carr Creek Lake (710 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{12}{|c|}{Year} \\
\hline Parameter & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline Mean length age-3 at capture & \[
\begin{gathered}
4 \\
(13.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(12.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(13.5)
\end{gathered}
\] \\
\hline Spring CPUE age-1 & \[
\begin{gathered}
2 \\
(7.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(9.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(13.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(114.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(116.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(71.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(35.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(31.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(111.5)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
2 \\
(18.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(24.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(25.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(15.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(12.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
3 \\
(15.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(23.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(12.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(18.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(18.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(15.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(17.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(19.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.9)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] \\
\hline Total score Assessment rating & \[
\begin{gathered}
13 \\
\text { Good }
\end{gathered}
\] & \[
\begin{gathered}
\hline 12 \\
\text { Fair }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 12 \\
& \text { Fair }
\end{aligned}
\] & \[
\begin{gathered}
\hline 11 \\
\text { Fair }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 12 \\
& \text { Fair }
\end{aligned}
\] & \[
\begin{gathered}
\hline 12 \\
\text { Fair }
\end{gathered}
\] & 16 Good & 15 Good & \[
\begin{gathered}
15 \\
\text { Good }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 12 \\
& \text { Fair }
\end{aligned}
\] & \[
\begin{gathered}
13 \\
\text { Good }
\end{gathered}
\] & \begin{tabular}{l}
14 \\
Good
\end{tabular} \\
\hline Instantaneous mortality (z) & 0.37 & 0.41 & 0.74 & 0.34 & 0.27 & 0.44 & & & & & & \\
\hline Annual mortality (A) & 30.90 & 33.50 & 52.30 & 29.10 & 23.80 & 35.80 & & & & & & \\
\hline \begin{tabular}{l}
BBRPSCFL.D05 \\
EFDCLLSS.D06-D18 \\
EFDCLLAS.D08 \\
EFDCLLAF.D13
\end{tabular} & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 15. Length frequency and electrofishing CPUE (fish/hr) of black bass collected in approximately 1.5 hours of 15 -minute nocturnal electrofishing samples at Carr Creek Lake (710 acres) on 24 September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline Lower Smallmouth bass & & & & & 1 & & & & & & & & & & & & & & & 1 & 1.3 (1.3) \\
\hline Spotted bass & 3 & 1 & & 1 & & & 1 & 1 & & & & & & & & & & & & 7 & 9.3 (1.3) \\
\hline Largemouth bass & 1 & 1 & 3 & 1 & 4 & 1 & 2 & & 7 & 1 & & & 3 & & 1 & & 2 & & & 27 & 36.0 (18.3) \\
\hline Upper Smallmouth bass & 0 & 0.0 \\
\hline Spotted bass & & & & & & & 2 & & & & & & 1 & & & & & & & 3 & 4.0 (4.0) \\
\hline Largemouth bass & & 7 & 10 & 5 & 9 & 13 & 2 & 6 & 3 & & 1 & & & & & & & & & 56 & 74.7 (8.7) \\
\hline Total Smallmouth bass & & & & & 1 & & & & & & & & & & & & & & & 1 & 0.7 (.7) \\
\hline Spotted bass & 3 & 1 & & 1 & & & 3 & 1 & & & & & 1 & & & & & & & 10 & 6.7 -(2.2) \\
\hline Largemouth bass & 1 & 8 & 13 & 6 & 13 & 14 & 4 & 6 & 10 & 1 & 1 & & 3 & & 1 & & 2 & & & 83 & 55.3 (12.5) \\
\hline
\end{tabular}

Table 16. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected by electrofishing at Carr Creek Lake (710 acres). CPUE=fish/hr, SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2003 & 4.4 & 0.1 & 14.0 & 5.4 & 5.8 & 2.3 & 133.8* & 17.5 \\
\hline 2004 & 5.2 & 0.0 & 132.0 & 17.3 & 88.2 & 12.7 & 18.8 & 2.6 \\
\hline 2005 & 4.7 & 0.1 & 15.8 & 6.7 & 5.6 & 1.7 & 21.3 & 6.7 \\
\hline 2006 & 4.2 & 0.2 & 11.0 & 4.1 & 3.0 & 1.0 & 7.6 & 2.0 \\
\hline 2007 & 3.7 & 0.5 & 5.0 & 2.2 & 1.0 & 0.7 & 2.4 & 1.2 \\
\hline 2008 & 4.3 & 0.2 & 15.2 & 6.6 & 3.8 & 1.7 & 3.1 & 0.8 \\
\hline 2009 & 3.6 & 0.3 & 12.5 & 2.8 & 3.5 & 1.6 & 10.0 & 2.5 \\
\hline 2010 & 4.6 & 0.2 & 13.5 & 4.4 & 5.0 & 1.7 & 9.0 & 3.1 \\
\hline 2011 & 4.6 & 0.1 & 17.6 & 5.7 & 7.2 & 3.0 & 13.2 & 2.6 \\
\hline 2012 & 4.3 & 0.2 & 34.5 & 10.9 & 11.5 & 4.0 & \(114.7{ }^{*}\) & 51.8 \\
\hline 2013 & 4.4 & 0.2 & 14.0 & 4.6 & 4.8 & 1.8 & \(116.0{ }^{*}\) & 23.8 \\
\hline 2014 & 4.4 & 0.3 & 13.3 & 4.2 & 5.3 & 1.7 & 71.0* & 23.2 \\
\hline 2015 & 4.7 & 0.2 & 45.3 & 9.6 & 16.0 & 6.1 & 35.3 & 8.0 \\
\hline 2016 & 4.6 & 0.1 & 32.0 & 7.9 & 10.4 & 3.0 & 31.0 & 6.4 \\
\hline 2017 & 3.9 & 0.2 & 19.3 & 5.8 & 4.7 & 1.9 & \(111.5^{*}\) & 13.9 \\
\hline 2018 & 5.4 & 0.1 & 18.7 & 5.4 & 12.7 & 4.2 & & \\
\hline
\end{tabular}

\footnotetext{
* Includes supplemental spring stocked fish BBRWRCFL.D03-D05
BBRSCCFL.D03
EFDCLLSF.D06-D18
EFDCLLAS.D08
EFDCLLSS.D06-D18
EFDCLLAF.D13
}

Table 17. Length frequency and CPUE (fish/hr) of walleye collected at Carr Creek Lake (710 acres) during daytime spring electrofishing.
\begin{tabular}{|c|}
\hline \multicolumn{23}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{SE} \\
\hline Year & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & & & \\
\hline 2000 & & & & & & & 5 & 28 & 10 & 6 & 8 & 2 & 3 & 3 & 1 & & 1 & 6 & 4 & 1 & & & 78 & 20.8 & 4.6 \\
\hline 2001 & & & & & & & 2 & 4 & 3 & 14 & 8 & 6 & 2 & 2 & 1 & & & & 2 & & & & 44 & 20.4 & 4.7 \\
\hline 2002 & & & & & & & & & & & & & & no sa & amp & & & & & & & & & & \\
\hline 2003 & & 2 & 1 & & & 1 & 1 & 2 & & & 3 & 7 & & 4 & 2 & & 1 & 1 & 1 & 1 & 1 & & 28 & 26.7 & 8.5 \\
\hline 2004 & & & & & & & & & & & 1 & 3 & 13 & 10 & 13 & 13 & 4 & 3 & 1 & & & & 61 & 27.1 & 7.4 \\
\hline 2005 & & & & & & & & & 1 & 1 & 2 & 10 & 2 & 10 & 6 & 5 & 4 & 3 & 1 & 1 & & & 46 & 28.2 & 5.0 \\
\hline 2006 & & & & & & & & & & & 1 & 4 & 6 & 7 & 9 & 9 & 8 & 3 & 4 & 2 & 2 & & 55 & 31.3 & 5.4 \\
\hline 2007 & & & & & & & & 1 & & 1 & 2 & 4 & 3 & 11 & 15 & 8 & 4 & 4 & 5 & 2 & & & 60 & 32.9 & 7.4 \\
\hline 2008 & & & & & & & & & 1 & 2 & 5 & 12 & 16 & 19 & 21 & 19 & 15 & 14 & 7 & 3 & 1 & 1 & 136 & 12.8 & 1.2 \\
\hline 2009 & & & & & & & & 1 & 4 & 3 & 9 & 18 & 21 & 17 & 15 & 13 & 10 & 11 & 2 & & & & 124 & 21.3 & 1.3 \\
\hline 2010 & & & & & & & & 6 & 8 & 7 & 7 & 10 & 15 & 16 & 14 & 16 & 13 & 8 & 8 & 9 & & 1 & 138 & 12.7 & 3.3 \\
\hline 2011 & 1 & 1 & & & & 1 & & & 2 & 6 & 8 & 8 & 5 & 15 & 7 & 11 & 5 & 5 & 2 & 3 & 1 & & 81 & 15.4 & 5.2 \\
\hline 2012 & & & & & & & & 1 & 1 & 2 & 1 & 13 & 19 & 22 & 14 & 4 & 4 & 5 & 1 & & & & 87 & 20.8 & 2.5 \\
\hline 2013 & & & & & & & & & 3 & 2 & 8 & 11 & 13 & 16 & 21 & 9 & 2 & 2 & 1 & & & & 88 & 10.7 & 1.4 \\
\hline 2014 & & & & & & & & & 1 & & 2 & 14 & 9 & 12 & 10 & 6 & 1 & & 1 & & & & 56 & 11.8 & 2.9 \\
\hline 2015 & & & & & & & & 2 & 3 & 7 & 9 & 13 & 14 & 11 & 12 & 7 & 3 & 1 & & & & & 82 & 21.6 & 17.4 \\
\hline 2016 & & & & & & & & & 3 & 3 & 7 & 16 & 21 & 26 & 18 & 13 & 1 & 4 & 1 & & & & 113 & 20.6 & 2.3 \\
\hline 2017 & & & & & & & & 1 & & & 6 & 7 & 18 & 13 & 13 & 9 & 2 & & 1 & 1 & & & 71 & 21.9 & 3.1 \\
\hline 2018 & & & & & & & & 6 & 3 & 6 & 8 & 5 & 25 & 30 & 12 & 22 & 9 & 1 & & 1 & & & 128 & 14.7 & 2.0 \\
\hline
\end{tabular}

EFDCLWSS.D00-D18

Table 18. Spring electrofishing catch rate (fish/hr) for each age of walleye collected from Carr Creek Lake (710 acres) from 2009-2018.
\begin{tabular}{ccccccccccc}
\hline & \multicolumn{10}{c}{ Year } \\
\cline { 2 - 11 } Age & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline 1 & & & & & & & & & & \\
2 & 2.0 & 2.1 & 1.3 & 1.6 & 1.0 & 0.9 & 3.2 & 1.8 & 1.5 & 1.7 \\
3 & 7.2 & 3.2 & 5.0 & 7.8 & 4.2 & 4.5 & 9.1 & 8.1 & 9.0 & 5.2 \\
4 & 5.5 & 2.6 & 3.6 & 5.1 & 2.6 & 3.6 & 5.2 & 5.2 & 5.7 & 3.7 \\
5 & 2.4 & 1.4 & 1.6 & 2.9 & 1.2 & 1.3 & 1.6 & 2.4 & 2.4 & 1.6 \\
6 & 0.8 & 0.3 & 0.4 & 0.9 & 0.5 & 0.4 & 0.6 & 0.8 & 0.8 & 0.3 \\
7 & 0.8 & 0.4 & 0.4 & 0.5 & 0.1 & 0.1 & 0.2 & 0.2 & 0.2 & 0.4 \\
8 & 1.0 & 0.9 & 0.7 & 0.8 & 0.5 & 0.5 & 0.6 & 0.8 & 0.9 & 0.5 \\
9 & 1.4 & 0.8 & 1.0 & 1.2 & 0.5 & 0.5 & 0.7 & 1.0 & 0.9 & 1.0 \\
10 & 0.3 & 0.2 & 0.3 & 0.1 & 0.1 & 0.2 & 0.2 & 0.3 & 0.4 & 0.3 \\
\hline EFDCLWSS.D09-D18 & & & & & & & & \\
EFDCLWAS.D09 & & & & & & & & &
\end{tabular}

Table 19. Number of fish and relative weight (Wr) for each length group of walleye collected at Carr Creek Lake (710 acres) on 1-19 March. Numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline \(\leq 9.9\) in & \multicolumn{2}{|l|}{10.0-14.9 in} & \multicolumn{2}{|l|}{15.0-19.9 in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} & & \\
\hline No. Wr & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline & 1 & 120.0 & 7 & \[
\begin{aligned}
& 100.2 \\
& (2.9)
\end{aligned}
\] & 6 & \[
\begin{aligned}
& 97.9 \\
& (2.9) \\
& \hline
\end{aligned}
\] & 14 & \[
\begin{aligned}
& 100.6 \\
& (2.4)
\end{aligned}
\] \\
\hline
\end{tabular}

EFDCLWSS.D18

Table 20. Length frequency and CPUE (fish/hr) of black bass collected in 1.25 hours of 15 -min electrofishing runs at Cranks Creek Lake (219 acres) on 10 May 2018; numbers in parentheses are standard errors.

\begin{tabular}{lrrrrrrrrrrrrrrrrrrrrrr}
\\
SB & 1 & 1 & 1 & 5 & & 5 & 2 & 1 & & & & & 1 & & & & & & 17 & 13.6 & \((8.9)\) \\
LMB & 1 & 22 & 20 & 10 & 23 & 34 & 29 & 16 & 10 & 3 & 4 & 3 & 2 & 1 & 3 & 2 & 2 & 3 & 1 & 189 & \(151.2(6.5)\)
\end{tabular}

\footnotetext{
SB = spotted bass
LMB = largemouth bass
EFDCCLSS.D18
}

Table 21. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Cranks Creek Lake (219 acres). SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 2000 & 51.3 & 11.1 & 24.7 & 3.8 & 2.7 & 1.3 & 2.0 & 1.4 & 2.0 & 1.4 & 80.7 & 12.5 \\
\hline 2001 & 20.0 & 6.4 & 22.0 & 8.3 & 2.7 & 1.3 & 2.0 & 0.9 & 0.7 & 0.7 & 46.7 & 13.8 \\
\hline 2002 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2003 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2004 & 40.7 & 7.6 & 40.0 & 5.8 & 3.3 & 1.9 & 4.0 & 2.1 & 0.7 & 0.7 & 88.0 & 11.1 \\
\hline 2005 & 59.2 & 16.6 & 70.4 & 10.5 & 4.0 & 1.3 & 6.4 & 2.0 & 2.4 & 1.0 & 140.0 & 17.3 \\
\hline 2006 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2007 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2008 & 33.0 & 7.9 & 51.0 & 6.6 & 27.0 & 4.4 & 8.0 & 3.7 & 3.0 & 1.9 & 119.0 & 8.2 \\
\hline 2009 & \multicolumn{12}{|c|}{no sample} \\
\hline 2010 & 80.8 & 27.6 & 43.2 & 10.4 & 9.6 & 3.0 & 14.4 & 2.0 & 4.8 & 2.3 & 148.0 & 41.2 \\
\hline 2011 & 57.6 & 6.0 & 52.0 & 10.5 & 9.6 & 1.6 & 11.2 & 3.9 & 5.6 & 3.5 & 130.4 & 15.4 \\
\hline 2012 & 34.4 & 12.0 & 32.8 & 4.6 & 5.6 & 2.4 & 8.8 & 2.3 & 2.4 & 1.0 & 81.6 & 14.5 \\
\hline 2013 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2014 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2015 & 27.2 & 6.0 & 76.0 & 8.3 & 15.2 & 0.8 & 13.6 & 2.4 & 6.4 & 1.6 & 132.0 & 10.8 \\
\hline 2016 & & & \multicolumn{10}{|c|}{no sample} \\
\hline 2017 & 76.8 & 14.3 & 62.4 & 13.9 & 18.4 & 2.7 & 15.2 & 3.9 & 8.8 & 3.8 & 172.8 & 17.8 \\
\hline 2018 & 60.8 & 5.3 & 71.2 & 3.4 & 8.0 & 3.4 & 11.2 & 2.3 & 6.4 & 2.0 & 151.2 & 6.5 \\
\hline
\end{tabular}

EFDCCLSS.D00-D18

Table 22. PSD and RSD values for each species of black bass in each area of Cranks Creek Lake (219 acres) on 10 May 2018. Number of fish (No.) is the number of stock-size or larger fish collected and numbers in parentheses are \(95 \%\) confidence intervals.
\begin{tabular}{lccccccc}
\hline & \multicolumn{3}{c}{ Largemouth bass } & & \multicolumn{3}{c}{ Spotted bass } \\
\cline { 2 - 3 } & No. & PSD & RSD \(_{15}\) & & No. & PSD & RSD \(_{14}\) \\
\hline \multirow{3}{*}{ Total } & 113 & 21 & 12 \\
& & & & 9 & 11 & 11 \\
& & \((14-29)\) & \((6-18)\) & & & \((0-33)\) & \((0-33)\) \\
\hline
\end{tabular}

EFDCCLSS.D18

Table 23. Population assessment for largemouth bass collected from Cranks Creek Lake (219 acres).
Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Year} \\
\hline Parameter & 2008 & 2010 & 2011 & 2012 & 2015 & 2017 & 2018 \\
\hline Mean length age 3 at capture & \[
\begin{gathered}
3 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.0)
\end{gathered}
\] \\
\hline Spring CPUE age 1 & \[
\begin{gathered}
3 \\
(23.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(68.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(45.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(28.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(19.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(72.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(42.4)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
3 \\
(27.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(15.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(18.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(8.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
2 \\
(8.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(14.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(13.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(15.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.2)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
3 \\
(3.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(5.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(8.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.4)
\end{gathered}
\] \\
\hline Total score & 13 & 15 & 13 & 12 & 12 & 14 & 11 \\
\hline Assessment rating & Good & Good & Good & Fair & Fair & Good & Fair \\
\hline Instantaneous mortality (z) & 0.52 & 0.49 & 0.56 & 0.53 & & & \\
\hline Annual mortality (A) & 40.60 & 38.90 & 43.10 & 40.90 & & & \\
\hline \begin{tabular}{l}
EFDCCLAS.D08 EFDCCLAF.D13 \\
EFDCCLSS.D08-D18
\end{tabular} & & & & & & & \\
\hline
\end{tabular}

Table 24. Length frequency and CPUE (fish/hr) of black bass collected in 1.00 hour of \(15-\mathrm{min}\) nocturnal electrofishing runs at Cranks Creek Lake (219 acres) on 25 September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & & \\
\hline SB & 1 & & & 1 & 1 & & & 1 & & & & & & & & & & & 4 & 4.0 (2.3) \\
\hline LMB & 22 & 17 & 15 & 4 & 6 & 12 & 10 & 15 & & 2 & 2 & 1 & 1 & & & & & 1 & 108 & 108.0 (26.7) \\
\hline
\end{tabular}

SB = spotted bass
LMB = largemouth bass
EFDCCLSF.D18

Table 25. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Cranks Creek Lake (219 acres) from electrofishing. CPUE=fish/hr, SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 1999 & & & & & & & 44.3 & 10.4 \\
\hline 2000 & & & & & & & 14.3 & 4.8 \\
\hline 2001 & 5.0 & 0.1 & 27.3 & 5.2 & 13.3 & 3.0 & & \\
\hline 2002 & 5.1 & 0.1 & 34.4 & 10.6 & 20.8 & 7.7 & & \\
\hline 2003 & & & & & & & 15.0 & 4.3 \\
\hline 2004 & & & & & & & 50.4 & 15.3 \\
\hline 2005 & & & & & & & & \\
\hline 2006 & & & & & & & & \\
\hline 2007 & 4.3 & 0.1 & 32.0 & 8.7 & 7.2 & 2.9 & 23.0 & 7.3 \\
\hline 2008 & & & & & & & & \\
\hline 2009 & 3.9 & 0.1 & 64.0 & 29.8 & 7.2 & 4.8 & 68.8 & 26.1 \\
\hline 2010 & 4.3 & 0.1 & 93.3 & 28.5 & 16.0 & 6.1 & 45.6 & 6.0 \\
\hline 2011 & 5.3 & 0.1 & 51.2 & 5.4 & 34.4 & 5.3 & 28.0 & 10.7 \\
\hline 2012 & 4.1 & 0.1 & 66.4 & 27.4 & 10.4 & 5.3 & & \\
\hline 2013 & 3.9 & 0.2 & 11.2 & 5.4 & 0.8 & 0.8 & & \\
\hline 2014 & 4.0 & 0.1 & 104.8 & 24.5 & 20.8 & 5.1 & 19.2 & 5.3 \\
\hline 2015 & 4.3 & 0.2 & 37.0 & 14.6 & 9.0 & 3.0 & & \\
\hline 2016 & 4.1 & 0.1 & 70.4 & 29.7 & 2.4 & 1.0 & 72.8 & 12.6 \\
\hline 2017 & 4.2 & 0.1 & 77.3 & 11.6 & 13.3 & 3.5 & 42.4 & 6.7 \\
\hline 2018 & 4.4 & 0.1 & 58.0 & 6.6 & 19.0 & 10.3 & & \\
\hline \multicolumn{9}{|l|}{EFDCCLSF.D01-D02, D07, D09-D18} \\
\hline \multicolumn{9}{|l|}{EFDCCLAS.D08} \\
\hline \multicolumn{9}{|l|}{EFDCCLSS.D00-D01, D04-D05, D08, D10-D12, D15, D17-D18} \\
\hline \multicolumn{9}{|l|}{EFDCCLAF.D13} \\
\hline
\end{tabular}

Table 26. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 1.5 hours of 15 -minute nocturnal electrofishing samples by area at Dewey Lake (1,100 acres) on 2 May 2018. Standard errors are in parentheses.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline \multirow[t]{2}{*}{Lower} & Spotted bass & 1 & 12 & 3 & 7 & 4 & 7 & 4 & 3 & & 2 & 5 & 1 & & & & & & & & 49 & 39.2 (17.2) \\
\hline & Largemouth bass & 2 & 17 & 17 & 16 & 2 & 8 & 11 & 17 & 10 & 14 & 20 & 5 & 8 & 7 & 2 & 3 & 1 & & 1 & 161 & 128.8 (11.1) \\
\hline \multirow[t]{2}{*}{Upper} & Spotted bass & & & & & & 1 & & & & & & & & & & & & & & 1 & 0.8 (0.8) \\
\hline & Largemouth bass & 1 & 3 & 6 & 8 & 3 & 8 & 9 & 7 & 10 & 7 & 12 & 12 & 9 & 10 & 4 & 8 & 2 & 3 & & 122 & 97.6 (9.35) \\
\hline \multirow[t]{2}{*}{Total} & Spotted bass & 1 & 12 & 3 & 7 & 4 & 8 & 4 & 3 & & 2 & 5 & 1 & & & & & & & & 50 & 20.0 (10.4) \\
\hline & Largemouth bass & 3 & 20 & 23 & 24 & 5 & 16 & 20 & 24 & 20 & 21 & 32 & 17 & 17 & 17 & 6 & 11 & 3 & 3 & 1 & 283 & 113.2 (8.6) \\
\hline
\end{tabular}

EFDDLLSS.D18

Table 27. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Dewey Lake (1,100 acres). SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|l|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 1987 & 44.6 & & 38.3 & & 12.0 & & 0.6 & & 0.0 & & 95.4 & \\
\hline 1988 & 84.0 & & 40.7 & & 26.7 & & 2.0 & & 0.0 & & 154.7 & \\
\hline 1989 & 75.0 & & 27.5 & & 10.8 & & 7.0 & & 0.0 & & 120.7 & \\
\hline 1990 & 58.8 & & 68.0 & & 32.0 & & 11.4 & & 0.6 & & 171.4 & \\
\hline 1991 & 73.8 & & 50.6 & & 18.4 & & 3.5 & & 0.2 & & 146.4 & \\
\hline 1992 & 57.4 & & 64.1 & & 17.2 & & 7.4 & & 0.2 & & 146.1 & \\
\hline 1993 & 43.7 & & 71.8 & & 15.6 & & 8.8 & & 0.8 & & 140.0 & \\
\hline 1994 & \multicolumn{12}{|c|}{no sample} \\
\hline 1995 & 46.6 & & 59.6 & & 28.5 & & 3.6 & & 0.0 & & 138.3 & 16.9 \\
\hline 1996 & \multicolumn{12}{|c|}{no sample} \\
\hline 1997 & 15.3 & & 53.3 & & 32.3 & & 11.0 & & 1.0 & & 112.0 & 12.2 \\
\hline 1998 & 20.1 & & 51.4 & & 43.2 & & 7.2 & & 0.6 & & 122.0 & 8.5 \\
\hline 1999 & 78.9 & & 34.6 & & 39.5 & & 12.8 & & 0.5 & & 165.8 & 12.7 \\
\hline 2000 & 62.2 & 4.7 & 44.0 & 4.4 & 23.6 & 3.5 & 10.3 & 1.3 & 0.1 & & 140.1 & 9.5 \\
\hline 2001 & 150.1 & 17.2 & 57.8 & 5.7 & 26.9 & 2.7 & 17.8 & 1.6 & 0.6 & & 252.6 & 22.8 \\
\hline 2002 & \multicolumn{12}{|c|}{no sample} \\
\hline 2003 & 71.1 & 10.1 & 55.6 & 4.4 & 23.1 & 1.8 & 22.0 & 2.1 & 0.7 & & 171.8 & 14.6 \\
\hline 2004 & 96.2 & 11.9 & 34.7 & 3.8 & 20.0 & 3.2 & 17.5 & 2.6 & 1.0 & & 168.3 & 13.9 \\
\hline 2005 & 39.3 & 5.0 & 59.2 & 6.3 & 31.0 & 3.2 & 24.5 & 1.9 & 0.3 & & 153.9 & 12.8 \\
\hline 2006 & 32.3 & 5.7 & 66.4 & 8.6 & 24.2 & 3.6 & 24.9 & 3.6 & 0.7 & & 147.8 & 10.0 \\
\hline 2007 & 54.9 & 9.6 & 80.8 & 9.8 & 35.1 & 5.0 & 30.2 & 4.1 & 1.5 & 0.7 & 200.9 & 19.9 \\
\hline 2008 & 87.4 & 10.4 & 86.5 & 9.5 & 21.6 & 3.6 & 16.3 & 3.4 & 0.8 & 0.5 & 211.7 & 12.4 \\
\hline 2009 & 83.7 & 12.7 & 62.8 & 6.3 & 18.8 & 1.9 & 14.4 & 3.4 & 0.5 & 0.5 & 179.8 & 16.9 \\
\hline 2010 & 42.6 & 5.9 & 98.0 & 27.6 & 12.3 & 2.8 & 8.3 & 2.0 & 0.0 & 0.0 & 161.2 & 33.0 \\
\hline 2011 & \multicolumn{12}{|c|}{no sample} \\
\hline 2012 & 27.2 & 4.6 & 63.2 & 7.0 & 34.9 & 3.9 & 10.7 & 2.5 & 0.4 & 0.4 & 136.0 & 8.6 \\
\hline 2013 & 20.8 & 3.9 & 92.8 & 14.8 & 54.0 & 6.5 & 17.2 & 1.9 & 1.2 & 0.6 & 184.8 & 20.8 \\
\hline 2014 & 12.4 & 2.6 & 40.4 & 8.1 & 31.2 & 6.6 & 20.0 & 2.1 & 1.2 & 0.9 & 104.0 & 16.2 \\
\hline 2015 & 21.2 & 3.0 & 35.2 & 5.2 & 43.2 & 5.4 & 24.0 & 4.2 & 0.8 & 0.5 & 123.6 & 11.2 \\
\hline 2016 & 22.5 & 3.1 & 25.5 & 4.9 & 47.0 & 5.4 & 24.0 & 3.5 & 1.0 & 0.7 & 119.0 & 9.9 \\
\hline 2017 & 22.7 & 5.7 & 27.3 & 7.1 & 20.0 & 5.4 & 23.3 & 4.3 & 1.3 & 0.8 & 93.3 & 10.3 \\
\hline 2018 & 30.0 & 9.0 & 32.0 & 2.5 & 28.0 & 5.7 & 23.2 & 4.3 & 1.6 & 0.7 & 113.2 & 8.6 \\
\hline \multicolumn{13}{|l|}{EFDDLLSS.D87-D18} \\
\hline
\end{tabular}

Table 28. PSD and RSD values for each species of black bass collected in each area of Dewey Lake (1,100 acres) during spring 2018. Numbers in parentheses are \(95 \%\) confidence intervals.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} \\
\hline & No. & PSD & \(\mathrm{RSD}_{15}\) & No. & PSD & \(\mathrm{RSD}_{14}\) \\
\hline Lower & 107 & \[
\begin{gathered}
57 \\
(48-66)
\end{gathered}
\] & \[
\begin{gathered}
21 \\
(13-28)
\end{gathered}
\] & 26 & \[
\begin{gathered}
31 \\
(13-49)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(0-11)
\end{gathered}
\] \\
\hline Upper & 101 & \[
\begin{gathered}
66 \\
(57-76)
\end{gathered}
\] & \[
\begin{gathered}
36 \\
(26-45)
\end{gathered}
\] & 1 & 0 & 0 \\
\hline Total & 208 & \[
\begin{gathered}
62 \\
(55-68)
\end{gathered}
\] & \[
\begin{gathered}
28 \\
(22-34)
\end{gathered}
\] & 27 & \[
\begin{gathered}
30 \\
(12-47)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(0-11) \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

EFDDLLSS.D18

Table 29. Population assessment for largemouth bass collected from Dewey Lake (1,100 acres). Actual values are in parentheses.
Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{Year} \\
\hline Parameter & 2008 & 2009 & 2010 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline Mean length age-3 at capture & \[
\begin{gathered}
2 \\
(11.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.8)
\end{gathered}
\] \\
\hline Spring CPUE age-1 & \[
\begin{gathered}
4 \\
(49.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(55.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(16.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(19.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(21.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(29.2)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
2 \\
(21.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(18.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(12.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(34.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(54.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(31.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(43.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(47.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(28.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
3 \\
(16.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(14.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(17.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(20.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(24.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(24.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(23.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(23.2)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
3 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.5) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.3) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.6) \\
\hline
\end{gathered}
\] \\
\hline Total score & 14 & 14 & 8 & 12 & 14 & 14 & 15 & 15 & 14 & 16 \\
\hline Assessment rating & Good & Good & Poor & Fair & Good & Good & Good & Good & Good & Good \\
\hline Instantaneous mortality (z) & 0.56 & 0.48 & 0.77 & 0.64 & & & & & & \\
\hline Annual mortality (A) & 42.80 & 38.40 & 53.90 & 35.80 & & & & & & \\
\hline
\end{tabular}

EFDDLLSS.D08-D10, D13-D18
EFDDLLAS.D08
EFDDLLAF.D13, D18

Table 30. Length-frequency distribution of each black bass species captured during 2.25 hours of 15 -minute nocturnal electrofishing runs at Dewey Lake (1,100 acres) on 21 September 2018. Standard errors are in parentheses.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & & \\
\hline \multirow[t]{2}{*}{Lower} & Spotted bass & & 2 & 3 & 1 & 3 & 2 & 1 & 3 & 3 & & & & & & & & & & & & 18 & 18.0 (12.3) \\
\hline & Largemouth bass & & 12 & 19 & 17 & 7 & 2 & 11 & 5 & 2 & 1 & 5 & 2 & 2 & 2 & & 2 & & & & & 89 & 89.0 (10.3) \\
\hline \multirow[t]{2}{*}{Upper} & Spotted bass & & & & 1 & & & & 1 & & & & & & & & & & & & & 2 & 1.6 (1.6) \\
\hline & Largemouth bass & 1 & 7 & 9 & 23 & 3 & 5 & 17 & 13 & 21 & 8 & 2 & 1 & 9 & 5 & 3 & 6 & 5 & & 2 & 2 & 142 & 113.6 (6.5) \\
\hline \multirow[t]{2}{*}{Total} & Spotted bass & & 2 & 3 & 2 & 3 & 2 & 1 & 4 & 3 & & & & & & & & & & & & 20 & 8.9 (5.8) \\
\hline & Largemouth bass & 1 & 19 & 28 & 40 & 10 & 7 & 28 & 18 & 23 & 9 & 7 & 3 & 11 & 7 & 3 & 8 & 5 & 0 & 2 & 2 & 231 & 102.7 (6.9) \\
\hline
\end{tabular}

EFDDLLSF.D18

Table 31. Mean back-calculated length (in) at each annulus for largemouth bass collected from Dewey Lake (1,100 acres) on 21 September 2018, including 95\% confidence intervals

Table 32. Indices of year class strength at age-0 and age-1 and mean lengths (in) of age-0 largemouth bass at Dewey Lake (1,100 acres) from electrofishing. CPUE=fish/hr, SE=standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|l|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2002 & 5.0 & 0.0 & 75.6 & 14.2 & 37.6 & 9.4 & 61.2 & 9.4 \\
\hline 2003 & 4.9 & 0.1 & 38.9 & 10.6 & 15.1 & 3.8 & 79.7 & 10.5 \\
\hline 2004 & 5.2 & 0.1 & 45.2 & 7.1 & 25.4 & 4.6 & 24.8 & 4.1 \\
\hline 2005 & 4.4 & 0.1 & 58.7 & 16.1 & 16.9 & 6.6 & 27.9 & 5.5 \\
\hline 2006 & 5.1 & 0.1 & 39.0 & 9.9 & 21.3 & 5.8 & 49.0 & 9.2 \\
\hline 2007 & 4.8 & 0.1 & 54.3 & 12.8 & 21.2 & 4.2 & 49.5 & 10.0 \\
\hline 2008 & 5.0 & 0.1 & 54.9 & 14.3 & 30.0 & 7.4 & 55.6 & 12.1 \\
\hline 2009 & 5.3 & 0.1 & 45.7 & 8.8 & 28.8 & 5.2 & 16.4 & 3.3 \\
\hline 2010 & 5.0 & 0.1 & 67.6 & 14.2 & 38.4 & 8.5 & no sample & \\
\hline 2011 & 4.6 & 0.1 & 37.2 & 9.3 & 14.8 & 3.6 & 19.5 & 4.4 \\
\hline 2012 & 4.4 & 0.1 & 26.0 & 5.3 & 7.2 & 1.7 & 20.8 & 3.9 \\
\hline 2013 & 3.4 & 0.2 & 25.2 & 6.3 & 3.2 & 0.8 & 10.8 & 2.8 \\
\hline 2014 & 3.9 & 0.1 & 36.8 & 8.3 & 10.0 & 4.3 & 17.2 & 3.5 \\
\hline 2015 & 3.7 & 0.2 & 38.7 & 9.9 & 7.3 & 3.0 & 20.5 & 3.2 \\
\hline 2016 & 4.9 & 0.1 & 33.5 & 5.1 & 17.0 & 3.5 & 21.3 & 5.8 \\
\hline 2017 & 4.6 & 0.1 & 50.0 & 9.4 & 16.5 & 3.6 & 29.2 & 9.0 \\
\hline 2018 & 4.9 & 0.1 & 43.6 & 7.8 & 22.2 & 3.1 & & \\
\hline
\end{tabular}

