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EXECUTIVE SUMMARY 

 

 Monitoring key population characteristics, such as population size, across time is critical 

for effective implementation of wildlife conservation and management actions. Such monitoring 

has increased importance for populations that were established using reintroduction, because 

reintroduced populations often have elevated risks of developing demographic and genetic 

anomalies. Elk (Cervus canadensis) were reintroduced to southeastern Kentucky during 1997–

2002 and elk hunting was first implemented in 2001. The number of elk permits allotted to 

hunters has increased substantially since then, but uncertainty has remained about elk population 

size and trajectory. A recent genetic study found that elk in Kentucky constitute a genetically 

distinct population that is isolated, whereas other studies documented moderate demographic 

rates (e.g., survival, reproduction, etc.) over the last decade. Additionally, a recent study 

conducted by University of Montana researchers using statistical population reconstruction 

(SPR) models estimated the elk population in Kentucky was comprised of approximately 10,000 

individuals by 2018. However, data availability and quality were limited for that analysis and, 

therefore, it was considered a proof-of-concept that showed SPR models could be used to 

estimate Kentucky elk population size but that refinements to data collection would be needed. 

Building on that analysis, biologists at Kentucky Department of Fish and Wildlife Resources and 

researchers at University of Kentucky collaboratively implemented large-scale changes to data 

collection beginning in 2019. In this report, we present the results of those data collection efforts 

and provide updated hunter effort, population size, population growth rate, survival, and 

mortality estimates for elk in Kentucky during 2019–2022. Across the 4-year study period, a 

total of 984 elk (622 Males; 362 Females) were legally harvested in the Elk Restoration Zone. 

The age structure of harvested elk was skewed towards young adults (median = 3.5–4.5 years), 

but calves, yearlings, and adults of both sexes were harvested. A total of 1,920 elk hunters 

answered hunting effort-related questions in the mandatory post-hunt surveys, which allowed us 

to determine that hunters with firearm permits expended the least amount of hunting effort (mean 

= 4–5 days), followed by archery permits (mean = 8–9 days) and other types of permits (youth, 

landowner, Commission, etc. permits; mean = 8–9 days). A total of 354 elk (109 Males; 245 

Females) that represented calves, yearlings, and adults were live-captured and outfitted with 

radio-collars during 2019–2022. Among those radio-collared individuals, 126 elk (51 Males; 75 

Females) died from harvest-related (48%) and non-harvest (52%) causes; substantial variation in 

mortality rates existed between sexes and among age classes within each sex across time. We 

integrated the age-at-harvest data, hunter effort data, and survival and mortality data in a suite of 

SPR models that we fit to estimate elk population sizes during 2019–2022. Point estimates of 

female elk abundance ranged from 3,884 to 7,361 females, whereas point estimates of male elk 

abundance ranged from 3,355 to 4,135 males. Total population size estimates ranged from 8,019 

to 11,118 elk, with a final estimate for 2022 of 10,661 elk in Kentucky; those estimates 

corresponded to an average annual population growth rate of 1.10 (95% CI = 0.88–1.25) during 

2019–2022. The results of this 4-year study demonstrate that the refinements in data collection 

that occurred provided a wealth of information from which a reliable trend in elk population 

sizes could be estimated with SPR models. We contend that SPR models and targeted data 

collection within that framework provides a robust approach for monitoring elk population trends 

into the future. Additionally, despite enduring isolation of the Kentucky elk population, the 

sustained trend of positive population growth has likely prevented development of deleterious 

demographic and genetic issues, which supports long-term reintroduction success. 
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INTRODUCTION 

 

 Obtaining reliable, contemporary estimates of key demographic parameters, such as 

population size and population growth rate, is critical for effective implementation of wildlife 

conservation and management actions. Monitoring demographic parameters across time has 

heightened importance for large mammals, particularly if populations are the product of 

reintroduction and are legally hunted. Large mammals typically occur at low population 

densities, have low reproductive rates, and exhibit slow population growth rates, all of which 

render them susceptible to catastrophic events and environmental stochasticity that can lead to 

severe population declines that are often unrecognized early in the process (Erb and Boyce 

1999). Furthermore, reintroduced species that remain isolated for lengthy periods post-

establishment risk developing deleterious demographic and genetic anomalies (Kanarek et al. 

2015; Szucs et al. 2017). Consequently, large mammal population monitoring at regular intervals 

is critical for evaluating both short- and long-term reintroduction success, informing 

conservation and management actions, and implementing adaptive management strategies if 

issues arise (Robert et al. 2015; Murphy et al. 2015, 2016, 2019a,b). 

 During 1997–2002, a total of 1,547 elk (Cervus canadensis) were reintroduced to 

southeastern Kentucky to attempt to establish a viable population of an ecologically important 

but extirpated large mammal that historically inhabited the region (Larkin et al. 2001, Cox 2011). 

Early demographic monitoring indicated high post-release survival rates and increasing 

reproductive rates among the founder elk, despite few adult males being released, which 

suggested short-term reintroduction success (Larkin et al. 2003). In response to a presumed 

population increase, a limited elk hunt was first implemented in 2001, followed by an 

exponential increase and calibration of annual elk permits issued between 2004 and 2009, after 

which approximate equilibration of available permits has occurred (Kentucky Department of 

Fish and Wildlife Resources [KDFWR] 2016).  

Results from a recent population genetics analysis indicated that the elk population in 

Kentucky has remained isolated long enough, and with very limited immigration from 

neighboring elk populations in eastern Tennessee, that elk in Kentucky represent a genetically 

distinct population (Muller et al. 2018). Additional studies of elk in Kentucky over the last 

decade indicated that adult elk survival rates in parts of southeastern Kentucky were moderate 

(Slabach et al. 2018) and adequate reproduction and calf survival continues to be documented 

(K.E. Williams, unpublished data). Further, results from statistical population reconstruction 

(SPR) models suggested that the elk population in Kentucky likely increased to approximately 

10,000 individuals by 2018 (Millspaugh and Clawson 2019; hereafter referred to as the 

‘University of Montana Analysis’). Collectively, these findings suggested that the elk population 

in Kentucky was likely of large enough size with sufficient demographic rates to mitigate 

development of potential population-level genetic consequences that could be caused from the 

long-term isolation identified by Muller et al. (2018; also see Youngmann et al. [2020]).  

As with other wild game species, continued demographic monitoring of elk in Kentucky 

will be needed to inform management, including possible adjustments to legal harvest structure, 

and to evaluate the effectiveness of management actions. Although the University of Montana 

Analysis produced the first robust and defensible population size estimates for elk in Kentucky, 

that analysis was a proof-of-concept designed to evaluate if SPR models could be used to 

reliably estimate elk population size in Kentucky into the future. The analysis ultimately 

concluded that SPR could be used, but it also identified multiple shortcomings in data 
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collection/availability and provided associated recommendations for improving the underlying 

Kentucky elk datasets used by SPR models to obtain more robust and precise population size 

estimates (Millspaugh and Clawson 2019). 