BBRPSDEW.D03-D05
BBRDLLSF.D02
BBRWRDEW.D03-D04
BBRSCDEW.D03
EFDDLLSF.D05-D16
EFDDLLSS.D06-D10, D12-D18
EFDDLLAS.D08
EFDDLLAF.D13, D18

Table 33. Length frequency and CPUE (fish/nn) for white crappie collected at Dewey Lake (1,100 acres) in 10 net-nights from 13-14 November 2018. Standard errors are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{10}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{SE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & & \\
\hline WC & 3 & 2 & 17 & 44 & 54 & 71 & 41 & 22 & 17 & 5 & 276 & 27.6 & (6.9) \\
\hline BC & & & 1 & 53 & 237 & 34 & 2 & & & & 327 & 32.7 & (11.7) \\
\hline \multicolumn{14}{|l|}{WC=white crappie} \\
\hline \multicolumn{14}{|l|}{BC=black crappie} \\
\hline EFDDLC & .D & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 34. PSD and \(\mathrm{RSD}_{10}\) values calculated for crappie collected in trap nets at Dewey Lake (1,100 acres) during November 2018; \(95 \%\) confidence intervals are in parentheses.
\begin{tabular}{lccc}
\hline Species & No. fish \(\geq 5.0\) in & PSD & RSD \(_{10}\) \\
\hline WC & 271 & 58 & 16 \\
BC & 327 & \begin{tabular}{c}
11 \\
\((52-63)\)
\end{tabular} & \((82-21)\) \\
& & \((8-14)\) & \\
\hline
\end{tabular}

WC = white crappie
\(B C=\) black crappie
EFDDLCTF.D18

Table 35. Mean back-calculated length (in) at each annulus for white crappie collected from Dewey Lake (1,100 acres) in November 2018, including \(95 \%\) confidence intervals.
\begin{tabular}{lccccccc}
\hline Year & & \multicolumn{6}{c}{ Age } \\
\cline { 3 - 8 } class & No. & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline & & & & & & & \\
2017 & 31 & 4.1 & & & & & \\
2016 & 9 & 4.6 & 6.8 & & & & \\
2015 & 43 & 4.7 & 6.7 & 8.2 & & & \\
2014 & 23 & 4.7 & 6.9 & 8.2 & 9.6 & & \\
2012 & 1 & 4.4 & 6.6 & 8.1 & 9.2 & 10.1 & 11.2 \\
& & & & & & & \\
Mean & & 4.5 & 6.8 & 8.2 & 9.6 & 10.1 & 11.2 \\
Smallest & 3.4 & 5.3 & 6.2 & 7.5 & 10.1 & 11.2 \\
Largest & 5.7 & 8.5 & 10.8 & 11.7 & 10.1 & 11.2 \\
STD error & 0.1 & 0.1 & 0.1 & 0.2 & & \\
95\% CI LO & 4.4 & 6.7 & 8.0 & 9.1 & & \\
95\% CI HI & 4.6 & 6.9 & 8.4 & 10.0 & & \\
\hline
\end{tabular}

Intercept = 0
EFDDLCAF.D18

Table 36. Mean back-calculated length (in) at each annulus for black crappie collected from Dewey Lake (1,100 acres) in November 2018, including 95\% confidence intervals.
\begin{tabular}{lllllllll}
\hline Year \\
class
\end{tabular}\(\quad\) No. \begin{tabular}{llllll}
& 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}
\begin{tabular}{lcccccccc}
2017 & 1 & 3.5 & & & & & & \\
2016 & 3 & 3.6 & 5.3 & & & & & \\
2015 & 12 & 3.4 & 5.1 & 6.2 & & & & \\
2014 & 9 & 3.4 & 5.2 & 6.2 & 6.9 & & & \\
2013 & 14 & 3.6 & 5.6 & 6.6 & 7.2 & 7.7 & & \\
2012 & 7 & 3.7 & 5.7 & 6.8 & 7.3 & 7.6 & 7.9 & \\
2011 & 2 & 3.6 & 5.7 & 7.1 & 7.8 & 8.3 & 8.7 & 8.9 \\
& & & & & & & & \\
Mean & 3.6 & 5.4 & 6.5 & 7.2 & 7.7 & 8.1 & 8.9 \\
Smallest & 3.0 & 4.7 & 5.6 & 6.2 & 6.7 & 7.6 & 8.8 \\
Largest & 4.1 & 6.2 & 7.3 & 7.9 & 8.4 & 8.8 & 9.0 \\
STD error & 0.0 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\
95\% CI LO & 3.5 & 5.3 & 6.3 & 7.0 & 7.6 & 7.8 & 8.7 \\
95\% CI HI & 3.6 & 5.5 & 6.6 & 7.3 & 7.9 & 8.4 & 9.1 \\
\hline Intercept = 0 & & & & & & & \\
EFDDLCAF.D18 & & & & & & &
\end{tabular}

Table 37. Age frequency and CPUE (fish/nn) of white crappie collected by trap netting for 10 net-nights at Dewey Lake (1,100 acres) in November 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{10}{|c|}{Inch class} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Total Age\%}} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & & & \\
\hline 0 & 3 & 2 & & & & & & & & & 5 & 2 & 0.5 & (0.3) \\
\hline 1 & & & 17 & 36 & 22 & & & & & & 75 & 27 & 7.4 & (2.4) \\
\hline 2 & & & & 6 & 11 & 13 & 5 & & & & 35 & 12 & 3.3 & (0.9) \\
\hline 3 & & & & 3 & 22 & 50 & 25 & 13 & 8 & 1 & 122 & 44 & 12.1 & (2.8) \\
\hline 4 & & & & & & 8 & 11 & 9 & 9 & 3 & 40 & 15 & 4.1 & (0.8) \\
\hline 5 & & & & & & & & & & & 0 & & & \\
\hline 6 & & & & & & & & & & 1 & 1 & 0 & 0.1 & (0.0) \\
\hline Total & 3 & 2 & 17 & 45 & 55 & 71 & 41 & 22 & 17 & 5 & 278 & & & \\
\hline \% & 1 & 1 & 6 & 16 & 20 & 26 & 15 & 8 & 6 & 2 & & & & \\
\hline
\end{tabular}

CPUE of \(\geq 8.0\) in (quality size) \(=15.6\) fish \(/ \mathrm{nn}\)
CPUE of \(\geq 10.0\) in (preferred size) \(=4.4\) fish \(/ \mathrm{nn}\)
EFDDLCAF.D18
EFDDLCTF.D18

Table 38. Age frequency and CPUE (fish/nn) of black crappie collected by trap netting for 10 net-nights at Dewey Lake (1,100 acres) in November 2018; numbers in parentheses are standard errors.
\begin{tabular}{lccccccccc}
\hline & \multicolumn{10}{c}{ Inch class } & & \\
\cline { 2 - 6 } Age & 5 & 6 & 7 & 8 & 9 & & Total & Age\% & CPUE \\
\hline 0 & & & & & 0 & & \\
1 & 1 & & & & & 1 & 0 & 0.1 & \((0.1)\) \\
2 & & 12 & & & & 12 & 4 & 1.2 & \((0.6)\) \\
3 & & 41 & 28 & & & 69 & 21 & 6.9 & \((2.8)\) \\
4 & & & 125 & & & 125 & 38 & 12.6 & \((4.5)\) \\
5 & & & 70 & 20 & & 90 & 28 & 9.0 & \((3.0)\) \\
6 & & & 14 & 14 & & 28 & 8 & 2.8 & \((0.9)\) \\
7 & & & & & 2 & 2 & 1 & 0.2 & \((0.1)\) \\
\hline Total & 1 & 53 & 237 & 34 & 2 & 327 & & & \\
\(\%\) & 0 & 16 & 72 & 10 & 1 & & & & \\
\hline
\end{tabular}

CPUE of \(\geq 8.0\) in (quality size) \(=3.6\) fish \(/ \mathrm{nn}\)
CPUE of \(\geq 10.0\) in (preferred size) \(=0.0\) fish \(/ \mathrm{nn}\)
EFDBLCAF.D18
EFDBLCTF.D18

Table 39. Population assessment scores for white crappie collected from Dewey Lake (1,100 acres). Actual assessment values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{7}{|c|}{Year} \\
\hline & 2002 & 2008 & 2010 & 2012 & 2014 & 2016 & 2018 \\
\hline \begin{tabular}{l}
CPUE \\
(excluding age 0)
\end{tabular} & \[
\begin{gathered}
4 \\
(48.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(43.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(15.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(26.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(27.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(64.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(27.1)
\end{gathered}
\] \\
\hline CPUE age 1 & \[
\begin{gathered}
4 \\
(14.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(6.62)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(7.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(15.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(24.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(7.4)
\end{gathered}
\] \\
\hline CPUE age 0 & \[
\begin{gathered}
4 \\
(27.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(5.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.5)
\end{gathered}
\] \\
\hline CPUE \(\geq 8.0\) in & \[
\begin{gathered}
3 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(15.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(8.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(10.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(14.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(15.6)
\end{gathered}
\] \\
\hline Mean length age 2 at capture & \[
\begin{gathered}
1 \\
(6.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(9.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(9.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(8.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(8.1)
\end{gathered}
\] \\
\hline Instantaneous mortality (z) & 1.27 & 0.49 & 0.50 & 0.65 & 1.40 & 1.11 & 0.85 \\
\hline Annual mortality (A) & 72.00 & 38.80 & 39.50 & 47.60 & 75.40 & 67.00 & 57.30 \\
\hline Total score & 16 & 15 & 18 & 19 & 15 & 18 & 14 \\
\hline \begin{tabular}{l}
Assessment rating \\
EFDDLCTF.D02-D18 \\
EFDDLCAF.D02-D18
\end{tabular} & Good & Good & Excellent & Excellent & Good & Excellent & Good \\
\hline
\end{tabular}

Table 40. Population assessment scores for black crappie collected from Dewey Lake (1,100 acres). Actual assessment values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Parameter & 2002 & 2008 & 2010 & \[
\begin{aligned}
& \hline \text { Year } \\
& 2012 \\
& \hline
\end{aligned}
\] & 2014 & 2016 & 2018 \\
\hline \begin{tabular}{l}
CPUE \\
(excluding age 0)
\end{tabular} & \[
\begin{gathered}
3 \\
(6.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(17.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(20.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(19.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(32.7)
\end{gathered}
\] \\
\hline CPUE age 1 & \[
\begin{gathered}
2 \\
(1.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.9)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.1)
\end{gathered}
\] \\
\hline CPUE age 0 & \[
\begin{gathered}
3 \\
(1.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] \\
\hline CPUE \(\geq 8.0\) in & \[
\begin{gathered}
1 \\
(0.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(5.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(3.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(3.6)
\end{gathered}
\] \\
\hline Mean length age 2 at capture & \[
\begin{gathered}
1 \\
(5.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.6)
\end{gathered}
\] \\
\hline Instantaneous mortality (z) & 1.25 & 0.35 & 0.06 & 0.33 & 0.45 & 0.33 & 0.86 \\
\hline Annual mortality (A) & 71.40 & 29.60 & 6.20 & 28.10 & 36.10 & 38.40 & 57.6 \\
\hline Total score & 10 & 15 & 9 & 13 & 10 & 11 & 11 \\
\hline \begin{tabular}{l}
Assessment rating EFDDLCTF.D02-D18 \\
EFDDLCAF.D02-D18
\end{tabular} & Fair & Good & Fair & Good & Fair & Fair & Fair \\
\hline
\end{tabular}

Table 41. Fish harvest statistics derived from a daytime creel survey at Dewey Lake (1,100 acres) from 1 March through 31 October 2018. Standard errors are in parentheses.

Fishing trips
No. of fishing trips
7,004
No. of fishing trips per acre
6.37

Fishing pressure
Total angler hours
Man-hours/acre
Catch/harvest
No. of fish caught
No. of fish harvested
Lb of fish harvested
Harvest rates
Fish/hour
0.26

Fish/acre
6.48

Lb/acre
3.54

Catch rate
Fish/hour
1.16

Fish/acre
29.21
\(\begin{array}{ll}\text { Miscellaneous characteristics (\%) } & 87.65\end{array}\)
Female 12.35
Resident 99.02
Non-resident 0.98
Method (\%)
Still fishing 42.85
Casting 51.04
Trolling 1.41
Jugging/Trotline 4.10
Hand Grabbing 0.61
Mode (\%)
Boat
80.20

Bank
19.50

Dock
0.31

Table 42. Fish harvest statistics derived from a creel survey at Dewey Lake (1,100 acres) from 1 March through 31 October 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Common carp & Blue catfish & Channel catfish & Flathead catfish & White bass & Rock bass & Warmouth & Green sunfish & Bluegill & Muskellunge & Redear sunfish & Spotted bass & Largemouth bass & White crappie & Black crappie \\
\hline No. caught (per acre) & \[
\begin{gathered}
43 \\
(0.039)
\end{gathered}
\] & \[
\begin{gathered}
386 \\
(0.351)
\end{gathered}
\] & \[
\begin{gathered}
1513 \\
(1.375)
\end{gathered}
\] & \[
\begin{gathered}
32 \\
(0.029)
\end{gathered}
\] & \[
\begin{gathered}
260 \\
(0.236)
\end{gathered}
\] & \[
\begin{gathered}
172 \\
(0.157)
\end{gathered}
\] & \[
\begin{gathered}
224 \\
(0.204)
\end{gathered}
\] & \[
\begin{gathered}
430 \\
(0.391)
\end{gathered}
\] & \[
\begin{gathered}
\hline 5,371 \\
(4.882)
\end{gathered}
\] & \[
\begin{gathered}
112 \\
(0.102)
\end{gathered}
\] & \[
\begin{gathered}
\hline 45 \\
(0.041)
\end{gathered}
\] & \[
\begin{gathered}
139 \\
(0.126)
\end{gathered}
\] & \[
\begin{gathered}
\hline 7,227 \\
(6.570)
\end{gathered}
\] & \[
\begin{gathered}
14,596 \\
(13.270)
\end{gathered}
\] & \[
\begin{gathered}
\hline 1581 \\
(1.440)
\end{gathered}
\] \\
\hline No. harvested (per acre) & \[
\begin{gathered}
9 \\
(0.008)
\end{gathered}
\] & \[
\begin{gathered}
265 \\
(0.241)
\end{gathered}
\] & \[
\begin{gathered}
700 \\
(0.636)
\end{gathered}
\] & \[
\begin{gathered}
17 \\
(0.015)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
(0.007)
\end{gathered}
\] & & \[
\begin{gathered}
15 \\
(0.014)
\end{gathered}
\] & \[
\begin{gathered}
120 \\
(0.109)
\end{gathered}
\] & \[
\begin{gathered}
1,046 \\
(0.951)
\end{gathered}
\] & & \[
\begin{gathered}
5 \\
(0.005)
\end{gathered}
\] & \[
\begin{gathered}
21 \\
(0.019)
\end{gathered}
\] & \[
\begin{gathered}
40 \\
(0.036)
\end{gathered}
\] & \[
\begin{gathered}
4,404 \\
(4.004)
\end{gathered}
\] & \[
\begin{gathered}
469 \\
(0.427)
\end{gathered}
\] \\
\hline \% of total no. harvested & 0.12 & 3.72 & 9.82 & 0.24 & 0.11 & & 0.21 & 1.69 & 14.68 & & 0.07 & 0.30 & 0.56 & 61.82 & 6.59 \\
\hline Lb harvested (per acre) & \[
\begin{gathered}
24.1 \\
(0.022)
\end{gathered}
\] & \[
\begin{gathered}
644.2 \\
(0.586)
\end{gathered}
\] & \[
\begin{aligned}
& 1319.1 \\
& (1.199)
\end{aligned}
\] & \[
\begin{gathered}
202.3 \\
(0.184)
\end{gathered}
\] & \[
\begin{gathered}
5.9 \\
(1.211)
\end{gathered}
\] & & \[
\begin{gathered}
1.9 \\
(0.002)
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
(0.005)
\end{gathered}
\] & \[
\begin{gathered}
112.7 \\
(0.102)
\end{gathered}
\] & & \[
\begin{gathered}
1.2 \\
(0.001)
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
(0.008)
\end{gathered}
\] & \[
\begin{gathered}
90.1 \\
(0.082)
\end{gathered}
\] & \[
\begin{aligned}
& 1331.6 \\
& (0.121)
\end{aligned}
\] & \[
\begin{gathered}
133.4 \\
(0.121)
\end{gathered}
\] \\
\hline \% of total lb harvested & 0.62 & 16.57 & 33.92 & 5.20 & 0.15 & & 0.05 & 0.15 & 2.90 & & 0.03 & 0.24 & 2.32 & 34.24 & 3.43 \\
\hline Mean length (in) & 18.0 & 18.2 & 17.3 & 31.5 & 12.0 & & 5.7 & 4.5 & 5.5 & & 7.0 & 10.3 & 16.4 & 8.8 & 8.5 \\
\hline Mean w eight (lb) & 2.75 & 2.18 & 1.71 & 12.61 & 0.73 & & 0.13 & 0.07 & 0.11 & & 0.24 & 0.49 & 2.31 & 0.30 & 0.31 \\
\hline & & & \[
\begin{aligned}
& \text { Carp } \\
& \text { group } \\
& \hline
\end{aligned}
\] & Catfish group & Morone group & Panfish group & Black bass group & Crappie group & Anything & & & & & & \\
\hline \multicolumn{3}{|l|}{No. of fishing trips for that species} & & 622 & 4 & 43 & 3,471 & 1,315 & 1,525 & & & & & & \\
\hline \multicolumn{3}{|l|}{\% of all trips} & & 8.91 & 0.06 & 0.61 & 49.73 & 18.84 & 21.85 & & & & & & \\
\hline \multicolumn{3}{|l|}{Hours fished for that species (per acre)} & & \[
\begin{gathered}
2,415.42 \\
(2.20)
\end{gathered}
\] & \[
\begin{aligned}
& 17.36 \\
& (0.02)
\end{aligned}
\] & \[
\begin{aligned}
& 166.69 \\
& (0.15)
\end{aligned}
\] & \[
\begin{gathered}
13,488.46 \\
(12.26)
\end{gathered}
\] & \[
\begin{gathered}
5,109.84 \\
(4.65)
\end{gathered}
\] & \[
\begin{gathered}
5,926.53 \\
(5.39)
\end{gathered}
\] & & & & & & \\
\hline \multicolumn{3}{|l|}{No. harvested fishing for that species} & & 923 & & 269 & 40 & 4,670.00 & & & & & & & \\
\hline \multicolumn{3}{|l|}{Lb harvested fishing for that species} & & 2022.90 & & 42.10 & 81.00 & 1388.40 & & & & & & & \\
\hline \multicolumn{3}{|l|}{No./hour harvested fishing for that species} & & 0.269 & & 1.500 & 0.003 & 0.830 & & & & & & & \\
\hline \multicolumn{3}{|l|}{\% success fishing for that species} & & 46.30 & 0.00 & 33.33 & 0.65 & 45.45 & 6.50 & & & & & & \\
\hline
\end{tabular}

Table 43. Species composition and length distribution of each species of fish harvested \((H)\) and released \((R)\) from a creel survey on Dewey Lake (1,100 acres) from 1 March to 31 October 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & & \multicolumn{34}{|c|}{Inch class} \\
\hline & & 2 & 3 & 4 & 5 & & & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & \multicolumn{2}{|l|}{21} & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & & 32 & \multicolumn{3}{|l|}{33343538} \\
\hline Common & H & & & & & & & & & & & & & & & & & 8 & & & & & & & & & & & & & & & & & \\
\hline carp & R & & & & & & & & & & & 7 & & 7 & & 7 & & & & & & & & 7 & 6 & & & & & & & & & & \\
\hline Blue & H & & & & & & & & & & & 18 & & 18 & 12 & 18 & 18 & 60 & & 42 & 12 & 2 & 36 & & 6 & 6 & & 6 & & 6 & 6 & & & & \\
\hline cattish & R & & & & & & & & 14 & & & 21 & 7 & 14 & 29 & 21 & 7 & 8 & & & & & & & & & & & & & & & & & \\
\hline Channel & H & & & & & & & 6 & & & 6 & 31 & 19 & 50 & 62 & 81 & 87 & 130 & 37 & & 43 & 3 & 43 & 56 & 31 & & & 6 & & 6 & 6 & & & & \\
\hline cattish & R & 6 & & & & 18 & 12 & 30 & 42 & 84 & 84 & 187 & 108 & 48 & 36 & 72 & 18 & 18 & 6 & 6 & & & & & & & 12 & 12 & 6 & & 7 & & & & \\
\hline Flathead & H & 11 & & & & 5 & \\
\hline cattish & R & & & & & & & & & & & & 5 & & & & & & & & & & & & & & 5 & & & 5 & & & & & \\
\hline White bass & H & & & & & & & & & & & 8 & \\
\hline & R & & & & & 6 & 19 & & & 19 & 32 & 39 & 32 & 52 & 39 & 6 & 7 & & & & & & & & & & & & & & & & & & \\
\hline Rock bass & H & \\
\hline & R & & & 36 & 50 & 43 & 36 & 7 & \\
\hline Warmouth & H & & & 5 & & 5 & 4 & \\
\hline & R & & & 86 & 102 & 21 & \\
\hline Green & H & & 44 & 49 & 11 & 16 & \\
\hline sunfish & R & 6 & 40 & 218 & 46 & \\
\hline Bluegill & H & & 38 & 217 & 268 & 242 & 268 & 12 & \\
\hline & R & 18 & 203 & 1347 & 1,704 & 714 & 252 & 86 & \\
\hline Muskellunge & H & \\
\hline & R & & & & & & & & & & & 7 & 15 & 15 & & & & & & 15 & & & 7 & & 22 & 7 & 7 & 7 & & & & & & & 10 \\
\hline & H & & & & & & 4 & \\
\hline sunfish & R & & & & 16 & & 24 & \\
\hline Spotted & H & & & & & & & & 7 & 7 & 7 & \\
\hline bass & R & & & & & 13 & 7 & 26 & 13 & 33 & 25 & \\
\hline Largemouth & H & & & & & & & & & & & & & & 7 & 13 & 19 & & & & & & & & & & & & & & & & & & \\
\hline bass & R & & & & & & & 644 & 388 & 1357 & 1052 & 1336 & 831 & 478 & 395 & 256 & 242 & 90 & 62 & 42 & & & 13 & & & & & & & & & & & & \\
\hline Black & H & & & & & 16 & 97 & 202 & 97 & 24 & 33 & \\
\hline crappie & R & & & 79 & 292 & 520 & 220 & \\
\hline White & H & & & & 7 & 148 & 497 & 1,194 & 1,157 & 801 & 430 & 96 & 67 & & 7 & \\
\hline crappie & R & & & 157 & 1,525 & 4,539 & 3,081 & 494 & 112 & 157 & 97 & 7 & & 7 & & 7 & 9 & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 44. Monthly catfish (flathead, channel, and blue) angling success at Dewey Lake (1,100 acres) during the 2018 creel survey period.
\begin{tabular}{lcccccccc}
\hline & \begin{tabular}{c}
Total no. \\
of catfish \\
caught
\end{tabular} & \begin{tabular}{c}
Total no. \\
of catfish \\
harvested
\end{tabular} & \begin{tabular}{c}
No. of \\
catfish \\
fishing \\
trips
\end{tabular} & \begin{tabular}{c}
Hours \\
fished by \\
catfish \\
anglers
\end{tabular} & \begin{tabular}{c}
Catfish \\
caught by \\
catfish \\
anglers
\end{tabular} & \begin{tabular}{c}
Catfish \\
caught/hour \\
by catfish \\
anglers
\end{tabular} & \begin{tabular}{c}
Catfish \\
harvested \\
by catfish \\
anglers
\end{tabular} & \begin{tabular}{c}
Catfish \\
harvested/hour \\
by catfish \\
anglers
\end{tabular} \\
\hline Mar & 69 & 59 & 16.5 & 64.13 & 69 & 1.40 & 59 & 1.20 \\
Apr & 210 & 114 & 41.87 & 162.71 & 202 & 1.05 & 114 & 0.59 \\
May & 306 & 153 & 115.19 & 447.60 & 258 & 0.46 & 129 & 0.23 \\
Jun & 547 & 333 & 134.84 & 53.97 & 493 & 0.66 & 329 & 0.44 \\
Jul & 250 & 83 & 71.61 & 278.26 & 218 & 0.36 & 73 & 0.12 \\
Aug & 169 & 90 & 112.30 & 436.38 & 147 & 0.29 & 90 & 0.18 \\
Sep & 327 & 123 & 102.72 & 399.17 & 293 & 0.45 & 109 & 0.17 \\
Oct & 52 & 26 & 26.56 & 103.21 & 41 & 0.51 & 20 & 0.25 \\
\hline Total & 1,931 & 981 & 621.59 & \(2,415.42\) & 1,721 & 0.50 & 923 & 0.27 \\
Mean & & & & & & 0.65 & & 0.40
\end{tabular}

Table 45. Monthly black and white crappie angling success at Dewey Lake (1,100 acres) during the 2018 creel survey period.
\begin{tabular}{lcccccccc}
\hline & & & & & & & Crappie \\
& \begin{tabular}{c}
Total no. \\
of crappie \\
caught
\end{tabular} & \begin{tabular}{c}
Notal no. of \\
of crappie \\
harvested
\end{tabular} & \begin{tabular}{c}
Hours \\
crappie \\
fishing \\
trips
\end{tabular} & \begin{tabular}{c}
Crappie \\
fished by \\
crappie \\
anglers
\end{tabular} & \begin{tabular}{c}
Caught by \\
crappie \\
anglers
\end{tabular} & \begin{tabular}{c}
caught/hour \\
by crappie \\
anglers
\end{tabular} & \begin{tabular}{c}
Crappie \\
by \\
anglers
\end{tabular} & \begin{tabular}{c}
Crappie \\
harvested/hour \\
by crappie \\
anglers
\end{tabular} \\
\hline Mar & 2,842 & 1,076 & 173.28 & 673.33 & 2,813 & 4.20 & 1,076 & 1.61 \\
Apr & 3,645 & 780 & 382.83 & \(1,487.64\) & 3,488 & 2.27 & 780 & 0.51 \\
May & 5,443 & 1524 & 370.60 & \(1,440.10\) & 5,104 & 3.75 & 1419 & 1.04 \\
Jun & 1,313 & 298 & 104.50 & 406.08 & 1,254 & 2.69 & 289 & 0.62 \\
Jul & 364 & 151 & 30.30 & 117.72 & 312 & 2.36 & 130 & 0.98 \\
Aug & 248 & 90 & 13.37 & 51.59 & 231 & 3.13 & 90 & 1.22 \\
Sep & 1,084 & 532 & 120.59 & 468.59 & 1,036 & 1.63 & 525 & 0.83 \\
Oct & 1,237 & 423 & 119.52 & 464.43 & 1,113 & 1.98 & 361 & 0.64 \\
\hline Total & 16,176 & 4874 & \(1,314.99\) & \(5,109.48\) & 15,351 & & 4670 & \\
Mean & & & & & & 2.75 & & 0.93
\end{tabular}

Table 46. Monthly black bass angling success at Dewey Lake (1,100 acres) during the 2018 creel survey period.
\begin{tabular}{lcccccccc}
\hline & & & & & & Black \\
& \begin{tabular}{c}
Total no. \\
of black \\
bass \\
caught
\end{tabular} & \begin{tabular}{c}
Total no. \\
of black \\
bass \\
harvested
\end{tabular} & \begin{tabular}{c}
No. of \\
black \\
bass \\
fishing \\
trips
\end{tabular} & \begin{tabular}{c}
Hours \\
fished by \\
bass \\
anglers
\end{tabular} & \begin{tabular}{c}
bass \\
basht by \\
bass \\
anglers
\end{tabular} & \begin{tabular}{c}
baught/ \\
hour by \\
bass \\
anglers
\end{tabular} & \begin{tabular}{c}
Black \\
bass \\
harvested \\
by bass \\
anglers
\end{tabular} & \begin{tabular}{c}
Black bass \\
harvested/ \\
hour by \\
bass \\
anglers
\end{tabular} \\
\hline Mar & 385 & 0 & 280.54 & 1090.16 & 385 & 0.32 & 0 & 0.00 \\
Apr & 1,569 & 0 & 1094.66 & 4253.73 & 1,437 & 0.32 & 0 & 0.00 \\
May & 2,266 & 40 & 831.34 & 3230.50 & 2,072 & 0.59 & 24 & 0.01 \\
Jun & 990 & 10 & 259.57 & 1008.65 & 851 & 0.75 & 10 & 0.01 \\
Jul & 364 & 0 & 256.13 & 995.31 & 260 & 0.28 & 0 & 0.00 \\
Aug & 580 & 6 & 328.88 & 1277.98 & 484 & 0.40 & 6 & 0.01 \\
Sep & 839 & 0 & 317.10 & 1232.21 & 784 & 0.82 & 0 & 0.00 \\
Oct & 356 & 5 & 102.92 & 399.92 & 263 & 0.65 & 0 & 0.00 \\
\hline Total & 7,365 & 61 & 3471.14 & \(13,488.46\) & 6,536 & & 40 & \\
Mean & & & & & & 0.51 & & 0.00
\end{tabular}

Table 47. Monthly white bass (morone) angling success at Dewey Lake (1,100 acres) during the 2018 creel survey period.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & Total no. of morone caught & Total no. of morone harvested & No. of morone fishing trips & Hours fished by morone anglers & Morone caught by morone anglers & Morone caught/hour by morone anglers & Morone harvested by morone anglers & Morone harvested/hour by morone anglers \\
\hline Mar & 10 & & & & & & & \\
\hline Apr & 61 & & & & & & & \\
\hline May & 48 & 8.06 & & & & & & \\
\hline Jun & 80 & & & & & & & \\
\hline Jul & 21 & & & & & & & \\
\hline Aug & 6 & & & & & & & \\
\hline Sep & 30 & & 4.47 & 17.36 & 27 & 4.00 & & \\
\hline Oct & & & & & & & & \\
\hline Total & 256 & 8.06 & 4.47 & 17.36 & 27 & 4.00 & & \\
\hline Mean & & & & & & 4.00 & & \\
\hline
\end{tabular}

Table 48. Catch and harvest statistics derived from a creel survey at Dewey Lake (1,100 acres) for largemouth bass, white and black crappie, and blue, channel and flathead catfish caught and released by all anglers from 1 March to 31 October 2018.

Table 49. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 2.00 hours of 15minute electrofishing samples at Fishtrap Lake (1,143 acres) on 27 September 2018; numbers in parentheses are standard errors.

EFDFLLSF.D18

Table 50. Indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Fishtrap Lake (1,143 acres).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2003 & 5.1 & 0.0 & 106.2 & 32.9 & 59.6 & 15.9 & 35.4 & 6.0 \\
\hline 2004 & 5.0 & 0.0 & 256.0 & 51.1 & 122.7 & 23.9 & 61.5 & 10.2 \\
\hline 2005 & 4.5 & 0.1 & 108.0 & 41.3 & 24.0 & 11.1 & 52.5 & 8.8 \\
\hline 2006 & 5.0 & 0.1 & 72.7 & 14.1 & 36.5 & 8.0 & 28.3 & 4.5 \\
\hline 2007 & 5.1 & 0.1 & 114.2 & 23.7 & 63.5 & 11.0 & 38.5 & 12.1 \\
\hline 2008 & 4.6 & 0.1 & 75.3 & 25.9 & 26.3 & 9.5 & 44.2 & 10.7 \\
\hline 2009 & 4.8 & 0.1 & 83.3 & 15.1 & 39.3 & 5.4 & 51.6 & 3.2 \\
\hline 2010 & 5.2 & 0.1 & 111.6 & 16.4 & 61.6 & 8.4 & no s & \\
\hline 2011 & 5.1 & 0.1 & 119.4 & 26.9 & 69.1 & 13.3 & 50.8 & 8.2 \\
\hline 2012 & 5.1 & 0.1 & 72.7 & 24.3 & 38.0 & 12.0 & no s & \\
\hline 2013 & 4.6 & 0.1 & 63.5 & 16.4 & 19.5 & 5.2 & 24.2 & 6.2 \\
\hline 2014 & 4.8 & 0.1 & 54.0 & 8.8 & 21.2 & 3.6 & 22.1 & 3.1 \\
\hline 2015 & 4.9 & 0.1 & 139.0 & 25.2 & 62.0 & 16.7 & no s & \\
\hline 2016 & 4.7 & 0.0 & 105.2 & 25.1 & 32.0 & 6.3 & 61.33* & 17.9 \\
\hline 2017 & 5.4 & 0.1 & 105.8 & 20.5 & 76.9 & 15.9 & no s & \\
\hline 2018 & 5.0 & 0.0 & 184.5 & 24.5 & 88.0 & 14.0 & & \\
\hline
\end{tabular}
* Includes supplemental spring stocked fish EFDFLLSF.D03-D16 EFDFLLSS.D04-D18 EFDFLLAS.D04, D10 EFDFLLAF.D17

Table 51. Length frequency and gillnetting CPUE (fish/net-night) of hybrid striped bass collected in 3 net-nights at Fishtrap Lake (1,143 acres) on 4-5 December 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & & & \\
\hline WB & 1 & & 1 & & 4 & 19 & 2 & 13 & 13 & 7 & 3 & & & & & & & & & & 63 & 21.0 & (12.2) \\
\hline HB & & & 2 & 2 & 3 & & & & 9 & 16 & 2 & & 4 & 4 & 10 & 5 & 5 & 3 & 1 & 2 & 68 & 22.7 & (5.8) \\
\hline \multicolumn{24}{|l|}{EFDFLHGF.D18} \\
\hline \multicolumn{24}{|l|}{HB=hybrid striped bass} \\
\hline \multicolumn{24}{|l|}{WB=white bass} \\
\hline
\end{tabular}

Table 52. Mean back-calculated length (in) at each annulus for hybrid striped bass collected from Fishtrap Lake (1,143 acres) in 2018, including the length range of bass at each age
\begin{tabular}{lrccccc}
\multicolumn{7}{l}{ and the 95\% confidence intervals for each age group. } \\
\hline Year & & \multicolumn{6}{c}{ Age } \\
\cline { 3 - 7 } class & No. & 1 & 2 & 3 & 4 & 5 \\
\hline 2017 & 21 & 10.5 & & & & \\
2016 & 10 & 10.8 & 16.6 & & & \\
2015 & 17 & 10.2 & 16.3 & 19.5 & & \\
2014 & 4 & 10.2 & 15.9 & 20.3 & 22.8 & \\
2013 & 2 & 10.7 & 16.7 & 19.2 & 21.0 & 22.5 \\
& & & & & & \\
Mean & 10.4 & 16.3 & 19.6 & 22.2 & 22.5 \\
Smallest & 7.5 & 13.5 & 17.2 & 20.8 & 22.4 \\
Largest & 13.4 & 22.5 & 25.6 & 23.8 & 22.6 \\
Std error & 0.2 & 0.3 & 0.3 & 0.4 & 0.1 \\
\(95 \%\) CI LO & 10.1 & 15.8 & 19.0 & 21.3 & 22.3 \\
\(95 \%\) CI HI & 10.8 & 16.8 & 20.3 & 23.1 & 22.7 \\
\hline
\end{tabular}
inter
EFDFLHAF.D18

Table 53. Mean back-calculated length (in) at each annulus for white bass collected from Fishtrap Lake (1,143 acres) in 2018, including the length range of bass at each age and the \(95 \%\) confidence intervals for each age group.
\begin{tabular}{lrccccccc}
\hline Year & & \multicolumn{7}{c}{ Age } \\
\cline { 3 - 9 } class & No. & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2017 & 19 & 7.4 & & & & & & \\
2016 & 6 & 8.6 & 12.7 & & & & & \\
2015 & 12 & 7.7 & 12.2 & 13.7 & & & & \\
2014 & 4 & 7.0 & 10.9 & 12.7 & 14.3 & & & \\
2013 & 4 & 6.6 & 10.6 & 12.2 & 13.1 & 13.9 & & \\
2012 & 1 & 8.0 & 12.3 & 14.1 & 15.2 & 16.3 & 16.5 & \\
2011 & 1 & 7.5 & 11.0 & 12.5 & 13.3 & 14.0 & 14.5 & 14.8 \\
& & & & & & & & \\
Mean & 7.5 & 11.8 & 13.2 & 13.8 & 14.3 & 15.5 & 14.8 \\
Smallest & 4.8 & 8.9 & 11.0 & 12.0 & 13.0 & 14.5 & 14.8 \\
Largest & 10.6 & 13.7 & 14.8 & 15.2 & 16.3 & 16.5 & 14.8 \\
Std error & 0.1 & 0.2 & 0.2 & 0.3 & 0.4 & 1.0 & \\
\(95 \%\) CI LO & 7.3 & 11.5 & 12.8 & 13.2 & 13.4 & 13.6 & \\
\(95 \%\) CI HI & & 7.8 & 12.2 & 13.6 & 14.4 & 15.2 & 17.5 & \\
\hline
\end{tabular}
intercept=0
EFDFLHAF.D18

Table 54. Age frequency and CPUE (fish/net-night) of hybrid striped bass collected at Fishtrap Lake (1,143 acres) in December 2018; numbers in parentheses are standard error.

Table 55. Age frequency and CPUE (fish/net-night) of white bass collected at Fishtrap Lake (1,143 acres) in December 2018; numbers in parentheses are standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{11}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Age\%} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & & & & \\
\hline 0 & 1 & & & & & & & & & & & 1 & 2 & 0.3 & (0.3) \\
\hline 1 & & & & & 4 & 19 & 2 & & & & & 25 & 40 & 8.3 & (2.9) \\
\hline 2 & & & & & & & & 4 & 2 & 2 & & 8 & 13 & 2.6 & (2.1) \\
\hline 3 & & & & & & & & 7 & 4 & 4 & & 15 & 25 & 5.3 & (4.2) \\
\hline 4 & & & & & & & & & 3 & & 2 & 5 & 8 & 1.6 & (1.2) \\
\hline 5 & & & & & & & & 2 & 3 & & & 5 & 8 & 1.7 & (1.4) \\
\hline 6 & & & & & & & & & & & 2 & 2 & 2 & 0.5 & (0.3) \\
\hline 7 & & & & & & & & & & 1 & & 1 & 2 & 0.3 & (0.3) \\
\hline Total & 1 & & & & 4 & 19 & 2 & 13 & 12 & 7 & 4 & 62 & & & \\
\hline \% & 2 & & & & 6 & 31 & 3 & 21 & 21 & 11 & 5 & & & & \\
\hline
\end{tabular}

Table 56. Hybrid striped bass population assessment for fish gill netted at Fishtrap Lake (1,143 acres) from 2004-2018, CPUE = fish/net-night. Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{lccccccc}
\hline & \multicolumn{7}{c}{ Year } \\
\cline { 2 - 8 } Parameters & 2004 & 2005 & 2007 & 2009 & 2011 & 2014 & 2018 \\
\hline CPUE & 3 & 4 & 4 & 4 & 4 & 4 & 3 \\
(excluding age 0) & \((15.0)\) & \((29.1)\) & \((26.8)\) & \((77.7)\) & \((67.3)\) & \((53.3)\) & \((20.7)\) \\
& & & & & & & 4 \\
Mean length age 2+ at capture & 1 & 3 & 3 & 3 & 2 & 4 \\
& \((13.7)\) & \((17.3)\) & \((17.6)\) & \((17.4)\) & \((16.9)\) & \((18.5)\) & \((19.4)\) \\
& & & & & & & 4 \\
CPUE \(\geq 15.0\) in & 3 & 4 & 4 & 4 & 4 & 4 \\
& \((5.0)\) & \((14.9)\) & \((17.8)\) & \((58.0)\) & \((48.3)\) & \((26.3)\) & \((17.3)\) \\
& & & & & & 4 & 4 \\
\\
CPUE age-1 & 2 & 3 & 3 & 4 & 4 & 4 \\
& \((4.6)\) & \((9.4)\) & \((9.3)\) & \((20.3)\) & \((16.9)\) & \((27.7)\) & \((9.3)\) \\
\hline Total Score & 9 & 14 & 14 & 15 & 14 & 16 & 15 \\
Assessment rating & Fair & Excellent & Excellent & Excellent & Excellent & Excellent & Excellent \\
Instantaneous mortality & 0.45 & 0.62 & 0.44 & 1.01 & 0.62 & 0.40 & 0.61 \\
Annual mortality & 36.00 & 46.40 & 35.60 & 63.40 & 46.10 & 33.20 & 45.60 \\
\hline EFDFLHAF.D04-D18 & & & & & & & \\
EFDFLHGF.D04-D18 & & & & & & & \\
\hline
\end{tabular}

Table 57. White bass population assessment for fish gill netted at Fishtrap Lake (1,143 acres) during 2018. CPUE \(=\) fish/net-night. Actual values are in parentheses. Scoring based on statewide assessment.

Parameters
\begin{tabular}{lc}
\hline CPUE \\
(excluding age 0) & 4 \\
& \((19.7)\) \\
Mean length age 2+ at capture & 4 \\
& \((14.5)\) \\
CPUE \(\geq 12.0\) in & 4 \\
& \((12.7)\) \\
CPUE age-1 & 4 \\
& \((8.33)\) \\
\hline Total Score & 16 \\
Assessment rating & Excellent \\
& \\
Instantaneous mortality & 0.49 \\
Annual mortality & 38.50 \\
\hline EFDFLHAF.D18 & \\
EFDFLHGF.D18 &
\end{tabular}

Table 58. Number of fish and relative weight (Wr) for each length category of morones collected at Fishtrap Lake (1,143 acres) on 5 December 2018. Numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(<7.9\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{\(\frac{\text { Hybrid striped bass }}{\text { 12.0-14.9 in }}\)} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & No. & Wr & No. & Wr & No. & Wr & No. & Wr \\
\hline \multirow{4}{*}{\(\leq 5.9\) in} & 7 & \[
\begin{aligned}
& 90.33 \\
& (2.09)
\end{aligned}
\] & 8 & \[
\begin{aligned}
& 90.04 \\
& (2.79)
\end{aligned}
\] & 42 & \[
\begin{aligned}
& 90.53 \\
& (1.14)
\end{aligned}
\] & 57 & \[
\begin{aligned}
& 90.44 \\
& (0.94)
\end{aligned}
\] \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\(6.0-8.9\) in}} & \multicolumn{2}{|l|}{\[
\frac{\text { White bass }}{9.0-11.9 \text { in }}
\]} & \multicolumn{2}{|c|}{\(\geq 12.0\) in} & \multicolumn{2}{|c|}{Total} \\
\hline & & & No. & Wr & No. & Wr & No. & Wr \\
\hline & & & 19 & \[
\begin{aligned}
& 95.59 \\
& (1.49)
\end{aligned}
\] & 23 & \[
\begin{aligned}
& 93.22 \\
& (1.08)
\end{aligned}
\] & 43 & \[
\begin{aligned}
& 94.14 \\
& (0.89)
\end{aligned}
\] \\
\hline
\end{tabular}

EFDFLHGF.D18

Table 59. Length frequency and CPUE (fish/hr) of black bass and walleye collected in 1.25 hours of \(15-\mathrm{min}\) electrofishing runs in Martins Fork Lake (330 acres) on 10 May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{13}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & & & \\
\hline LMB & 1 & 5 & 9 & 6 & 3 & 25 & 17 & 3 & 3 & 2 & 6 & 11 & 8 & 99 & 79.2 & (8.7) \\
\hline SB & & 6 & 3 & & 7 & 12 & 6 & 3 & 2 & & 1 & & & 40 & 32.0 & (7.7) \\
\hline SMB & & & & & & & & & 1 & & & & & 1 & 0.8 & (0.8) \\
\hline Coosa & & & 1 & & & & & & & & & & & 1 & 0.8 & (0.8) \\
\hline Walleye & & & & & & & & 2 & 2 & & 3 & 1 & & 8 & 6.4 & (2.7) \\
\hline
\end{tabular}

LMB = largemouth bass
\(S B=\) spotted bass
SMB = smallmouth bass
EFDMLLSS.D18

Table 60. Spring electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Martins Fork Lake (330 acres). S.E. = standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{<8.0 in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|c|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 2003 & 14.0 & 3.7 & 22.0 & 3.8 & 3.3 & 1.2 & 5.3 & 2.0 & 0.0 & & 68.0 & 15.7 \\
\hline 2004 & 2.7 & 2.7 & 89.3 & 19.2 & 4.0 & 2.3 & 5.3 & 3.5 & 0.0 & & 101.3 & 26.8 \\
\hline 2005 & 4.8 & 2.3 & 23.2 & 6.0 & 17.6 & 4.8 & 4.8 & 2.0 & 0.0 & & 50.4 & 10.8 \\
\hline 2006 & 9.3 & 2.0 & 19.9 & 6.0 & 13.3 & 3.0 & 9.3 & 2.7 & 0.7 & & 51.7 & 10.7 \\
\hline 2007 & 7.9 & 3.3 & 48.6 & 13.3 & 15.7 & 2.6 & 21.1 & 5.3 & 1.6 & 1.0 & 93.3 & 19.3 \\
\hline 2008 & 7.8 & 4.8 & 19.5 & 7.2 & 20.2 & 3.7 & 19.4 & 2.4 & 0.8 & 0.8 & 66.9 & 12.2 \\
\hline 2009 & 11.2 & 4.1 & 19.9 & 3.3 & 9.6 & 2.0 & 11.2 & 1.5 & 1.6 & 1.0 & 51.8 & 7.4 \\
\hline 2010 & 17.6 & 6.3 & 26.4 & 16.4 & 8.0 & 2.8 & 19.2 & 2.7 & 0.8 & 0.8 & 71.2 & 22.8 \\
\hline 2011 & 23.2 & 5.6 & 34.4 & 9.7 & 16.8 & 3.9 & 16.0 & 3.4 & 0.8 & 0.8 & 90.4 & 12.8 \\
\hline 2012 & 16.8 & 4.6 & 12.0 & 3.8 & 5.6 & 2.4 & 10.4 & 4.3 & 0.8 & 0.8 & 44.8 & 8.3 \\
\hline 2013 & & & & & & & ple & & & & & \\
\hline 2014 & 38.0 & 6.6 & 46.0 & 12.5 & 11.0 & 6.2 & 11.0 & 2.5 & 1.0 & 1.0 & 106.0 & 18.9 \\
\hline 2015 & 26.4 & 5.7 & 46.4 & 7.9 & 40.8 & 8.3 & 20.8 & 2.9 & 1.6 & 1.0 & 134.4 & 14.9 \\
\hline 2016 & & & & & & & ple & & & & & \\
\hline 2017 & & & & & & & & & & & & \\
\hline 2018 & 19.2 & 7.7 & 38.4 & 3.7 & 15.2 & 3.9 & 6.4 & 1.6 & 0.0 & & 79.2 & 8.7 \\
\hline
\end{tabular}

EFDMLLSS.D03-D18

Table 61. PSD and RSD values obtained for each black bass species taken in spring nocturnal electrofishing samples in Martins Fork Lake (330 acres) in May 2018; 95\% confidence intervals are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} & \multicolumn{3}{|c|}{Smallmouth bass} \\
\hline No. & PSD & \(\mathrm{RSD}_{15}\) & No. & PSD & \(\mathrm{RSD}_{14}\) & No. & PSD & \(\mathrm{RSD}_{14}\) \\
\hline 75 & \[
\begin{gathered}
36 \\
(25-47) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
11 \\
(4-18) \\
\hline
\end{gathered}
\] & 31 & \[
\begin{gathered}
9 \\
(0-20) \\
\hline
\end{gathered}
\] & 0 & 1 & 100 & 0 \\
\hline
\end{tabular}

EFDMLLSS.D18

Table 62. Spring electrofishing population assessment for largemouth bass collected from Martins Fork Lake (330 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 2006 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2014 & 2015 & 2018 \\
\hline Mean length age-3 at capture & \[
\begin{gathered}
\hline 4 \\
(14.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(14.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(14.3)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(11.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.8)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(11.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(10.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(10.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(10.9)
\end{gathered}
\] \\
\hline Spring CPUE age 1 & \[
\begin{gathered}
2 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.1)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(7.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(22.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(22.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.6)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
1 \\
(13.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(15.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(8.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(16.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(40.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(15.2)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
2 \\
(9.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(21.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(19.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(19.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(20.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(6.4)
\end{gathered}
\] \\
\hline Spring CPUE >20.0 in & \[
\begin{gathered}
2 \\
(0.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.6) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.6) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.6) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0) \\
\hline
\end{gathered}
\] \\
\hline Total score & 11 & 14 & 13 & 11 & 11 & 13 & 11 & 11 & 15 & 10 \\
\hline Assessment rating & Fair & Good & Good & Fair & Fair & Good & Fair & Fair & Good & Fair \\
\hline Instantaneous mortality (z) & 0.81 & 0.80 & 0.48 & 0.54 & 0.37 & 0.33 & 0.54 & & & \\
\hline Annual mortality (A) & 55.70 & 55.10 & 38.40 & 41.60 & 31.30 & 28.40 & 41.60 & & & \\
\hline \multicolumn{11}{|l|}{\[
\begin{aligned}
& \text { EFDMLLSS.D03-D12, D14-D15, D18 } \\
& \text { EFDMLLAS.D03, D09 } \\
& \text { EFDMLLAF.D14 }
\end{aligned}
\]} \\
\hline
\end{tabular}

Table 63. Length frequency and CPUE (fish/hr) of black bass and walleye collected at Martins Fork Lake (330 acres) during 1.0 hour of 15 -minute nocturnal electrofishing samples on 25 September 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & \\
\hline SMB & & 1 & & & & & & 1 & & 2 & 2.0 (1.2) \\
\hline SB & 2 & 1 & 1 & 8 & 10 & 4 & 2 & & & 28 & 28.0 (13.0) \\
\hline LMB & 23 & 27 & 28 & 1 & 5 & 7 & 5 & 5 & 1 & 102 & 102.0 (10.7) \\
\hline Coosa & & & & & & & & & & 0 & 0.0 \\
\hline Walleye & & & & & & & & & & 0 & 0.0 \\
\hline \multicolumn{12}{|l|}{SMB = smallmouth bass} \\
\hline \multicolumn{12}{|l|}{SB = spotted bass} \\
\hline \multicolumn{12}{|l|}{LMB = largemouth bass} \\
\hline EFDMLLS & & & & & & & & & & & \\
\hline
\end{tabular}

Table 64. Electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Martins Fork Lake (330 acres); CPUE = fish/hr, SE = standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|l|}{Age-1} \\
\hline & Mean length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2002 & 5.5 & 0.1 & 34.4 & 8.6 & 25.6 & 7.9 & 15.3 & 3.6 \\
\hline 2003 & no fall sa & & & & & & 77.5 & 18.5 \\
\hline 2004 & no fall sa & & & & & & 24.6 & 5.9 \\
\hline 2005 & 4.4 & 0.2 & 32.0 & 4.3 & 10.0 & 2.6 & 10.0 & 2.3 \\
\hline 2006 & 4.5 & 0.1 & 38.4 & 14.5 & 11.2 & 3.2 & 10.1 & 3.4 \\
\hline 2007 & 4.6 & 0.2 & 28.7 & 8.7 & 10.4 & 3.0 & 10.0 & 5.1 \\
\hline 2008 & 4.4 & 0.2 & 31.9 & 14.3 & 10.3 & 2.7 & 7.2 & 2.9 \\
\hline 2009 & 4.3 & 0.2 & 23.2 & 8.3 & 7.2 & 2.3 & 4.8 & 2.0 \\
\hline 2010 & 5.2 & 0.2 & 40.0 & 11.6 & 26.7 & 9.3 & 11.2 & 3.4 \\
\hline 2011 & 4.7 & 0.1 & 20.0 & 6.8 & 7.2 & 1.5 & 8.8 & 2.7 \\
\hline 2012 & 4.8 & 0.2 & 28.8 & 4.6 & 13.6 & 3.9 & no sample & \\
\hline 2013 & 4.0 & 0.2 & 21.0 & 6.6 & 6.0 & 1.2 & 22.0 & 5.3 \\
\hline 2014 & 4.9 & 0.1 & 39.2 & 11.8 & 21.6 & 8.2 & 22.4 & 4.1 \\
\hline 2015 & 4.6 & 0.1 & 59.0 & 24.4 & 18.0 & 7.4 & no sample & \\
\hline 2016 & 4.5 & 0.1 & 67.0 & 26.5 & 15.0 & 9.0 & no sample & \\
\hline 2017 & 4.5 & 0.1 & 95.0 & 24.6 & 25.0 & 4.4 & 17.6 & 7.4 \\
\hline 2018 & 5.4 & 0.1 & 67.0 & 11.1 & 44.0 & 8.2 & & \\
\hline \multicolumn{9}{|l|}{EFDMLLSF.D02-D18} \\
\hline \multicolumn{9}{|l|}{EFDMLLSS.D03-D15} \\
\hline \multicolumn{9}{|l|}{EFDMLLAS.D03, D09} \\
\hline \multicolumn{9}{|l|}{EFDMLLAF.D14} \\
\hline
\end{tabular}

Table 65. Length frequency and electrofishing CPUE (fish/hr) of largemouth bass collected at Pan Bowl Lake (98 acres) during 1.25 hours of 15 minute daytime runs on 4 May 2018. SE=standard error.
\begin{tabular}{|c|}
\hline \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[b]{2}{*}{SE} \\
\hline 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & & & \\
\hline 40 & 49 & 26 & 2 & 21 & 54 & 95 & 40 & 6 & 2 & & & & 2 & 1 & 1 & & 1 & 2 & 342 & 273.6 & 31.7 \\
\hline
\end{tabular}

EFDPBLSS.D18

Table 66. Spring daytime electrofishing catch-per-unit-effort (CPUE) for each length group of largemouth bass collected at Pan Bowl Lake (98 acres). Nocturnal electrofishing was used 1992-2000. CPUE = fish/hour, SE = standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|c|}{\(<8.0\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|r|}{\(\geq 15.0\) in} & \multicolumn{2}{|c|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 1992 & 19.4 & & 22.3 & & 14.3 & & 25.7 & & 1.1 & & 81.7 & \\
\hline 1993 & no data & & & & & & & & & & & \\
\hline 1994 & no data & & & & & & & & & & & \\
\hline 1995 & no data & & & & & & & & & & & \\
\hline 1996 & 20.0 & & 56.0 & & 9.0 & & 14.0 & & 2.0 & & 99.0 & 27.4 \\
\hline 1997 & 12.1 & & 39.5 & & 8.1 & & 15.3 & & 0.8 & & 75.0 & 19.9 \\
\hline 1998 & 26.0 & & 20.0 & & 5.0 & & 10.0 & & 3.0 & & 61.0 & 20.6 \\
\hline 1999 & 17.3 & & 24.7 & & 30.0 & & 15.3 & & 4.0 & & 87.3 & 22.7 \\
\hline 2000 & 34.0 & & 52.0 & & 18.0 & & 34.7 & & 8.7 & & 138.7 & 21.8 \\
\hline 2001 & no data & & & & & & & & & & & \\
\hline 2002 & no data & & & & & & & & & & & \\
\hline 2003 & 28.8 & 10.2 & 47.2 & 9.6 & 12.0 & 1.3 & 25.6 & 4.1 & 3.2 & & 113.6 & 20.5 \\
\hline 2004 & no data & & & & & & & & & & & \\
\hline 2005 & 12.8 & 4.1 & 65.8 & 13.3 & 9.4 & 3.6 & 18.0 & 4.3 & 1.8 & & 106.0 & 18.9 \\
\hline 2006 & no data & & & & & & & & & & & \\
\hline 2007 & 90.3 & 26.6 & 149.7 & 20.2 & 12.6 & 3.9 & 22.9 & 4.4 & 6.9 & 2.7 & 275.4 & 39.2 \\
\hline 2008 & 28.0 & 10.0 & 91.0 & 15.6 & 21.5 & 6.4 & 18.0 & 4.7 & 7.0 & 1.8 & 158.5 & 26.9 \\
\hline 2009 & 50.4 & 8.4 & 120.0 & 17.8 & 11.2 & 3.2 & 8.4 & 2.2 & 2.9 & 1.4 & 190.0 & 22.6 \\
\hline 2010 & 72.0 & 22.5 & 105.0 & 19.4 & 7.0 & 2.8 & 10.0 & 2.9 & 2.0 & 1.3 & 194.0 & 32.1 \\
\hline 2011 & 102.0 & 10.9 & 108.0 & 11.9 & 11.0 & 3.0 & 4.0 & 3.0 & 1.0 & 1.0 & 225.0 & 20.0 \\
\hline 2012 & 37.0 & 10.7 & 81.0 & 13.9 & 3.0 & 2.1 & 2.0 & 2.0 & 1.0 & 1.0 & 123.0 & 21.9 \\
\hline 2013 & no data & & & & & & & & & & & \\
\hline 2014 & 81.3 & 16.2 & 86.7 & 15.7 & 0.0 & & 1.3 & 1.3 & 0.0 & & 169.3 & 24.6 \\
\hline 2015 & no data & & & & & & & & & & & \\
\hline 2016 & 75.4 & 9.1 & 148.6 & 23.4 & 16.0 & 3.9 & 9.1 & 2.7 & 4.6 & 1.6 & 249.1 & 23.9 \\
\hline 2017 & no data & & & & & & & & & & & \\
\hline 2018 & 93.6 & 18.0 & 168.0 & 21.1 & 6.4 & 2.4 & 5.6 & 3.0 & 2.4 & 1.6 & 273.6 & 31.7 \\
\hline
\end{tabular}

Table 67. PSD and RSD \(_{15}\) values for largemouth bass taken in spring electrofishing samples in Pan Bowl Lake (98 acres) on 4 May 2018; 95\% confidence intervals are in parentheses.
\begin{tabular}{ccc}
\hline No. & PSD & RSD \(_{15}\) \\
\hline 225 & 7 & 3 \\
& \((3-10)\) & \((1-5)\) \\
\hline EFDPBLSS. 18 &
\end{tabular}

EFDPBLSS.D18

Table 68. Population assessment for largemouth bass collected during spring at Pan Bowl Lake (98 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 2005 & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2014 & 2016 & 2018 \\
\hline Mean length age 3 at capture & \[
\begin{gathered}
2 \\
(10.5)
\end{gathered}
\] \\
\hline Spring CPUE age 1 & \[
\begin{gathered}
1 \\
(3.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(72.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(43.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(51.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(95.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(76.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(58.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(92.0)
\end{gathered}
\] \\
\hline Spring CPUE 12-14.9 in & \[
\begin{gathered}
1 \\
(9.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(12.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(21.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.4)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
3 \\
(18.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(22.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(18.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(1.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(9.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.6)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
3 \\
(1.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(7.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(1.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.4)
\end{gathered}
\] \\
\hline Total score & 10 & 14 & 13 & 11 & 11 & 10 & 8 & 9 & 14 & 11 \\
\hline Assessment rating & Fair & Good & Good & Fair & Fair & Fair & Poor & Fair & Good & Fair \\
\hline Instantaneous mortality (z) & 0.37 & 0.43 & 0.42 & 0.62 & 0.65 & 0.54 & 0.58 & 0.99 & 0.69 & 0.77 \\
\hline Annual mortality (A) & 31.20 & 35.20 & 34.10 & 46.10 & 47.60 & 41.90 & 44.30 & 63.20 & 49.80 & 53.50 \\
\hline EFDPBLSS.D04-D18 EFDPBLAS.D07 & & & & & & & & & & \\
\hline
\end{tabular}

Table 69. Length frequency and CPUE (fish/hr) of black bass collected in approximately 1.75 hours of 15minute nocturnal electrofishing samples in Paintsville Lake (1,150 acres) on 16 May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species/Area & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & \\
\hline \multicolumn{20}{|l|}{Lower} \\
\hline SMB & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & & 1 & 1 & & & & 1 & & & & & & & & & & 3 & 3.0 (3.0) \\
\hline LMB & 1 & 25 & 24 & 26 & 18 & 3 & 12 & 17 & 7 & 10 & 5 & & & 2 & & & 1 & 151 & 151.0 (15.0) \\
\hline \multicolumn{20}{|l|}{Upper} \\
\hline SMB & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & 1 & & 1 & & & & & & & & & & & & & & 2 & 2.7 (2.7) \\
\hline LMB & & 5 & 9 & 3 & 3 & 12 & 14 & 9 & 3 & 6 & 2 & 1 & 2 & & & 2 & & 71 & 94.7 (17.5) \\
\hline \multicolumn{20}{|l|}{Total} \\
\hline SMB & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & 1 & 1 & 2 & & & & 1 & & & & & & & & & & 5 & 2.9 (1.9) \\
\hline LMB & 1 & 30 & 33 & 29 & 21 & 15 & 26 & 26 & 10 & 16 & 7 & 1 & 2 & 2 & & 2 & 1 & 222 & 126.9 (15.4) \\
\hline
\end{tabular}

SMB = smallmouth bass
SB = spotted bass
LMB = largemouth bass
EFDPLLSS.D18

Table 70. Spring nocturnal electrofishing CPUE (fish/hr) for each length group of largemouth bass collected at Paintsville Lake (1,150 acres). SE = standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Year} & \multicolumn{10}{|c|}{Length group} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Total}} \\
\hline & \multicolumn{2}{|l|}{\(<8.0\) in} & \multicolumn{2}{|l|}{8.0-11.9 in} & \multicolumn{2}{|l|}{12.0-14.9 in} & \multicolumn{2}{|l|}{\(\geq 15.0\) in} & \multicolumn{2}{|l|}{\(\geq 20.0\) in} & & \\
\hline & CPUE & SE \\
\hline 1988 & 6.8 & & 10.6 & & 1.6 & & 0.3 & & 0.0 & & 19.3 & \\
\hline 1989 & 15.4 & & 16.0 & & 3.4 & & 0.9 & & 0.0 & & 36.3 & \\
\hline 1990 & 34.0 & & 31.3 & & 2.7 & & 2.0 & & 0.0 & & 70.0 & \\
\hline 1991 & 26.6 & & 33.1 & & 12.0 & & 0.4 & & 0.4 & & 72.0 & \\
\hline 1992 & 16.4 & & 44.0 & & 21.3 & & 0.7 & & 0.0 & & 82.4 & \\
\hline 1993 & 16.4 & & 26.3 & & 22.5 & & 2.8 & & 0.6 & & 68.0 & \\
\hline 1994 & 34.0 & & 47.4 & & 26.6 & & 3.6 & & 0.3 & & 111.6 & 15.6 \\
\hline 1995 & \multicolumn{12}{|c|}{no sample} \\
\hline 1996 & & & & & & no sa & ple & & & & & \\
\hline 1997 & 29.0 & & 40.0 & & 26.3 & & 1.0 & & 0.3 & & 96.3 & 11.5 \\
\hline 1998 & 25.7 & & 87.7 & & 26.3 & & 0.0 & & 0.0 & & 139.7 & 17.9 \\
\hline 1999 & 36.3 & & 65.7 & & 36.7 & & 2.3 & & 0.0 & & 141.0 & 12.1 \\
\hline 2000 & 12.7 & 5.0 & 95.0 & 19.6 & 27.0 & 7.8 & 2.0 & 0.8 & 0.0 & 0.0 & 136.7 & 28.0 \\
\hline 2001 & 42.3 & 5.5 & 63.0 & 10.8 & 46.7 & 4.8 & 4.3 & 0.9 & 0.7 & 0.5 & 156.3 & 17.5 \\
\hline 2002 & 41.8 & 1.8 & 70.5 & 2.7 & 36.0 & 1.4 & 2.2 & 0.2 & 0.0 & 0.0 & 150.9 & 14.2 \\
\hline 2003 & 106.0 & 21.2 & 71.0 & 10.8 & 19.7 & 5.7 & 3.0 & 1.3 & 0.3 & 0.3 & 199.7 & 35.2 \\
\hline 2004 & 62.7 & 10.9 & 92.0 & 19.2 & 17.0 & 3.4 & 2.0 & 0.9 & 0.0 & 0.0 & 173.7 & 25.4 \\
\hline 2005 & 80.4 & 31.9 & 133.3 & 38.9 & 35.1 & 6.0 & 6.2 & 1.2 & 0.4 & 0.4 & 255.1 & 72.7 \\
\hline 2006 & 30.6 & 4.4 & 65.1 & 12.6 & 13.6 & 1.9 & 2.6 & 1.1 & 0.0 & 0.0 & 111.9 & 14.3 \\
\hline 2007 & 39.8 & 9.5 & 81.6 & 23.0 & 11.1 & 3.1 & 6.5 & 0.8 & 0.0 & 0.0 & 139.0 & 20.5 \\
\hline 2008 & 37.8 & 6.6 & 79.3 & 11.9 & 9.8 & 1.8 & 4.0 & 1.6 & 0.4 & 0.4 & 130.8 & 14.1 \\
\hline 2009 & 28.1 & 8.0 & 69.2 & 24.6 & 6.2 & 2.6 & 2.3 & 1.0 & 0.0 & 0.0 & 105.9 & 16.4 \\
\hline 2010 & 51.2 & 16.4 & 86.4 & 11.6 & 13.3 & 1.7 & 5.6 & 1.1 & 1.9 & 0.5 & 156.5 & 26.3 \\
\hline 2011 & 40.6 & 7.2 & 56.9 & 5.1 & 9.4 & 1.9 & 3.7 & 0.9 & 1.1 & 0.5 & 110.6 & 11.6 \\
\hline 2012 & 63.2 & 10.5 & 61.6 & 7.0 & 9.9 & 1.6 & 2.1 & 0.7 & 1.3 & 0.5 & 136.8 & 14.8 \\
\hline 2013 & 58.6 & 4.9 & 60.0 & 5.6 & 4.6 & 1.1 & 4.0 & 1.0 & 0.3 & 0.3 & 127.1 & 7.0 \\
\hline 2014 & 62.4 & 8.1 & 64.5 & 6.0 & 24.8 & 3.8 & 4.3 & 1.3 & 0.8 & 0.4 & 156.0 & 8.6 \\
\hline 2015 & 83.6 & 7.4 & 68.4 & 11.5 & 17.8 & 3.6 & 10.7 & 3.0 & 2.7 & 1.5 & 180.4 & 15.4 \\
\hline 2016 & 67.6 & 6.2 & 80.0 & 7.8 & 9.2 & 2.0 & 10.4 & 2.1 & 1.2 & 0.6 & 167.2 & 9.1 \\
\hline 2017 & 35.2 & 5.3 & 61.2 & 11.3 & 6.4 & 1.4 & 6.4 & 1.5 & 0.8 & 0.5 & 109.2 & 16.3 \\
\hline 2018 & 64.6 & 17.1 & 43.4 & 7.3 & 13.1 & 2.1 & 4.0 & 1.6 & 0.0 & & 126.9 & 15.4 \\
\hline
\end{tabular}

EFDPLLSS.D88-D18

Table 71. PSD and RSD values obtained for each black bass species taken in spring electrofishing samples in each area of Paintsville Lake (1,150 acres) on 16 May 2018; \(95 \%\) confidence intervals are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} \\
\hline & No. & PSD & RSD \({ }_{15}\) & No. & PSD & RSD \({ }_{14}\) \\
\hline Lower & 57 & \[
\begin{gathered}
32 \\
(19-48)
\end{gathered}
\] & \[
\begin{gathered}
5 \\
(0-11)
\end{gathered}
\] & 1 & 0 & 0 \\
\hline Upper & 51 & \[
\begin{gathered}
25 \\
(13-38)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
(0-15)
\end{gathered}
\] & & & \\
\hline Total & 108 & \[
\begin{gathered}
29 \\
(20-37)
\end{gathered}
\] & \[
\begin{gathered}
6 \\
(2-11)
\end{gathered}
\] & 1 & 0 & 0 \\
\hline
\end{tabular}

EFDPLLSS.D18

Table 72. Spring nocturnal electrofishing population assessment for largemouth bass collected in Paintsville Lake (1,150 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter & 2007 & 2008 & 2009 & 2010 & 2011 & 2012 & 2013 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline Mean length age-3 at capture & \[
\begin{gathered}
2 \\
(11.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(10.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.2)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.9)
\end{gathered}
\] \\
\hline Spring CPUE age-1 & \[
\begin{gathered}
4 \\
(44.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(51.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(35.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(58.1)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(35.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(68.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(64.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(63.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(90.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(71.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(39.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(56.6)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
1 \\
(11.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(13.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.9)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(24.8)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(17.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(9.2)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(13.1)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
2 \\
(6.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.3)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(3.7)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(2.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.7)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(10.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(6.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(4.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(1.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(2.7)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(1.2)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0)
\end{gathered}
\] \\
\hline Total score & 10 & 10 & 8 & 12 & 9 & 10 & 10 & 13 & 14 & 12 & 11 & 9 \\
\hline Assessment rating & Fair & Fair & Poor & Fair & Fair & Fair & Fair & Good & Good & Fair & Fair & Fair \\
\hline Instantaneous mortality (z) & 1.16 & 1.17 & 1.12 & 1.18 & 0.57 & & & & & & & \\
\hline Annual mortality (A) & 68.60 & 69.10 & 67.40 & 69.40 & 83.70 & & & & & & & \\
\hline \begin{tabular}{l}
EFDPLLSS.D07-D18 EFDPLLAS.D06, D11 \\
EFDPLLAF.D12, D18
\end{tabular} & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 73. Length frequency and CPUE (fish/hr) of black bass collected in 1.75 hours of 15 -minute nocturnal electrofishing samples in Paintsville Lake (1,150 acres) on 25 October 2018; numbers in parentheses are standard
\begin{tabular}{|c|}
\hline Area/ & \multicolumn{18}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline Species & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & \\
\hline \multicolumn{21}{|l|}{Lower} \\
\hline SMB & & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & & & & & & & & & & & & & 1 & & & & & 1 & 1.0 (1.0) \\
\hline LMB & 1 & 8 & 8 & 19 & 20 & 9 & 18 & 16 & 8 & 4 & 5 & 2 & 2 & & & 1 & & 1 & 122 & 122.0 (25.1) \\
\hline \multicolumn{21}{|l|}{Upper} \\
\hline SMB & & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & & & & & 1 & & & & & & & & & & & & & 1 & 1.3 (1.3) \\
\hline LMB & 11 & 12 & 9 & 5 & 3 & 3 & 14 & 8 & 5 & 2 & 1 & 1 & & & 2 & & 1 & & 77 & 102.7 (25.5) \\
\hline \multicolumn{21}{|l|}{Total} \\
\hline SMB & & & & & & & & & & & & & & & & & & & 0 & 0.0 \\
\hline SB & & & & & & 1 & & & & & & & & 1 & & & & & 2 & 1.1 (0.7) \\
\hline LMB & 12 & 20 & 17 & 24 & 23 & 12 & 32 & 24 & 13 & 6 & 6 & 3 & 2 & & 2 & 1 & 1 & 1 & 199 & 113.7 (17.0) \\
\hline
\end{tabular}