Herein, we present: (1) results of SPR-specific elk research and data collection that 

occurred in Kentucky during 2019–2022, (2) updated elk population size estimates from SPR 

models, and (3) recommendations for continued elk demographic monitoring. The work 

presented in this report directly builds on the foundational University of Montana Analysis, 

which produced elk population size estimates in Kentucky for the period 2014–2018. 

Specifically, this report not only provides contemporary elk population size estimates that are 

critical to management of this ecologically, economically, and recreationally important large 

mammal, but also reflects the effectiveness of targeted changes in research and data collection 

methods that better align with the requirements and assumptions of SPR models. 

 

METHODS 

 

Statistical Population Reconstruction Data Requirements 

 SPR models were formally developed 20 years ago as an extension of virtual population 

analysis (VPA) models that were originally conceptualized for hindcasting (i.e., estimating past 

conditions) of fisheries stocks (Fry 1949, Gulland 1965, Gove et al. 2002). More conventional 

methods of population reconstruction, such as the Downing method (Downing 1980), rely on 

age-at-harvest data and rough independent approximations of survival, harvest, and harvest 

reporting rates, which prevent appropriate propagation of uncertainty to abundance estimates 

(Roseberry and Woolf 1991). Consequently, conventional reconstruction methods necessitate 

strong assumptions that large mammal populations and the structure of their harvests typically 

violate, leading to inaccurate and often volatile population size estimates (Davis et al. 2007). In 

contrast, SPR models employ joint likelihood methods to simultaneously estimate survival, 

harvest, and recruitment rates and population sizes in previous years, thereby representing a 

major improvement over conventional reconstruction models (Gove et al. 2002, Skalski et al. 

2007, Gast et al. 2013). 

 

Age-at-harvest Data 

 The foundational data required for all wildlife population reconstruction models, 

including conventional approaches and SPR, are annual counts of the number of individuals of a 

given age or age class within each sex that were legally harvested (i.e., sex-specific age-at-

harvest data). Although age-at-harvest data are typically straightforward for state wildlife 

agencies to collect with little effort, the reliability of those data is sometimes questionable. For 

example, if harvest reporting by hunters is not mandatory, then the age- or age class-specific 

counts of harvested individuals within a given year may be underreported and cause bias in 

population size estimates (Gove et al. 2002).  

Additionally, accurate classification of the sex and age or age class of each harvested 

individual is critical to generating reliable age-at-harvest datasets and, therefore, obtaining 

accurate population size estimates from SPR models (Gove et al. 2002; Skalski et al. 2007, 

2012). However, methods used for determining the sex and age of harvested animals varies 

among species, with some methods having much greater accuracy than others. In general, jaw or 

tooth analyses (e.g., cementum annuli analysis) and genitalia extraction or genetic analyses are 

the most reliable aging and sexing methods, respectively, for most medium and large mammal 
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species. In contrast, visual examinations are the least reliable, regardless of whether hunters or 

trained biologists conduct those examinations, as both sets of individuals have been shown to 

inaccurately identify the sex and age of harvested animals of multiple species at alarmingly high 

rates (Williams et al. 2011, Gee et al. 2014, Beausoleil and Warheit 2015). For instance, Murphy 

et al. (2022) found that simply switching the sexing and aging protocol from the more accurate 

genitalia examinations and cementum annuli tooth analyses, respectively, to visual assessments 

conducted by hunters may have caused SPR models to overestimate bobcat (Lynx rufus) 

population sizes by nearly 100%. 

 

Hunter Effort Data 

 Accounting for hunter effort is important for SPR models to accurately estimate harvest 

probabilities and therefore population sizes from harvest data (Clawson 2015). Harvest effort is 

often measured in number of tags or permits sold or number of hours or days spent hunting. The 

choice of which metric to use as a measure of hunter effort largely depends on the prescribed 

harvest structure; for instance, if the number of available tags/permits are limited, the harvest 

season is of short duration, and the hunter participation rate is high (at or near 100%), then the 

number of tags/permits sold might be a useful measure of hunter effort. However, in most cases, 

the time (hours or days) spent hunting or scouting + hunting is the most detailed and 

information-rich form of hunter effort that can and should be used in SPR models (Clawson et al. 

2017).  

 

Auxiliary Data 

Unfortunately, even if the age and sex classifications of harvested individuals are 

accurate, the relatively easily collected age-at-harvest data alone are insufficient for estimating 

population size and differentiating among survival and harvest rate processes (Gove et al. 2002, 

Skalski et al. 2007). Therefore, auxiliary data are required for SPR models to reliably estimate 

survival rates, harvest rates, and population sizes (Clawson et al. 2013). The most commonly 

collected auxiliary data for harvested large mammal populations are time-to-event survival and 

mortality data from radio-collar deployment and monitoring (Hatter et al. 2018, Johnson et al. 

2019, Howard et al. 2020). Other auxiliary data can also be useful; for example, obtaining an 

independent estimate of population size using capture-mark-recapture approaches in a single 

year can help calibrate the SPR model estimates of population size (Fieberg et al. 2010, Clawson 

et al. 2013, Gast et al. 2013). 

 

Data Collection for SPR Modeling of Elk in Kentucky during 2019–2022 

 As noted previously, the University of Montana’s proof-of-concept SPR analysis 

conducted for elk in Kentucky identified multiple shortcomings of data availability and data 

collection methods that caused poorer than desirable estimate reliability (Millspaugh and 

Clawson 2019). Beginning in 2019, biologists at KDFWR and researchers at University of 

Kentucky (UK) collaboratively implemented the recommendations from the University of 

Montana Analysis to obtain data for producing more reliable elk population size estimates in 

Kentucky using SPR models. 
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Age-at-harvest Data 

 All sex-specific age-at-harvest data were collected by KDFWR biologists and staff via a 

combination of the Telecheck System, in-the-field examinations of harvested elk, and tooth-

based aging via extraction and subsequent cementum annuli analysis conducted by Matson’s 

Laboratory (Manhattan, MT). From those sources, sex-specific age-at-harvest matrices were 

constructed that contained the number of individuals in each of three age classes (calf: <1 year; 

yearling: 1 to <2 years; adult: ≥2 years) that were harvested during each year from the 2019–

2020 season through the 2022–2023 season. Similar to the University of Montana Analysis, we 

chose to pool the harvest data into age classes rather than using actual ages because: 1) age was 

not determined via tooth cementum annuli analysis for all harvested elk; 2) harvest counts were 

very small for some actual ages; and 3) pooling to age class allowed our analysis and results to 

be directly comparable to those of the University of Montana Analysis. 

 

Hunter Effort Data 

 All hunters who were drawn for and subsequently purchased an elk permit were required 

to complete a post-season hunt survey, regardless of whether their hunt was successful or not. 