SMB = smallmouth bass
SB= spotted bass
LMB = largemouth bass
EFDPLLSF.D18

Table 74. Mean back-calculated length (in) at each annulus for largemouth bass collected from Paintsville Lake (1,150 acres) on 25 October 2018, including 95\% confidence intervals.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year class} & \multirow[b]{2}{*}{No.} & \multicolumn{13}{|c|}{Age} \\
\hline & & & 1 & \multicolumn{2}{|l|}{2} & \multirow[t]{2}{*}{3} & & \multicolumn{2}{|l|}{4} & \multicolumn{2}{|l|}{5} & \multicolumn{2}{|l|}{6} & 7 \\
\hline 2017 & 24 & 5.4 & & & & & & & & & & & & \\
\hline 2016 & 16 & 5.6 & 8.8 & & & & & & & & & & & \\
\hline 2015 & 9 & 5.8 & 9.3 & & 11.9 & & & & & & & & & \\
\hline 2014 & 3 & 5.0 & 8.3 & & 10.2 & & 11.5 & & & & & & & \\
\hline 2013 & 1 & 5.7 & 10.0 & & 12.6 & & 14.9 & & 16.9 & & & & & \\
\hline 2012 & 3 & 5.5 & 9.4 & & 11.2 & & 12.9 & & 14.4 & & 15.3 & & & \\
\hline 2011 & 1 & 6.2 & 9.1 & & 11.2 & & 13.5 & & 15.6 & & 17.0 & & 18.2 & \\
\hline Mean & & 5.5 & 9 & & 11.5 & & 12.7 & & 15.1 & & 15.7 & & 18.2 & \\
\hline Smallest & & 3.6 & 7.1 & & 8.4 & & 9.7 & & 10.5 & & 11.2 & & 18.2 & \\
\hline Largest & & 7.2 & 10.9 & & 13.9 & & 14.9 & & 16.9 & & 17.6 & & 18.2 & \\
\hline STD error & & 0.1 & 0.2 & & 0.3 & & 0.7 & & 1.2 & & 1.5 & & & \\
\hline 95\% CI LO & & 5.3 & 8.7 & & 10.8 & & 11.4 & & 12.8 & & 12.7 & & & \\
\hline 95\% CI HI & & 5.7 & 9.3 & & 12.1 & & 14.0 & & 17.4 & & 18.7 & & & \\
\hline \multicolumn{15}{|l|}{Intercept = 0} \\
\hline EFDPLLAF.D & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 75. Nocturnal electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected at Paintsville Lake (1,150 acres); CPUE \(=\mathrm{fish} / \mathrm{hr}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age-0 \(\geq 5.0\) in} & \multicolumn{2}{|c|}{Age-1} \\
\hline & length & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2002 & & & & & & & 95.2 & 20.1 \\
\hline 2003 & 4.8 & 0.1 & 31.3 & 6.1 & 14.0 & 2.2 & 61.4 & 10.7 \\
\hline 2004 & 5.1 & 0.1 & 65.7 & 10.8 & 37.3 & 8.6 & 75.6 & 29.2 \\
\hline 2005 & 4.5 & 0.1 & 46.0 & 9.6 & 10.7 & 2.7 & 43.5 & 5.9 \\
\hline 2006 & 4.9 & 0.1 & 72.4 & 12.0 & 33.6 & 5.1 & 44.0 & 8.4 \\
\hline 2007 & 5.1 & 0.1 & 52.4 & 24.0 & 30.2 & 15.6 & 51.5 & 7.3 \\
\hline 2008 & 4.6 & 0.1 & 24.8 & 8.8 & 8.1 & 5.2 & 35.6 & 9.7 \\
\hline 2009 & 4.6 & 0.1 & 64.6 & 13.3 & 23.1 & 10.7 & 58.1 & 17.6 \\
\hline 2010 & 4.6 & 0.1 & 86.4 & 19.5 & 31.5 & 6.9 & 35.6 & 6.7 \\
\hline 2011 & 5.1 & 0.1 & 36.3 & 7.2 & 19.7 & 4.3 & 68.8 & 11.1 \\
\hline 2012 & 5.0 & 0.1 & 58.1 & 10.6 & 32.3 & 7.3 & 64.9 & 5.0 \\
\hline 2013 & 4.9 & 0.0 & 111.7 & 13.8 & 53.1 & 5.0 & 63.7 & 8.3 \\
\hline 2014 & 4.8 & 0.1 & 60.0 & 11.0 & 27.0 & 7.3 & 90.7 & 7.4 \\
\hline 2015 & 4.9 & 0.1 & 95.1 & 17.7 & 42.2 & 6.7 & 71.2 & 5.6 \\
\hline 2016 & 5.0 & 0.1 & 70.0 & 6.3 & 34.0 & 8.6 & 39.2 & 6.1 \\
\hline 2017 & 5.0 & 0.1 & 125.2 & 20.2 & 62.4 & 12.9 & 56.6 & 14.6 \\
\hline 2018 & 4.6 & 0.1 & 50.9 & 9.8 & 22.9 & 7.8 & & \\
\hline \multicolumn{9}{|l|}{EFDPLLSF.D03-D18} \\
\hline \multicolumn{9}{|l|}{EFDPLLSS.D02-D18} \\
\hline \multicolumn{9}{|l|}{EFDPLLAS.D03, D06, D11} \\
\hline EFDPLL & .D12, D & & & & & & & \\
\hline
\end{tabular}

Table 76. Species composition, relative abundance and CPUE (fish/hr) of black bass collected in approximately 3.0 hours of 15-minute electrofishing samples at Yatesville Lake (2,280 acres) on 14 May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Area} & \multirow[b]{2}{*}{Species} & \multicolumn{20}{|c|}{Inch class} & \multirow[b]{2}{*}{CPUE} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & Total & \\
\hline \multirow[t]{2}{*}{Lower} & SB & & & 1 & & 1 & 2 & 1 & 1 & 1 & 1 & & & 1 & & & & & & & 9 & 6.0 (4.5) \\
\hline & LMB & 1 & 1 & 19 & 42 & 33 & 9 & 35 & 25 & 20 & 9 & 8 & 9 & 5 & 5 & 2 & 2 & 1 & & & 226 & 150.7 (18.6) \\
\hline \multirow[t]{2}{*}{Upper} & SB & & & & & & 1 & & & 1 & & & & & & & & & & & 2 & 0.0 \\
\hline & LMB & & & 12 & 27 & 12 & 10 & 41 & 27 & 25 & 11 & 10 & 19 & 18 & 12 & 12 & 5 & 1 & 1 & 1 & 244 & \[
162.7 \text { (5.2) }
\] \\
\hline \multirow[t]{2}{*}{Total} & SB & & & 1 & & 1 & 3 & 1 & 1 & 2 & 1 & & & 1 & & & & & & & 11 & 3.7 (2.3) \\
\hline & LMB & 1 & 1 & 31 & 69 & 45 & 19 & 76 & 52 & 45 & 20 & 18 & 28 & 23 & 17 & 14 & 7 & 2 & 1 & 1 & 470 & 156.7 (9.4) \\
\hline \multicolumn{2}{|l|}{SB = spotted bass} & \\
\hline \multicolumn{3}{|l|}{LMB =largemouth bass} & \\
\hline \multicolumn{2}{|l|}{EFDYLLSS.D18} & \\
\hline
\end{tabular}

Table 77. Spring nocturnal electrofishing CPUE (fish/hr) for each length group of largemouth bass at Yatesville Lake (2,280 acres). SE = standard error.

\footnotetext{
EFDYLLSS.D93-D18
}

Table 78. PSD and RSD values for black bass species taken in spring electrofishing samples in each area of Yatesville Lake (2,280 acres) on 14 May 2018; 95\% confidence intervals are in parentheses.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Area} & \multicolumn{3}{|c|}{Largemouth bass} & \multicolumn{3}{|c|}{Spotted bass} \\
\hline & No. & PSD & \(\mathrm{RSD}_{15}\) & No. & PSD & \(\mathrm{RSD}_{14}\) \\
\hline Lower & 121 & \[
\begin{gathered}
26 \\
(19-34)
\end{gathered}
\] & \[
\begin{gathered}
8 \\
(3-13)
\end{gathered}
\] & 7 & \[
\begin{gathered}
29 \\
(0-65)
\end{gathered}
\] & \[
\begin{gathered}
14 \\
(0-42)
\end{gathered}
\] \\
\hline Upper & 183 & \[
\begin{gathered}
43 \\
(36-50)
\end{gathered}
\] & \[
\begin{gathered}
17 \\
(12-23)
\end{gathered}
\] & 2 & 0 & \\
\hline Total & 304 & \[
\begin{gathered}
37 \\
(31-42) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
14 \\
(10-18) \\
\hline
\end{gathered}
\] & 9 & \[
\begin{gathered}
22 \\
(0-51) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
11 \\
(0-33)
\end{gathered}
\] \\
\hline
\end{tabular}

EFDYLLSS.D18

Table 79. Spring nocturnal electrofishing population assessment for largemouth bass collected at Yatesville Lake (2,280 acres). Actual values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{10}{|c|}{Year} \\
\hline & 2007 & 2008 & 2009 & 2010 & 2012 & 2014 & 2015 & 2016 & 2017 & 2018 \\
\hline Mean length age-3 at capture & \[
\begin{gathered}
\hline 4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 \\
(13.5)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(12.4)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(12.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(11.1)
\end{gathered}
\] \\
\hline Spring CPUE age-1 & \[
\begin{gathered}
4 \\
(47.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(45.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(28.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(42.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(19.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(37.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(54.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(56.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(73.3)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(51.3)
\end{gathered}
\] \\
\hline Spring CPUE 12.0-14.9 in & \[
\begin{gathered}
4 \\
(31.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(20.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(30.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(19.3)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(21.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(23.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(23.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(16.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(37.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(23.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 15.0\) in & \[
\begin{gathered}
3 \\
(15.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.6)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(11.0)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(8.4)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(23.3)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(16.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(21.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(14.0)
\end{gathered}
\] \\
\hline Spring CPUE \(\geq 20.0\) in & \[
\begin{gathered}
1 \\
(0.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(0.0) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.8) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(0.7) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(0.3) \\
\hline
\end{gathered}
\] \\
\hline Total score & 16 & 14 & 14 & 15 & 11 & 13 & 15 & 12 & 16 & 13 \\
\hline Assessment rating & Good & Good & Good & Good & Fair & Good & Good & Fair & Good & Good \\
\hline Instantaneous mortality (z) & 0.80 & 0.70 & 0.91 & 1.22 & 0.79 & 0.77 & & & & \\
\hline Annual mortality (A) & 55.20 & 50.20 & 59.80 & 70.40 & 54.60 & 53.70 & & & & \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EFDYLLSS.D02-D10, D12, D14-D18 } \\
& \text { EFDYLLAS.D06, D12 } \\
& \text { EFDYLLAF.D15 }
\end{aligned}
\]} & & & & & & & & & \\
\hline
\end{tabular}

Table 80. Length frequency and nocturnal electrofishing CPUE (fish/hr) of black bass collected at Yatesville Lake (2,280 acres) during 2.5 hours of 15-minute samples on 26 September 2018; numbers in parentheses are standard errors.

Table 81. Fall electrofishing indices of year class strength at age-0 and age-1 and mean lengths (in) of largemouth bass collected during 2003-2018 at Yatesville Lake (2,280 acres); CPUE = fish/hr, SE = standard error.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year class} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|c|}{Age-0} & \multicolumn{2}{|l|}{Age- \(0 \geq 5.0\) in} & \multicolumn{2}{|l|}{Age-1} \\
\hline & \begin{tabular}{l}
Mean \\
length
\end{tabular} & SE & CPUE & SE & CPUE & SE & CPUE & SE \\
\hline 2003 & 5.3 & 0.1 & 46.0 & 6.3 & 29.3 & 4.4 & 12.7 & 2.8 \\
\hline 2004 & 4.8 & 0.1 & 69.5 & 13.5 & 32.5 & 10.8 & 42.3 & 7.1 \\
\hline 2005 & 4.7 & 0.1 & 47.0 & 12.3 & 20.0 & 7.1 & 45.9 & 7.2 \\
\hline 2006 & 4.9 & 0.1 & 29.5 & 7.8 & 13.8 & 3.8 & 47.0 & 6.0 \\
\hline 2007 & 5.3 & 0.1 & 37.4 & 10.6 & 23.2 & 6.1 & 45.0 & 8.1 \\
\hline 2008 & 5.1 & 0.1 & 45.9 & 7.8 & 28.4 & 6.0 & 28.2 & 5.3 \\
\hline 2009 & 4.9 & 0.1 & 32.7 & 6.5 & 16.3 & 4.0 & 42.6 & 6.4 \\
\hline 2010 & 5.1 & 0.1 & 78.6 & 11.5 & 45.1 & 8.7 & no sample & \\
\hline 2011 & 4.9 & 0.1 & 55.3 & 9.6 & 28.7 & 4.9 & 19.4 & 2.5 \\
\hline 2012 & 5.0 & 0.1 & 82.9 & 20.0 & 45.1 & 10.1 & no sample & \\
\hline 2013 & 5.2 & 0.1 & 39.6 & 5.8 & 25.6 & 5.0 & 37.0 & 2.9 \\
\hline 2014 & 4.7 & 0.1 & 79.3 & 14.8 & 29.3 & 7.8 & 54.3 & 7.7 \\
\hline 2015 & 5.0 & 0.1 & 92.0 & 11.3 & 48.7 & 9.9 & 56.7 & 9.9 \\
\hline 2016 & 5.8 & 0.1 & 67.3 & 7.1 & 61.3 & 7.2 & 73.3 & 10.9 \\
\hline 2017 & 5.1 & 0.1 & 84.4 & 8.7 & 46.4 & 7.1 & 51.3 & 7.1 \\
\hline 2018 & 5.3 & 0.1 & 79.6 & 17.8 & 49.2 & 14.4 & & \\
\hline \multicolumn{9}{|l|}{EFDYLLSS.D03-D18} \\
\hline \multicolumn{9}{|l|}{EFDYLLSF.D03-D18} \\
\hline \multicolumn{9}{|l|}{EFDYLLAS.D05, D06, D12} \\
\hline
\end{tabular}

Table 82. Length frequency and CPUE (fish/nn) for white crappie collected at Yatesville Lake (2,280 acres) in 10 net-nights from 19-20 November 2018. Standard errors are in parentheses.
\begin{tabular}{ccccccccccccc}
\hline \multicolumn{10}{c}{ Inch class } & & \\
\hline 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & Total & CPUE & SE \\
\hline 111 & 75 & 106 & 102 & 71 & 50 & 32 & 7 & 7 & 3 & 564 & 56.4 & \((9.38)\) \\
\hline
\end{tabular}

\section*{EFDYLCTF.D18}

Table 83. PSD and \(\mathrm{RSD}_{10}\) values calculated for white crappie collected in trap nets at Yatesville Lake (2,280 acres) during November 2018; 95\% confidence intervals are in parentheses.
\begin{tabular}{ccc}
\hline No. \(\geq 5.0\) in & PSD & RSD \(_{10}\) \\
\hline 378 & 26 & 4 \\
& \((22-31)\) & \((2-7)\)
\end{tabular}

WC = white crappie
EFDYLCTF.D18

Table 84. Mean back-calculated length (in) at each annulus for white crappie collected from Yatesville Lake (2,280 acres) in November 2018, including 95\% confidence intervals.
\begin{tabular}{lcccccc}
\hline Year & & \multicolumn{5}{c}{ Age } \\
\cline { 3 - 7 } class & No. & 1 & 2 & 3 & 4 & 5 \\
\hline 2017 & 3 & 3.3 & & & & \\
2016 & 16 & 3.9 & 5.1 & & & \\
2015 & 36 & 4.1 & 5.2 & 6.3 & & \\
2014 & 30 & 4.3 & 5.6 & 6.8 & 7.9 & \\
2013 & 9 & 4.2 & 5.5 & 6.6 & 7.5 & 8.2 \\
& & & & & & \\
Mean & & 4.1 & 5.3 & 6.5 & 7.8 & 8.2 \\
Smallest & 2.9 & 4.0 & 4.8 & 5.9 & 7.0 \\
Largest & 5.3 & 6.5 & 8.5 & 9.9 & 9.4 \\
STD error & & 0.0 & 0.1 & 0.1 & 0.2 & 0.2 \\
95\% CI LO & 4.0 & 5.2 & 6.3 & 7.5 & 7.7 \\
95\% CI HI & 4.2 & 5.5 & 6.7 & 8.1 & 8.7 \\
\hline Intercept \(=0\) & & & & & \\
EFDYLCAF.D18 & & & & &
\end{tabular}

Table 85. Age frequency and CPUE (fish/nn) of white crappie collected by trap netting for 10 net-nights at Yatesville Lake (2,280 acres) in November 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Age} & \multicolumn{10}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{Age\%} & \multicolumn{2}{|c|}{\multirow[b]{2}{*}{CPUE}} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & & & \\
\hline 0 & 111 & & & & & & & & & & 111 & 20 & 11.1 & (3.6) \\
\hline 1 & & 75 & 7 & & & & & & & & 82 & 15 & 8.2 & (2.7) \\
\hline 2 & & & 49 & 23 & 27 & & & & & & 99 & 18 & 9.9 & (2.4) \\
\hline 3 & & & 49 & 57 & 33 & 25 & 7 & 2 & & & 173 & 31 & 17.2 & (3.9) \\
\hline 4 & & & & 23 & 5 & 19 & 18 & 4 & 6 & 3 & 78 & 14 & 7.8 & (1.2) \\
\hline 5 & & & & & 5 & 6 & 7 & 2 & 1 & & 21 & 4 & 2.1 & (0.4) \\
\hline 6 & & & & & & & & & & & 0 & & & \\
\hline Total & 111 & 75 & 105 & 103 & 70 & 50 & 32 & 8 & 7 & 3 & 564 & & & \\
\hline \% & 20 & 13 & 19 & 18 & 13 & 9 & 6 & 1 & 1 & 1 & & & & \\
\hline \multicolumn{15}{|l|}{CPUE of \(\geq 8\) in (quality size) \(=9.90\)} \\
\hline \multicolumn{15}{|l|}{CPUE of \(\geq 10\) in (preferred size) \(=1.70\)} \\
\hline \multicolumn{15}{|l|}{EFDYLCAF.D18} \\
\hline \multicolumn{15}{|l|}{EFDYLCTF.D18} \\
\hline
\end{tabular}

Table 86. Population assessment score for white crappie collected from Yatesville Lake (2,280 acres). Actual assessment values are in parentheses. Scoring based on statewide assessment.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{8}{|c|}{Year} \\
\hline Parameter & 2002 & 2004 & 2006 & 2009 & 2012 & 2014 & 2016 & 2018 \\
\hline \begin{tabular}{l}
CPUE \\
(excluding age 0)
\end{tabular} & \[
\begin{gathered}
4 \\
(19.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(28.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(58.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(26.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(39.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(67.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(91.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(45.3)
\end{gathered}
\] \\
\hline CPUE age 1 & \[
\begin{gathered}
3 \\
(3.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(3.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(8.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(7.5)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(4.4)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(8.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(41.1)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(8.2)
\end{gathered}
\] \\
\hline CPUE age 0 & \[
\begin{gathered}
2 \\
(1.5)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(23.9)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(3.6)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.0)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(2.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(44.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(11.1)
\end{gathered}
\] \\
\hline CPUE \(\geq 8.0\) in & \[
\begin{gathered}
2 \\
(3.0)
\end{gathered}
\] & \[
\begin{gathered}
3 \\
(4.8)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(13.6)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.2)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(6.9)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(19.9)
\end{gathered}
\] & \[
\begin{gathered}
2 \\
(2.7)
\end{gathered}
\] & \[
\begin{gathered}
4 \\
(9.9)
\end{gathered}
\] \\
\hline Mean length age 2 at capture & \[
\begin{gathered}
1 \\
(6.1)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.0)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.5)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.8)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.6)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(5.4)
\end{gathered}
\] & \[
\begin{gathered}
1 \\
(6.3)
\end{gathered}
\] \\
\hline Instantaneous mortality (z) & 1.08 & 0.59 & 0.98 & 1.01 & 0.43 & 0.72 & 0.73 & 0.23 \\
\hline Annual Mortality (A) & 66.0 & 45.0 & 62.4 & 63.6 & 34.9 & 51.4 & 51.7 & 20.3 \\
\hline Total score & 12 & 15 & 16 & 14 & 16 & 16 & 15 & 17 \\
\hline Assessment rating & Fair & Good & Good & Good & Good & Good & Good & Excellent \\
\hline EFDYLCTF.D02-D18 EFDYLCAF.D02-D18 & & & & & & & & \\
\hline
\end{tabular}

Appendix A. Dewey Lake Angler Attitude Survey 2018
Frequency Table (\(\mathrm{N}=48\))
\begin{tabular}{lrr}
\hline Q3. On average, how many times do you fish Dewey Lake in a year? & \\
1 to 4 & Frequency & Percent \\
5 to 10 & 9 & \(20.5 \%\) \\
More than 10 & 13 & \(29.5 \%\) \\
Total & 22 & \(50.0 \%\) \\
No Response & 44 & \\
\end{tabular}

Q4. Which species of fish do you fish for at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Bass & 29 & \(60.4 \%\) \\
Crappie & 32 & \(66.7 \%\) \\
Bluegill/Redear & 24 & \(50.0 \%\) \\
Catfish & 35 & \(72.9 \%\) \\
Muskie & 8 & \(16.7 \%\)
\end{tabular}

Q5. Which one species do you fish for most at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Bass & 15 & \(34.9 \%\) \\
Crappie & 9 & \(20.9 \%\) \\
Bluegill/Redear & 2 & \(4.7 \%\) \\
Catfish & 17 & \(39.5 \%\) \\
Total & 43 & \\
No Response & 5
\end{tabular}

Q6. In general, what level of satisfaction do you have with bass fishing at Dewey Lake?
\begin{tabular}{lr}
& Frequency \\
Very Satisfied & 2 \\
Somewhat Satisfied & 12 \\
Neutral & 11 \\
Somewhat Dissatisfied & 3 \\
Very Dissatisfied & 1 \\
No Opinion & 0 \\
Total & 29 \\
No Response & 19
\end{tabular}

Q6a. If you responded with somewhat or very Satisfied in Question (6) - What is the single most important reason for your Satisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 8 & \(57.1 \%\) \\
Size of fish & 4 & \(28.6 \%\) \\
Size limit & 1 & \(7.1 \%\) \\
Creel limit & 0 & \(0.0 \%\) \\
Low angler pressure & 1 & \(7.1 \%\) \\
Total & 14 \\
No Response & 34
\end{tabular}

Q6b. If you responded with somewhat or very Dissatisfied in Question (6) What is the single most important reason for your Dissatisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 1 & \(20.0 \%\) \\
Size of fish & 2 & \(40.0 \%\) \\
Size limit & 0 & \(0.0 \%\) \\
Creel limit & 0 & \(0.0 \%\) \\
Too many anglers & 1 & \(20.0 \%\) \\
Too many tournaments & 1 & \(20.0 \%\) \\
Total & 5 & \\
No Response & 43
\end{tabular}

Q7. In general, what level of satisfaction do you have with crappie fishing at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Very Satisfied & 1 & \(3.2 \%\) \\
Somewhat Satisfied & 13 & \(41.9 \%\) \\
Neutral & 10 & \(32.3 \%\) \\
Somewhat Dissatisfied & 6 & \(19.4 \%\) \\
Very Dissatisfied & 1 & \(3.2 \%\) \\
No Opinion & 0 & \(0.0 \%\) \\
Total & 31 \\
No Response & 17
\end{tabular}

Q7a. If you responded with somewhat or very Satisfied in Question (7) - What is the single most important reason for your Satisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 11 & \(78.6 \%\) \\
Size of fish & 2 & \(14.3 \%\) \\
Size limit & 0 & \(0.0 \%\) \\
Creel limit & 1 & \(7.1 \%\) \\
Low angler pressure & 0 & \(0.0 \%\) \\
Total & 14 \\
No Response & 34
\end{tabular}

Q7b. If you responded with somewhat or very Dissatisfied in Question (7) What is the single most important reason for your Dissatisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 5 & \(71.4 \%\) \\
Size of fish & 1 & \(14.3 \%\) \\
Size limit & 1 & \(14.3 \%\) \\
Creel limit & 0 & \(0.0 \%\) \\
Too many anglers & 7 & \\
Total & 41 \\
No Response &
\end{tabular}

Q8. In general, what level of satisfaction do you have with bluegill/redear fishing at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Very Satisfied & 7 & \(28.0 \%\) \\
Somewhat Satisfied & 6 & \(24.0 \%\) \\
Neutral & 4 & \(16.0 \%\) \\
Somewhat Dissatisfied & 7 & \(28.0 \%\) \\
Very Dissatisfied & 1 & \(4.0 \%\) \\
No Opinion & 0 & \(0.0 \%\) \\
Total & 25 & \\
No Response & 23 &
\end{tabular}

Q8a. If you responded with somewhat or very Satisfied in Question (8) - What is the single most important reason for your Satisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 8 & \(50.0 \%\) \\
Size of fish & 5 & \(31.3 \%\) \\
Size limit & 0 & \(0.0 \%\) \\
Creel limit & 2 & \(12.5 \%\) \\
Low angler pressure & 1 & \(6.3 \%\) \\
Total & 16 \\
No Response & 32
\end{tabular}

Q8b. If you responded with somewhat or very Dissatisfied in Question (8) What is the single most important reason for your Dissatisfaction?
\begin{tabular}{lr}
Number of fish & Frequency \\
Size of fish & 1 \\
Size limit & 4 \\
Creel limit & 0 \\
Too many anglers & 0 \\
Total & 0 \\
No Response & 5 \\
\end{tabular}

Q9. In general, what level of satisfaction do you have with catfish fishing at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Very Satisfied & 9 & \(25.7 \%\) \\
Somewhat Satisfied & 17 & \(48.6 \%\) \\
Neutral & 5 & \(14.3 \%\) \\
Somewhat Dissatisfied & 4 & \(11.4 \%\) \\
Very Dissatisfied & 0 & \(0.0 \%\) \\
No Opinion & 0 & \(0.0 \%\) \\
Total & 35 \\
No Response & 13
\end{tabular}

Q9a. If you responded with somewhat or very Satisfied in Question (9) - What is the single most important reason for your Satisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 16 & \(61.5 \%\) \\
Size of fish & 6 & \(23.1 \%\) \\
Size limit & 0 & \(0.0 \%\) \\
Creel limit & 4 & \(15.4 \%\) \\
Low angler pressure & 0 & \(0.0 \%\) \\
Total & 26 \\
No Response & 22
\end{tabular}

Q9b. If you responded with somewhat or very Dissatisfied in Question (9) What is the single most important reason for your Dissatisfaction?
\begin{tabular}{lrr}
& Frequency & Percent \\
Number of fish & 0 & \(0.0 \%\) \\
Size of fish & 1 & \(25.0 \%\) \\
Size limit & 1 & \(25.0 \%\) \\
Creel limit & 0 & \(0.0 \%\) \\
Too many anglers & 1 & \(25.0 \%\) \\
size limit of only 1 bluecat over 25 " needs increased & 1 & \(25.0 \%\) \\
Total & 4 & \\
No Response & 44
\end{tabular}

Q10. Are you satisfied with the current size and creel limits at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 36 & \(75.0 \%\) \\
No & 12 & \(25.0 \%\) \\
Total & 48 \\
No Response & 0
\end{tabular}

Q10a. If you responded No to Question 10, which species are you dissatisfied with and what size and creel limits would you prefer?
\begin{tabular}{lr}
\(14 "\) catfish minimum size & Frequency \\
\(15 "\) minimum size on catfish & 1 \\
bass, I would like to see the size brought down to 12 inches & 2 \\
blue and channel catfish combined 15 fish creel with no more than 3 greater than \(25 "\) & 1 \\
crappie 10", 15 fish creel & 1 \\
crappie 10", 15 fish creel & 2 \\
musky \(40 "\) & 1 \\
needs to be size limit on flathead catfish & 1 \\
Total & 1 \\
No Response & 10 \\
\end{tabular}

Q11. Do you fish any tournaments?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 10 & \(20.8 \%\) \\
No & 38 & \(79.2 \%\) \\
Total & 48 \\
No Response & 0
\end{tabular}

Q12. Do you use the KDFWR tournament registration website to register tournaments?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 1 & \(2.1 \%\) \\
No & 47 & \(97.9 \%\) \\
Total & 48 & \\
No Response & 0
\end{tabular}

Q13. Do you use the KDFWR tournament registration website to plan your activity at a particular boat ramp access?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 5 & \(10.6 \%\) \\
No & 42 & \(89.4 \%\) \\
Total & 47 & \\
No Response & 1
\end{tabular}

Q14. Are you aware that the invasive plant Hydrilla is present in Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 38 & \(79.2 \%\) \\
No & 10 & \(20.8 \%\) \\
Total & 48 \\
No Response & 0
\end{tabular}
\begin{tabular}{lrr}
Q15. Are you aware that the primary means of introduction of invasive plants is through boaters? \\
& Frequency & Percent \\
Yes & 42 & \(87.5 \%\) \\
No & 6 & \(12.5 \%\) \\
Total & 48 \\
No Response & 0
\end{tabular}

Q16. Do you take precautions after fishing Dewey Lake to prevent the spread of invasive plants to other lakes?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 33 & \(68.8 \%\) \\
No & 15 & \(31.3 \%\) \\
Total & 48
\end{tabular}
\begin{tabular}{lrr}
Q17. How would you rate the existing fish habitat at Dewey Lake (both natural and manmade)? \\
& Frequency & Percent \\
Very Good & 7 & \(14.6 \%\) \\
Good & 30 & \(62.5 \%\) \\
Fair & 10 & \(20.8 \%\) \\
Poor & 1 & \(2.1 \%\) \\
Very Poor & 0 & \(0.0 \%\) \\
No Opinion & 0 & \(0.0 \%\) \\
Total & 48 \\
No Response & 0
\end{tabular}

Q18. Were you aware KDFWR places fish habitat (e.g. fish attractors/structures at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 46 & \(95.8 \%\) \\
No & 2 & \(4.2 \%\) \\
Total & 48 & \\
No Response & 0
\end{tabular}

Q19. Do you regularly fish Dept. placed attractors/structures at Dewey Lake?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 36 & \(78.3 \%\) \\
No & 10 & \(21.7 \%\) \\
Total & 46 & \\
No Response & 2 &
\end{tabular}

Q20. How did you find these attractors/structures?
\begin{tabular}{lrr}
& Frequency & Percent \\
On my own & 27 & \(60.0 \%\) \\
Friend/word of mouth & 16 & \(35.6 \%\) \\
help put in lake & 1 & \(2.2 \%\) \\
kdfwr - office & 1 & \(2.2 \%\) \\
Total & 45 & \\
No Response & 4 &
\end{tabular}

Q21. Do you feel the addition of Dept. placed attractors/structures has improved your fishing results?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 36 & \(78.3 \%\) \\
No & 5 & \(10.9 \%\) \\
No Opinion & 5 & \(10.9 \%\) \\
Total & 46 & \\
No Response & 2 &
\end{tabular}

Q22. Are you aware that the locations of KDFWR placed attractors/structures are available on the KDFWR website?
\begin{tabular}{lrr}
& Frequency & Percent \\
Yes & 21 & \(45.7 \%\) \\
No & 25 & \(54.3 \%\) \\
Total & 46 & \\
No Response & 2 & \\
\hline
\end{tabular}

\section*{WESTERN FISHERY DISTRICT}

\section*{Project 3: Technical Guidance}

\section*{FINDINGS}

Table 1. Technical guidance given to pond owners in the Western Fishery District during the 2018 project year (April 1, 2018 - March 31, 2019). Approximately 71 telephone calls to the office regarding technical guidance and stocking were also handled. Additionally, numerous emails were replied to requesting farm pond technical guidance information.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
County \\
Pond Owner
\end{tabular} & Date of Inspection & Findings & Management Recommendations \\
\hline \multicolumn{4}{|l|}{Calloway} \\
\hline Steve Simmons & 14-Sep & flow through watershed lake, crappie, stunted bass & remove crappie, harvest small bass and large bluegill, place cover for fish \\
\hline Scott Akin & 14-Sep & low alkalinity, stunted bass & lime, control trees on levee, stock bluegill in fall and bass in spring, harvest small bass \\
\hline Judy Outland & 17-Sep & stunted bass, lack of catfish, thermocline & harvest small bass, stock catfish, aerate, lime \\
\hline \multicolumn{4}{|l|}{Lyon} \\
\hline Clarence Adams & 10-Apr & low alkalinity, nothing but stunted bass observed & lime, fertilize, stock bluegill and minnows \\
\hline
\end{tabular}

\section*{NORTHWESTERN FISHERY DISTRICT}

Project 3: Technical Guidance

\section*{FINDINGS}

Requests for technical guidance information were received via e-mails, phone calls, and office visits. Problems included unbalanced populations, new pond construction, stocking, fish disease and fish kills, water quality issues, aquatic vegetation control, and general pond management. The requested information was relayed via phone, e-mail, office visit, and referencing the Pond Management section of the web site. Four on-site visits were conducted in 2018. Three were conducted on May 24, 2018 at the request of the Fort Knox Military Base environmental division staff. One additional visit was conducted in October per request from the Union County Fiscal Court. Information concerning these visits can be found in Table 1.

Table 1. On-site technical guidance provided to pond owners in the Northwestern Fishery District in 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline County & Pond/Lake Ow ner & Date & Findings & Recommendations \\
\hline Meade & Ft Knox: Upper Douglas & 5/24/18 & Healthy, stable fish populationse, clear w ater & Change fertilization program to include pow der 10-52-4 for 2019 \\
\hline & Low er Douglas & 5/24/18 & Healthy, stable fish populations & Continue current management \\
\hline & Sanders Springs & 5/24/18 & Healthy, stable fish populations & Continue current management, encourage sunfish harvest \\
\hline Union & Union County Fiscal Court & 10/16/18 & Healthy, stable fish populations & Continue current management \\
\hline
\end{tabular}

\section*{SOUTHWESTERN FISHERY DISTRICT}

\section*{Project 3: Technical Guidance}

\section*{FINDINGS}

Details of the technical guidance provided during 2018 are shown in Table 1. Technical guidance was provided through nine on-site visits. Additional technical guidance requests were handled over the telephone, walk-in visits, or by written correspondence. Topics encountered and responded to included: fish population balance, water quality problems, fish stocking, and aquatic vegetation problems.

Several other requests for information about area fisheries and miscellaneous information about fish management in lakes and ponds were handled over the telephone, email, and walk-in visits.

Table 1. Onsite technical guidance visits during 2018.
\begin{tabular}{lclll}
\hline County & Date & Landowner & Problem/Situation & Recommendations \\
\hline Butler & \(8 / 29\) & Bobby McKey & \begin{tabular}{l}
Low fish numbers \& brittle \\
naiad
\end{tabular} & Lime \& Fertilize \\
Edmonson & \(8 / 29\) & Robert Lindsey & \begin{tabular}{l}
Low alkalinity, river fish \\
present
\end{tabular} & Kill options \& lime \\
Todd & \(7 / 19\) & Ronald Castile & \begin{tabular}{l}
Aquatic veg coverage \\
approaching 50\%; good fish \\
pop.
\end{tabular} & \begin{tabular}{l}
Vish. \\
fow alkalinity, low fish \\
numbers
\end{tabular} \\
& \(7 / 19\) & J. Francis & Ronald Pruitt & Lime \& add bass \\
& \(7 / 19\) & Tammy Robertson & \begin{tabular}{l}
Low alkalinity, brittle naiad
\end{tabular} & Lime \& restock channel cats \\
& \(7 / 19\) & Allen Frogue & \begin{tabular}{l}
Low BG numbers/low bass \\
condition
\end{tabular} & Add BG \& catfish if desired \\
& \(7 / 19\) & Robert Smith & Occasional turnover issues & Add bass \\
\hline & \(8 / 29\) & Howard Hunter Jr. & \begin{tabular}{l}
Persistently muddy, shallow \\
pond
\end{tabular} & Clean out, lime \& restock
\end{tabular}

\section*{CENTRAL FISHERY DISTRICT}

\section*{Project 2: Stream Fishery Surveys - Warmwater Streams}

\section*{FINDINGS}

Stream sampling conditions for 2019 are summarized in Table 1.
Diurnal electrofishing for black bass and rock bass was conducted during May 2018 at various locations on Elkhorn Creek. These studies were conducted to assess the black bass, especially smallmouth bass and rock bass populations, but data for all sportfish were collected. Length distribution and CPUE data of sportfish, including black bass and rock bass from Elkhorn Creek are presented in Table 2. Smallmouth bass comprised \(62 \%\) of the black bass sampled in the North Fork Elkhorn Creek, whereas, smallmouth bass comprised \(99 \%\) of the black bass sampled on the main stem Elkhorn Creek. No spotted bass were collected in North Fork Elkhorn Creek and represented \(0.002 \%\) of the black bass population in the main stem Elkhorn Creek. Largemouth bass comprised 38\% of the black bass sampled in the North Fork Elkhorn Creek and \(0.01 \%\) of the black bass sampled in the main stem Elkhorn Creek. The current catch rate of smallmouth bass (\(85.0 \mathrm{fish} / \mathrm{hr}\)) is slightly lower than the historical average of \(94.7 \mathrm{fish} / \mathrm{hr}\) (Table 3). The current catch rate of rock bass (\(20.6 \mathrm{fish} / \mathrm{hr}\)) was lower than the historical catch rate (\(31.0 \mathrm{fish} / \mathrm{hr}\); Table 4). The smallmouth bass population assessment score for the North Fork Elkhorn Creek was 19 (Table 5), which results in an "Excellent" rating. The rock bass population assessment score for North Fork Elkhorn Creek was 15 (Table 6), which results in an "Excellent" rating. The largemouth bass population assessment score for North Fork Elkhorn Creek was 16 (Table 7), which results in an "Excellent" rating. Fish populations on the North Fork Elkhorn Creek are affected by two dams in the vicinity of the Great Crossing areas. For the main stem Elkhorn Creek, the smallmouth bass population assessment score was 18 (Table 8), which results in an "Excellent" rating. The rock bass population assessment score was 5 (Table 9), which results in a "Fair" rating. Finally, the largemouth bass population assessment score was 2 (Table 10), which results in a "Poor" rating.

Table 1. Yearly summary of sampling conditions by waterbody, species sampled and date.

Table 2. Length-frequency and CPUE (fish/hr) of selected fish species collected in 5.25 hours of 15-minute electrofishing runs at four sites on Elkhorn Creek in May 2018; numbers in parentheses are standard errors.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Species} & \multicolumn{23}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} \\
\hline & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 41 & & \\
\hline \multicolumn{26}{|l|}{Below dam at} \\
\hline \multicolumn{26}{|l|}{Great Crossings} \\
\hline Rock bass & 4 & 3 & 13 & 23 & 12 & 8 & & & & & & & & & & & & & & & & & & 63 & 50.4 (13.3) \\
\hline Smallmouth bass & 4 & & 8 & 21 & 19 & 10 & 10 & 6 & 4 & 5 & 10 & 4 & 1 & 2 & & & & & & & & & & 104 & 83.2 (23.5) \\
\hline Largemouth bass & & 1 & & 2 & 5 & 4 & 6 & 8 & 15 & 7 & 7 & 2 & 4 & 2 & & & & & & & & & & 63 & 50.4 (11.7) \\
\hline \multicolumn{26}{|l|}{Jackson Hole} \\
\hline Channel catfish & & & & & & & 3 & 3 & 5 & 4 & 2 & 2 & 3 & 6 & 8 & 10 & 5 & 7 & 4 & 2 & 2 & 1 & & 67 & 44.7 (11.0) \\
\hline Flathead catfish & & & & & & & & & 1 & & & 1 & 2 & & 1 & & & 1 & & & & & & 6 & 4.0 (2.1) \\
\hline Rock bass & & 3 & 4 & 12 & 4 & 1 & & & & & & & & & & & & & & & & & & 24 & 16.0 (5.4) \\
\hline Bluegill & 1 & 3 & 1 & 1 & 6 & 4.0 (2.7) \\
\hline Redear sunfish & & & & & 1 & & & & & & & & & & & & & & & & & & & 1 & 0.7 (0.7) \\
\hline Smallmouth bass & 4 & 15 & 6 & 8 & 28 & 36 & 17 & 15 & 7 & 6 & 4 & 3 & & 2 & 1 & 1 & & & & & & & & 153 & 102.0 (19.6) \\
\hline Spotted bass & & & & & 1 & & & & & & & & & & & & & & & & & & & 1 & 0.7 (0.7) \\
\hline Largemouth bass & & & & & & & 1 & & & & & & & & & & & & & & & & & 1 & 0.7 (0.7) \\
\hline Black crappie & & 2 & & & 2 & & & & & & & & & & & & & & & & & & & 4 & 2.7 (1.3) \\
\hline Sauger & & & & & & & & & & & & & & & & & 2 & 1 & & & & & & 3 & 2.0 (2.0) \\
\hline \multicolumn{26}{|l|}{Peaks Mill} \\
\hline Channel catfish & & & & & & & 1 & 3 & 7 & 2 & 4 & 2 & 10 & 17 & 14 & 18 & 7 & 3 & 2 & 2 & 1 & & & 93 & 93.0 (18.6) \\
\hline Flathead catfish & & & & & & & 1 & & & & & & & & & & & & & & & & & 1 & 1.0 (1.0) \\
\hline Rock bass & & 1 & 1 & 5 & 2 & & & & & & & & & & & & & & & & & & & 9 & 9.0 (5.7) \\
\hline Smallmouth bass & & 3 & 4 & 2 & 12 & 10 & 9 & 8 & 4 & 2 & 1 & 1 & 2 & & & & & & & & & & & 58 & 58.0 (8.4) \\
\hline Largemouth bass & & & & & & & 1 & & & & & & & & & & & & & & & & & 1 & 1.0 (1.0) \\
\hline Black crappie & & & & & 1 & 1 & 1 & & 2 & & & & & & & & & & & & & & & 5 & 5.0 (2.5) \\
\hline Sauger & & & & & & & & & & & & & & 1 & & & & & & & & & & 1 & 1.0 (1.0) \\
\hline \multicolumn{26}{|l|}{Hatchery} \\
\hline Channel catfish & & & & & 2 & 2 & 7 & 9 & 8 & 14 & 5 & 21 & 28 & 16 & 15 & 10 & 7 & 4 & 5 & 3 & & 1 & & 157 & 104.7 (33.7) \\
\hline Flathead catfish & & & & & & 3 & 3 & 1 & 1 & & 1 & 2 & & & & 1 & & & & & & & 1 & 13 & 8.7 (2.4) \\
\hline Rock bass & & 2 & 2 & 6 & 2 & & & & & & & & & & & & & & & & & & & 12 & 8.0 (3.4) \\
\hline Bluegill & & 1 & 1 & 1 & 1 & & & & & & & & & & & & & & & & & & & 4 & 2.7 (1.3) \\
\hline Redear sunfish & & & & 1 & 1 & 0.7 (0.7) \\
\hline Smallmouth bass & 2 & 16 & 8 & 15 & 16 & 12 & 19 & 10 & 7 & 10 & 5 & 5 & 1 & & 4 & 1 & & & & & & & & 131 & 87.3 (20.0) \\
\hline Largemouth bass & & & & & & & & & & & & 1 & & & & & & & & & & & & 1 & 0.7 (0.7) \\
\hline Black crappie & & & & & 1 & & 1 & 2 & & 1 & & & & & & & & & & & & & & 5 & 3.3 (2.6) \\
\hline Sauger & & & & & & & & & & & 1 & 1 & & & & 1 & & & & & & & & 3 & 2.0 (1.4) \\
\hline \multicolumn{26}{|l|}{Total} \\
\hline Channel catfish & & & & & 2 & 2 & 11 & 15 & 20 & 20 & 11 & 25 & 41 & 39 & 37 & 38 & 19 & 14 & 11 & 7 & 3 & 2 & & 317 & 60.4 (13.6) \\
\hline Flathead catfish & & & & & & 3 & 4 & 1 & 2 & & 1 & 3 & 2 & & 1 & 1 & & 1 & & & & & 1 & 20 & 3.8 (1.2) \\
\hline Rock bass & 4 & 9 & 20 & 46 & 20 & 9 & & & & & & & & & & & & & & & & & & 108 & 20.6 (5.2) \\
\hline Bluegill & 1 & 4 & 2 & 2 & 1 & & & & & & & & & & & & & & & & & & & 10 & 1.9 (0.9) \\
\hline Redear sunfish & & & & 1 & 1 & & & & & & & & & & & & & & & & & & & 2 & 0.4 (0.3) \\
\hline Smallmouth bass & 10 & 34 & 26 & 46 & 75 & 68 & 55 & 39 & 22 & 23 & 20 & 13 & 4 & 4 & 5 & 2 & & & & & & & & 446 & 85.0 (9.8) \\
\hline Spotted bass & & & & & 1 & & & & & & & & & & & & & & & & & & & 1 & 0.2 (0.2) \\
\hline Largemouth bass & & 1 & & 2 & 5 & 4 & 8 & 8 & 15 & 7 & 7 & 3 & 4 & 2 & & & & & & & & & & 66 & 12.6 (5.4) \\
\hline Black crappie & & 2 & & & 4 & 1 & 2 & 2 & 2 & 1 & & & & & & & & & & & & & & 14 & 2.7 (1.0) \\
\hline Sauger & & & & & & & & & & & 1 & 1 & & 1 & & 1 & 2 & 1 & & & & & & 7 & 1.3 (0.7) \\
\hline
\end{tabular}

Dataset = cfdpsehc.d18

Table 3. Electrofishing CPUE (fish/hr) for each length group of smallmouth bass collected from main stem Elkhorn Creek (Forks of Elkhorn to confluence with Kentucky River) from 1984-2018; numbers in parentheses are standard errors. Number of samples and locations varies between years.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <4.0 in & 4.0-8.9 in & \(>9.0\) in & \(>12.0\) in & \(>14.0\) in & \\
\hline 1982 & 0.0 (0.0) & 34.9 (10.6) & 24.7 (4.9) & 4.7 (1.4) & 1.6 (1.1) & 59.6 (13.7) \\
\hline 1983 & \multicolumn{6}{|l|}{No Sample} \\
\hline 1984 & \multicolumn{6}{|c|}{No Sample} \\
\hline 1985 & \multicolumn{6}{|c|}{No Sample} \\
\hline 1986 & \multicolumn{6}{|c|}{No Sample} \\
\hline 1987 & \multicolumn{6}{|c|}{No Sample} \\
\hline 1988 & 1.9 (1.0) & 42.8 (13.4) & 40.8 (12.4) & 2.0 (0.7) & 0.0 (0.0) & 85.5 (26.1) \\
\hline 1989 & 1.6 (0.6) & 22.4 (5.9) & 41.0 (8.8) & 9.2 (2.1) & 2.0 (0.6) & 64.9 (14.1) \\
\hline 1990 & 0.2 (0.1) & 41.0 (9.3) & 62.1 (7.7) & 18.2 (2.7) & 2.7 (0.3) & 103.2 (12.1) \\
\hline 1991 & 4.4 (1.0) & 59.3 (6.5) & 65.2 (5.5) & 14.6 (1.5) & 2.4 (0.4) & 128.9 (10.9) \\
\hline 1992 & 1.0 (0.4) & 81.4 (9.0) & 56.6 (6.9) & 6.9 (1.5) & 0.7 (0.3) & 138.9 (12.8) \\
\hline 1993 & 0.8 (0.3) & 46.6 (10.2) & 80.2 (7.2) & 23.0 (3.2) & 3.6 (0.9) & 127.6 (12.5) \\
\hline 1994 & 4.4 (1.1) & 51.2 (9.0) & 81.1 (8.8) & 42.2 (6.0) & 8.7 (2.2) & 136.8 (13.1) \\
\hline 1995 & 10.3 (3.5) & 51.5 (10.0) & 75.2 (8.6) & 43.8 (6.0) & 15.8 (2.7) & 137.0 (14.0) \\
\hline 1996 & 3.7 (1.0) & 40.7 (8.4) & 57.8 (6.3) & 36.7 (5.0) & 15.1 (2.5) & 102.2 (9.0) \\
\hline 1997 & 4.0 (1.1) & 62.6 (10.1) & 43.1 (4.7) & 20.6 (2.5) & 9.3 (1.4) & 109.7 (13.2) \\
\hline 1998 & 9.6 (1.9) & 48.9 (6.0) & 46.3 (3.0) & 18.3 (1.9) & 7.5 (1.1) & 104.7 (8.4) \\
\hline 1999 & 1.0 (0.3) & 42.1 (7.6) & 41.7 (3.1) & 12.9 (2.1) & 4.8 (0.9) & 84.8 (8.2) \\
\hline 2000 & 11.3 (2.0) & 48.1 (6.2) & 67.0 (5.1) & 29.5 (3.0) & 10.3 (1.4) & 126.4 (8.8) \\
\hline 2001 & 8.0 (1.7) & 29.9 (4.0) & 48.5 (3.1) & 26.9 (2.1) & 10.3 (1.1) & 86.4 (7.0) \\
\hline 2002 & 2.5 (1.2) & 56.1 (6.3) & 49.9 (4.2) & 24.2 (2.6) & 12.0 (1.5) & 108.5 (8.4) \\
\hline 2003 & 5.5 (1.5) & 27.4 (3.1) & 44.4 (4.0) & 15.5 (1.5) & 6.7 (1.0) & 77.3 (6.5) \\
\hline 2004 & 4.9 (2.2) & 29.0 (2.8) & 52.6 (4.8) & 16.8 (1.9) & 6.9 (0.9) & 86.5 (6.4) \\
\hline 2005 & 1.5 (0.4) & 37.3 (6.2) & 47.0 (4.1) & 21.8 (2.2) & 7.0 (0.9) & 85.8 (8.5) \\
\hline 2006 & 11.4 (4.6) & 18.2 (4.1) & 77.4 (8.6) & 42.6 (6.3) & 16.1 (2.4) & 107.0 (11.1) \\
\hline 2007 & \multicolumn{6}{|l|}{No Sample} \\
\hline 2008 & 0.7 (0.3) & 20.3 (4.8) & 22.3 (3.9) & 11.8 (3.2) & 5.7 (2.1) & 43.3 (7.1) \\
\hline 2009 & 2.8 (0.8) & 29.0 (9.3) & 35.0 (6.6) & 13.3 (3.6) & 8.3 (2.3) & 66.8 (13.2) \\
\hline 2010 & 0.2 (0.2) & 31.7 (8.7) & 36.7 (5.2) & 13.0 (3.1) & 5.5 (1.7) & 68.5 (12.7) \\
\hline 2011 & 1.7 (0.7) & 20.7 (4.6) & 36.8 (3.6) & 10.7 (1.9) & 4.5 (1.6) & 59.2 (6.2) \\
\hline 2012 & 9.4 (1.9) & 27.6 (4.6) & 18.0 (2.7) & 5.9 (1.0) & 2.1 (0.8) & 55.0 (7.8) \\
\hline 2013 & 1.6 (0.5) & 18.9 (3.1) & 37.5 (5.9) & 20.9 (3.8) & 10.2 (2.6) & 58.0 (7.2) \\
\hline 2014 & 1.3 (0.7) & 40.8 (7.5) & 44.7 (5.2) & 23.7 (3.5) & 12.0 (2.7) & 86.8 (8.7) \\
\hline 2015 & \multicolumn{6}{|l|}{No Sample} \\
\hline 2016 & 7.7 (2.7) & 91.0 (13.0) & 63.3 (5.3) & 23.0 (2.8) & 10.8 (2.0) & 162.0 (15.6) \\
\hline 2017 & \multicolumn{6}{|c|}{No Sample} \\
\hline 2018 & 1.9 (0.8) & 47.4 (6.9) & 35.6 (3.9) & 13.5 (2.5) & 5.3 (1.3) & 85.0 (9.8) \\
\hline
\end{tabular}

Dataset \(=\) cfdpsehc.d18 - .d08 and bbrpselk.d82, .d88-.d06

Table 4. Electrofishing CPUE (fish/hr) for each length group of rock bass collected from main stem Elkhorn Creek (Forks of Elkhorn to Confluence with Kentucky River) from 1984-2018; numbers in parentheses are standard errors. Number of samples and location varies between years.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Length group} & \multirow[b]{2}{*}{Total} \\
\hline & <4.0 in & 4.0-5.9 in & \(>6.0\) in & >8.0 in & \\
\hline 1982 & 0.1 (0.1) & 1.2 (0.6) & 10.5 (3.1) & 1.9 (1.2) & 11.8 (3.5) \\
\hline 1983 & & & No Sample & & \\
\hline 1984 & & & No Sample & & \\
\hline 1985 & & & No Sample & & \\
\hline 1986 & & & No Sample & & \\
\hline 1987 & & & No Sample & & \\
\hline 1988 & 0.7 (0.56) & 7.1 (2.2) & 22.4 (6.5) & 1.3 (0.9) & 30.2 (8.7) \\
\hline 1989 & 0.0 (0.0) & 4.1 (0.9) & 19.6 (4.2) & 4.7 (1.3) & 23.6 (4.9) \\
\hline 1990 & 0.6 (0.2) & 5.9 (1.5) & 17.9 (2.6) & 3.3 (0.8) & 24.4 (3.9) \\
\hline 1991 & 1.4 (0.5) & 16.2 (2.7) & 32.8 (3.3) & 4.1 (0.6) & 50.4 (5.6) \\
\hline 1992 & 0.7 (0.2) & 9.8 (3.0) & 37.1 (4.9) & 2.2 (0.4) & 47.5 (7.3) \\
\hline 1993 & 0.1 (0.1) & 5.7 (1.8) & 34.4 (4.8) & 8.8 (1.4) & 40.2 (6.1) \\
\hline 1994 & 0.0 (0.0) & 3.6 (1.0) & 28.8 (3.8) & 11.2 (1.4) & 32.3 (4.5) \\
\hline 1995 & 2.0 (0.7) & 6.3 (1.2) & 22.9 (3.2) & 10.6 (1.6) & 31.3 (4.6) \\
\hline 1996 & 3.0 (0.9) & 6.7 (2.1) & 16.3 (2.2) & 6.2 (1.1) & 25.9 (4.2) \\
\hline 1997 & 0.9 (0.4) & 12.0 (2.4) & 19.4 (3.0) & 4.0 (0.8) & 32.3 (4.9) \\
\hline 1998 & 1.5 (0.5) & 8.0 (1.7) & 28.2 (3.7) & 3.5 (0.7) & 37.7 (5.5) \\
\hline 1999 & 4.0 (1.1) & 9.1 (1.5) & 27.3 (2.9) & 3.7 (0.7) & 40.4 (4.8) \\
\hline 2000 & & & No Sample & & \\
\hline 2001 & & & No Sample & & \\
\hline 2002 & & & No Sample & & \\
\hline 2003 & & & No Sample & & \\
\hline 2004 & & & No Sample & & \\
\hline 2005 & 0.8 (0.4) & 1.7 (0.6) & 18.6 (3.6) & 5.8 (0.8) & 21.0 (4.3) \\
\hline 2006 & & & No Sample & & \\
\hline 2007 & & & No Sample & & \\
\hline 2008 & 0.3 (0.2) & 4.3 (1.1) & 22.0 (5.4) & 4.2 (1.0) & 26.7 (6.5) \\
\hline 2009 & 0.0 (0.0) & 4.8 (1.2) & 13.5 (3.2) & 3.8 (1.1) & 18.3 (4.1) \\
\hline 2010 & 0.8 (0.6) & 10.2 (2.1) & 23.7 (3.1) & 4.5 (0.9) & 34.7 (3.8) \\
\hline 2011 & 0.2 (0.2) & 7.8 (2.3) & 19.5 (4.8) & 3.0 (0.7) & 27.5 (6.8) \\
\hline 2012 & 2.9 (0.7) & 4.4 (0.9) & 18.5 (4.1) & 1.6 (0.6) & 25.8 (5.0) \\
\hline 2013 & 0.2 (0.2) & 4.7 (1.4) & 17.6 (4.7) & 4.6 (1.1) & 22.6 (5.3) \\
\hline 2014 & 0.0 (0.0) & 8.3 (2.6) & 31.0 (4.3) & 5.5 (1.1) & 39.3 (6.5) \\
\hline 2015 & & & No Sample & & \\
\hline 2016 & 0.7 (0.4) & 7.0 (1.4) & 41.2 (4.6) & 14.0 (2.1) & 48.8 (5.5) \\
\hline 2017 & & & No Sample & & \\
\hline 2018 & 0.8 (0.6) & 5.5 (1.6) & 14.3 (3.6) & 1.7 (0.7) & 20.6 (5.2) \\
\hline
\end{tabular}

Dataset = cfdpsehc.d18 - .d08 and bbrpselk.d82, .d88 - d.99, .d05

Table 5. Population assessment for smallmouth bass collected by boat electrofishing gear in the North Fork Elkhorn Creek from 2008-2018 (scoring based on statewide assessment).
\(\left.\begin{array}{llcccccccc}\hline \text { Year } & & \begin{array}{c}\text { CPUE } \\ \leq 4.0 \text { in }\end{array} & \begin{array}{c}\text { CPUE } \\ 4.0-8.9 \text { in }\end{array} & \begin{array}{c}\text { CPUE } \\ \geq 9.0 \text { in }\end{array} & \begin{array}{c}\text { CPUE } \\ \geq 12.0 \text { in }\end{array} & \begin{array}{c}\text { CPUE } \\ \geq 14.0 \text { in }\end{array} & \begin{array}{c}\text { Total } \\ \text { score }\end{array} & \begin{array}{c}\text { Assessment } \\ \text { rating }\end{array} \\ \hline 2018 & \text { Value } & 3.2 & 46.4 & 33.6 & 17.6 & 5.6 & & \\ & \text { Score } & 3 & 4 & 4\end{array}\right)\)

Table 6. Population assessment for rock bass collected by boat electrofishing gear in the North Fork Elkhorn Creek from 2008-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \hline \text { CPUE } \\
& \leq 4.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
4.0-5.9 \text { in } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { CPUE } \\
& \geq 6.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & Total score & \[
\begin{gathered}
\text { Assessment } \\
\text { rating }
\end{gathered}
\] \\
\hline 2018 & Value Score & \[
\begin{gathered}
3.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
34.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.4 \\
3
\end{gathered}
\] & 15 & Excellent \\
\hline 2017 & Value Score & \multicolumn{6}{|c|}{No Sample} \\
\hline 2016 & Value Score & \[
\begin{gathered}
5.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
12.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
2
\end{gathered}
\] & 12 & Good \\
\hline 2015 & Value Score & \multicolumn{6}{|c|}{No Sample} \\
\hline 2014 & Value Score & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & 5 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & 5 & Fair \\
\hline 2012 & Value Score & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 5 & Fair \\
\hline 2011 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
6.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 5 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
7.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 5 & Fair \\
\hline 2009 & Value Score & \[
\begin{gathered}
2.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
9.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
20.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
2
\end{gathered}
\] & 12 & Good \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 3 & Poor \\
\hline
\end{tabular}

Table 7. Population assessment for largemouth bass collected by boat electrofishing gear in the North Fork Elkhorn Creek from 2008-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \text { CPUE } \\
& \leq 4.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
4.0-8.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 9.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 12.0 \text { in } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline \multirow[t]{2}{*}{2018} & Value & 0.0 & 9.6 & 40.8 & 17.6 & 4.8 & & \\
\hline & Score & 0 & 4 & 4 & 4 & 4 & 16 & Excellent \\
\hline \multirow[t]{2}{*}{2017} & Value & & & & No Sample & & & \\
\hline & Score & & & & & & & \\
\hline \multirow[t]{2}{*}{2016} & Value & 0.0 & 12.5 & 29.5 & 15.5 & 7.5 & & \\
\hline & Score & 0 & 4 & 4 & 4 & 4 & 16 & Excellent \\
\hline \multirow[t]{2}{*}{2015} & Value & & & & No Sample & & & \\
\hline & Score & & & & & & & \\
\hline \multirow[t]{2}{*}{2014} & Value & 0.0 & 7.0 & 16.0 & 13.0 & 5.0 & & \\
\hline & Score & 0 & 4 & 4 & 4 & 4 & 16 & Excellent \\
\hline \multirow[t]{2}{*}{2013} & Value & 1.5 & 12.5 & 21.5 & 11.0 & 2.5 & & \\
\hline & Score & 3 & 4 & 4 & 4 & 4 & 19 & Excellent \\
\hline \multirow[t]{2}{*}{2012} & Value & 0.0 & 14.5 & 19.0 & 10.5 & 5.0 & & \\
\hline & Score & 0 & 4 & 4 & 4 & 4 & 16 & Excellent \\
\hline \multirow[t]{2}{*}{2011} & Value & 0.0 & 4.5 & 26.5 & 13.5 & 4.5 & & \\
\hline & Score & 0 & 3 & 4 & 4 & 4 & 15 & Good \\
\hline \multirow[t]{2}{*}{2010} & Value & 0.0 & 15.0 & 39.5 & 18.5 & 4.5 & & \\
\hline & Score & 0 & 4 & 4 & 4 & 4 & 16 & Excellent \\
\hline \multirow[t]{2}{*}{2009} & Value & 0.3 & 6.3 & 41.8 & 23.8 & 6.3 & & \\
\hline & Score & 1 & 4 & 4 & 4 & 4 & 17 & Excellent \\
\hline \multirow[t]{2}{*}{2008} & Value & 0.0 & 3.5 & 16.5 & 9.0 & 3.5 & & \\
\hline & Score & 0 & 3 & 4 & 4 & 4 & 15 & Good \\
\hline
\end{tabular}

Table 8. Population assessment for smallmouth bass collected by boat electrofishing gear in the main stem Elkhorn Creek from 2000-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \text { CPUE } \\
& \leq 4.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
4.0-8.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 9.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 12.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 14.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
47.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
36.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.3 \\
4
\end{gathered}
\] & 18 & Excellent \\
\hline 2017 & Value Score & & & & No Sample & & & \\
\hline 2016 & Value Score & \[
\begin{gathered}
7.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
91.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
63.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
23.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
10.8 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline 2015 & Value Score & & & & No Sample & & & \\
\hline 2014 & Value Score & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
40.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
44.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
23.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
12.0 \\
4
\end{gathered}
\] & 18 & Excellent \\
\hline 2013 & Value Score & \[
\begin{gathered}
1.6 \\
2
\end{gathered}
\] & \[
\begin{gathered}
18.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
37.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
20.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
10.2 \\
4
\end{gathered}
\] & 18 & Excellent \\
\hline 2012 & Value Score & \[
\begin{gathered}
9.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
27.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
18.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.9 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.1 \\
3
\end{gathered}
\] & 18 & Excellent \\
\hline 2011 & Value Score & \[
\begin{gathered}
1.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
20.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
36.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
10.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
4
\end{gathered}
\] & 19 & Excellent \\
\hline 2010 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
31.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
36.7 \\
4
\end{gathered}
\] & \[
\begin{gathered}
13.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
4
\end{gathered}
\] & 17 & Excellent \\
\hline 2009 & Value Score & \[
\begin{gathered}
2.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
29.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
35.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
13.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
8.3 \\
4
\end{gathered}
\] & 19 & Excellent \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
20.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
22.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
11.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.7 \\
4
\end{gathered}
\] & 17 & Excellent \\
\hline 2007 & Value Score & & & & No Sample & & & \\
\hline 2006 & Value Score & \[
\begin{gathered}
11.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
18.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
77.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
42.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
16.1 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline 2005 & Value Score & \[
\begin{gathered}
1.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
37.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
47.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
21.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
7.0 \\
4
\end{gathered}
\] & 18 & Excellent \\
\hline 2004 & Value Score & \[
\begin{gathered}
4.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
29.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
52.6 \\
4
\end{gathered}
\] & \[
\begin{gathered}
16.8 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.9 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline 2003 & Value Score & \[
\begin{gathered}
5.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
27.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
44.4 \\
4
\end{gathered}
\] & \[
\begin{gathered}
15.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
6.7 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline 2002 & Value Score & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
56.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
49.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
24.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
11.9 \\
4
\end{gathered}
\] & 19 & Excellent \\
\hline 2001 & Value Score & \[
\begin{gathered}
8.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
29.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
48.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
26.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
10.3 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline 2000 & Value Score & \[
\begin{gathered}
11.3 \\
4
\end{gathered}
\] & \[
\begin{gathered}
48.1 \\
4
\end{gathered}
\] & \[
\begin{gathered}
67.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
29.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
10.3 \\
4
\end{gathered}
\] & 20 & Excellent \\
\hline
\end{tabular}

Table 9. Population assessment for rock bass collected by boat electrofishing gear in the main stem Elkhorn Creek from 2008-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \hline \text { CPUE } \\
& \leq 4.0 \text { in }
\end{aligned}
\] & \[
\begin{gathered}
\text { CPUE } \\
4.0-5.9 \text { in }
\end{gathered}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 6.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { CPUE } \\
& \geq 8.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
3.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
8.0 \\
2
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & 5 & Fair \\
\hline 2017 & Value Score & & & & & & \\
\hline 2016 & Value Score & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & \[
\begin{gathered}
7.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
41.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
14.0 \\
4
\end{gathered}
\] & 12 & Good \\
\hline 2015 & Value Score & & & & & & \\
\hline 2014 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
8.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
31.0 \\
4
\end{gathered}
\] & \[
\begin{gathered}
5.5 \\
3
\end{gathered}
\] & 10 & Good \\
\hline 2013 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
17.6 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.6 \\
3
\end{gathered}
\] & 10 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
2.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.4 \\
3
\end{gathered}
\] & \[
\begin{gathered}
18.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.6 \\
2
\end{gathered}
\] & 12 & Good \\
\hline 2011 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
7.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
19.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
2
\end{gathered}
\] & 9 & Good \\
\hline 2010 & Value Score & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & \[
\begin{gathered}
10.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
23.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.5 \\
3
\end{gathered}
\] & 12 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
4.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
13.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.8 \\
2
\end{gathered}
\] & 8 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
4.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
22.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
4.2 \\
3
\end{gathered}
\] & 10 & Good \\
\hline
\end{tabular}

Table 10. Population assessment for largemouth bass collected by boat electrofishing gear in the main stem Elkhorn Creek from 2008-2018 (scoring based on statewide assessment).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & & \[
\begin{aligned}
& \text { CPUE } \\
& \leq 4.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& 4.0-8.9 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 9.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 12.0 \text { in }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CPUE } \\
& \geq 15.0 \text { in }
\end{aligned}
\] & Total score & Assessment rating \\
\hline 2018 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & 2 & Poor \\
\hline 2017 & Value Score & & & & No Sample & & & \\
\hline 2016 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
5.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
6.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.2 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.3 \\
1
\end{gathered}
\] & 11 & Good \\
\hline 2015 & Value Score & & & & No Sample & & & \\
\hline 2014 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
2.3 \\
2
\end{gathered}
\] & \[
\begin{gathered}
5.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.2 \\
2
\end{gathered}
\] & 10 & Fair \\
\hline 2013 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
2.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
8.9 \\
4
\end{gathered}
\] & \[
\begin{gathered}
4.2 \\
4
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
2
\end{gathered}
\] & 13 & Good \\
\hline 2012 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
6.5 \\
4
\end{gathered}
\] & \[
\begin{gathered}
3.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & 8 & Fair \\
\hline 2011 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
2.5 \\
2
\end{gathered}
\] & \[
\begin{gathered}
4.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.3 \\
1
\end{gathered}
\] & \[
\begin{gathered}
0.7 \\
1
\end{gathered}
\] & 7 & Fair \\
\hline 2010 & Value Score & \[
\begin{gathered}
0.2 \\
1
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.8 \\
2
\end{gathered}
\] & 11 & Good \\
\hline 2009 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
1
\end{gathered}
\] & \[
\begin{gathered}
5.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
3.0 \\
3
\end{gathered}
\] & \[
\begin{gathered}
1.0 \\
2
\end{gathered}
\] & 9 & Fair \\
\hline 2008 & Value Score & \[
\begin{gathered}
0.0 \\
0
\end{gathered}
\] & \[
\begin{gathered}
3.3 \\
3
\end{gathered}
\] & \[
\begin{gathered}
5.7 \\
3
\end{gathered}
\] & \[
\begin{gathered}
2.8 \\
3
\end{gathered}
\] & \[
\begin{gathered}
0.5 \\
1
\end{gathered}
\] & 10 & Fair \\
\hline
\end{tabular}

\section*{CENTRAL FISHERY DISTRICT}

Project 2: Stream Fishery Surveys - Trout Stream Fishery Surveys

\section*{FINDINGS}

Big Bone Creek at Big Bone State Park was monitored for suitability for trout management. Water temperatures were monitored hourly on Big Bone Creek (2 sites) by Hobo TidbiT MX temperature loggers (MX2203) from 15 April to 15 November 2018. The results showed that water temperatures in the upper trout section of Big Bone Creek averaged \(64.2^{\circ} \mathrm{F}\left(\min =36.6^{\circ} \mathrm{F}\right.\) and \(\max =82.0^{\circ} \mathrm{F}\)) and temperatures exceeded \(72^{\circ} \mathrm{F}\) on 96 different days between 3 May and 11 October (Figure 1). Water temperatures for the lower trout section of Big Bone Creek averaged \(67.9^{\circ} \mathrm{F}\left(\min =37.8^{\circ} \mathrm{F}\right.\) and \(\max =87.0^{\circ} \mathrm{F}\)) and temperatures exceeded \(72^{\circ} \mathrm{F}\) on 109 different days between 3 May and 11 October (Figure 2). There was a dip in the temperature profile during the end of June and first of July on the upper Big Bone Creek temperature profile. This was due to a water release from the draining of Big Bone Lick State Park Lake due to a dam issue. There was a slug of cool water released during the lake draining.