Within the survey, hunters were asked to report the total number of days that they spent scouting 

prior to their hunt and the total number of days that they spent hunting. We used those hunter-

reported scouting and hunting days to calculate permit type-specific hunter effort for each year.  

 

Auxiliary Data 

 The University of Montana Analysis noted major deficiencies in the availability of 

auxiliary data for elk in Kentucky, which are required for fitting SPR models (Millspaugh and 

Clawson 2019). Specifically, sample sizes of radio-collared elk were very small during some 

years, not all elk age classes were represented in the radio-collared sample during other years, 

and the geographical distribution of radio-collared elk during most years was confined to 

localized study areas instead of representing a scale-appropriate sample of the entire Elk 

Restoration Zone (e.g., Slabach et al. 2018, Hast 2019). Therefore, elk live-capture and radio-

collar deployment efforts were substantially increased beginning in 2019 to address those 

shortcomings. This included an increase in the number of radio-collars deployed, the initiation of 

a multi-year calf survival study that facilitated monitoring of calves, and an expansion in the 

number and distribution of areas within the Elk Restoration Zone where radio-collars were 

deployed on elk. 

 

Statistical Analyses of 2019–2022 Elk Monitoring Data 

Hunter Effort 

 Based on the post-season hunter surveys, for each hunter within each year, we summed 

the reported number of days spent scouting with the reported number of days spent hunting and 

then divided the total number of days spent scouting + hunting by 10 to obtain hunter effort 

values on the 1.0 scale (i.e., hunter effort = 
Days Scouting + Days Hunting

10
). This scaling ensured that all 

parameters were of similar magnitude, thereby improving stability of the SPR model numerical 

optimization process (Skalski et al. 2012). We fit a generalized linear model with Gamma error 

distribution and log link function to estimate permit type-specific hunter effort within each year 

(i.e., year × permit type fixed effects interaction; Ng and Cribbie [2017]). Additionally, we fit a 

separate generalized linear model with binomial error distribution (i.e., logistic regression) to 

estimate the permit type-specific probability of hunter success as a function of hunter effort. We 
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fit both models using the package glmmTMB in the R Statistical Computing Environment 

(Brooks et al. 2017, R Core Team 2023). We used the packages ggeffects and emmeans to obtain 

predicted marginal effects, standardized effect sizes, and respective 95% confidence intervals 

from the fitted models (Lüdecke 2018, Lenth 2023). 

 

Auxiliary Survival and Mortality 

 Using the radio-collar monitoring data, we developed staggered-entry, right-censored, 

known-fate survival datasets. Radio-collared elk died from multiple causes (e.g., harvest, vehicle 

collisions, disease, etc. [Slabach et al. 2018]), but because SPR models only account for two 

broad types of mortality, harvest and non-harvest mortality, we collapsed all mortalities into 

those categories (Gast et al. 2013, Clawson et al. 2017). We then fit nonparametric Kaplan-Meier 

survival models using the R package survival to estimate sex × age class-specific survival 

probabilities within each year (Pollock et al. 1989, Therneau and Grambsch 2000, Therneau 

2023). Although better analytical approaches exist for estimating survival probabilities and 

quantifying the effects that biological and ecological factors may have on survival, such as Cox 

proportional hazards models (Murray and Patterson 2006), the assumptions of many of those 

models are incongruous with how survivorship is treated within the SPR framework (Gast et al. 

2013, Clawson et al. 2017). In contrast, the Kaplan-Meier estimator is fully nonparametric and 

has fewer assumptions that are generally more easily satisfied. 

 However, it is reasonable to assume that elk mortality from harvest versus non-harvest 

sources represents a competing risks paradigm. In other words, harvest and non-harvest mortality 

sources are ‘competing’ to kill elk, such that the probability of an elk dying from harvest is at 

least partially dependent on the probability of that elk dying or not from a non-harvest mortality 

source (Heisey and Patterson 2006, Wolkewitz et al. 2014). The primary ramification of not 

accounting for multiple sources of mortality that are competing is that the Kaplan-Meier 

estimator may produce biased survival estimates (Southern et al. 2006). Using cumulative 

incidence functions (CIFs) to estimate competing cause-specific mortality probabilities is the 

optimal solution to this issue (Heisey and Patterson 2006, Wolkewitz et al. 2014). Therefore, we 

estimated CIFs using the R package cmprsk and obtained sex × age class-specific probabilities of 

harvest and non-harvest mortality within each year (Gray 2022). 

 An important distinction between the formulation of survival probability based on CIFs 

and the formulation within SPR models is that, when harvest and non-harvest mortality processes 

are concurrent, the probabilities from CIFs are additive (e.g., SurvivalCIF = 1 – MortalityHarvest – 

MortalityNon-harvest). In contrast, SPR models typically treat harvest and non-harvest mortality as 

conditionally independent (Gast et al. 2013, Clawson et al. 2017), such that survival probability 

is multiplicative (e.g., Survival = [1 – MortalityHarvest] × [1 – MortalityNon-harvest]). Thus, to obtain 

non-harvest mortality probabilities, and therefore overall survival probabilities, that accounted 

for competing risks and also matched the multiplicative treatment of survival in SPR models, we 

corrected the estimated CIFs for non-harvest mortality using the equation described by Howard 

et al. (2020): MortalityNon-harvest(Corrected) = 1 – 
(1 – MortalityHarvest – MortalityNon-harvest)

1 – MortalityHarvest

. By correcting the 

non-harvest mortality probabilities using this method, the corresponding survival probabilities 

match the SPR model formulation of survival: SurvivalCIF = (1 – MortalityHarvest) × (1 – 

MortalityNon-harvest[Corrected]). 
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Population Size and Growth Rate 

 We integrated the annual age-at-harvest data, hunter effort estimates, and auxiliary 

survival and mortality probabilities to estimate elk population sizes during 2019–2022 using sex-

specific SPR models fitted in a maximum likelihood framework (Gast et al. 2013, Clawson et al. 

2017). For each sex, we fit models that varied by whether the auxiliary data used were age class-

specific survival probabilities or mortality probabilities, and whether random effects for survival 

or harvest vulnerability were excluded or included to disregard or account for variation among 

years, respectively (Gast et al. 2013, Clawson et al. 2017, Howard et al. 2020). Additionally, we 

attempted to fit both method (permit type)-specific (i.e., firearm, archery, other) and period-

specific (e.g., bull firearm week 1 versus week 2) SPR models for each sex that also included the 

aforementioned treatments of auxiliary data and random effects. After multiple attempts to fit 

SPR models with solely the 2019–2022 age-at-harvest data, we arrived at the realization that 4 

years of age-at-harvest data were insufficient for obtaining reliable abundance estimates; 

therefore, we included the 2018 age-at-harvest data in all female- and male-specific SPR models 

(Millspaugh and Clawson 2019). In all models, we accounted for the fact that not all elk were 

aged, whether based on cementum annuli analysis of teeth or visual examination by KDFWR 

biologists, by specifying a year-specific aging proportion effect (Clawson et al. 2017, Howard et 

al. 2020). We fit models using AD Model Builder via PopRecon 2.0 (Fourneir et al. 2012, 

Clawson et al. 2017) and we used Akaike’s Information Criterion (AIC) for model ranking and 

selection; we produced estimates from the sex-specific models with the lowest AIC values (i.e., 

top-ranked model; Burnham and Anderson [2002], Skalski et al. [2012]).  

 We estimated an average annual population growth rate (λAvg) with the exponential 

growth equation (Gotelli 2008), which has been used for multiple other reintroduced populations 

of large mammals, including elk (Popp et al. 2014; Murphy et al. 2015, 2016; Louw et al. 2022). 

Although some individual elk herds in eastern Kentucky may exhibit logistic population growth 

that is regulated by ecological carrying capacity in a few localized areas, limited evidence exists 

to confirm this. Furthermore, considering the availability of potentially suitable but not yet 

occupied elk habitats throughout the entire Elk Restoration Zone (Hast 2019), it is reasonable to 

assume that exponential growth remains a more accurate characterization at the broader 

population level (Popp et al. 2014).  

 

RESULTS 

 

Data Collection for SPR Modeling of Elk in Kentucky during 2019–2022 

Age-at-harvest Data 

A total of 984 elk (622 Males; 362 Females) were legally harvested in the Elk 

Restoration Zone from the 2019–2020 season through the 2022–2023 season, resulting in a 

harvest sex ratio of 0.63M:0.37F. Actual ages based on cementum annuli analysis of extracted 

teeth were available for 243 males (39%) and 88 females (24%) that were harvested during the 4-

year period. The youngest harvested elk of both sexes were 0.5 years-old, whereas the oldest 

harvested males and females were 12.5 and 16.5 years-old, respectively. Based solely on tooth 

ages, the age structures of both sexes across the entire 4-year span were skewed towards young 

adults (medianFemale = 3.5; medianMale = 4.5; Fig. 1). 
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Figure 1. Age distributions based on cementum annuli analysis of teeth extracted from female (n = 88) 

and male (n = 243) elk that were legally harvested in Kentucky during 2019–2022. Median ages for each 

sex are denoted by the vertical black dashed lines; the median was used as the descriptive measure 

because the age distributions were right-skewed. 

 

Based on the combination of cementum annuli analysis of extracted teeth and field-aging 

by KDFWR staff, the age structure of harvested elk was heavily skewed towards adults (Table 

1): most harvested males were adults (87%; n = 539), followed by yearlings (10%; n = 61) and 

calves (3%; n = 22), and most harvested females were adults (91%; n = 329), followed by 

yearlings (7%; n = 26) and calves (2%; n = 7).  

 

Table 1. Number of elk in each sex-specific age class that were legally harvested in Kentucky 

during 2019–2022. Ages are based on a combination of cementum annuli analysis of extracted 

teeth and field-aging conducted by KDFWR staff. 

Year 
Female Harvest Male Harvest 

Calves Yearlings Adults Calves Yearlings Adults 

2019 2 6 92 7 12 123 

2020 2 5 78 4 16 164 

2021 2 6 86 5 9 141 

2022 1 9 73 6 28 107 
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Hunter Effort Data 

 A total of 1,920 elk hunters (98% of all hunters who completed post-hunt surveys) 

answered the post-hunt survey questions regarding the total number of days spent scouting and 

spent hunting during 2019–2022. A total of 1,715 of those hunters used their permits to hunt elk 

(89%), of which 795 hunters had successful hunts and harvested elk (46%). Collectively, most 

hunters who were drawn for permits purchased the permits and hunted, most hunters answered 

the effort questions on the post-hunt survey, and their responses reflected an approximately equal 

distribution of hunters who did and did not kill elk. Thus, the underlying data used to produce 

hunter effort estimates was likely unbiased; in other words, hunters who harvested an elk were 

not significantly more or less likely to answer the effort questions than hunters who did not 

harvest an elk. 

 

Auxiliary Data 

 A total of 354 resident elk that represented both sexes and all age classes were live-

captured, radio-collared, and had survival monitored during the 2019-20 season through the 

2022-23 season. Among the 109 male elk that were monitored, 52, 15, and 42 individuals were 

first captured as adults, yearlings, and calves, respectively. Among the 245 female elk that were 

monitored, 175, 31, and 39 individuals were first captured as adults, yearlings, and calves, 

respectively. No calves or yearlings of either sex were radio-collared during 2019, but all age 

classes of both sexes were represented in the survival data for subsequent years. 

Across all age classes, a total of 126 radio-collared elk (51 Males; 75 Females) died 

between January 2019 and January 2023 (i.e., end of the 2022-23 elk hunting season), which 

represented 36% of all elk that were radio-collared. Most male and female mortalities were 

adults (nMale = 34; nFemale = 62), followed by calves (nMale = 12; nFemale = 7) and yearlings (nMale = 

5; nFemale = 6). Causes of death included legal harvest (n = 58; 46%), unidentified/unknown (n = 

29; 23%), predation (n = 8; 6%), disease and other natural factors (n = 7; 6%), capture myopathy 

(n = 7; 6%), agency euthanasia (n = 7; 6%), vehicle collision (n = 4; 3%), trauma (n = 4; 3%), 

and wounding loss by hunters (n = 2; 1%). Thus, 48% of elk died from harvest-related causes, 

whereas 52% of elk died from non-harvest causes, which was a nominal discrepancy not 

significantly different from an expected equal ratio (χ
1
2 = 0.14; p = 0.71). 

 

Statistical Analyses of 2019–2022 Elk Monitoring Data 

Hunter Effort 

Results from the generalized linear negative binomial model indicated substantial 

discrepancies in hunting effort between hunters who had firearm permits and hunters who had 

archery or youth/landowner/Commission permits (Fig. 2A). In general, hunters with cow elk 

firearm permits expended the least amount of hunting effort, with an average of 4.22 days (95% 

CI = 3.98–4.46) spent scouting + hunting per hunter across the 4-year period. In contrast, hunters 

with archery permits or youth/landowner/Commission permits expended the most amount of 

hunting effort, with an average of 8.81 days (95% CI = 8.57–9.04) and 8.62 days (95% CI = 

8.21–9.03), respectively, spent scouting + hunting per hunter across the 4-year period. These 

estimated differences between hunters with firearm permits and all other permit types were 

statistically and biologically significant, with small p-values and small but non-negligible 

standardized effect sizes (p < 0.0001; d = 0.15–0.28). Ignoring the permit type (i.e., pooling 

hunter effort among permit types) resulted in nominal differences in average hunter effort 
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expended among years, with average hunter effort ranging from 5.99 days (95% CI = 6.07–6.99) 

during 2022 to 6.51 days (95% CI = 5.57–6.44) during 2021 (Fig. 2B). 