A time-lapse camera was installed at the Big Bone State Park upstream of the bridge where trout are stocked into Big Bone Creek in 2018. The camera was installed in April in an effort to capture angling pressure following each of the stocking events, which occurred in April, May, and November 2018. The time-lapse camera recorded a picture of the stocking site every 10-minutes during daylight hours. Unfortunately, a camera malfunction occurred in November 2018 and no data was collected from the November stocking. The camera was removed in March 2019. Images were analyzed by recording pressure counts at the top of each hour during daylight hours.

A total of 1,200 (400 fish/stocking) rainbow trout were stocked into Big Bone Creek during 2018. During the two stocking months with data, an average of 39.5 anglers/month was recorded compared to an average of 20.2 anglers/month during non-stocking months (June-October). During the first week following a stocking event, an average of 12.5 anglers \((41.7 \%)\) were recorded, dropping to an average of \(9.5(31.7 \%)\) anglers during the second week and averaged \(8.0(26.6 \%)\) anglers during the third week post stocking. It does appear that anglers are utilizing the rainbow trout that are stocked into Big Bone Creek.

Gunpowder Creek at Sperti Park was monitored for suitability for trout management. Water temperatures were monitored hourly on Gunpowder Creek (2 sites) by Hobo TidbiT MX temperature loggers (MX2203) from 15 April to 15 November 2018. The results showed that water temperatures in the upper trout section of Gunpowder averaged \(69.9^{\circ} \mathrm{F}\left(\min =36.7^{\circ} \mathrm{F}\right.\) and \(\left.\max =92.4^{\circ} \mathrm{F}\right)\) and temperatures exceeded \(72^{\circ} \mathrm{F}\) on 150 different days between 1 May and 11 October (Figure 3). Water temperatures for the lower trout section of Gunpowder Creek averaged \(68.2^{\circ} \mathrm{F}\left(\min =23.5^{\circ} \mathrm{F}\right.\) and \(\left.\max =99.8^{\circ} \mathrm{F}\right)\) and temperatures exceeded \(72^{\circ} \mathrm{F}\) on 149 different days between 2 May and 11 October (Figure 4). It is recommended that Gunpowder Creek within Sperti Park be stocked as a put-and-take delayed harvest rainbow trout fishery with stockings in March, April and October (Table 1).

Figure 1. Daily water temperatures observed in the upper reach of the trout section at Big Bone Creek (Boone Co.) from 15 April to 15 November 2018.

Lower Big Bone Creek

Figure 2. Daily water temperatures observed in the lower reach of the trout section at Big Bone Creek (Boone Co.) from 15 April to 15 November 2018.

Figure 3. Daily water temperatures observed in the upper reach of the proposed trout section at Gunpowder Creek (Boone Co.) from 15 April to 15 November 2018.

Figure 4. Daily water temperatures observed in the lower reach of the proposed trout section at Gunpowder Creek (Boone Co.) from 15 April to 15 November 2018.

Table 1. Gunpowder Creek at Sperti Park (Boone County Parks and Recréation) trout management plan.
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Trout species \\
stocked
\end{tabular} & Total miles & Trout fishing water & Lower limit & Upper limit
\end{tabular} Management Plan

\section*{CENTRAL FISHERY DISTRICT}

\author{
Project 3: Technical Guidance
}

\section*{FINDINGS}

A total of 34 pond owners and 41 ponds were visited in 2018. Most common problems were unbalanced fish populations, excessive aquatic plant growth, lack of fish cover, and the presence of undesirable fish species (Table 1). During our 2018 technical guidance sampling, seven landowners requested a Fisheries Special Management Permit (FMP) for their ponds. Finally, a total of 291 phone calls, 206 e-mails, and 8 walk-in office visits concerning farm pond problems were handled this year.

Table 1. Technical guidance in the Central Fishery District in 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline County & Name of lake / pond owner & Date sampled & Findings & Recommendations \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Boone \\
(2)
\end{tabular}} & Sundance Estates & 7/10/18 & Good fish populations & Stock CCF; add cover; harvest some fish \\
\hline & Jeremy Waits & 7/10/18 & Pond 1) No BG observed Pond 2) No BG observed & Stock BG: add over Stock BG; add cover \\
\hline \begin{tabular}{l}
Campbell \\
(1)
\end{tabular} & Bob White Conservation Club & 7/19/18 & 4 ponds; & Add cover; stock CCF; \\
\hline \begin{tabular}{l}
Carroll \\
(1)
\end{tabular} & Tom Hirsch & 8/17/18 & Good balanced fish populations & Stock CCF; lime and fertilize; harvest fish; \\
\hline \begin{tabular}{l}
Franklin \\
(1)
\end{tabular} & Jesse Redmon & 6/28/18 & Unbalance fish populations; No LMB & Stock LMB and CCF; Remove trees from dam \\
\hline \multirow[t]{3}{*}{Henry
(3)} & Henry County Parks Department & 5/31/18 & Excessive vegetation & Herbicides for vegetation control \\
\hline & Joe Kime & 7/2/18 & Unbalanced fish populations; No BG; & Stock BG; add cover; \\
\hline & HW Wildlife, LLC & 7/2/18 & Good fish populations & Add cover; harvest fish; remove trees from dam \\
\hline \multirow[t]{3}{*}{Jefferson (3)} & Jeff Sims & 6/26/18 & Unbalanced fish populations & Stock BG; remove flathead catfish when caught \\
\hline & Chris Clayborn & 6/26/18 & Unbalanced fish populations; Few LMB & Stock LMB and CCF \\
\hline & Chris Toadvine & 8/1/18 & Good fish populations & Add cover; harvest fish; stock CCF \\
\hline \begin{tabular}{l}
Jessamine \\
(1)
\end{tabular} & Lexington Christian Fellowship & 7/5/18 & Unbalanced fish populations; No LMB & Stock LMB \\
\hline \begin{tabular}{l}
Nelson \\
(1)
\end{tabular} & Thomas Sims & 8/7/18 & Crowded LMB & Harvest LMB and stock BG \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Oldham \\
(2)
\end{tabular}} & Edward Voelker & 7/30/18 & Crowded LMB; shallow pond & Harvest LMB and stock BG \\
\hline & Chris Keables & 7/30/18 & Unbalanced fish populations & Stock LMB \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Owen \\
(4)
\end{tabular}} & Paul Pungratz & 7/9/18 & Crowded LMB population & Harvest LMB; add cover: FMP \\
\hline & Karen Stanhope & 7/9/18 & Not accessible due to leak & Referred to NRCS for help with leak. \\
\hline & Timberwood Lake Shores HOA & 8/24/18 & \begin{tabular}{l}
Large Lake: crowded bass \\
Middle Lake: good fish populations
\end{tabular} & Large Lake: harvest bass; stock CCF; add cover Middle Lake: stock CCF; add cover \\
\hline & & & Upper Lake; good fish populations & Upper Lake: No recommendations \\
\hline & George Callaghan, Jr. & 8/27/18 & Good fish populations & Stock CCF; add cover \\
\hline \begin{tabular}{l}
Pendleton \\
(1)
\end{tabular} & Charles Cooper & 8/22/18 & Unbalanced fish populations & Stock LMB and CCF; add cover; remove trees from dam \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Scott } \\
& \text { (3) } \\
& \hline
\end{aligned}
\]} & Ronnie Stidham & 6/27/18 & Good fish populations & Harvest and add cover \\
\hline & Randy Gaebler & 6/27/18 & Good fish populations & Add cover, maintain dam \\
\hline
\end{tabular}
\begin{tabular}{llcll}
\hline County & \begin{tabular}{c}
Name of lake / \\
pond owner
\end{tabular} & \begin{tabular}{c}
Date \\
sampled
\end{tabular} & \multicolumn{1}{c}{ Findings } & Recommendations \\
\hline \begin{tabular}{l}
Scott \\
\((3)\)
\end{tabular} & Tom Cheek & \(6 / 29 / 18\) & Bass crowded & Lime and Fertilize; add cover \\
\hline \begin{tabular}{l}
Shelby \\
\((6)\)
\end{tabular} & Brian Flora & \(6 / 25 / 18\) & Bass crowded & Stock CCF; add cover \\
\hline & Michael Holly & \(7 / 6 / 18\) & \begin{tabular}{l}
Shallow Pond; Limited \\
fish populations
\end{tabular} & Renovate; add cover \\
\hline & Avish Farm, LLC & \(7 / 11 / 18\) & \begin{tabular}{l}
Unbalanced fish \\
populations
\end{tabular} & Stock LMB; harvest CCF \\
\hline & David Breen & \(7 / 11 / 18\) & Balanced fish populations & Add cover \\
\hline & Bill Decker & \(7 / 13 / 18\) & Balanced fish populations & \begin{tabular}{l}
Stock CCF; add cover; \\
maintain dam
\end{tabular} \\
\hline & Chad Weaver & \(8 / 10 / 18\) & \begin{tabular}{l}
2 ponds; 1) unbalanced \\
fish populations 2) \\
unbalanced fish \\
populations
\end{tabular} & \begin{tabular}{l}
1) Protect LMB, harvest CCF \\
and crappie 2) protect LMB, \\
add cover.
\end{tabular} \\
\hline \begin{tabular}{llll}
Spencer \\
\((1)\)
\end{tabular} & Dale Yates & \(8 / 7 / 18\) & Good fish populations & Add cover, maintain dam \\
\hline \begin{tabular}{llll}
Trimble \\
\((1)\)
\end{tabular} & \begin{tabular}{l}
Homestead Wildlife \\
LLC
\end{tabular} & \(8 / 29 / 18\) & Inaccessible & Stock LMB and CCF \\
\hline \begin{tabular}{l}
Washington \\
\((2)\)
\end{tabular} & Bonnie Bartley & \(8 / 8 / 18\) & Crowded fish populations & \begin{tabular}{l}
Harvest LMB; add cover; \\
FMP
\end{tabular} \\
\hline & C. Ray Hinton & \(8 / 8 / 18\) & \begin{tabular}{l}
Unbalanced fish \\
population;
\end{tabular} & Stock BG \\
\hline \begin{tabular}{l}
Woodford \\
\((1)\)
\end{tabular} & \begin{tabular}{l}
Woodford Fishing \\
Lake, Inc
\end{tabular} & \(6 / 28 / 18\) & Good fish populations & None \\
\hline
\end{tabular}

\title{
NORTHEASTERN FISHERY DISTRICT
}

\author{
Project 2: Stream Fishery Surveys
}

\section*{FINDINGS}

\section*{Slate Creek Sampling}

On 7, 8, and 20 June, four sections of Slate Creek (Bath County) were sampled for an assessment of the game fish, sunfish and catfish populations (specific site locations and sampling times can be found in the table below). On 7 June, the downstream (Site 1, White Oak, sampled for 0.5 hours (\(2-15\)-minute runs)) and the upstream most site (Site 4, Shrout Road, sampled for 0.75 hours (\(3-15\) minute runs)) were sampled. On 8 June, the second-most upstream site (Site 3, Lion's Club, sampled for 1.0 hours (\(4-15\) minute runs)) was sampled. On 20 June, the secondmost downstream site (Site 2, Bach Hole, sampled for 0.5 hours (\(2-15\) minute runs)) was sampled. In total, 11 different species were collected with the dominant species being rock bass (\(46 \%\) of all individuals) followed by smallmouth bass (\(30 \%\) of all individuals; Table 1). Catch rates of rock bass are presented in Table 2 and the overall rock bass fishery was rated as "good" (Table 3). Catch rates of smallmouth bass are presented in Table 4 and the overall smallmouth bass fishery was rated as "good" (Table 5). Finally, the largemouth bass catch rates are presented in Table 6 and this fishery was rated as "fair" overall (Table 7).
\begin{tabular}{cccccl}
\hline \begin{tabular}{c}
Sample \\
Date
\end{tabular} & \begin{tabular}{c}
Sample \\
Time
\end{tabular} & Gear & Weather & Temperature & \multicolumn{1}{c}{ Specific Location } \\
\hline \(06 / 07\) & 0800 & j. electro & Clear & \(70^{\circ} \mathrm{F}\) & Site 1, White Oak, Downstream Most \\
\(06 / 20\) & 0800 & j. electro & Clear & \(81^{\circ} \mathrm{F}\) & Site 2, Bach Hole, 2 \({ }^{\text {nd }}\) Downstream Most \\
\(06 / 08\) & 0800 & j. electro & Clear & \(72^{\circ} \mathrm{F}\) & Site 3, Lion's Club, 2 \\
\(06 / 07\) & 1200 & j. electro & Clear & \(72^{\circ} \mathrm{F}\) & Site 4, Shrout Road, Upstream Most Most \\
\hline
\end{tabular}

\section*{Licking River Sampling}

On 4-6 and 20 June, the Licking River was sampled for an assessment of game fish, sunfish and catfish populations. Nine different locations were sampled from the Cave Run Lake dam to the Falmouth area in Pendleton County; specific site locations and sampling times can be found in the table below. Overall sampling showed the abundance of different species that you would expect in such a long stretch of the river and for that reason, tables were broken up by species types. All three species of black bass were collected with smallmouth being the most prevalent (\(65 \%\) of all individuals; Table 8). Catch rates of smallmouth bass are presented in Table 9 and the overall smallmouth bass fishery was rated as "good" (Table 10). The largemouth bass catch rates are presented in Table 11 and this fishery was rated as "fair" overall (Table 12). Both flathead and channel catfish were collected along the length of the river with channel catfish being the most prevalent (\(87 \%\); Table 13). The majority (\(87 \%\)) of all channel catfish collected came in the Cave Run Tailwater areas. Length frequency for all other species of fish collected is shown in Table 14. The most prevalent species was crappie (white then black) followed by rock bass. Additionally, eight muskellunge were collected, giving an overall catch rate of 0.9 fish per hour of electrofishing. Catch rates of rock bass are presented in Table 15 and the overall rock bass fishery was rated as "fair" (Table 16).
\begin{tabular}{cccccl}
\hline \begin{tabular}{c}
Sample \\
Date
\end{tabular} & \begin{tabular}{c}
Sample \\
Time
\end{tabular} & Gear & Weather & Temperature & \multicolumn{1}{c}{ Specific Location } \\
\hline \(06 / 04\) & 1130 & electro & Clear & \(72^{\circ} \mathrm{F}\) & Site 1, Falmouth Ramp (CFD Sample) \\
\(06 / 05\) & 0800 & j. electro & Clear & \(70^{\circ} \mathrm{F}\) & Site 2, Claysville \\
\(06 / 06\) & 0800 & electro & Clear & - & Site 3, Bluelicks \\
\(06 / 06\) & 1200 & electro & Clear & - & Site 4, Clay WMA \\
\(06 / 05\) & 0900 & electro & Clear & \(65^{\circ} \mathrm{F}\) & Site 5, Sherburn \\
\(06 / 05\) & 1230 & electro & Clear & - & Site 6, Mouth of Fox Creek \\
\(06 / 06\) & 0800 & j. electro & Clear & \(61^{\circ} \mathrm{F}\) & Site 7, Johnson Ford (downstream) \\
\(06 / 06\) & 1230 & j. electro & Clear & \(60^{\circ} \mathrm{F}\) & Site 8, Johnson Ford (upstream \\
\(06 / 20\) & 1030 & electro & Clear & \(70^{\circ} \mathrm{F}\) & Site 10, Cave Run Tailwaters \\
\hline
\end{tabular}

\section*{Kentucky River Sampling}

On 28 November, the tailwaters of Lock and Dam 10 and 12 of the Kentucky River were sampled nocturnally for assessment of the Sander species (1.0 hour in each location; 4-15-minute runs). Between both sections, 39 sauger were collected with the majority coming from the tailwaters of Lock and Dam 10 (Table 17)

\section*{Trout Stream Temperature Assessments}

Temperature loggers were installed in all NEFD trout designated waters. Data collection spanned from May through November. Parched Corn, Chimney Top, and Dog Fork represent the coldest streams in the district. All three are at the upper temperature threshold for trout over-summering habitat (Table 18). At the time of writing, some loggers were unable to be harvested due to excessively high water.

\section*{Trout Stream Usage (Camera Monitoring)}

Trail cameras were placed on streams to assess the number of anglers using the trout-stocked waters. Cameras were installed early May and maintained throughout the year. Big Caney, Triplett, and Swift Camp were all streams that received heavy usage throughout the year (Table 19).

\section*{Trout Stream Sampling}

Three trout streams, with the greatest possibility of having holdover habitat, were sampled throughout the month of July. Trout were found in all three streams. Also during sampling, wild spawned fish were found in Parched Corn Creek (Table 20).

Table 1. Length frequency and CPUE (fish/hour) of selected sport fish collected during 2.75 hours of electrofishing (15-minute sampling runs) at 4 sites in Slate Creek during the spring of 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Site} & \multirow[b]{2}{*}{Species} & \multicolumn{17}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Std } \\
& \text { Err. }
\end{aligned}
\]} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & & & \\
\hline \multirow{10}{*}{\[
\begin{gathered}
1 \\
(0.50 \text { hours })
\end{gathered}
\]} & Brow \(n\) bullhead & & & & & & & & & & & & & & & & 1 & & 1 & 2.0 & 2.0 \\
\hline & Channel catfish & & & & & & & 2 & & & 1 & 1 & & & & & & & 4 & 8.0 & 0.0 \\
\hline & Flathead catfish & & & & & & & & 1 & & & & & & & & & & 1 & 2.8 & 2.0 \\
\hline & Rock bass & & & 7 & 3 & 13 & 8 & 2 & 1 & & & & & & & & & & 34 & 64.0 & 8.0 \\
\hline & Bluegill & & & 1 & & & & & & & & & & & & & & & 1 & 2.0 & 2.0 \\
\hline & Redear sunfish & & & & & & 1 & & & & & & & & & & & & 1 & 2.0 & 2.0 \\
\hline & Smallmouth bass & & & 5 & 2 & 6 & 7 & 10 & 14 & 8 & 2 & 4 & 3 & 2 & 1 & & 1 & & 65 & 130.0 & 34.0 \\
\hline & Spotted bass & & & 1 & & & & & & & & & & & & & & & 1 & 2.0 & 2.0 \\
\hline & Largemouth bass & & & 1 & & & 1 & & & & & & 1 & & & & & & 3 & 6.0 & 6.0 \\
\hline & Sauger & & & & & & & & 1 & & & & & & 1 & & 1 & & 3 & 6.0 & 2.0 \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
2 \\
(0.50 \text { hours })
\end{gathered}
\]} & Rock bass & 1 & & 3 & 12 & 20 & 16 & 3 & 1 & & & & & & & & & & 56 & 112.0 & 44.0 \\
\hline & Bluegill & & 1 & & & & & & & & & & & & & & & & 1 & 2.0 & 2.0 \\
\hline & Smallmouth bass & & & 3 & & & 1 & 2 & 6 & 2 & 2 & 1 & & & & & & & 17 & 34.0 & 2.0 \\
\hline \multirow{7}{*}{\[
\begin{gathered}
3 \\
\text { (1.00 hours) }
\end{gathered}
\]} & Flathead catfish & & & & & & 1 & & & & 1 & & & & & 1 & & & 3 & 3.0 & 1.9 \\
\hline & Rock bass & & & 2 & 13 & 15 & 5 & 4 & & & & & & & & & & & 39 & 39.0 & 8.7 \\
\hline & Bluegill & & 2 & 1 & 1 & 3 & & & & & & & & & & & & & 7 & 7.0 & 4.1 \\
\hline & Smallmouth bass & & & & & & & & 3 & 2 & 1 & & & & & & & & 6 & 6.0 & 4.7 \\
\hline & Spotted bass & & 1 & 2 & & 1 & 2 & & & & & & & & & & & & 6 & 6.0 & 3.5 \\
\hline & Largemouth bass & & & 1 & 1 & & 2 & 3 & 2 & 3 & & & 1 & & & & & 2 & 15 & 15.0 & 5.5 \\
\hline & White crappie & & & & & & 1 & 1 & & & & & & & & & & & 2 & 2.0 & 2.0 \\
\hline \multirow{8}{*}{\[
\begin{gathered}
4 \\
(0.75 \text { hours })
\end{gathered}
\]} & Flathead catfish & & & & & & & & 1 & & & & & & & & & & 1 & 1.3 & 1.3 \\
\hline & Rock bass & & 1 & & 2 & 5 & 1 & & & & & & & & & & & & 9 & 12.0 & 2.3 \\
\hline & Bluegill & & 2 & 1 & & 1 & & & & & & & & & & & & & 4 & 5.3 & 1.3 \\
\hline & Redear sunfish & & & 1 & & & & & & & & & & & & & & & 1 & 1.3 & 1.3 \\
\hline & Smallmouth bass & & & & & & & & 2 & & & & & & & & & & 2 & 2.7 & 1.3 \\
\hline & Spotted bass & & 1 & & 1 & 5 & 2 & 1 & 1 & & 1 & & & & & & & & 12 & 16.0 & 6.1 \\
\hline & Largemouth bass & & 2 & & & 1 & & 3 & & & 1 & & & & & & & & 7 & 9.2 & 3.5 \\
\hline & White crappie & & & & & & & 1 & & & & & & & & & & & 1 & 1.3 & 1.3 \\
\hline \multirow{11}{*}{Total (2.75 hours)} & Brow \(n\) bullhead & & & & & & & & & & & & & & & & 1 & & 1 & 0.4 & 0.4 \\
\hline & Channel catfish & & & & & 2 & & & & & 1 & 1 & & & & & & & 4 & 1.5 & 1.0 \\
\hline & Flathead catfish & & & & 1 & & 2 & & & & 1 & & & & & 1 & & & 5 & 1.8 & 0.8 \\
\hline & Rock bass & 1 & 1 & 12 & 30 & 53 & 30 & 9 & 2 & & & & & & & & & & 138 & 50.2 & 12.8 \\
\hline & Bluegill & & 5 & 3 & 1 & 4 & & & & & & & & & & & & & 13 & 4.7 & 1.6 \\
\hline & Redear sunfish & & & 1 & & & 1 & & & & & & & & & & & & 2 & 0.7 & 0.5 \\
\hline & Smallmouth bass & & & 8 & 2 & 6 & 8 & 12 & 25 & 12 & 5 & 5 & 3 & 2 & 1 & & 1 & & 90 & 32.7 & 15.7 \\
\hline & Spotted bass & & 2 & 3 & 1 & 6 & 4 & 1 & 1 & & 1 & & & & & & & & 19 & 6.9 & 2.7 \\
\hline & Largemouth bass & & 2 & 2 & 1 & 1 & 3 & 6 & 2 & 3 & 1 & & 2 & & & & & 2 & 25 & 9.1 & 2.8 \\
\hline & White crappie & & & & & & 1 & 2 & & & & & & & & & & & 3 & 1.1 & 0.8 \\
\hline & Sauger & & & & & & & & 1 & & & & & & 1 & & 1 & & 3 & 1.1 & 0.8 \\
\hline
\end{tabular}
nedslate.d18

Table 2. Rock bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on Slate Creek.
\begin{tabular}{cccccccc}
& \multicolumn{5}{c}{ Inch class } & & \\
\cline { 2 - 5 } Year & \(<4.0\) in & \(4.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & Total & \begin{tabular}{c}
error
\end{tabular} \\
\hline 2018 & 0.7 & 15.3 & 30.2 & 4.0 & 50.2 & 12.8 \\
\hline nedslate.d18 & & & & & &
\end{tabular}

Table 3. Population assessment of rock bass collected from Slate Creek.
\begin{tabular}{lccccccc}
\hline & CPUE & CPUE & CPUE & CPUE & Total & \begin{tabular}{c}
Assessment
\end{tabular} \\
Year & CPU.0 in & 4.0-5.9 in & \(\geq 6.0\) in & \(\geq 8.0\) in & score & rating \\
\hline \multirow{2}{*}{2018} & Value & 0.7 & 15.3 & 34.2 & 4.0 & \multirow{2}{*}{11} & Good \\
& Score & 1 & 4 & 4 & 2 & &
\end{tabular}
nedslate.d18

Table 4. Smallmouth bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on Slate Creek.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[t]{2}{*}{Std. error} \\
\hline & < 4.0 in & 4.0-8.9 in & 9.0-11.9 in & 12.0-13.9 in & \(\geq 14.0\) in & & \\
\hline 2018 & 0.0 & 13.1 & 15.3 & 2.9 & 1.5 & 32.7 & 15.7 \\
\hline
\end{tabular}

Table 5. Population assessment of smallmouth bass collected from Slate Creek.
\begin{tabular}{lccccccc}
\hline & CPUE & CPUE & CPUE & CPUE & CPUE & Total & Assessment \\
Year & < 4.0 in & \(4.0-8.9\) in & \(\geq 9.0\) in & \(\geq 12.0\) in & \(\geq 14.0\) in & score & rating \\
\hline \multirow{2}{*}{2018} & Value & 0.0 & 13.1 & 19.6 & 4.4 & 1.5 & \multirow{2}{*}{12} \\
& Score & 0 & 3 & 4 & 3 & 2 & \\
\hline
\end{tabular}
nedslate.d18

Table 6. Largemouth bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on Slate Creek.
\begin{tabular}{cccccccc}
& \multicolumn{6}{c}{ Inch class } & \\
\cline { 2 - 8 } Year & \(<4.0\) in & \(4.0-8.9\) in & \(9.0-11.9\) in & \(12.0-14.9\) in & \(\geq 15.0\) in & Total & error \\
\hline 2018 & 7.0 & 4.7 & 2.2 & 0.7 & 0.7 & 9.1 & 2.8 \\
\hline
\end{tabular}
nedslate.d18

Table 7. Population assessment of largemouth bass collected from Slate Creek.
\begin{tabular}{lccccccc}
\hline & CPUE & CPUE & CPUE & CPUE & CPUE & Total & Assessment \\
Year & \(<4.0\) in & \(4.0-8.9\) in & \(\geq 9.0\) in & \(\geq 12.0\) in & \(\geq 15.0\) in & score & rating \\
\hline \multirow{2}{*}{2018} & Value & 0.7 & 4.7 & 2.9 & 0.7 & 0.7 & 8 \\
\hline & Score & 1 & 3 & 2 & 1 & 1 & Fair \\
\hline nedslate.d18 & & & & & & & \\
\end{tabular}

Table 8. Length frequency and CPUE (fish/hour) of black bass collected during 8.5 hours of electrofishing (15-minute sampling runs) at 9 sites on the Licking River during the spring of 2018.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Section} & \multirow[b]{2}{*}{Species} & \multicolumn{19}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{Std. Error} \\
\hline & & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & & & \\
\hline \multirow{3}{*}{1} & Smallmouth bass & & & 8 & 2 & & 3 & 1 & & & & 1 & & & & & & & & & 15 & 10.0 & 3.4 \\
\hline & Spotted bass & & & & & 1 & 1 & & & & 1 & & & & & & & & & & 3 & 2.0 & 1.4 \\
\hline & Largemouth bass & & & & & & & & 1 & & & & & & & & & & & & 1 & 0.7 & 0.7 \\
\hline \multirow{3}{*}{2} & Smallmouth bass & & & & 4 & 1 & 1 & 3 & & 1 & 1 & & & & & & & & & & 11 & 14.7 & 7.1 \\
\hline & Spotted bass & & & & & & 3 & & & & & & & & & & & & & & 3 & 4.0 & 4.0 \\
\hline & Largemouth bass & 0 & & \\
\hline \multirow{3}{*}{3} & Smallmouth bass & & 1 & & & & & & 1 & 1 & & & & 2 & 1 & & & & & & 6 & 6.0 & 2.0 \\
\hline & Spotted bass & & & 1 & & & 1 & & & & & 1 & & 1 & & & & & & & 4 & 4.0 & 0.0 \\
\hline & Largemouth bass & & & & 1 & & & & & & & & & & & & & & & & 1 & 1.0 & 1.0 \\
\hline \multirow{3}{*}{4} & Smallmouth bass & & 1 & 5 & & & 2 & & & 1 & & & & & & & & & & & 9 & 12.0 & 6.1 \\
\hline & Spotted bass & & & & & 2 & 4 & & & 1 & & & & & & & & & & & 7 & 9.3 & 5.8 \\
\hline & Largemouth bass & 0 & & \\
\hline \multirow{3}{*}{5} & Smallmouth bass & & & & 2 & & 1 & & 2 & 1 & 4 & & 1 & 2 & 1 & 1 & & & & & 15 & 15.0 & 7.6 \\
\hline & Spotted bass & & & 1 & & 2 & 1 & 1 & & & 1 & & & & & & & & & & 6 & 6.0 & 1.2 \\
\hline & Largemouth bass & 0 & & \\
\hline \multirow{3}{*}{6} & Smallmouth bass & & & 3 & & & 3 & & 1 & 2 & 3 & 3 & 1 & 1 & & & & & & & 17 & 17.0 & 6.6 \\
\hline & Spotted bass & & & & & 1 & & & & 1 & & & & 1 & 1 & & & & & & 4 & 4.0 & 2.8 \\
\hline & Largemouth bass & 0 & & \\
\hline \multirow{3}{*}{7} & Smallmouth bass & & 2 & & 2 & & 2 & 3 & 3 & 10 & 7 & 3 & 2 & 2 & & 1 & & & 1 & & 38 & 38.0 & 2.6 \\
\hline & Spotted bass & & & 1 & 2 & & & & & & & 1 & & & & & & & & & 4 & 4.0 & 1.6 \\
\hline & Largemouth bass & 0 & & \\
\hline \multirow{3}{*}{8} & Smallmouth bass & & & 1 & & 3 & & 1 & 2 & 3 & 1 & 5 & 5 & 1 & & & & 1 & 1 & & 24 & 24.0 & 7.8 \\
\hline & Spotted bass & & & & 2 & 6 & & 3 & 1 & 1 & & 1 & 1 & & & & & & & & 15 & 15.0 & 3.4 \\
\hline & Largemouth bass & & & & & & 1 & & & & & & & & & & & & & & 1 & 1.0 & 1.0 \\
\hline \multirow{3}{*}{10} & Smallmouth bass & & & & & & & & & & 1 & & & & & & & & & & 1 & 2.0 & 2.0 \\
\hline & Spotted bass & & & & & & & 1 & & & 2 & & & & & & & & & & 3 & 6.0 & 2.0 \\
\hline & Largemouth bass & & & & 1 & & 1 & 1 & & 1 & & 3 & 3 & 4 & & 2 & 1 & & 2 & 2 & 21 & 42.0 & 22.0 \\
\hline \multirow{3}{*}{Total} & Smallmouth bass & & 4 & 17 & 10 & 4 & 12 & 8 & 9 & 19 & 17 & 12 & 9 & 8 & 2 & 2 & & 1 & 2 & & 136 & 16.0 & 2.4 \\
\hline & Spotted bass & & & 3 & 4 & 12 & 10 & 5 & 1 & 3 & 4 & 3 & 1 & 2 & 1 & & & & & & 49 & 5.8 & 1.0 \\
\hline & Largemouth bass & & & & 2 & & 2 & 1 & 1 & 1 & & 3 & 3 & 4 & & 2 & 1 & & 2 & 2 & 24 & 2.8 & 2.0 \\
\hline
\end{tabular}

Table 9. Smallmouth bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on Licking River.
\begin{tabular}{cccccccc}
\hline & \multicolumn{6}{c}{ Inch class } & \\
\cline { 2 - 8 } & \(<4.0\) in & \(4.0-8.9\) in & \(9.0-11.9\) in & \(12.0-13.9\) in & \(\geq 14.0\) in & Total & error \\
\hline 2018 & 2.5 & 5.1 & 5.6 & 2.0 & 0.8 & 16.0 & 2.4 \\
\hline nedlickr.d18 & & & & & & &
\end{tabular}

Table 10. Population assessment of smallmouth bass collected from Licking River.
\begin{tabular}{lccccccc}
\hline & & CPUE & CPUE & CPUE & CPUE & CPUE & Total \\
Assessment \\
Year & \(<4.0\) in & \(4.0-8.9\) in & \(\geq 9.0\) in & \(\geq 12.0\) in & \(\geq 14.0\) in & score & rating \\
\hline \multirow{2}{*}{2018} & Value & 2.5 & 5.1 & 8.5 & 2.8 & 0.8 & 11 \\
& Score & 3 & 2 & 3 & 2 & 1 & Good \\
\hline nedlickr.d18 & & & & & & & \\
\end{tabular}

Table 11. Largemouth bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on Licking River.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{5}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[t]{2}{*}{Std. error} \\
\hline & < 4.0 in & 4.0-8.9 in & 9.0-11.9 in & 12.0-14.9 in & \(\geq 15.0\) in & & \\
\hline 2018 & 0.0 & 0.7 & 0.5 & 0.8 & 0.8 & 2.8 & 2.0 \\
\hline
\end{tabular}
nedlickr.d18

Table 12. Population assessment of largemouth bass collected from Licking River.
\begin{tabular}{lccccccc}
\hline \multirow{3}{*}{ Year } & & CPUE & CPUE & CPUE & CPUE & CPUE & Total \\
Assessment \\
\multirow{2}{*}{2018} & Value & 0.0 & \(4.0-8.9\) in & 0.7 & 2.0 in & \(\geq 12.0\) in & \(\geq 15.0\) in \\
& Score & 0 & 1 & 2 & 1.6 & 0.8 & rating \\
\hline
\end{tabular}

Table 13. Length frequency and CPUE (fish/hour) of catfish species collected during 8.5 hours of electrofishing (15-minute sampling runs) at 9 sites on the Licking River during the spring of 2018

Table 14. Length frequency and CPUE (fish/hour) of "game" species collected during 8.5 hours of electrofishing (15 minute sampling runs) at 9 sites on the Licking River during the spring of 2018.

Table 15. Rock bass electrofishing CPUE (fish/hour) from each length group collected during spring sampling on the Licking River.
\begin{tabular}{ccccccc}
& \multicolumn{5}{c}{ Inch Class } & \\
& & Std. \\
\cline { 2 - 6 } Year & \(<4.0\) in & \(4.0-5.9\) in & \(6.0-7.9\) in & \(\geq 8.0\) in & Total & error \\
\hline 2018 & 0.6 & 0.4 & 4.5 & 2.9 & 8.4 & 2.8 \\
\hline nedlickr.d18 & & & & & &
\end{tabular}

Table 16. Population assessment of rock bass collected from the Licking River.
\begin{tabular}{lcccccc}
\hline & & CPUE & CPUE & CPUE & CPUE & Total \\
Year & \(<4.0\) in & \(4.0-5.9\) in & \(\geq 6.0\) in & \(\geq 8.0\) in & score & rating \\
\hline \multirow{2}{*}{2018} & Value & 0.6 & 0.4 & 7.4 & 2.9 & 6 \\
& Score & 1 & 1 & 2 & 2 & Fair \\
\hline nedlickr.d18 & & & & & &
\end{tabular}

Table 17. Length frequency and CPUE (fish/hr) of Sander species 2.0 hours of electrofishing (15 -minute sampling runs) at 2 tailwaters of the upper Kentucky River during the fall of 2018.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Pool} & \multirow[b]{2}{*}{Species} & \multicolumn{9}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE} & \multirow[t]{2}{*}{\begin{tabular}{l}
Std \\
Error
\end{tabular}} \\
\hline & & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & & & \\
\hline 9 & Sauger & 1 & 16 & 1 & & & 4 & 1 & 5 & 3 & 31 & 31.0 & 4.4 \\
\hline 11 & Sauger & & 1 & 1 & & & 1 & & 2 & 3 & 8 & 8.0 & 2.8 \\
\hline Total & Sauger & 1 & 17 & 2 & & & 5 & 1 & 7 & 6 & 39 & 19.5 & 5.0 \\
\hline
\end{tabular}

Table 18. Monthly breakdown of minimum, average, and maximum temperatures on designated trout streams.
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Stream Name} & & \multicolumn{21}{|c|}{Months} \\
\hline & & \multicolumn{3}{|c|}{May} & \multicolumn{3}{|c|}{June} & \multicolumn{3}{|c|}{July} & \multicolumn{3}{|c|}{August} & \multicolumn{3}{|c|}{September} & \multicolumn{3}{|c|}{October} & \multicolumn{3}{|c|}{November} \\
\hline & & Min & Mean & Max \\
\hline Parched Corn & Upper & 59.7 & 62.3 & 64.7 & 57.7 & 64.3 & 68.7 & 62.6 & 66.6 & 70.9 & 59.6 & 66.7 & 69.4 & 58.6 & 66.0 & 70.2 & 44.2 & 55.7 & 66.6 & 34.7 & 44.6 & 54.8 \\
\hline Parched Corn & Lower & 59.9 & 62.5 & 65.1 & 58.0 & 64.4 & 69.1 & 63.0 & 66.7 & 71.2 & 60.0 & 66.8 & 70.1 & 58.7 & 66.0 & 70.2 & 44.1 & 55.6 & 66.6 & 36.5 & 45.2 & 54.6 \\
\hline Chimney Top & Upper & 55.9 & 60.9 & 65.5 & 57.3 & 63.6 & 69.1 & 62.1 & 65.9 & 71.2 & 59.7 & 65.9 & 69.6 & 59.4 & 65.5 & 70.8 & 46.7 & 56.6 & 67.1 & 38.2 & 46.3 & 55.2 \\
\hline Chimney Top & Lower & 56.1 & 61.9 & 67.1 & 57.7 & 64.6 & 71.3 & 62.4 & 66.7 & 72.6 & 59.6 & 66.7 & 71.4 & 59.3 & 65.9 & 71.6 & 45.8 & 56.5 & 67.7 & 37.4 & 46.1 & 55.7 \\
\hline MF Red & Upper & 59.5 & 69.8 & 76.1 & 63.9 & 72.1 & 79.3 & 68.6 & 74.1 & 81.8 & 65.5 & 73.4 & 79.3 & 61.7 & 70.7 & 78.4 & 48.4 & 59.6 & 74.6 & 37.3 & 46.7 & 57.1 \\
\hline MF Red & Lower & 60.7 & 71.8 & 80.0 & 66.5 & 74.6 & 83.9 & 70.0 & 76.5 & 85.8 & 67.6 & 75.2 & 82.0 & 61.8 & 71.2 & 81.8 & 49.1 & 59.9 & 75.0 & 36.8 & 46.6 & 56.8 \\
\hline EF Indian & Upper & 54.1 & 63.9 & 70.1 & 59.8 & 66.7 & 76.3 & 64.5 & 69.1 & 76.5 & 61.4 & 68.5 & 74.9 & 59.3 & 66.8 & 74.3 & 46.1 & 56.7 & 67.7 & 36.4 & 46.2 & 56.4 \\
\hline EF Indian & Lower* & \\
\hline Swift Camp & Upper* & \\
\hline Swift Camp & Lower & 62.1 & 68.0 & 71.7 & 63.4 & 70.2 & 77.4 & 67.4 & 71.9 & 79.2 & 64.3 & 71.6 & 75.7 & 61.3 & 69.0 & 75.4 & 44.9 & 57.0 & 69.6 & 33.9 & 44.6 & 55.2 \\
\hline NF Triplett & Upper & 55.7 & 69.2 & 75.7 & 67.8 & 72.7 & 78.8 & 67.9 & 75.5 & 82.9 & 67.3 & 73.9 & 79.1 & 61.8 & 70.8 & 79.3 & 48.0 & 59.3 & 72.1 & 37.6 & 47.6 & 58.6 \\
\hline NF Triplett & Lower & 56.9 & 68.8 & 75.8 & 67.6 & 72.8 & 81.1 & 68.3 & 76.3 & 85.1 & 68.4 & 74.5 & 85.1 & 62.6 & 71.1 & 80.2 & 48.5 & 59.4 & 72.4 & 37.5 & 47.5 & 58.5 \\
\hline Craney & Upper* & \\
\hline Craney & Lower* & \\
\hline Big Caney & - & 54.7 & 61.4 & 66.0 & 58.2 & 63.4 & 69.3 & 62.3 & 66.0 & 71.1 & 60.8 & 65.7 & 70.7 & 59.2 & 65.6 & 71.1 & 47.1 & 56.4 & 65.7 & 39.0 & 46.7 & 54.9 \\
\hline Laurel Creek & - & 54.4 & 62.3 & 66.3 & 58.5 & 64.7 & 72.0 & 62.9 & 67.2 & 73.2 & 59.9 & 66.9 & 72.3 & 58.8 & 66.0 & 73.0 & 44.9 & 55.9 & 66.2 & 38.3 & 46.2 & 55.3 \\
\hline Raven Creek & - & 65.1 & 73.8 & 80.9 & 67.7 & 75.2 & 84.7 & 66.4 & 75.7 & 84.8 & 68.5 & 74.5 & 80.4 & 62.1 & 71.5 & 81.5 & 47.2 & 59.7 & 76.2 & 35.6 & 46.0 & 59.5 \\
\hline EF Little Sandy & - & 65.9 & 71.7 & 77.2 & 65.3 & 73.7 & 81.6 & 70.3 & 76.0 & 85.4 & 67.0 & 74.2 & 80.1 & 63.2 & 72.0 & 82.4 & 47.6 & 59.4 & 73.0 & 36.6 & 46.7 & 57.2 \\
\hline Sturgeon Creek & - & 62.1 & 69.3 & 72.5 & 61.9 & 69.7 & 76.9 & 66.3 & 73.8 & 79.2 & 70.8 & 75.3 & 79.0 & 61.9 & 70.3 & 80.4 & 50.7 & 60.1 & 72.1 & 39.3 & 49.1 & 57.0 \\
\hline Station Creek & - & 62.5 & 73.5 & 75.9 & 66.3 & 71.8 & 78.5 & 69.7 & 75.5 & 81.8 & 68.7 & 74.8 & 80.7 & 63.8 & 72.7 & 80.7 & 36.1 & 47.1 & 57.7 & 35.1 & 45.2 & 57.7 \\
\hline
\end{tabular}

\footnotetext{
* Temperature loggers were not recovered in time for publication due to high water.
}

Table 19. Cumulative angler counts on trout streams based on trail camera data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Stream \\
type Stream
\end{tabular}} & \multirow[b]{2}{*}{Location} & \multirow[t]{2}{*}{Year sampled} & \multicolumn{12}{|c|}{Months} & \multirow[b]{2}{*}{Total} \\
\hline & & & JAN & FEB & MAR & APR & MAY & JUN & JUL & AUG & SEP & OCT & NOV & DEC & \\
\hline \multicolumn{16}{|l|}{Put, Take} \\
\hline Big Caney & Total & 2018-2019 & & & & * & 47* & 14 & 9 & 3 & 6 & \(31^{*}\) & 13 & 0 & 123 \\
\hline Laurel & Total & 2018-2019 & & & & * & 20* & 10 & 5 & 0 & 2 & * & & & 37 \\
\hline Triplett & Total & 2018-2019 & & & * & * & 65* & 13 & 12 & 21 & 10 & 1 & 0 & 2 & 124 \\
\hline Craney & Total & 2017-2018 & 0 & 2 & 4 & 9 & 8 & 23 & 3 & 16 & 3 & 1* & 9 & 3 & 81 \\
\hline Swift Camp & Total & 2017-2018 & 3 & 0 & 17 & 28* & 17 & 23 & 23 & 7 & 3 & \(24^{*}\) & 20 & 7 & 172 \\
\hline \multicolumn{16}{|l|}{Put, Grow, Take} \\
\hline Dog Fork & Total & 2018-2019 & & & & & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 3 \\
\hline Chimney Top & Upper & 2018-2019 & & & & & 0 & 0 & 0 & 1 & 0 & 4 & 3 & 3 & 11 \\
\hline Chimney Top & Lower & 2018-2019 & & & & & 0 & 0 & 2 & 0 & 2 & 0 & 3 & 1 & 8 \\
\hline Parched Corn & Total & 2018-2019 & & & & & 0 & 0 & 1 & 0 & 1 & 6 & 3 & 2 & 13 \\
\hline
\end{tabular}
* Stocked Month (P/T Streams)

Table 20. Length frequency of trout species sampled on trout streams in July. Parched Corn and East Fork Indian were sampled for 4-150-yard sections and Chimney Top was sampled for 3-150yard sections.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Streams} & \multirow[b]{2}{*}{Trout species} & \multicolumn{11}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} & \multirow[b]{2}{*}{CPUE*} \\
\hline & & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & & \\
\hline Parched Corn & Brook & 2 & 1 & & 3 & 4 & & & & & & & 10 & 2.5 \\
\hline Chimney Top & Brown & & & 1 & & 1 & 2 & & & & & & 4 & 1.3 \\
\hline Indian & Rainbow & & & & & & & & & 1 & & 1 & 2 & 0.5 \\
\hline Indian & Brown & & & & & & & & & 1 & & & 1 & 0.25 \\
\hline
\end{tabular}
*CPUE is number of fish per 150 yards

\section*{NORTHEASTERN FISHERY DISTRICT}

Project 3: Technical Guidance

\section*{FINDINGS}

Table 1 provides a list of ponds visited (12) in 2018 and our findings and recommendations. In addition to on-site inspections, consultations were rendered via telephone (75-100) and/or written correspondence (\(\sim 5\)). Most vegetation problems and a few population problems were resolved using email pictures, pond harvest log data or the use of the "Managing Your Farm Ponds" web page. Technical guidance was provided to individuals from all counties in the NEFD. Typical problems responded to include: pond stocking, aquatic vegetation problems, undesirable species, fishing information, fish kills, farm pond management, fish pathogens, water quality, pond construction, structural problems with dams, and pond nuisances.
\begin{tabular}{|c|c|c|c|c|}
\hline County & Name & Date & Findings & Recommendations \\
\hline Bourbon & K. Bell & 11-Jul & Vegetation problem & Apply SONAR or Clipper \\
\hline \multirow[t]{2}{*}{Fleming} & S. Donovan & 11-Jul & Unbalanced fish, vegetation issues & Stock (\(500 \mathrm{BG}, 15 \mathrm{GC}\)), apply Rew ard \\
\hline & D. Hester & 30-Aug & Undesirable fish species & Remove underirables and stock 200 BG \\
\hline \multirow[t]{2}{*}{Lew is} & George & 16-Jul & Unbalanced fish, too much AquaShade & Harvest CCF, stock 100 BG , stop AquaShade \\
\hline & T. Scarlett & 16-Jul & Vegetation problem; low BG & Apply Rodeo, stock 50 BG \\
\hline \multirow[t]{4}{*}{Montgomery} & R. Eliott & 22-Jun & Vegetation problem & Apply SONAR or stock GC \\
\hline & B. McCoy & 25-Jun & Unbalanced, low fertility & Soil sample and fertilize, special fisheries permit \\
\hline & A Walker & 25-Jun & P1: Unbalanced, low fertility & P1: Stock 350 BG, soil test and fertilize \\
\hline & & & P2: Unbalanced, low fertility & P2: Stock 350 BG , soil test and fertilize \\
\hline Robertson & M. Provence & 11-Jul & \begin{tabular}{l}
P1: Balanced, minor vegetation issues \\
P2: No BG, many small LMB
\end{tabular} & \begin{tabular}{l}
P1: Stock 10 GC , harvest any undesirables. \\
P2: Stock 200, 4-6" BG
\end{tabular} \\
\hline Row an & B. Brook & 22-Jun & Creek floods pond, undesirable species & Fertilize, stock 50 adult BG and remove undeseriables when caught \\
\hline
\end{tabular}

\section*{SOUTHEASTERN FISHERY DISTRICT}

\section*{Project 2: Stream Fishery Surveys - Trout Stream Fishery Surveys}

FINDINGS

Three streams in the Southeastern Fishery District were monitored to evaluate the habitat suitability for trout management based on water temperature. Temperature data was collected at two locations within each of the three streams from early-May through mid-December. Water temperature (\({ }^{\circ} \mathrm{F}\)) was recorded once every hour. Bark Camp Creek did not record any water temperatures over \(75^{\circ} \mathrm{F}\) during the summer months from June-September, and average monthly temperatures did not exceed \(71^{\circ} \mathrm{F}\) (Table 1). In Cane Creek, maximum water temperatures were just over \(75^{\circ} \mathrm{F}\) in July, and average monthly temperatures did not exceed \(71^{\circ} \mathrm{F}\) (Table 2). Maximum water temperature in Clear Creek exceeded \(77^{\circ} \mathrm{F}\) in July, and the average monthly temperature was greater than \(72^{\circ} \mathrm{F}\) in July (Table 3). The three streams were classified based on four criteria: 1) the number of days that the average daily water temperature exceeded \(72^{\circ} \mathrm{F}\) during the year, 2) the maximum water temperature from June-September, 3) the number of days the average daily water temperature exceeded \(73^{\circ} \mathrm{F}\) in June, and 4) the maximum water temperature in June. Based on the criteria, Bark Camp Creek and Cane Creek were Class II streams, and Clear Creek was a Class III stream (Table 4). All trout streams assessed should continue under current management regimes.

Table 1. Temperature data from Bark Camp Creek, Whitley County, Kentucky, in 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Month} & \multicolumn{2}{|c|}{Upstream} & \multicolumn{2}{|c|}{Downstream} \\
\hline & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \begin{tabular}{l}
\# of Days Average \\
Temperature \(\geq 72{ }^{\circ} \mathrm{F}\)
\end{tabular} & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \begin{tabular}{l}
\# of Days Average \\
Temperature \(\geq 72{ }^{\circ} \mathrm{F}\)
\end{tabular} \\
\hline May & 64.3 (58.9-68.3) & 0 & 64.6 (58.9-69.1) & 0 \\
\hline June & 66.7 (61.2-72.2) & 0 & 67.0 (61.4-72.9) & 0 \\
\hline July & 69.0 (65.0-73.3) & 0 & 70.6 (65.9-74.9) & 8 \\
\hline August & 68.2 (61.4-71.9) & 0 & 69.0 (62.5-73.6) & 0 \\
\hline September & 68.4 (61.3-71.9) & 0 & 69.0 (61.3-73.3) & 2 \\
\hline October & 57.1 (46.0-67.7) & 0 & 56.9 (45.5-67.7) & 0 \\
\hline November & 46.9 (36.5-56.6) & 0 & 46.9 (36.6-56.5) & 0 \\
\hline December & 44.2 (38.6-51.8) & 0 & 44.2 (38.9-51.4) & 0 \\
\hline
\end{tabular}

Table 2. Temperature data from Cane Creek, Laurel County, Kentucky, in 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Month} & \multicolumn{2}{|c|}{Upstream} & \multicolumn{2}{|c|}{Downstream} \\
\hline & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \# of Days Average Temperature \(\geq 72^{\circ} \mathrm{F}\) & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \# of Days Average Temperature \(\geq 72^{\circ} \mathrm{F}\) \\
\hline May & 66.3 (59.1-70.5) & 0 & 65.4 (57.7-69.5) & 0 \\
\hline June & 68.2 (61.2-73.7) & 0 & 67.9 (60.8-74.5) & 0 \\
\hline July & 70.3 (65.6-75.2) & 8 & 69.9 (64.8-75.3) & 4 \\
\hline August & 69.3 (62.7-73.2) & 1 & 69.0 (61.9-73.3) & 0 \\
\hline September & 68.9 (60.6-73.1) & 2 & 68.7 (60.6-73.2) & 1 \\
\hline October & 57.1 (45.4-68.7) & 0 & 56.8 (44.9-68.5) & 0 \\
\hline November & 46.6 (35.3-56.5) & 0 & 46.5 (35.2-56.6) & 0 \\
\hline December & 43.3 (36.6-50.6) & 0 & 43.3 (36.5-50.8) & 0 \\
\hline
\end{tabular}

Table 3. Temperature data from Clear Creek, Bell County, Kentucky, in 2018.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Month} & \multicolumn{2}{|c|}{Upstream} & \multicolumn{2}{|c|}{Downstream} \\
\hline & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \begin{tabular}{l}
\# of Days Average \\
Temperature \(\geq 72^{\circ} \mathrm{F}\)
\end{tabular} & Average Temperature (Range) \({ }^{\circ} \mathrm{F}\) & \begin{tabular}{l}
\# of Days Average \\
Temperature \(\geq 72^{\circ} \mathrm{F}\)
\end{tabular} \\
\hline May & 65.8 (60.5-69.8) & 0 & 66.4 (60.3-72.4) & 0 \\
\hline June & 69.4 (65.0-74.0) & 3 & 69.7 (64.3-75.4) & 8 \\
\hline July & 72.3 (69.5-75.6) & 18 & 72.6 (68.6-77.2) & 19 \\
\hline August & 70.7 (67.2-73.5) & 2 & 71.0 (66.7-74.3) & 3 \\
\hline September & 70.9 (66.2-73.6) & 7 & 71.1 (65.8-74.4) & 11 \\
\hline October & 61.4 (52.8-69.9) & 0 & 61.1 (52.0-70.1) & 0 \\
\hline November & 50.9 (44.0-56.5) & 0 & 51.7 (46.0-56.1) & 0 \\
\hline December & 46.7 (44.4-49.9) & 0 & 47.8 (46.0-50.4) & 0 \\
\hline
\end{tabular}

Table 4. Southeastern Fishery District stream assessment for trout management in 2018.
\begin{tabular}{lccccc}
& \begin{tabular}{c}
\# of Days Average \\
Temperature \(\geq 72{ }^{\circ} \mathrm{F}\) \\
in the Year
\end{tabular} & \begin{tabular}{c}
Maximum \\
Temperature from \\
June-September \(\left({ }^{\circ} \mathrm{F}\right)\)
\end{tabular} & \begin{tabular}{c}
\# of Days Average \\
Temperature \(\geq 73{ }^{\circ} \mathrm{F}\) \\
in June
\end{tabular} & \begin{tabular}{c}
Maximum \\
Temperature in June \\
\(\left({ }^{\circ} \mathrm{F}\right)\)
\end{tabular} & \begin{tabular}{c}
Stream \\
Classification
\end{tabular} \\
Stream & 10 & 74.9 & 0 & 72.9 & Rating \\
\hline Bark Camp Creek & 11 & 75.3 & 0 & 74.5 & Class II \\
Cane Creek & 41 & 77.2 & 3 & Class II \\
Clear Creek & & & & Class III \\
\hline
\end{tabular}

\section*{SOUTHEASTERN FISHERY DISTRICT}

\section*{Project 3: Technical Guidance}

\section*{FINDINGS}

Details of the technical guidance provided during 2018 are shown in Table 1. Technical guidance was provided through nine on-site visits. Additional technical guidance requests were handled over the telephone, or by written correspondence. Topics encountered and responded to included: fish population balance, water quality problems, fish disease, fish stocking, and aquatic vegetation problems.

Several other requests for information (approximately 200) about area fisheries and miscellaneous information about fish management in lakes and ponds were handled over the telephone and email.

Table 1. Technical guidance provided in the Southeastern Fishery District during 2018.
\begin{tabular}{llll}
County & \begin{tabular}{l}
Name of pond \\
or pond owner
\end{tabular} & Date & Findings
\end{tabular} Recommendations \begin{tabular}{l}
Laurel \\
Dylan Brock
\end{tabular}

\title{
EASTERN FISHERY DISTRICT
}

\author{
Project 2: Stream Fishery Surveys
}

\section*{FINDINGS}

\section*{Trout Stream Assessments}

Two streams in the trout stocking program were evaluated. Paint Creek in Johnson County and Russell Fork in Pike County were monitored with in-stream devices that recorded water temperature (\({ }^{\circ} \mathrm{F}\)) once every hour from April October. Two sites were monitored in Paint Creek, one site in Russell Fork, and one site in Elkhorn Creek near its confluence with Russel Fork. The Elkhorn Creek in Pike County site was monitored as it is utilized as a stocking site for trout in Russell Fork.

All stream sites had supporting temperatures for trout during spring and fall time periods. Recorded minimum and maximum temperature ranges are displayed in Tables 1-2. The trout management plans are different for each stream.

Paint Creek is managed both as a put-take fishery (Paintsville Lake tailwater) and a put-grow-take fishery (special regulation downstream area). Rainbow trout are stocked at a rate of 2,500 fish/mo from April - November and 300 brown trout are stocked in April. Paint Creek immediately below Paintsville Lake does receive trout stockings through the summer. Although maximum summer temperatures at this location are approximately 70 F , a trout fishery is still supported during this time. This portion of Paint Creek or Paintsville Lake tailwater is under statewide regulation for trout and managed as a put-take fishery. Downstream of this area, begins a special fishing regulation for trout in Paint Creek and is considered the put-grow-take fishery. The special regulation area is defined with limits specified as "From the KY 40 bridge downstream to the first U.S. 460 bridge, 16-inch minimum size limit and 1 fish daily creel limit on trout and only artificial baits shall be used". The upper and lower sites of temperature monitoring during 2018 occurred at the halfway and end points of this special regulation area. Observed temperature did exceed 72 F during most months at the upstream and downstream locations (Table 1). However, the upstream location during most months did remain fairly close to 72 F for maximum temperature and when exceeding 72F, it was for a short duration each day/24 hr time period. Since the 2006 changes in Paintsville Lake outflows, the special regulation area has had approximately half of its year-round trout habitat altered or eliminated. Where the special regulation was in effect prior to 2006 and this reach of stream had cooler temperatures at that time, the current data in Table 1 could be used for changes or modifications. The special regulation area could be shortened and redefined, eliminated, or remain as is until further social inputs are determined.

Russell Fork is managed as a put-take fishery. Rainbow trout are stocked at a rate of 750 fish \(/ \mathrm{mo}\) in April, May, and October. Based on the data collected (Table 2), this stream should continue with current management strategies. If any changes in production plans or reallocation of fish occur, November would be an acceptable month for an additional stocking.

\section*{Warmwater Stream Assessments}

One stream was sampled to examine species composition and length distribution of sportfish. Lotts Creek in Knott County was sampled on 11 June 2018 in one location via backpack electrofishing and seine hauls. Specific conductivity was 1,273 umhos/cm and prevented effective electrofishing. Total electrofishing time was 0.09 hours. Species composition is listed in Table 3 and sportfish length frequency distribution is in Table 4. The stream area sampled exhibited low fish species diversity, but good numbers of crayfish and hellgrammites and the possibility to offer anglers a small stream fishery for sportfish.

Table 1. Temperature data from Paint Creek in Johnson County, Kentucky (April 27 - October 29, 2011).
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{ Temperature range (\({ }^{\circ} \mathrm{F}\)) } \\
& \begin{tabular}{c}
Downstream @ RT 460 bridge \\
crossing
\end{tabular} & \begin{tabular}{c}
Upstream @ bridge to entrance of \\
Cross Creek II subdivision
\end{tabular} \\
April & \(53.8-62.2\) & \(53.3-61.1\) \\
May & \(54.7-73.3\) & \(53.8-72.9\) \\
June & \(65.6-78.3\) & \(64.6-77.0\) \\
July & \(67.8-76.0\) & \(66.1-73.4\) \\
August & \(66.3-76.0\) & \(66.4-73.5\) \\
September & \(60.6-75.9\) & \(60.9-75.3\) \\
October & \(50.2-71.4\) & \(52.3-69.9\) \\
\hline
\end{tabular}

Table 2. Temperature data from Russell Fork in Pike County, Kentucky (April 26 - October 30, 2018). Data marked with "*" due to temperature logger being exposed from water for some period of time.
\[
\text { Temperature range }\left({ }^{\circ} \mathrm{F}\right)
\]
\begin{tabular}{lccc}
Month & \begin{tabular}{c}
Downstream @ bridge on \\
Elkhorn Creek behind old \\
Elkhorn City HS
\end{tabular} & \\
\cline { 1 - 1 } & \(52.2-60.2\) & Upstream @ old water plant \\
May & \(53.6-76.4\) & \(51.9-56.3\) \\
June & \(64.3-82.7\) & \(52.9-72.4\) \\
July & \(68.4-85.4\) & \(54.4-83.1^{*}\) \\
August & \(67.3-81.2\) & \(65.0-82.4\) \\
September & \(66.2-73.8\) & \(65.2-79.7\) \\
October & \(60.1-67.1\) & \(58.5-82.9^{*}\) \\
\hline
\end{tabular}

Table 3. Species composition in Lotts Creek, Knott County near Cordia School gymnasium.
\begin{tabular}{llc}
\hline Common Name & Species & Number \\
\hline Striped shiner & Luxilus chrysocephalus & 59 \\
Creek chub & Semotilus atromaculatus & 38 \\
Central stoneroller & Campostoma anomalum & 31 \\
Northern hog sucker & Hypentelium nigricans & 13 \\
Longear sunfish & Lepomis megalotis & 1 \\
Green sunfish & Lepomis cyanellus & 3 \\
Hybrid sunfish & Lepomis sp. & 1 \\
Smallmouth bass & Micropterus dolomieui & 2 \\
Rainbow darter & Etheostoma caeruleum & 11 \\
\hline \multicolumn{1}{c}{ Total Number of Individuals } & & 159 \\
\hline
\end{tabular}

Table 4. Sportfish length distribution and frequency, Lotts Creek, Knott County.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{13}{|c|}{Inch class} & \multirow[b]{2}{*}{Total} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & \\
\hline Longear sunfish & & & 1 & & & & & & & & & & & 1 \\
\hline Green sunfish & 1 & 1 & & 1 & & & & & & & & & & 3 \\
\hline Lepomis hybrid & & 1 & & & & & & & & & & & & 1 \\
\hline Smallmouth bass & & & & 1 & & & & & & & & & 1 & 2 \\
\hline
\end{tabular}

\section*{EASTERN FISHERY DISTRICT}

\section*{Project 3: Technical Guidance}

\section*{FINDINGS}

Details of the technical guidance provided during 2018 are shown in Table 1. Technical guidance was provided through three on-site visits. Additional technical guidance requests were handled over the telephone, walk-in visits, or by written correspondence. Topics encountered and responded to included: fish population balance, water quality problems, fish stocking, and aquatic vegetation problems.

Several other requests for information about area fisheries and miscellaneous information about fish management in lakes and ponds were handled over the telephone, email, and walk-in visits.

Table 1. Pond technical guidance in the Eastern Fishery District during 2018.
\begin{tabular}{cllll}
\hline Date & County & Owner & Problem & Recommendations \\
\hline \(1 / 18\) & Harlan & Tony Edridge & weeds, fish stocking & grass carp,catfish stocking \\
\(2 / 21\) & Johnson & WildCat Pay Lake & filamentous algae & copper sulfate \\
\(3 / 26\) & Floyd & Greg May & pond stocking, new const. & stocking rates, pond book, stocking list \\
*4/20 & Harlan & HighSplint F\&G club & vegetation, stocking, habitat & fertilize \\
\(4 / 4\) & Law recce & Kevin Osborne & fish supplier info & supplier list, TG application \\
\(3 / 5\) & Johnson & Kevin Jervis & stocking info & fish supplier list, w ebb site links \\
\(4 / 16\) & Harlan & Roger Williams & stocking rates, algae control & pond book, suppliers list, herb recommendations \\
\(4 / 25\) & Law rence & Kurt Fitzpatrick & fish stocking, w eeds & grass carp ,granular cutrine \\
\(4 / 30\) & Knott & Nick Slone & bait fish & habitat, pallets \\
\(4 / 30\) & Leslie & Lona Napier & pond balance & fish pond \& call back with results \\
\(5 / 1\) & Johnson & Linda Hamilton & algae, pondw eed & CutrinePlus, Rew ard \\
\(4 / 27\) & Martin & Wibur Kirk & grass carp & private dealer list \\
\(5 / 18\) & Floyd & Dean Harless & filamentous algae & copper sulfate \\
\(2 / 22\) & & Faryey Joseph & filamentous algae, cattails & copper sulfate, Rodeo \\
*7/20 & Law rence & Joe Tomblin & pond balance, vegetation & stock catfish, private dealer list, grass carp \\
\(8 / 6\) & Magoffin & Trinity Shepherd & stocking & private dealer list \& possibly stocking himself \\
\(9 / 11\) & Perry & Jesse Hager & dead fish from recent stocking & handling stress from hot w eather \\
\(10 / 18\) & Bell & How ard Willson & pond program wants fish & sent info to SEFD \\
*11/15 & Law rence & Law rence & pond balance, stocking & harvest fish, feed catfish \\
\(12 / 18\) & Knott & James Bow ling & new pond stocking & pond book, suppliers list \\
\hline
\end{tabular}

Project 4: Fish Habitat Improvement - Public Lakes Fertilization
\begin{tabular}{|c|c|c|c|}
\hline Lake & & County & Size (acres) \\
\hline Northwestern Fishery District & Subtotal & & 18 \\
\hline Washburn Lake & & Ohio & 18 \\
\hline Southwestern Fishery District & Subtotal & & 204 \\
\hline Marion County Lake & & Marion & 25 \\
\hline Spurlington Lake & & Taylor & 25 \\
\hline Briggs Lake & & Logan & 18 \\
\hline Shanty Hollow Lake & & Warren & 136 \\
\hline Central Fishery District & Subtotal & & 172 \\
\hline Corinth Lake & & Grant & 84 \\
\hline Benjy Kinman Lake & & Henry & 88 \\
\hline Northeastern Fishery District & Subtotal & & 8270 \\
\hline Cave Run Lake (4 access sites) & & Rowan, Morgan, Menniffee, Bath & 8270 \\
\hline Eastern Fishery District & Subtotal & & 39.7 \\
\hline Fishpond Lake & & Knott & 30.3 \\
\hline High Splint Lake & & Harlan & 6.9 \\
\hline Kingdom Come Lake & & Harlan & 2.5 \\
\hline
\end{tabular}

Project 4: Fish Habitat Improvement - Fish Attractors
\begin{tabular}{|c|c|}
\hline District / Lake & Fish Attractor Sites \\
\hline \multicolumn{2}{|l|}{Western Fishery District} \\
\hline Barkley Lake & 341 hardwood units (1 tree \(=1\) unit) were used to create new shallow water bass spawning bench sites; 82 Christmas tree units (1 pallet and approximately 5 trees \(=1\) unit) were used to create new shallow water habitat sites; 45 plastic units (1 plastic porcupine-like attactor \(=1\) unit) were used to create new shallow water fish attractor sites; Dozens of test plots of rye grass and triticale were planted \\
\hline Kentucky Lake & 31 hardwood units (1 tree \(=1\) unit) were used to create new shallow water bass spawning bench sites; Refurbished 304 hardwood shallow water stake beds and made 45 new sites (new site \(=\sim 50\) stakes, refurbished site \(=\sim 30\) stakes); 51 hardwood units (1 tree \(=1\) unit) were used to refurbish existing deepwater sites; 3 hardwood units (1 tree \(=1\) unit) were used to refurbish existing shallow water sites; 40 Christmas tree units (1 pallet and approximately 5 trees \(=1\) unit) were used to create new shallow fish habitat sites; 73 plastic units (1 plastic simulated tree attractor \(=1\) unit) were used to refurbish existing deepwater fish attractors; dozens of test plots of rye grass and triticale were planted \\
\hline \multicolumn{2}{|l|}{Northwestern Fishery District} \\
\hline \multicolumn{2}{|l|}{Nolin River Lake} \\
\hline Moutardier area & 7 mature cedar tree sites \\
\hline \multicolumn{2}{|l|}{Rough River Lake} \\
\hline Large project preparation & An additional 1,100 gas pipe structures were constructed and 500 cut to length in preparation for a large project at Rough River Lake that was postponed due to high water levels during winter. \\
\hline \multicolumn{2}{|l|}{Kingfisher lakes} \\
\hline New Kingfisher & 2 hardwood brush sites \\
\hline Old Kingfisher & 9 "large fountain" gas pipe structures \\
\hline \multicolumn{2}{|l|}{Southwestern Fishery District} \\
\hline Barren River Lake & 3 refurbished brush sites, 1 new plastics site \\
\hline Green River Lake & 12 new brush sites, 2 refurbished brush site, 3 new pallet trees sites \\
\hline Spurlington Lake & 2 new cedar stakebeds \\
\hline Metcalfe County Lake & 1 new cedar stakebed \\
\hline
\end{tabular}

Project 4: Fish Habitat Improvement - Fish Attractors cont.