 

 
Figure 2. Predicted mean marginal effect estimates of elk hunter effort (days spent scouting + hunting) in 

Kentucky during 2019–2022 from a generalized linear model with negative-binomial error distribution. 

A) Mean hunter effort estimates by permit type among years; B) Mean hunter effort estimates among 

years after pooling permit types. Point estimates, 95% confidence intervals, and distributions of the raw 

data are represented by dots, error bars, and background violins, respectively. 

 

 Results from the generalized linear model with binomial error distribution (i.e., logistic 

regression) indicated that, for all permit types except archery permits, the probability of 

successfully harvesting an elk decreased with increasing hunter effort (Fig. 3A). Hunters with 

youth/landowner/Commission tags had the highest probability of successful elk harvest (P(0-2 

Days) = 0.78), which remained >0.50 out to 20 days of effort. Hunters with bull firearm permits 

had the next highest probability of successful elk harvest (P(0-2 Days) = 0.63), which remained 

≥0.50 out to 4 days of effort. Although hunters with cow firearm permits had lower probabilities 

of successful harvest than hunters with bull firearm permits, the relationship with hunter effort 

was similar for both bull and cow firearm permit hunters. In contrast, hunters with archery 

permits had a stable but relatively low probability of successful elk harvest (P = 0.30–0.36) that 

was uninfluenced by the amount of effort expended. Irrespective of permit type (i.e., pooling 

hunter effort among permit types), hunters who expended 1–4 days of hunting effort had the 

highest probabilities of successfully harvesting an elk (Fig. 3B). 
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Figure 3. Predicted probabilities of successful elk harvest in Kentucky during 2019–2022 as a function of 

hunter effort (days spent scouting + hunting) for A) each elk permit type and B) permit types pooled 

together, based on post-season surveys completed by elk hunters. Colored lines and associated shaded 

regions denote point estimates and their 95% confidence intervals, respectively; horizontal dashed black 

line denotes the P = 0.50 threshold. 

 

Auxiliary Survival and Mortality 

  Corrected estimates of non-harvest mortality probabilities (MCIF[Corrected]) that were 

derived from probabilities estimated by cumulative incidence functions (MCIF), all of which 

accounted for competing risks, differed by an average of 16% (range: 0–82%; Table 2). Most of 

the discrepancy between raw and corrected CIF estimates occurred for adult males. 

 

Table 2. Non-harvest mortality probabilities for each sex and age class of radio-collared elk in 

Kentucky during 2019–2022, based on cumulative incidence functions (CIF) that accounted for 

competing risks. Columns convey raw CIF probabilities versus corrected probabilities (CIFCor). 

Year 

Females Males 

Calves Yearlings Adults Calves Yearlings Adults 

CIF CIFCor CIF CIFCor CIF CIFCor CIF CIFCor CIF CIFCor CIF CIFCor 

2019 – – – – 0.07 0.08 – – – – 0.13 0.17 

2020 0.20 0.22 0.00 0.00 0.09 0.09 0.09 0.09 0.00 0.00 0.05 0.11 

2021 0.35 0.35 0.00 0.00 0.17 0.20 0.50 0.50 0.20 0.27 0.13 0.31 

2022 0.22 0.22 0.18 0.18 0.11 0.12 0.41 0.41 0.00 0.00 0.06 0.10 
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In general, estimated mortality probabilities reflected variation for female elk among age 

classes, whereas variation across time within each age class was nominal (Fig. 4A). Harvest had 

the highest mortality probability for yearling females (MCIF = 0.00–0.25), non-harvest causes had 

the highest mortality probability for female calves (MCIF[Corrected] = 0.22–0.35), but female adults 

had similar mortality probabilities for harvest and non-harvest causes (MCIF[Corrected] = 0.05–0.20). 

In contrast, mortality probability estimates for male elk reflected substantial variation among age 

classes and across time within age classes (Fig. 4B). In general, harvest had the highest mortality 

probabilities for adult males (MCIF = 0.25–0.58) and yearling males (MCIF = 0.17–0.67), whereas 

non-harvest causes had the highest mortality probability for male calves (MCIF[Corrected] = 0.09–

0.50).  

 

 
Figure 4. Point estimates of harvest and non-harvest mortality probability for all age classes of radio-

collared A) female and B) male elk in Kentucky during 2019–2022, based on competing risks analysis 

using cumulative incidence functions and corrected to the multiplicative form that SPR models use 

(Howard et al. 2020). Background shaded regions represent 95% confidence intervals. 

 

Derived multiplicative survival probabilities (SCIF) based on corrected MCIF estimates 

nominally differed from Kaplan-Meier estimated additive survival probabilities (SKM) by <1%. 

For female elk, annual SCIF exhibited less pronounced variation across time within each age 

class, but differences among age classes existed (Fig. 4A); in general, calves had the lowest 

survival probabilities (SCIF = 0.65–0.78), followed by yearlings (SCIF = 0.75–0.83) and adults 

(SCIF = 0.68–0.86). For male elk, annual SCIF differed substantially among age classes and across 

time (Fig. 4B), such that adults generally had the lowest survival probabilities within each year 

(SCIF = 0.29–0.62), followed by yearlings (SCIF = 0.33–0.83) and calves (SCIF = 0.50–0.91).  
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Figure 5. Point estimates of survival probability for all age classes of radio-collared A) female and B) 

male elk in Kentucky during 2019–2022, based on competing risks analysis using cumulative incidence 

functions and corrected to the multiplicative form that SPR models use (Howard et al. 2020). Background 

shaded regions represent 95% confidence intervals. 
 

Population Size and Growth 

 Annual sample sizes for female elk that were harvested by the various permit types were 

too small for fitting method (permit)-specific SPR models, even if combined across permit types 

(Millspaugh et al. 2018; Table 3). Additionally, sample sizes within a harvest period (e.g., cow 

firearm week 1 versus cow firearm week 2) were too small for fitting period-specific SPR 

models. Therefore, we combined all female age-at-harvest data (i.e., pooled across methods and 

periods) and fit female models that considered four different hunter effort estimates: 1) cow 

firearm; 2) archery; 3) youth/landowner/Commission/etc.; and 4) the averages among 1–3. 

Combined with the different treatments of auxiliary data and random effects described in the 

Methods, this resulted in 16 total SPR models that we fitted to estimate female abundances. 

 Annual sample sizes for male elk that were harvested within a period (e.g., bull firearm 

week 1 versus bull firearm week 2) were also too small for fitting period-specific SPR models 

(Table 3). However, sample sizes combined across periods were sufficient for fitting method-

specific male SPR models for firearm and archery seasons, but possibly not other seasons. To 

facilitate this, we pooled the bull firearm week 1 and week 2 data as ‘Male Firearm’, the 

archery/crossbow data as ‘Male Archery’, and the youth/landowner/Commission/etc. data as 

‘Male Other’, then specified the corresponding method-specific hunter effort estimates in the 

associated SPR models. We also fit combined method models in which all male harvest data 

were pooled across methods and averaged year-specific hunter effort estimates were used. Thus, 
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combined with the different treatments of auxiliary data and random effects described in the 

Methods, we fit a total of 16 SPR models to estimate male elk abundances. 