\section*{Minor Clark Fish Hatchery 2018 Sport Fish Production}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Species} & Planned & & \multicolumn{4}{|c|}{Actual} & \multirow[b]{2}{*}{Notes} \\
\hline & Number Size (in) & Location/Use & Number & Size (in) & Pounds & No./lb. & \\
\hline \multirow[t]{3}{*}{Muskellunge} & 100,000 & Ohio DNR & 156,000 & & & & Eggs \\
\hline & 0 & West Virginia & 115,400 & & & & Fry \\
\hline & 0 & Licking River & 791,637 & & & & Fry \\
\hline \multirow[t]{25}{*}{Total Fry/Eggs} & & & 1,063,037 & & & & \\
\hline & 705 & 9 Barren River & 0 & & & & \\
\hline & 180 & 9 Green River Pool 5 & 0 & & & & \\
\hline & 350 & 9 South Fork Kentucky River & 0 & & & & \\
\hline & 375 & 9 North Fork Kentucky River & 0 & & & & \\
\hline & 400 & 9 Licking River & 0 & & & & \\
\hline & 200 & 9 Little Sandy River & 0 & & & & \\
\hline & 110 & 9 Tygarts Creek & 0 & & & & \\
\hline & 145 & 9 Drakes Creek & 0 & & & & \\
\hline & 720 & 9 Green River Pool 6 & 0 & & & & \\
\hline & 250 & 9 Green River Pool 4 & 0 & & & & \\
\hline & 195 & 9 Tug Fork & 0 & & & & \\
\hline & 500 & 9 Levisa Fork & 0 & & & & \\
\hline & 50 & 9 Kinniconick Creek & 0 & & & & \\
\hline & 85 & 9 Red River & 0 & & & & \\
\hline & 30 & 9 West Fork Drakes Creek & 0 & & & & \\
\hline & 15 & 9 Sexton Creek & 0 & & & & \\
\hline & 30 & 9 Goose Creek Lake & 0 & & & & \\
\hline & 40 & 9 Redbird River & 0 & & & & \\
\hline & 15 & 9 Station Camp Creek & 0 & & & & \\
\hline & 10 & 9 Sturgeon Creek & 0 & & & & \\
\hline & 30 & 9 Triplett Creek & 0 & & & & \\
\hline & 20 & 9 North Fork Triplett Creek & 0 & & & & \\
\hline & 100 & 9 Kentucky River Pool 2* & 0 & & & & \\
\hline & 200 & 9 Kentucky River Pool 3* & 0 & & & & \\
\hline Total & 4,755 & 9 & 0 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Planned} & \multicolumn{4}{|c|}{Actual} & \multirow[b]{2}{*}{Notes} \\
\hline Species & Number & Size (in) & Location/Use & Number & Size (in) & Pounds & No./lb. & \\
\hline Muskellunge & 2,700 & & 13 Cave Run Lake* & 1,080 & 12.2 & 347.4 & 3.2 & \\
\hline & 2,700 & & 13 Green River Lake* & 1,121 & 12.2 & 350.3 & 3.2 & \\
\hline & 400 & & 13 Buckhorn Lake* & 150 & 12.2 & 46.9 & 3.2 & \\
\hline & 375 & & 13 Dewey Lake* & 140 & 12.2 & 45.2 & 3.1 & \\
\hline & 100 & & 13 Kentucky River Pool 2 & 0 & & & & \\
\hline & 200 & & 13 Kentucky River Pool 3 & 0 & & & & \\
\hline & & & 13 Hatchery Oxbow & 0 & & & & \\
\hline & 0 & & 0 Tennessee DNR & 0 & & & & \\
\hline Total & 6,475 & & 13 & 2,491 & 12.2 & 789.8 & 3.2 & \\
\hline Grand Total & 11,230 & & & 1,065,528 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hybrid Striped & 200,000 & 1.5 Barren River Lake** & 409,841 & 1.5 & 450.8 & 909 \\
\hline \multirow[t]{20}{*}{Bass} & 2,600 & 1.5 Sympson Lake & 2,676 & 1.5 & 3.4 & 787 \\
\hline & 15,000 & 1.5 Grayson Lake & 15,110 & 1.5 & 19.2 & 787 \\
\hline & 51,000 & 1.5 Rough River Lake* & 51,279 & 1.6 & 68.4 & 750 \\
\hline & 51,000 & 1.5 Rough River Lake & 51,105 & 1.6 & 65.1 & 785 \\
\hline & 30,000 & 1.5 Taylorsville Lake* & 30,306 & 1.6 & 33.9 & 894 \\
\hline & 30,000 & 1.5 Taylorsville Lake & 30,099 & 1.6 & 41.4 & 727 \\
\hline & 25,000 & 1.5 Herrington Lake* & 25,212 & 1.6 & 28.2 & 894 \\
\hline & 25,000 & 1.5 Herrington Lake & 25,880 & 1.6 & 35.4 & 731 \\
\hline & 23,000 & 1.5 Fishtrap Lake & 23,338 & 1.5 & 29.0 & 805 \\
\hline & 7,200 & 1.5 Lake Linville & 7,240 & 1.5 & 9.2 & 787 \\
\hline & 19,000 & 1.5 Guist Creek Lake & 19,046 & 1.5 & 24.2 & 787 \\
\hline & 3,333 & 1.5 KY River Pool 4** & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & 3,333 & 1.5 KY River Pool \(5^{* *}\) & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & 3,333 & 1.5 KY River Pool 6** & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & 3,333 & 1.5 KY River Pool 7** & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & 3,334 & 1.5 KY River Pool 8* & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & 3,334 & 1.5 KY River Pool 9** & 3,375 & 1.3 & 2.7 & 1,250 \\
\hline & & Ohio River & & & & \\
\hline & 54,500 & 1.5 Markland Pool** & 54,684 & 1.2 & 28.0 & 1,953 \\
\hline & 41,500 & 1.5 McAlpine Pool** & 41,990 & 1.2 & 21.5 & 1,953 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Planned} & \multicolumn{4}{|c|}{Actual} & \\
\hline Species & Number & Size (in) & Location/Use & Number & Size (in) & Pounds & No./lb. & Notes \\
\hline \multirow[t]{6}{*}{Hybrid Striped Bass} & 50,000 & & 1.5 Cannelton Pool** & 51,364 & 1.2 & 26.3 & 1,953 & \\
\hline & 36,000 & & 1.5 Newburg Pool** & 36,124 & 1.3 & 27.1 & 1,333 & \\
\hline & 43,700 & & 1.5 Uniontown Pool** & 43,773 & 1.3 & 32.5 & 1,347 & \\
\hline & 60,500 & & 1.5 Smithland Pool** & 60,626 & 1.3 & 47.8 & 1,268 & \\
\hline & & 0 & Kentucky Lake Tailwater & 100,881 & 1.2 & 66.1 & 1,347 & \\
\hline & & & Barkley Lake Tailwater & 100,103 & 1.2 & 61.3 & 1,633 & \\
\hline Total Recips & 679,000 & & & 685,363 & 1.5 & 703.3 & & \\
\hline Total Originals & 106,000 & * OTC Ma & arked Originals & 515,564 & & 431.6 & & \\
\hline Grand Total & 785,000 & ** Mixed & d Originals/Recips & 1,200,927 & & 1134.9 & & \\
\hline \multirow[t]{2}{*}{Walleye (Erie)} & & & 0 Licking River & 579,720 & & & & Fry \\
\hline & & 0 & 0 West Virginia & 1,240,163 & & & & Fry \\
\hline \multirow[t]{9}{*}{Total} & & & & 1,819,883 & & & & \\
\hline & 350,000 & & 1.5 Lake Cumberland & 350,840 & 1.4 & 212.8 & 1,649 & \\
\hline & 40,000 & & 1.5 Dale Hollow Lake (KY) & 40,062 & 1.4 & 27.3 & 1,468 & \\
\hline & 260,000 & & 1.5 Laurel River Lake & 291,450 & 1.4 & 154.8 & 1,883 & \\
\hline & 35,000 & & 1.5 Carr Creek Lake & 35,052 & 1.5 & 27.6 & 1,270 & \\
\hline & 57,000 & & 1.5 Paintsville Lake & 57,150 & 1.5 & 45.0 & 1,270 & \\
\hline & 200,000 & & 1.5 Nolin River Lake & 200,828 & 1.5 & 158.2 & 1,269 & \\
\hline & 200,000 & & 1.5 Green River Lake & 265,483 & 1.5 & 256.0 & 1,037 & \\
\hline & 15,000 & & 1.5 Russell Fork & 15,150 & 1.5 & 11.9 & 1,270 & \\
\hline Total & & & & 1,256,015 & 1.5 & 893.6 & 1,406 & \\
\hline Grand Total & & & & 3,075,898 & & & & \\
\hline \multicolumn{9}{|l|}{Walleye (Native)} \\
\hline & 20,000 & & 2.5 Upper KY River & 7,250 & 3.2 & 50.7 & 143 & \\
\hline & 3,000 & & 2.5 Upper Levisa Fork & 0 & & & & \\
\hline & 6,400 & & 2.5 Rockcastle River & 2,331 & 3.2 & 16.3 & 143 & \\
\hline & 19,800 & & 2.5 Wood Creek Lake & 0 & & & & \\
\hline & 16,000 & & 2.5 Lower Barren & 5,817 & 3.2 & 40.4 & 143 & \\
\hline & 10,000 & & 2.5 Martins Fork Lake & 3,779 & 3.2 & 26.8 & 141 & \\
\hline & 27,200 & & 2.5 Upper Cumberland River & 9,870 & 3.2 & 70 & 141 & \\
\hline Total & 102,400 & & & 29,047 & 3.2 & 204.2 & 142 & \\
\hline Grand Total & & & & 29,047 & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Planned} & \multicolumn{4}{|c|}{Actual} & \\
\hline Species & Number & Size (in) & Location/Use & Number & Size (in) & Pounds & No./lb. & Notes \\
\hline Largemouth Bass & 7,500 & & 5.0 Carr Creek & 7,104 & 6.2 & 790.0 & 9.0 & \\
\hline & 7,500 & & 5.0 Fishtrap & 6,729 & 6.2 & 735.5 & 9.0 & \\
\hline & 100,000 & & 5.0 Priority 1 lakes at 15/acre & & & & & \\
\hline & & & Herrington Lake & 24,172 & 4.3 & 887.9 & 27.2 & \\
\hline & & & Taylorsville Lake & 30,503 & 4.3 & 920.5 & 33.1 & \\
\hline & & & Guist Creek Lake & 3,171 & 5.0 & 145.8 & 21.7 & \\
\hline & & & Overwinter For Spring & 17,287 & 4.3 & 556.7 & 31.1 & \\
\hline Total & 115,000 & & & 88,966 & & 4,036.4 & & \\
\hline Grand Total & 268,524 & & & 670,901 & & 4,476.6 & & \\
\hline Grass Carp & 0 & 0 & 0 Clear Creek Lake & 16 & 14.0 & 12.8 & 0.8 & \\
\hline Total & & & & 16 & & 12.8 & & \\
\hline Saugeye & 0 & \[
0
\] & 0 Pfeiffer to grow out & 717,500 & & & & Eggs \\
\hline Total & & & & 717,500 & & & & \\
\hline
\end{tabular}

\section*{Peter W. Pfeiffer Fish Hatchery 2018 Sport Fish Production}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Planned} & \multirow[b]{2}{*}{Location/Use} & \multicolumn{4}{|c|}{Actual} & \multirow[b]{2}{*}{Notes} \\
\hline Species & Number S & Size (in) & & Number & Size (in) & Pounds & No./lb. & \\
\hline \multirow[t]{11}{*}{Channel Catfish} & & & & & & & & \\
\hline & 0 & & WV DNR & 203,363 & Fry & 45 & 4,519.2 & Surplus Fry \\
\hline & 0 & & KY River Pool 3 & 55,028 & 4-8 & 4,058 & 13.6 & Spring Surplus Fingerlings, surplus from \#38 \\
\hline & 0 & & KY River Pool 4 & 12,280 & 4-8 & 929 & 13.2 & Spring Surplus Fingerlings \\
\hline & & & & 270,671 & & 5,032 & & \\
\hline & 300 & & Clarks River Refuge & 300 & 10-15 & 250 & 1.2 & Event \\
\hline & 800 & 15 & Minor Clark Fish Hatchery & 500 & 10-15 & 420 & 1.2 & Event \\
\hline & & & FINS Lakes, KY River & 1,517 & 20-25 & 7,245 & 0.2 & Retired CCF Broodstock \\
\hline & 77,005 & 8-10 & Public Fishing Lakes(Stockers) & 77,003 & 7-10 & 10,588 & 7.3 & \\
\hline & 121,800 & 15 & FINS Program & 37,742 & 12-24 & 52,784 & 0.7 & HCF were used to fill remainder of FINS List \\
\hline & 199,905 & & & 117,062 & & 71,287 & & \\
\hline \multirow[t]{10}{*}{Blue Catfish} & & & & & & & & \\
\hline & 0 & & KY River Pool 3 & 35,800 & Fry & 15 & 2,386.7 & Surplus Fry \\
\hline & 0 & & WV DNR & 50,370 & Fry & 22 & 2,289.5 & Surplus Fry \\
\hline & 0 & & OH DNR & 120,900 & Fry & 49 & 2,467.3 & Surplus Fry \\
\hline & & & & 207,070 & & 86 & & \\
\hline & 80,000 & 5-7 & Barren River Lake & 97,260 & 4-8 & 9,993 & 9.7 & Hatched and stocked 2018 \\
\hline & 8,800 & 5-7 & Dewey Lake & 11,000 & 4-8 & 1,222 & 9.0 & Hatched and stocked 2018 \\
\hline & 9,000 & 5-7 & Fishtrap Lake & 11,430 & 4-8 & 1,270 & 9.0 & Hatched and stocked 2018 \\
\hline & 23,500 & 5-7 & Taylorsville Lake & 23,500 & 4-8 & 2,426 & 9.7 & Hatched and stocked 2018 \\
\hline & 121,300 & & & 143,190 & & 14,911 & & \\
\hline \multirow[t]{3}{*}{Hybrid Catfish} & & & & & & & & \\
\hline & 121,800 \({ }^{\prime \prime}\) & - 15 & FINS Program & 84,510 & 10-24 & 91,139 & 0.9 & CCF were used to fill remainder of FINS List \\
\hline & & & & 84,510 & & 91,139 & & \\
\hline \multirow[t]{3}{*}{Hybrid Sunfish} & & & & & & & & \\
\hline & 31,350 & 6-8 & FINS Program & 31,350 & 5-10 & 7,295 & 4.3 & \\
\hline & 31,350 & & & 31,350 & & 7,295 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Planned} & \multicolumn{5}{|c|}{Actual} \\
\hline Species & Number S & Size (in) & Location/Use & Number & Size (in) & Pounds & No./lb. & Notes \\
\hline \multicolumn{9}{|l|}{Sauger} \\
\hline & 5,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 2 & 5,000" & 0.8 & 1 & 5,000.0 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 3 & 10,000 \({ }^{\prime \prime}\) & 0.8 & 2.0 & 5,000.0 & \\
\hline & 10,000" & 1.5 & Kentucky River Pool 4 & 10,525 \({ }^{\prime \prime}\) & 1.1 & 5.0 & 2,105.0 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 5 & 10,525 \({ }^{\prime \prime}\) & 1.1 & 5.0 & 2,105.0 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 6 & 10,525 \({ }^{\prime \prime}\) & 1.1 & 5.0 & 2,105.0 & \\
\hline & 15,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 8 & 15,000 \({ }^{\prime \prime}\) & 1.15 & 7.6 & 1,973.7 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 9 & 10,100 \({ }^{\prime \prime}\) & 1.1 & 4.8 & 2,104.2 & \\
\hline & 10,000" & 1.5 & Kentucky River Pool 10 & 10,000 \({ }^{\prime \prime}\) & 1.1 & 3.9 & 2,564.1 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 11 & 10,000 \({ }^{\prime \prime}\) & 1.1 & 3.9 & 2,564.1 & \\
\hline & 10,000 \({ }^{\prime \prime}\) & 1.5 & Kentucky River Pool 12 & 12,665 \({ }^{\prime \prime}\) & 1.1 & 4.9 & 2,584.7 & \\
\hline & & & Elkhorn Creek & 3,515 \({ }^{\prime \prime}\) & 1.0 & 1.0 & 3,700.0 & \\
\hline & 95,000 & & & 107,855 & & 44.1 & & \\
\hline \multicolumn{9}{|l|}{Saugeye} \\
\hline & 15,850" & 1.5 & Guist Creek Lake & 28,810 \({ }^{\prime \prime}\) & 1.1 & 14.5 & 1,986.9 & \\
\hline & 6,700 \({ }^{\prime \prime}\) & 1.5 & Bullock Pen Lake & 10,145 \({ }^{\prime \prime}\) & 1.1 & 5.6 & 1,811.6 & \\
\hline & 8,450 \({ }^{\prime \prime}\) & 1.5 & Wilgreen Lake & 12,985 \({ }^{\prime \prime}\) & 1.1 & 7.2 & 1,803.5 & \\
\hline & 18,050 \({ }^{\prime \prime}\) & 1.5 & Lake Linville & 44,440 \({ }^{\prime \prime}\) & 1.1 & 20.0 & 2,222.0 & \\
\hline & 5,600 \({ }^{\prime \prime}\) & 1.5 & Lake Carnico & 8,140 \({ }^{\prime \prime}\) & 1.1 & 4.5 & 1,808.9 & \\
\hline & 8,750 \({ }^{\prime \prime}\) & 1.5 & A.J. Jolly Lake & 13,100 \({ }^{\prime \prime}\) & - 1.1 & 7.2 & 1,819.4 & \\
\hline & 61,000 \({ }^{\prime}\) & 1.5 & Taylorsville Lake & 61,000 \({ }^{\prime \prime}\) & 1.1 & 25.4 & 2,401.6 & \\
\hline & 124,400 & & & 178,620 & & 84.4 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Planned} & \multicolumn{4}{|c|}{Actual} & \multirow[b]{2}{*}{Notes} \\
\hline Species & Number S & Size (in) & Location/Use & Number S & Size (in) & Pounds & No./lb. & \\
\hline \multirow[t]{19}{*}{Redear Sunfish} & & & & & & & & \\
\hline & 33,300 & & FINS Lakes & 33,910 & 3-5 & 1,177 & 28.8 & 1st year of Phase II growout \\
\hline & 33,300 & & & 33,910 & & 1,177 & & \\
\hline & & & Benjy Kinman Lake & 26,400 & 1-2 & 34.1 & 774 & 2018 Spawn surplus \\
\hline & & & Cave Run Lake & 14,720 & 1-2 & 17.4 & 846 & 2018 Spawn surplus \\
\hline & & & Fish Trap Lake & 5,715 & 1-2 & 6.7 & 853 & 2018 Spawn surplus \\
\hline & & & Car Creek Lake & 3,550 & 1-2 & 4.2 & 845 & 2018 Spawn surplus \\
\hline & & & Rockcastle River WMA \#4 & 1,000 & 1-2 & 1.2 & 833 & 2018 Spawn surplus \\
\hline & & & Rockcastle River WMA \#8 & 540 & 1-2 & 0.7 & 771 & 2018 Spawn surplus \\
\hline & & & Shanty Hollow Lake & 13,500 & 1-2 & 15.9 & 849 & 2018 Spawn surplus \\
\hline & & & Mill Creek Lake & 10,900 & 1-2 & 12.8 & 852 & 2018 Spawn surplus \\
\hline & & & Bert T. Combs Lake & 7,200 & 1-2 & 8.5 & 847 & 2018 Spawn surplus \\
\hline & & & Peabody WMA & 20,000 & 1-2 & 25.8 & 775 & 2018 Spawn surplus \\
\hline & 7,200 \({ }^{\prime}\) & - 1.5 & Smoky Valley Lake & 9,200 & 1-2 & 11.9 & 773 & 2018 Spawn \\
\hline & 22,400 \({ }^{\prime}\) & - 1.5 & Lake Carnico & 22,400 & 1-2 & 28.9 & 775 & 2018 Spawn \\
\hline & 29,800 & - 1.5 & Elmer Davis Lake & 39,600 & 1-2 & 51.1 & 775 & 2018 Spawn \\
\hline & 31,600 \({ }^{\text {² }}\) & \% 1.5 & Beaver Lake & 47,400 & 1-2 & 61.2 & 775 & 2018 Spawn \\
\hline & & & Boltz Lake & 27,600 & 1-2 & 35.6 & 775 & 2018 Spawn surplus \\
\hline & 91,000 & & & 249,725 & & 316.0 & & \\
\hline \multicolumn{9}{|l|}{Alligator Gar} \\
\hline & 8,000 & & & & & & & \\
\hline & 8,000 & & & 0 & & 0 & & \\
\hline \multicolumn{9}{|l|}{Lake Sturgeon \({ }^{\text {c }}\)} \\
\hline & 6,000 \({ }^{\prime \prime}\) & 8 & Upper Cumberland River & 8,465 \({ }^{\prime \prime}\) & 6.5 & 298 & 28.4 & \\
\hline & 6,000 & & & 8,465 & & 298 & & \\
\hline \multicolumn{9}{|l|}{Bluegill} \\
\hline & 22,400 & - 1.5 & Lake Carnico & 10,900 & 1-3 & 26.2 & 416.0 & \\
\hline & 7,200 \({ }^{\text {² }}\) & \% 1.5 & Smoky Valley Lake & 5,240 & 1-3 & 12.6 & 415.9 & \\
\hline & 29,600 & & & 16,140 & & 38.8 & & \\
\hline
\end{tabular}
\begin{tabular}{llrl}
Species & Waterbody & Actual Number Length (in) \\
\hline Brook Trout & Lake Cumberland Tailwater & 1,325 & \(9-11\) \\
Brook Trout & Parched Corn Creek & 300 & \(9-11\) \\
\hline & & Total: 1,625 & \\
\hline Brown Trout & Bark Camp Creek & 500 & \(6-12\) \\
Brown Trout & Big Caney Creek & 250 & \(6-12\) \\
Brown Trout & Cannon Creek Lake & 3,000 & \(6-12\) \\
Brown Trout & Chimney Top Creek & 700 & \(6-12\) \\
Brown Trout & Fagan Branch Lake & 1,000 & \(6-12\) \\
Brown Trout & Fort Campbell & 3,250 & \(6-12\) \\
Brown Trout & Indian Creek - East Fork & 400 & \(6-12\) \\
Brown Trout & Jennings Creek & 500 & \(6-12\) \\
Brown Trout & Lake Cumberland Tailwater & 74,500 & \(6-12\) \\
Brown Trout & Laurel Creek & 250 & \(6-12\) \\
Brown Trout & Laurel River Lake Tailwater & 250 & \(6-12\) \\
Brown Trout & Looney Creek & 700 & \(6-12\) \\
Brown Trout & Nolin River Lake Tailwater & 250 & \(6-12\) \\
Brown Trout & Otter Creek & 500 & \(6-12\) \\
Brown Trout & Paint Creek & 300 & \(6-12\) \\
Brown Trout & Roundstone Creek & 200 & \(6-12\) \\
Brown Trout & Sulphur Springs Creek & 200 & \(6-12\) \\
Brown Trout & Trammel Creek & 600 & \(6-12\) \\
\hline & & Total: 87,350 &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Species & Waterbody & Actual Number & Length (in) \\
\hline Rainbow Trout & Alexandria Community Park Lake & 4,500 & 9-15 \\
\hline Rainbow Trout & Anderson County Community Park Lake & 1,500 & 9-15 \\
\hline Rainbow Trout & Bark Camp Creek & 3,750 & 9-15 \\
\hline Rainbow Trout & Beaver Creek & 1,400 & 9-15 \\
\hline Rainbow Trout & Beaver Creek - Left Fork & 1,200 & 9-15 \\
\hline Rainbow Trout & Beaver Creek - Right Fork & 1,200 & 9-15 \\
\hline Rainbow Trout & Bert T. Combs Lake & 1,000 & 9-15 \\
\hline Rainbow Trout & Beulah Lake & 4,000 & 9-15 \\
\hline Rainbow Trout & Big Bone Lick State Park & 1,200 & 9-15 \\
\hline Rainbow Trout & Big Caney Creek & 2,500 & 9-15 \\
\hline Rainbow Trout & Bloomfield Park Lake & 1,500 & 9-15 \\
\hline Rainbow Trout & Bob Noble Park Lake & 2,700 & 9-15 \\
\hline Rainbow Trout & Boone Tract 6 Acre Lake & 2,000 & 9-15 \\
\hline Rainbow Trout & Boulder Lake & 850 & 9-15 \\
\hline Rainbow Trout & Brickyard Pond & 2,700 & 9-15 \\
\hline Rainbow Trout & Buckhorn Lake Tailwater & 4,000 & 9-15 \\
\hline Rainbow Trout & Buffalo Creek & 500 & 9-15 \\
\hline Rainbow Trout & Camp Ernst Lake & 4,500 & 9-15 \\
\hline Rainbow Trout & Cane Creek & 4,250 & 9-15 \\
\hline Rainbow Trout & Cannon Creek Lake & 6,000 & 9-15 \\
\hline Rainbow Trout & Carr Creek Lake Tailwater & 5,950 & 9-15 \\
\hline Rainbow Trout & Casey Creek & 8,000 & 9-15 \\
\hline Rainbow Trout & Cave Run Lake Tailwater & 7,200 & 9-15 \\
\hline Rainbow Trout & Cherokee Park Lake & 2,500 & 9-15 \\
\hline Rainbow Trout & Clear Creek & 1,200 & 9-15 \\
\hline Rainbow Trout & Clinton Rotary Park Lake & 1,525 & 9-15 \\
\hline Rainbow Trout & Craney Creek & 1,000 & 9-15 \\
\hline Rainbow Trout & Cranks Creek Lake & 5,000 & 9-15 \\
\hline Rainbow Trout & Dewey Lake Tailwater & 4,000 & 9-15 \\
\hline Rainbow Trout & Eagle Lake (Morehead State) & 2,000 & 9-15 \\
\hline Rainbow Trout & Easy Walker Park Pond & 1,500 & 9-15 \\
\hline Rainbow Trout & Elk Spring Creek & 1,600 & 9-15 \\
\hline Rainbow Trout & Fagan Branch Lake & 1,000 & 9-15 \\
\hline Rainbow Trout & Fisherman's Park Lakes & 3,000 & 9-15 \\
\hline Rainbow Trout & Fishpond Lake & 5,000 & 9-15 \\
\hline Rainbow Trout & Fishtrap Lake Tailwater & 9,995 & 9-15 \\
\hline Rainbow Trout & Flemingsburg City Reservoir (Old) & 2,700 & 9-15 \\
\hline Rainbow Trout & Floyds Fork Creek & 3,600 & 9-15 \\
\hline Rainbow Trout & Fort Campbell & 2,400 & 9-15 \\
\hline Rainbow Trout & Goose Creek & 1,000 & 9-15 \\
\hline Rainbow Trout & Grants Branch Lake & 4,000 & 9-15 \\
\hline
\end{tabular}
\begin{tabular}{l}
Species \\
\hline Rainbow Trout \\
Rainbow Trout
\end{tabular}

Waterbody
Grayson Lake Tailwater 5,000 9-15
Greasy Creek 400 9-15
Greenbo Lake 11,000 9-15
Hatchery Creek 29,600 9-15

Herrington Lake Tailwater 4,500 9-15
Higginson \& Henry WMA 500 9-15
Highsplint Lake 2,750 9-15
Indian Creek - East Fork 4,950 9-15
Jacobson Park Lake 9,000 9-15
James Beville Park Lake 1,500 9-15
Jennings Creek 7,600 9-15
Kentucky Horse Park Lake 2,700 9-15
Kess Creek Park Lake 1,500 9-15
Kingdom Come State Park Lake 2,500 9-15
Lake Cumberland Tailwater 135,900 9-15
Lake Mingo 1,500 9-15
Lake Montgomery 1,800 9-15
Lake Pollywog 2,500 9-15
Laurel Creek 2,750 9-15
Laurel River Lake 45,000 9-15
Laurel River Lake Tailwater 500 9-15
Leary Lake 4,500 9-15
Little Sandy River - East Fork 400 9-15
Logan Hubble Park 4,500 9-15
Looney Creek 1,525 9-15
Lower Sportsman's Lake 1,500 9-15
Lusby Lake 1,500 9-15
Lynn Camp Creek 2,500 9-15
Madisonville Park 4,500 9-15
Martin County Lake 3,774 9-15
Martins Fork Lake Tailwater 3,750 9-15
Mason County Recreational Lake 2,700 9-15
Metcalfe County Park Lake 500 9-15
Middlesboro Canal 400 9-15
Middleton Mills Park Lake 3,000 9-15
Mike Miller Park Lake 2,500 9-15
Miles Park Lakes 4,025 9-15
Mill Creek Lake (Wolfe \& Powell Co.) 6,000 9-15
Millenium Park Pond
Nolin River Lake Tailwater
Otter Creek

1,500 9-15
6,500 9-15
15,050 9-15
\begin{tabular}{llrl}
Species & Waterbody & Actual Number Length (in) \\
\hline Rainbow Trout & Paintsville Lake & 4,500 & \(9-15\) \\
Rainbow Trout & Paintsville Lake Tailwater & 20,000 & \(9-15\) \\
Rainbow Trout & Panbowl Lake & 6,000 & \(9-15\) \\
Rainbow Trout & Panther Creek Park Lake & 2,500 & \(9-15\) \\
Rainbow Trout & Peabody WMA & 5,250 & \(9-15\) \\
Rainbow Trout & Pikeville City Lake & 2,500 & \(9-15\) \\
Rainbow Trout & Prisoners Lake & 2,500 & \(9-15\) \\
Rainbow Trout & Raven Creek & 400 & \(9-15\) \\
Rainbow Trout & Red River - Middle Fork & 2,800 & \(9-15\) \\
Rainbow Trout & Rock Creek & 15,125 & \(9-15\) \\
Rainbow Trout & Roundstone Creek & 3,400 & \(9-15\) \\
Rainbow Trout & Royal Springs & 1,200 & \(9-15\) \\
Rainbow Trout & Russell Fork Creek & 2,250 & \(9-15\) \\
Rainbow Trout & Sandy Watkins Park Lake & 1,000 & \(9-15\) \\
Rainbow Trout & Scott County Park Lake & 1,500 & \(9-15\) \\
Rainbow Trout & Sinking Creek & 1,200 & \(9-15\) \\
Rainbow Trout & Southgate Lake & 1,500 & \(9-15\) \\
Rainbow Trout & Southland Church Lake & 1,500 & \(9-15\) \\
Rainbow Trout & Station Camp Creek & 800 & \(9-15\) \\
Rainbow Trout & Sturgeon Creek & 400 & \(9-15\) \\
Rainbow Trout & Sulphur Springs Creek & 3,600 & \(9-15\) \\
Rainbow Trout & Swift Camp Creek & 1,000 & \(9-15\) \\
Rainbow Trout & Taylorsville Lake Tailwater & 3,000 & \(9-15\) \\
Rainbow Trout & Three Springs Lake & 4,500 & \(9-15\) \\
Rainbow Trout & Tom Wallace Park Lake & 4,500 & \(9-15\) \\
Rainbow Trout & Trammel Creek & 9,950 & \(9-15\) \\
Rainbow Trout & Triplett Creek & 800 & \(9-15\) \\
Rainbow Trout & Triplett Creek - North Fork & 1,050 & \(9-15\) \\
Rainbow Trout & Upper Sportsman's Lake & 4,500 & \(9-15\) \\
Rainbow Trout & War Fork Creek & 2,300 & \(9-15\) \\
Rainbow Trout & Waverly Park Lake & 4,500 & \(9-15\) \\
Rainbow Trout & Waymond Morris Park & 4,500 & \(9-15\) \\
Rainbow Trout & West Hickman Creek & 1,000 & \(9-15\) \\
Rainbow Trout & Whitehall Park Lake & 4,500 & \(9-15\) \\
Rainbow Trout & Wood Creek Lake & 8,000 & \(9-15\) \\
Rainbow Trout & Yatesville Lake Tailwater & 2,250 & \(9-15\) \\
Rainbow Trout & Yellow Creek Park Lake & 1,500 & \(9-15\) \\
\hline & & 607,269 & \\
\hline
\end{tabular}

Total: 607,269
\begin{tabular}{lr}
\hline Triploid Rainbow Trout Lake Cumberland Tailwater & 3,800 9-10 \\
\hline
\end{tabular}

Total: 3,800```

[^0]: * Intercept $=0$.

[^1]: * Includes effort and catch of non-crappie anglers

[^2]: * harvest which excluded bass kept in a livewell, but which the angler stated they intended to release
 ** Includes effort and catch of non-bass anglers

[^3]: * Includes effort and catch of non-crappie anglers

[^4]: w fdpsdlb.d18 and w fdw rlb.d18

[^5]: 1-7 = Poor (P)
 8-12 = Fair (F)
 13-17 = Good (G)
 18-20 $=$ Excellent (E)

[^6]: * $\sim 5 \%$ of card returns did not report effort and target
 **Many anglers reported multiple target species

[^7]: w fdpsdbc.d18

[^8]: nwd1wca.d18

[^9]: ${ }^{\text {a }}$ Nocturnal sample
 nwd3psd.d18

[^10]: ${ }^{\text {a }}$ Only one age-3 fish
 ${ }^{\mathrm{b}}$ Lake drawn down for repairs in 2009
 ${ }^{\text {c }}$ Lake renovated in 2003

 * Back calculated from age table

[^11]: ${ }^{\text {a }}$ Lake drawn down for repairs in 2009
 ${ }^{\text {b }}$ Lake renovated in 2003

 * Back calculated from age table

[^12]: ${ }^{\text {a }}$ Nocturnal sample
 ${ }^{\text {b }}$ Major fish kill 9/5/08
 ${ }^{\text {c }}$ First standardized sample since renovation nwd6bg.d17

[^13]: *First standardized sample since renovation

[^14]: *First standardized sample since renovation
 nwd7bg.d18

[^15]: * Washburn Lake renovated summer 1999 and restocked spring 2000 nwd8psd.d17

[^16]: ${ }^{\text {A }}$ Data collected by fall (September-November) diurnal electrofishing. Mean lengths were determined by analysis of otoliths removed from a subsample of $\mathrm{LMB}<10.0 \mathrm{in}$, and extrapolated to the entire catch of the fall sample.
 ${ }^{B}$ Data collected during the following spring (April/May) diurnal electrofishing sample.
 ND = no data available

[^17]: ${ }^{\mathrm{A}}$ Bluegill= RSD_{8}; redear sunfish $=\mathrm{RSD}_{9}$
 swdmclbg.d18

[^18]: swdwfdbg.D07-D18

[^19]: ${ }^{\text {a }}$ Bluegill= RSD_{8}; redear sunfish= RSD_{9}
 swdwfdbg.d18

[^20]: ${ }^{\mathrm{A}}$ Largemouth bass $=\mathrm{RSD}_{15}$, spotted bass and smallmouth bass $=\mathrm{RSD}_{14}$.
 swdgrlbb.d18

[^21]: * fish taken in gillnets during late-Nov. were also used in age-growth calculations
 swdgrltn.d18; swdgrlag.d18

[^22]: NA - data not available or not amenable for use
 sw dgrlgn. d91-d08, 15, 17-18
 sw dgrlag.d91-08, 15, 17-18

[^23]: NA - catch data not amenable to mortality estimates
 sw dgrlgn.d96-15, 17-18
 sw dgrlag.d96-15, 17-18