 

Table 3. Sex-specific elk harvest results in Kentucky by permit type during 2019–2022. The 

Other permit type represents the combination of youth, landowner, Commission, voucher, etc. 

permits. Asterisks (*) denote males that were harvested during cow firearm permit periods. 

 2019–2020 Season 

Permit Female Male Adult Male Yearling Male Calf 

Firearm – Week 1 43 27 3   2* 

Firearm – Week 2 39 21 2   2* 

Archery/Crossbow 13 32 1 2 

Other 5 44 5 1 

 2020–2021 Season 

Permit Female Male Adult Male Yearling Male Calf 

Firearm – Week 1 33 39   4*   1* 

Firearm – Week 2 37 35 2   3* 

Archery/Crossbow 9 44 5 0 

Other 6 48 3 0 

 2021–2022 Season 

Permit Female Male Adult Male Yearling Male Calf 

Firearm – Week 1 44 29 0   1* 

Firearm – Week 2 33 24 3   2* 

Archery/Crossbow 12 40 5 2 

Other 5 48 1 0 

 2022–2023 Season 

Permit Female Male Adult Male Yearling Male Calf 

Firearm – Week 1 28 14 7   2* 

Firearm – Week 2 39 26 6   2* 

Archery/Crossbow 10 21 9 2 

Other 6 46 6 0 

 

 Female elk abundance – For each measure of hunter effort considered, the top-ranked 

SPR model included mortality probabilities estimated from CIFCor as the auxiliary data and 

random effects that allowed interannual variation in mortality probabilities (Table 4). All other 

candidate models had ∆AIC > 7.00 and were therefore beyond the range of AIC values within 

which models are typically considered competing (i.e., ∆AIC ≤ 7.00; Burnham and Anderson 

2002, Burnham et al. 2011). Temporal trends in female abundance based on those 4 top-ranked 

models were similar, and nominal discrepancies existed depending on which measure of hunter 

effort was specified; for example, the 2022 female abundance estimates from the 4 models 

differed by only 0.21–1.71% (range[2022] = 6,483–6,595 female elk). Therefore, because we did 

not know which estimate of hunter effort most accurately described the pooled female age-at-

harvest data, we averaged point estimates among all 4 top-ranked models to produce final female 

elk abundance estimates. Final averaged estimates ranged from a low of 3,884 females (95% CI 

= 1,489–6,279) during 2019 to a high of 7,361 females (95% CI = 2,385–12,337) during 2021 

(Table 5; Fig. 6). 
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Table 4. Model selection results for 16 fitted SPR models that were considered for estimating 

female elk abundance in Kentucky during 2019–2022. Models differed by which measure of 

hunter effort was specified, whether age-specific survival or mortality probability estimates were 

used as auxiliary data, and whether random effects were specified to allow interannual variation 

in age-specific survival or mortality probabilities. Annual estimates from models with the lowest 

AIC value within each group of hunter effort models were averaged to produce final female elk 

abundance estimates. 

Hunter Effort 
Model 

# 

Auxiliary 

Data 

Random 

Effects 
Ka LLb AICc ∆AICd 

Firearm 

1 Mortality Yes 12 -49.55 123.10 0.00 

2 Mortality No 11 -54.14 130.29 7.19 

3 Survival Yes 12 -53.28 130.55 7.45 

4 Survival No 11 -60.59 143.20 20.10 

Archery 

1 Mortality Yes 12 -49.69 123.37 0.00 

2 Mortality No 11 -54.28 130.56 7.19 

3 Survival Yes 12 -53.39 130.78 7.41 

4 Survival No 11 -60.70 143.40 20.03 

Other 

1 Mortality Yes 12 -49.57 123.14 0.00 

2 Mortality No 11 -54.16 130.32 7.18 

3 Survival Yes 12 -53.38 130.76 7.62 

4 Survival No 11 -60.68 143.36 20.22 

Average 

1 Mortality Yes 12 -49.66 123.31 0.00 

2 Mortality No 11 -54.25 130.50 7.19 

3 Survival Yes 12 -53.56 131.11 7.80 

4 Survival No 11 -60.86 143.71 20.40 
aNumber of model parameters; blog-likelihood of model; cAkaike’s Information Criterion of model; dDifference 

between AIC of model and AIC of top-ranked model. 

 

 

 

 

 

 

 

Table 5. Point estimates of abundance, 95% confidence intervals (CI), and coefficient of 

variation (CV; estimate precision) for female elk in Kentucky during 2019–2022. 

Year Estimate (# Females) 95% CI CV 

2019 3,884 1,489–6,279 0.31 

2020 6,277 1,455–11,099 0.39 

2021 7,361 2,385–12,337 0.34 

2022 6,543 2,711–10,375 0.30 
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Figure 6. Point estimates (solid lines) and 95% confidence intervals (shaded regions) of female elk 

abundance in Kentucky during 2019–2022 from top-ranked SPR models. 
 

Male elk abundance – The method-specific male models for firearm and archery permits 

converged and produced plausible estimates; however, the models for the other types of permits 

(e.g., youth, landowner, Commission, etc.) did not converge (Table 6). Convergence issues for 

those latter models were likely a consequence of small sample size, because no or few male 

calves or yearlings were harvested with youth, landowner, Commission, etc. permits. 

Unfortunately, because the models for the other types of permits did not converge, we could not 

combine method-specific abundance estimates to produce total male abundance estimates. 

Therefore, we produced male abundance estimates from the models in which all male harvest 

data were pooled across methods (permit types).  

Similar to the female elk SPR models, the model that included mortality probabilities 

estimated from CIFCor as the auxiliary data and random effects that allowed interannual variation 

in mortality probabilities was the top-ranked model for male elk. Final estimates from this model 

ranged from a low of 3,355 males (95% CI = 772–5,938) during 2020 to a high of 4,135 males 

(95% CI = 713–7,557) during 2019 (Table 7; Fig. 7). 
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Table 6. Model selection results for 16 fitted SPR models that were considered for estimating 

male elk abundance in Kentucky during 2019–2022. Models differed by which method-specific 

age-at-harvest data (i.e., permit type) and corresponding hunter effort estimates were used, 

whether age-specific survival or mortality probability estimates were used as auxiliary data, and 

whether random effects were specified to allow interannual variation in age-specific survival or 

mortality probabilities.  

Permit Type 
Model 

# 

Auxiliary 

Data 

Random 

Effects 
Ka LLb AICc ∆AICd 

Firearm 

1 Mortality Yes 12 -55.65 135.30 0.00 

2 Mortality No 11 -61.74 145.48 10.18 

3 Survival Yes 12 -66.04 156.07 20.77 

4 Survival No 11 -72.06 166.12 30.82 

Archery 

1 Mortality Yes 12 -34.11 92.23 0.00 

2 Mortality No 11 -38.75 99.49 7.26 

3 Survival Yes 12 -42.89 109.79 17.56 

4 Survival No 11 -49.93 121.86 29.63 

Other 

1 Mortality Yes 12 Did not converge. 

2 Mortality No 11 Did not converge. 

3 Survival Yes 12 Did not converge. 

4 Survival No 11 Did not converge. 

Pooled 

1 Mortality Yes 12 -61.37 146.74 0.00 

2 Mortality No 11 -66.06 154.11 7.37 

3 Survival Yes 12 -69.93 163.87 17.13 

4 Survival No 11 -76.78 175.56 28.82 
aNumber of model parameters; blog-likelihood of model; cAkaike’s Information Criterion of model; dDifference 

between AIC of model and AIC of top-ranked model. 
 

 

 

 

 

 

 

 

Table 7. Point estimates of abundance, 95% confidence intervals (CI), and coefficient of 

variation (CV; estimate precision) for male elk in Kentucky during 2019–2022. 

Year Estimate (# Males) 95% CI CV 

2019 4,135 713–7,557 0.42 

2020 3,355 772–5,938 0.39 

2021 3,757 707–6,807 0.41 

2022 4,118 655–7,581 0.43 
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Figure 7. Point estimates (solid lines) and 95% confidence intervals (shaded regions) of male elk 

abundance in Kentucky during 2019–2022 from the top-ranked SPR model. 

 

  

Combining the male and female estimates from the top-ranked SPR models resulted in 

total population size estimates that ranged from 8,019 elk (95% CI = 3,842–12,196) during 2019 

to 11,118 elk (95% CI = 5,281–16,955) elk during 2021 (Table 8; Fig. 8). The final population 

size estimate for 2022 was 10,661 elk (95% CI = 5,496–15,826). Estimate precision, measured as 

coefficient of variation, ranged from 0.25 to 0.29, or an average of 0.27 across the 4-year period. 

Total elk population estimates corresponded to an average annual exponential population growth 

rate of λ = 1.10 (95% CI = 0.88–1.25) during 2019–2022. 

 

 

 

Table 8. Point estimates of abundance, 95% confidence intervals (CI), and coefficient of 

variation (CV; estimate precision) for the elk population in Kentucky during 2019–2022. 

Year Estimate (# Elk) 95% CI CV 

2019 8,019 3,842–12,196 0.27 

2020 9,632 4,162–15,102 0.29 

2021 11,118 5,281–16,955 0.27 

2022 10,661 5,496–15,826 0.25 
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Figure 8. Point estimates (solid lines) and 95% confidence intervals (shaded regions) of total elk 

abundance in Kentucky during 2015–2022 from SPR models. Estimates for 2015–2018 from the 

University of Montana Analysis (Millspaugh and Clawson 2019) are provided for context. 

 

DISCUSSION 

 

 In this report, we provide results from an updated analysis of elk age-at-harvest data 

using SPR models to estimate elk population sizes in Kentucky during 2019–2022. Our total 

population estimates provide increased confidence that the elk population in Kentucky has 

hovered around 10,000 individuals since 2018, possibly reaching a maximum of approximately 

11,000 individuals during 2021–2022. Much of this population increase appears to have been 

due to an increasing female component of the population, possibly facilitated by lower female 

harvest rates. In contrast, low survival rates among all male age classes, particularly adult males, 

has likely led to stabilization of the male component of the population since 2018. The lower 

male survival rates that we documented were not caused solely by legal harvest but were instead 

the result of compounding effects between moderate non-harvest mortality that was followed by 

moderate to high harvest mortality. Given much of the non-harvest mortality documented in 

males was from unknown/unidentified causes, direct management actions to mitigate this 

mortality are difficult to identify or prescribe. 

Nevertheless, our estimates indicate that the elk population in Kentucky is likely still 

experiencing long-term positive population growth, despite possible declines during some years. 

Such undulations in population size among years should be expected and exemplify why a single 

estimate for one year provides a ‘snapshot’ that may not be indicative of true ungulate population 

trends. Compared to other abundance-estimation methods, SPR models may not provide the most 

accurate or precise population size estimates within a single year, particularly for the most recent 

years of a timeseries (Fieberg et al. 2010); however, SPR models can provide accurate 

population trend estimates, even with few years of age-at-harvest data, if sufficient auxiliary data 
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are available (Fieberg et al. 2010, Clawson et al. 2013). Long-term population trend monitoring 

is often the most useful for management of secure but harvested ungulate populations (Krausman 

and Cain 2013). Additionally, as more years of age-at-harvest data are collected and added to the 

timeseries, along with continued monitoring of hunter effort and auxiliary information, SPR-

estimated abundances should have improved accuracy and precision (Skalski et al. 2012, 

Clawson et al. 2013). 

Although previous researchers derived similar population size (N = 10,000) and growth 

rate (λ = 1.13) estimates for elk in Kentucky during 2013–2014 (Popp et al. 2014), those 

derivations were based on expert opinion responses to survey questionnaires, not empirical data, 

and consequently had unknown reliability. Indeed, those derived estimates were substantially 

larger than the empirical estimates for the same year produced by the proof-of-concept 

University of Montana Analysis that used SPR models (Millspaugh and Clawson 2019). This 

indicated that the derivations in Popp et al. (2014) were overly optimistic, as is often the case 

when basing estimations on expert opinion rather than empirical data, largely due to cognitive 

biases (Colson and Cooke 2018, Moore et al. 2022). In contrast, a 2006–2007 population 

estimate of 7,000 elk (95% CI = 5,488–8,514) based on aerial forward-looking infrared 

radiography (FLIR) surveys and a landscape-based model may have been reasonably accurate 

(Dahl 2008). Our estimates for 2019–2022, which build on the University of Montana Analysis, 

were based on empirical age-at-harvest, survival, mortality, and hunter effort data that were 

collected specifically within an SPR framework and therefore should be considered more 

reliable. 

Multiple improvements in data collection occurred since the proof-of-concept SPR 

analysis was conducted by University of Montana, which undoubtedly improved abundance 

estimate reliability. For instance, the implementation of a mandatory post-season hunter survey 

with focused effort questions (e.g., ‘how many days did you spend scouting’ and ‘how many 

days did you spend hunting’) allowed us to calculate and use a much better hunter effort metric 

than was available for the University of Montana Analysis (i.e., number of permits purchased). 

Not only did this Commission-recommended, legislature-approved survey provide an improved 

hunter effort metric, but it also facilitated the ability to estimate permit type (method)-specific 

hunter effort and elucidate similarities and differences in hunter effort among those permit types. 

Additionally, the massive geographical expansion of elk radio-collaring efforts throughout the 

Elk Restoration Zone that occurred during 2019–2022 for both sexes provided a wealth of 

representative, population-level auxiliary data for integration into the SPR models. In contrast, 

most of the radio-collar monitoring data that were available for use in the University of Montana 

Analysis were obtained from hypothesis-driven research studies conducted on Limited Entry 

Areas, where harvest rates were abnormally high and likely not representative of the broader Elk 

Restoration Zone (Slabach et al. 2018). Furthermore, no calf survival data were available for use 

in the University of Montana Analysis, whereas a new calf survival study was initiated during 

2020 that provided three consecutive years of intensive monitoring data across the Elk 

Restoration Zone for estimating auxiliary calf survival and mortality probabilities at the 

population-level.  

We caution that our elk population size estimates for 2019–2022 may be biased for two 

primary reasons. First, small sample sizes in the age-at-harvest data for each permit (method) 

type, particularly for females, prevented us from estimating method-specific abundances. 

Although we could estimate firearm- and archery-specific abundances for male elk, models for 

the other permit types (e.g., youth, landowner, Commission, etc.) did not converge for males, and 
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low harvest rates for females prevented method-specific model fitting altogether. Thus, we were 

forced to pool the age-at-harvest data among permit types for each sex to achieve model 

convergence, which necessarily ignored much of the heterogeneity inherent to the age-at-harvest 

data and hunter effort for each permit type. The only approach for overcoming said issue would 

be to increase the number of annual permits, particularly for the other permit types (youth, 

landowner, Commission, etc.) and for females in general; however, based on the SPR models’ 

most recent abundance estimates and elk population biology, we do not advise increasing permits 

at this time, assuming KDFWR’s objective is to maintain a stable to increasing elk population. 

Second, although the proportion of harvested males that were aged via tooth extraction and 

cementum annuli analysis has remained relatively constant (40–48% per year), the number of 

harvested females that were aged via cementum annuli analysis declined substantially to a low of 

just 13%. Consequently, most age classes specified for harvested females were based on visual 

examinations, which can be fraught with inaccuracies even if conducted by trained experts, such 

as agency biologists (Williams et al. 2011, Gee et al. 2014, Beausoleil and Warheit 2015). 

Because of the low tooth-aging proportion, we were forced to assume that most of the field-ages 

based on visual examinations were accurate for females, which may have biased our female 

abundance estimates to an unknown but potentially high magnitude (Murphy et al. 2022). 

Therefore, it is imperative that actions are taken to attempt to increase elk hunter participation in 

the tooth mail-in program.  

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

 By expanding on the seminal SPR modeling conducted in the University of Montana 

Analysis, our SPR analysis provides additional justification for using SPR models to estimate 

abundance and monitor population trends of elk in Kentucky. Additionally, combined with the 

results of the University of Montana Analysis, our collective findings very strongly support long-

term reintroduction success of elk in Kentucky, despite enduring genetic isolation (Muller et al. 

2018, Youngmann et al. 2020). Similar to the Big South Fork black bear (Ursus americanus) 

population, these results provide additional evidence that rapid, sustained population growth 

post-reintroduction can effectively mitigate the development of deleterious genetic and 

demographic effects in isolated large mammal populations (Murphy et al. 2015, 2019a). 

We note that our analyses were based primarily on data collected during 2019–2022 to 

provide a comparison with the proof-of-concept conducted by University of Montana, in which 

auxiliary and hunter effort data were not collected in an SPR framework. By implementing most 

of the recommendations in the University of Montana Analysis, KDFWR and UK 

collaboratively obtained better hunter effort data and more representative survival and mortality 

data, all of which facilitated surprisingly precise elk abundance estimates with relatively few 

years of age-at-harvest data. Our next step is to include the 2014–2017 age-at-harvest data with 

the 2018–2022 data to attempt to produce abundance estimates over a longer time series, which 

theoretically should improve estimate precision and reliability. However, given the non-

negligible changes to harvest structure (e.g., permit types and seasons) that occurred between 

2014 and 2022, integration of age-at-harvest data from earlier years with more recent years may 

not be possible. Nevertheless, maintaining a harvest structure for the 2023–2024 season that is 

similar to what occurred during 2019–2022 will provide a fifth year of data for inclusion in a 

subsequent SPR analysis, which likely will also improve estimate precision. 
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 Although many of the recommendations from the University of Montana Analysis were 

implemented, some were not and, therefore, we reiterate those here because some deficiencies 

remain that may have led to bias in abundance estimates: 

 

1. The severe decline in harvested female elk tooth submissions by hunters for aging via 

cementum annuli analysis that has occurred over the last 4 years is a major hindrance. A 

foundational assumption of SPR models is that the ages of harvested individuals are 

accurately determined, and cementum annuli analysis of extracted teeth is generally 

considered the most reliable method for elk. Basing ages on visual examinations is 

problematic, often inaccurate, and can result in biased abundance estimates from SPR 

models. Therefore, we reiterate the previous recommendations from the Elk Program 

Staff and the University of Montana Analysis that actions must be taken to increase 

hunter participation in the tooth mail-in program. The currently unenforced, voluntary 

tooth submission program has a rapidly dwindling participation rate among elk hunters in 

Kentucky, which is having a direct negative impact on the quality and precision of female 

and total elk population abundance estimates from SPR models. 

 

2. Despite substantial improvements in auxiliary data collection, one drawback remains, 

which is survival and mortality probabilities of yearling males. Across the 4 years of 

radio-collar monitoring, survival and mortality data were obtained for just 15 total male 

yearlings. This small sample size of auxiliary data led to incongruous mortality 

probabilities between the CIFs estimated from radio-collar data and the probabilities 

estimated by SPR models for this age class. Although understandably difficult to 

accomplish in practice, attempting to increase the sample size of radio-collared male 

yearlings would provide more representative auxiliary data for integration in the SPR 

models, which should further improve both male and total population abundance 

estimates. 

 

3. Although SPR models can produce reliable estimates of population trends, the point 

estimates of abundance within a given year are often biased or imprecise, particularly for 

the most recent years of a time series. Obtaining an independent estimate of abundance at 

infrequent intervals using other methods, such as spatial capture-recapture or mark-

resight approaches, which is then integrated in the SPR models as auxiliary data, can help 

calibrate and minimize bias in SPR-estimated abundances. Therefore, we recommend 

beginning discussions for development of a population-wide capture-recapture or mark-

resight survey in the spatially explicit framework that could be implemented at 5–10-year 

intervals to calibrate the SPR model abundance estimates. Currently, spatially clustered 

sampling designs provide the most effective and efficient approach for obtaining data 

across large geographical areas and estimating population size and density within a single 

year. Given the number and distribution of radio-collared elk already on the landscape, 

simply deploying clusters of camera-traps across the Elk Restoration Zone in a spatial 

mark-resight framework would likely provide the necessary data to estimate abundance 

in one year. This spatially explicit clustered camera-trapping approach was recently 

applied to an area the size of the Elk Restoration Zone to efficiently estimate population 

size and density of another large mammal with high precision (Murphy et al. 2019b). 
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